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SELECTION OF THE BEST PAIR FROM A RANDOM SEQUENCE

John S. Rose

E.C.R.S.B. 80-3



Selection of the Best.Pair from a Random Sequence
) *
John S. Rose

The model analyzed in this paper extends the clas-
sical secretary problem to the situation in which the
decision maker wants to select the two best objects.
Exactly two selections are permitted, and a selection
strategy is defined by a pair of stopping times.
Characterization of the optimal strategy is cumbersome,
but useful asymptotic representations are obtained for
long sequences.

KEY WORDS: Secretary problem, sequential decision
process
1. INTRODUCTION

In the classical model of the secretary problem, we shall observe
a sequence of n objects. The number, n, of objects is known.
Although we may completely rank order any observed subsequence of
objects, we possess no prior kKnowledge about the distribution of
those qualities and attributes on which our preference ordering is
based. At each stage of the sequence, we must decide, in real time,
whether or not to select the object presented. Recall 6f a passed
object is forbidden, and selection of any object terminates the
process. No utility derives from any but the single best object -
that ranked number 1 according to our preference ordering. Conse-
quently, the objective is to maximize the probability of selecting
the best object.

Comprehensive results for the classical model, and also for

some interesting generalizations thereof, are given by Gilbert

*Dr. Rose is Associate Professor of Management Systems, School of
Business Administration, University of Richmond. The author
gratefully acknowledges the support provided by a grant from the
Du Pont Company.



and Mosteller (1966). Variations of the classical model have been
contributed by a host of researchers. Rasmussen (1975) -invokes a
payoff function that is more general than "all or nothing,'" and he
and Robbins (1975) assume that n is random. Stewart (1978a) consi-
ders a statistical model, in which his state of information, about
the true underlying €istribution of the object population, is up-
dated at each stage. Stewart (1978b) also considers a multicriterion
version of ghe problem, and Albright (1976) investigates a Markov
chain version.

In the present paper, we must select two objects from the sequence,
and only the best pair yield any return. The model and notation are
formalized in the next section. Section 3 considers the optimal
timing of the second choice, given that one object has already been
chosen. In section 4, we proceed to investigate when the first choice
should be taken. Asymptotic results, for large n, are obtained in
section 5‘(0n1y after completing this work and submitting it for publication

did this aﬁthor become aware of the paper by Nikolaev (1977), who obtained

identical asymptotic results via different methods.)

2. MODEL FORMULATION

Let Xl, cee Xn be a random permutation of 1,2,...,n;
P(xl=il""’ Xn=in) = 1/n!, for all permutations (il,...,in). Then
Xr denotes the rank, among all n objects, of the observation made at

stage r. At stage r, however, we know only the relative rank,
Ar =1 + card{': i<r, Xi<Xr}, r=1,...,n,
where cardQﬁzO (throughout the paper, we adopt the convention that
set functions are zero on the null set). Let d denote the number of
objects which must be selected; d=1,2. At any stage r, we must decide,

based on only the observed relative ranks, Al,...,Ar, whether to

pass Oor to select the currently proffered object. Of course, the
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decision also depends on n, r, and d. The objective is to find a
selection strategy which maximizes the probability of selecting the
best pair of objects.
Let'Tl and T} be stopping times relative to the subsequences
Ay oo Ar’ r=1,...,n, with léT&(Tégn. InterpretT’i as the

th

*
random stage at which the i selection is made, i=1,2. Then, ;.

and T;. are optimal if P(XTT + XTZ = 3) is maximized over all such
stopping times, T&, T&. There is no question about the existence of
optimal rules, since the number of these stopping times is finite,
Henceforth, we presume that we are following an optimal strategy;
our job is to characterize (one such) optimal strategy.

Fortunately, the class of selection procedures may be simplified.

The decision to be made at stage r depends on the history Al enay AL

only through the conditional distribution of X ..., X_, given

r 2

b

that history. Now , Al""’ A are independent of the sequence

r-1
Xr""’ Xn' The reason is that, no matter which objects will be

viewed in the first r-1 stages, every (r-1)-tuple of their relative
ranks, (al,..., ar-l)’ is equally likely. Hence, the relative ranks

of the first r-1 objects provide no information about those objects Wﬁkh
are yet to be observed. Thus, we may restrict our attention to

stopping rules T1 andT} that are determined solely by the stage

index, r, and the relative rank, Ar’ observed at that stage, r =

1,.-.,]’1.

The optimal return functions are given by

u (a,d) = P(XT; + Xx = 3[a _=a,r,d), (2.1)

T2
the conditional probability of "winning,"” given that at stage r,

with d selections yet to be made, we observe A _=a, r=1,...,n,
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a=l,...,r, d=1,2. Also, let
vo_1(d) = Eur(l\r.d), (2.2)

the expected probability of winning, after r-1 stages have been
decided upon and there remain d objects to be selected. Then,
P(XT; +*XT; = 3) = VO(Z), the probability of winning prior to the
start of the process.

Certainly the following hold :

*
A.*=1 on { T.¢<n-1¢, : (2.3)
7 LT }.
*
A.*=1 or 2 on (T <N}, (2.4)
v, {t2 }
T;smin{r: T} Ar=l}. (2.5)

If any of (2.3)-(2.5) were violated, then we would have selected an

ob ject worse than one already passed, soO we couldn't possibly win.
3. CHOOSING THE SECOND OBJECT (d=1)

Proceed with the usual backward induction argument on the stage

index r, 14r¢n. According to (2.5), if A =1, then it must be selected immediately,

and (2.1) and (2.3) give

ur(l,l) =P(X +>2,...,Xn>2)

r+l
r(r-1)/n(n=1), (3.1)

i

where the independence of Al,..., Ar from Xr+1""’xn 1s agaln
manifest. Suppose Ar=2. If it is selected, then again ur(2,1)=
r(r-1)/n(n-1). If Ar=2 is passed, then ur(2,l) = Vr(l)' Hence,

the optimality equations are
ur(2,1) = max{r(r—l)/n(n—l), Vr(l)}, r>2, : (3.2)

with vn(-)EsO. Finally, if Ar=a>2, then (2.4) implies that
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u_(a,1) = v (1), a>2. ’ (3.3)

To evaluate vr(l), note that A__ ., is uniformly distributed

over { 1,...,r+i}. Combining (2.2) and (3.1)-(3.3) gives

= . - 1 r-1
vr(l) = nnciy t T u.1(2,1) + 57 vr+l(1)' (3.4)

The following is analogous to Lemma 1 of DeGroot (1970, p.328).

) - _ r(r-1) r(r+l)
LEMMA 1 If u (2,1) = ==y , then u_,,(2,1) = m(p=Ty »

r=2, “ 0 e ,n—llt.

PROOF If the lemma is false for some r, (3.2) yields ur+1(2,1) =
. . r+l r
vr+1(1). Solving (3.4) gives Vr+l(1) = =T [vr(l) - ETE:TT] .
. r(r-1) i
By hypothesis, vr(l)sur(z,l) = A(n=1y + Thus, ur+l(2,l)$

r+1 [ r(r-1) X r+l . r(r-1) x(r+l) " yhich is impossible,
Y [n(n-l) "h('ﬁ'—Tj‘]< r n(n—1)<n(n-1)’ P
according to (3.2).
*
Lemma 1 is important for characterizing T,. It says that there
is some smallest stage index, r}.such that,if Ar=2 for rzr, then

A  chould be chosen. To complete the characterization, we need the

analog to DeGroot's Lemma 2 (1970, pp. 328-29). <

LEMMA 2 If ur(Z,l) r(r-1)/n(n-1) for some r=2,...,n, then

2(r-1) r=2) 1 1
v 1) = SEEEE = el (3.5)
PROOF  yse backward induction on r. If r=n, then Vn__l(l) = 1/n +

1/n un(z,l) = 2/n, by (3.4) and the hypothesis respectively. Also,
2/n = RHS of (3.5). Assume now that Lemma 2 holds for r=k+l,
and consider r=k. The hypothesis of Lemma 2 gives uk(2,1) =

k(k-1)/n(n~1), so Lemma 1 yields u (2,1) = k(k+1)/n(n-1).

k+1

Therefore, we may invoke the induction hypothesis to compute vk(l).
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From (3.4) and the preceding,

k-1 1 . k(k-1i K-2 { 2K (k-1 1 1 }
Vk-11) = "Ryt R ﬁTﬁ?Tg + TR {_ﬁ%ﬁ:T% (E:T tooot ﬁ:z)

2(k~1)(k~2 1 1
= n(n-{; ! (E:Z teooot ﬁ’Z).

Now, we may actually compute r*, From (3.2) and (3.5), r* is

: 2r(r-1) 1 1 r{r-1)
the smallest r such that v.(1) = G ( )4

r=T T+++* 72/ a(n-1)’
or
1 1 1 1.
’2 /‘—‘r_"r + r +oa ot n_!' (3’6)
* .
For n2>4, r is well defined; and, for n=2 or 3, the problem is trivial
anyway.

The optimal stopping time for obtaining the second object is now

fully characterized. If’['l is any stopping time for which AT1=1’ then

T; = min {{r: r>T1,Ar=qlJ {r: n>ryr} Ar=2}L){n}} . (3.7)

After having selected one object, we stop with Arzl. If no A =1 is
encountered, then we select an Ar=2 after r* stages are observed.
Finally, we will be stuck with the last object in the ,sequence if
neither Arzl nor, for rar*, Ar=2 is previously encountéred.

The following two results will be useful in our selection of an

initial object.

LEMMA 3  For r=2,...,r*-1,

ve() = SR et v ). (3.9)

PROOF Let 2<r<r* be given, and define T = min{i: r<i<r*-1, Ai=l}.
Conditioning on T, we have
r*-1

Ve(1) = 3 u (1L,1)P(T=i) +v
1=r+l

peop (1) P(T=0). (3.9)



From (3.1), ui(l,l) = i(i-1)/n(n-1). Also, (T=1) = P(A >l,...,

_1) = L .o+l 0 i-2 1 L i
Aj->ly A=) = ot vl i-1 1T iGony ¢ simlarly,

P(T=0) = Efff' Substitution into (3.9) yields (3.8).

LEMMA 4 The function vr(l) is strictly increasing on r=2,...,r¥-1, achieves

. . * . . . *
its maximum at r=r -1, and is strictly decreasing on r=r",...,n.

PROOF For ryr*-1, vr(l) is given in (3.3). Taking first differences

yields‘av(l) = Vr+1(l) - v (1) = ;T;—IT [2(— + ... n~2) - ﬂ-

*1

From (3.6), = , + e +

H!H

’ so'Avr(l)SO. Furthermore, except

: i
(I ol
N

for the trivial case when n=4 and r*=3, strict inequality holds in
(3.6). Consider now r&r*-1. Combine (3.8) and (3.5) to obtain
&V, (1) =v (1) -v (1) =

_ r*-2r + 1 L 2(xr*-1)(xr*-2) ( 1

1 a
~ n(n-1) r*-1 nin-1) Tk T oee. ¥ n_zl From (3.6),
1 1 (1 o r*-2r rx-2 2 o
i3 v T2 S0V (MD>EETT Y a(ael) T nlnol) (FFor 1) > 0.

4. CHOOSING THE F1RST OBJECT (d=2)

From (2.3), we need to consider only those stages for which
Ar=l. If Ar=1 is selected, when d=2, then the process continues just
as if Ar=l had been passed, with d=1, so ur(l,Z) N vr(l). If Ar=1

is passed, then ur(1,2) = vr(2), SO
ur(l,Z) = max{vr(l), vr(Z)} . ’ (4.1)
‘The next lemma focuses our attention upon those stages r<&r*-1.

LEMMA 5 (f r)r*-1, then ur(l 2) = v ().

PROOF  Suppose ur(1,2) = vr(Z):>vT(1), and let T denote the random stage index at

which the first object is finally selected. Then, r<T< n-1, and ur(1,2) S Evr(l).

By Lemma 4, Vr(1)>’vr(1)’ SO vr(l)z.ur(l,Z), a contradiction.
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Henceforth, we presume that 1<r*-1. Next, we prove the analog

to Lemma 1 for the case d=2.

n

LEMMA 6 If ur(l,2) Vr(l)’ then ur+1(l,2) (1).

= vr+1
' 1
PROOF If ur+l(l’2) = vr+l(2)>»vr+1(l), then vr(2) = FFT ur+l(l’2) +
r . .
5T Vr+1(2) . vr+1(2)>>vr+l(1). By the hypothesis and (4.1), Vr(l) =

u (1,2) = max{vr(l),vr(z)} , so v (1)z2v _(2)>v__ (1) but, this last

r+l
inequality.contradicts Lemma 4.

To compute vr(2), we consider the analog to Lemma 2.

LEMMA 7 If ur(l,2) = vr(l) for some r<«r*-1, then

n-1 v, (1)
E 1

PROOF With some manipulative acrobatics, one can obtain (4.2)
directly from (3.5) and (3.8). Consider instead the following
argument. According to Lemma 6, we must select AT’ wvhere T =

min{i: i>r, Aizl}. Thent, vr_l(Z) = E ur(l) =

n-1 r-1 i-2 1 ‘
i;rv,i‘” = 'wrc o TrCre
n-1 o
= (r-1) Z Vi(l)/l(l—l).
i=r

The optimal stopping time, TT, for selection of the first object is

computed in a manner similar to that of the preceding section for'r;.
Let s* denote the smallest integer such that vs(l);vs(Z), or

n-1
v (1) =s Z v (1)/i(i-1). (4.3)
i=S+1

That s* exist and s*¢{r*-1 follow from Lemma 5. Then,

Tf = min {{i: 125%, Ai=q U [n—l}}



Numerical results are given in the table at the end of the paper, but

our attempts to provide further characterization of s*, beyond (4.3),
have been frustrating. However, when the number of objects is

large, we obtain some interesting results.
5. ASYMPTOTIC RESULTS

Application of standard techniques- see DeGroot (1970, pp. 330-

31) - to (3.6) and (3.5) yields

=1 .
r*~e °‘n=.607n, (5.1)

1

Vr*_l(l):se = .368. (5.2)

Given that a first object has been selected prior to stage r*, we
pass all A =2 until 60.7% of all the objects have been observed.
During this interval, we wait for the occurrencéuofhan“Ar:l. Beginning
with stage r*, however, we behave as if the first selection were best
and we are willing to complement it with what we hope will be the
next best object. Coincidentally, (5.2) is precisely the limiting
probability of selecting the single best object in the classical
model. In the present model, we wait longer (cf. e-%n to e *n) but
we have, potentially, two objects to choose -- the best or next best.

The analysis for the initial selection is based on (4.2) and
(4.3). Using (3.8) and (3.5) to evaluate vi(l) for idr*-1 and

i}r*-l, respectively, in (4.2), we get

Vi1 (2) =(s*-1/n(n-1) {[r* + 2(x*x-2)c(x®)] [e(s*) -c(r+-13] -

-1 (5.3)
—r* + s%¥ + 1 + 2 ;Z: C(i)} )
i=r*-1
where c(i) = 1/(i-1) + 1/i + ... + 1/(n-2). Noting that the direction

of the inequality in (4.3) is reversed for s=s*-1, wve get
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n-1
(r*-2)c(r*-1) (3 + 2c(r*-1)} + 2r* - 2 zz: ~c(i)

i=r*-1 (5.4)
< (re-2)e(s*) [1+ 20(re-1)] o+ 20% + 1.

Now, return to (4.3), with s=s¥

Modifying (5.3) accordingly, and denoting the LHS of (5.4) by L, we

get
L2 (r*-2) c(s*+1) [ 1+2C(r*—l)]-+ 2s*+ 3. (5.5)
L ['l"l
From (3.6), c(r*)~~21/2, and (5.1) gives r*/nxe™2. Also, c(i) =
L=rww]

n-r*-{-l—(r'ff-:‘})(:(r*‘l): so

-1 no-1 -k
lim n Z: c(i) = 1-3/2e ~.
i=r¥%=-1

n-—ee

Let ,X zn{gg,L/n. From (5.4), we obtain X < Ze-% lim c(s*) + 2 lim s*/n, while,
L

from (5.5), we obtain k > 2e ° 1im c(s*) + 2 Iim s*/n. It follows that %ip c(s*)
n=rso

and lim s*/n exist and equality holds, asymptotically, in (5.4) and (5.5).

77>

i L = lim s* *) = - . Dividi :
JIf we le ’%ﬁﬂps /n, then,%iﬁ>c(s ) logok. Dividing (5.4) by n and

taking the limit gives

1

-l.’ -
X - e Plog = 7/2e7 % - 1. (5.6)
Solving (5.6) numerically yields &= .2291; thus

sk o~ .229n. (5.7)

Also, from (5.3), we obtain

After pvassing approximately 23% of the objects, we shall then
select the first object which is better than all the preceding.
«~~--J here is an approximately 22%/4 chance that the best pair will

be selected, for VO(Z) = vl(Z) = .. =V (2).

s*-1
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The results (5.1) and (5.6) - (5.8 were obtained by Nikolaev (1977) in a
different manner. Nikolaev develops an c<pression, equivalent to our (5.3), for
the probability, P, of winning. Assuming that ® = lim s%/n and 8 = lim r*/u cxist

= 772 ’
he computes the limit of P as a function of X and ﬁ . The limit is maximized,

subject to the constraints 0 £ <F < 1.

~

Now, compare the optimal rule given asymptotically by (5.1) and
(5.7) with results obtained by Gilbert and Mosteller (1966). In
one model, they are given two choices to select the single best

object. Their results arec

* *
s1 ~ .223n, r, ~ .368n,

1

where the subscript "1" merely denotes a different model. Thus,
they make their first selection at about the same stage as we do.
However, their seéond chol ce is exercised only on observations Arzl,
which we never pass once the first selection is made. Because there
is no value to their also selecting the second best object, they are
willing to pass the second occurrence of Ar=l for SI< r< r;.
Indecd, that just means their first choice isn't the best, so they
are now following the optimal strategy for the classical, one-choice
model.

In another model, Gilbert and Mosteller (1966) have just one

chance to pick either of the two best objects. They get

* . %
52 ~ .347n, s ~ .667n.

After passing approximately 34.7% of the sequence, they will select
the first Ar=l thereafter. It makes sense that they can afford to
wait longer than our 23%, because their criterion is less demanding.
In the event an Ar=l doesn'lt occur between‘s;<.r<ir;, there is a
danger that the very best object occurred previously. Thus, they

will then seleclL an Ar=2 after two-thirds of the sequence is passed,
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because the seccond best is just ns good to them as the very best.
Their rS:: .667n compares closely to our r* =~ .607n, and the
interpretation is essentially the same - apparently we have captured
the best, and now we want the second best. Nevertheless, r;j>r*;

they can still afford to be just a little bit more discriminating

than we can.

NUMERILCAL RESULTS

.0, number of objects

57770725 56 100500007

s¢/al .4 .3 2. | 24 i 24 | .23 | .229
x| s |7 | e wé'z“im:'é'é— 608 | .607
\_;:;:(_iiﬂfigf Ta7n | L261 | L233 ’ 229 | .226 | .225
Voo b
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