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SELECTION OF THE BEST PAIR FROM A RANDOM SEQUENCE 

John S. Rose 

E.C.R.S .B. 80-3 



Selection of the Best.Pair from a Random Sequence 

* Johns . Rose 

The model analyzed in this paper extends the clas­
sical secretary problem to the situat ion in which the 
decision maker wants to select the two best objects. 
Exactly two se lect ions are permitted, and a selection 
strat·egy is defined by a pair of stopping times . 
Characterization of the optimal strategy is cumbersome, 
but useful asymptotic repr esentat ion s are obtained for 
long sequences . 

KEY WORDS: Secretar y problem , seque ntial decision 
process 

1. INTRODUCTION 

In the classical model of the secretary problem, we shall observe 

a sequence of n objects . The number, n, of objects is known. 

Although we may completely rank order any observed subsequence of 

objects, we possess no p rior knowledge about the distribution of 

those qualities and attributes on which our preference ordering is 

based . At each stage of the sequence , we must decide, in real time, 

whether or not to select the object presented • .Recall of a passed 

object is forbidden, and se lect i o n of any object terminates the 

process . No utility derive s from any but the single best object -

that ranked number 1 according to our p r eference ordering. Conse ­

quently, the objective is to maximize the probability of selecting 

the best object. 

Comprehensive results for the classical model, and also for 

some interesting generalizations thereof, are given by Gilbert 

* Dr. Rose is Associate Professor of Management Systems, School of 
Business Administration, University of Richmond , 'l'he author 
gratefully acknowledges the support provided by a grant from the 
Du Pont Company , 



a!1cl Mosteller ( 1966) . Variations of the claosical model have been 

contributed by a host of researchers. l~asmussen ( 1975) -invokes a 

payoff function that is more general t.han "al l or nothing," and he 

and Robbins (1975) assume that n is random. Stewart (1978a) consi­

ders a statistical model , in which hi s state of information, about 

the true underlying rlistribution of the object population , is up­

dated at each stage. Stewart (1978b) also considers a multicriterion 

version of the problem, and Albright (1 976) investigates a Markov 

chain version. 

In the present paper, we must selec t two objects from the sequence, 

and only the best pair yiel d any return. The model and notation are 

formalized in the next section . Section 3 considers the optimal 

timing of the second choice, given that one object has already been 

chosen. In section 4, we proceed to investigate when the first choice 

shou ld be taken. Asymptotic results, for large n, are obtained in 

section 5 (Only after completing · this v1ork and submitting it for publication 

did this a uthor become aware of the paper by Nikolaev (1977), who obtained 

identical asymptotic results via different methods.) 

Let 

2. MODEL FORMULATION 

, X be a random permutation of 1,2, .•• ,n; n 

Then, 

Xr denotes the ran k, among all n objects, of the observation made at 

stager. At stager, however, we know only the relative rank, 

A= 1 +card{i: i<r, X-<X}, r = l, ..• ,n, r 1 r 

where card¢ =0 ( throughout the paper , we adopt the convention that 

set functions are zero on the null set) . Let d denote the number of 

objects which must be selected; d=l,2. At any stager , we must decide, 

based on only the observed relative ranks, A1 , ... ,Ar, whether to 

pass or to select the currently p111ffered object . Of course, the 
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decision also depends on n , r, .ind d . 'fhe objective is to find a 

selection strategy which mc1ximizes the probability of selecting the 

best pair of objects. 

Let T1 and , 2 be stopping times relative to the subsequences 

•• • , A , 
r Interpret T. as the 

l 

d l . h h · th . . d ' 1 2 ran om stage at w11c t e i selection 1s ma e, 1=, • * Then, T1 . 

* and y
2

. are optimal if P(X~ + X.,,.,* = 3) is maximized over all such 
l1 "l2 . 

stopping times , Ti , T2 • 'l'here i s no question about the existence of 

optimal rules, since the number of these stop~ing times is finite. 

Henceforth, we presume that we are fo llow ing an optimal strategy ; 

our job is to characterize (one such ) optimal strategy. 

Fortunately , the class of selection procedures may be simplified . 

The decision to be made at stager depends on the history 

only through the conditional distribution of X r J ••• ' 
x given 

n' 

that history . Now, A1 , ••• , Ar-l are independent of the sequence 

Xr, ··•, X
11

• The rea son is that , no matter which objects will be 

viewed in the first r-1 stages , every (r-1)-tuple of their relative . . 
ranks, (a 1 , ..• , ar_ 1), is equally likely. Hen ce, the relative ranks 

or the first r-1 objects provide no information about those objects ~hich 

are yet to be observed . Thus, we may restrict our attention to 

stopping rules r1 anctT 2 that a r e determined solely by the stage 

index, r , 

l , ... ,n. 

c1nd the relative rank, A, observed at that stage , r = r 

The optimal return functions are given by 

the conditional probability of "winning ," given that at stager , 

with d selections yet to be rnudc , we observe A =a, r=l, ... ,n, r 
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a=l, •.. ,r, d=l,2. Also, let 

v l ( d) = Eu ( A , d ) , r- r L-
(2.2) 

the expected probability of winning, after r-1 stages have been 

decided upon and there remain d objects to be selected . Then, 

P(XT* + · XT* = 3) = v0 (2), the probability of winning prior to the 
1 2 

start of the process. 

Certainly the following hold: 

Ar*=l on l r;<n-1}, 
1 ' 

A~= 1 or 2 on { t' ;< n l , 
2 

T; ~ min { r : r > T ~ , Ar== 1] . 

( 2 . 3) 

(2.4) 

(2.5) 

If any of (2,3)-(2.5) were violated, then we would have selected an 

object worse than one alreudy passed, so we couldn't possibly win. 

3. CHOOSING THE SECOND OBJECT (d=l) 

Proceed with the usual bacJcward induction argument on the stage 

index r, l<r~n. According to (2.5), if Ar==l, then it must be selected immediately, 

and (2.1) and (2.3) give 

ur(l,l) = P(Xr+l>2, ••• ,Xi?2) 

= r ( r-1) / n ( n ~ l) , 

where the inde pendenc e of A1 , •.. , Ar from Xr+l' ..• ,xn is again 

manifest. Suppose A =2. If i t is ~elected, then again u (2,1)= r r 
r(r-1)/n(n-l). If A =2 is passed, then u (2,1) = v (1) . Hence, 

r r r 

the optimality equations are 

with vn( •)::= O. finally, if Ar=a>:'., th en (2.4) implies that 
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To evaluate vr(l), note that Ar+l is uniformly distributed 

over l l, ... ,r+l}. Combining (2.2) and (3,1)-(3,3) gives 

1 r-1 
+ r+l ur+l <2 ,l) + r+l vr+l(l). 

The fo llowing is analogous to Lemma l of DeGroot (1970, p.328). 

LEMMA l If u (2,1) r 
r = 2 , • • • , n - ,.1 : • 

r( r-1) 
= h(n-l) , then ur+l(2,l) 

r ( r+l) 
== h(n-1) ' 

( 3. 3) 

(3.4) 

PROOF If the lemma is false for some r, (3.2) yields ur+l(2,1) = 

r+l [ r J 
= r vr{l) - ri(n-1) vr+l(l). Solving (3.4) gives vr+l(l) 

r(r-1) 
By hypothesis, vr(l)~ur(2,1) = n(n-1) • Thus, ur+l(2,l)~ 

r+l[r(r-1) r ]< 
-r- n(n-1) - fi(h-1) 

r+l • r ( r -1) 
r n(n-1) 

< ~~~~B ,· which is impossible, 

according to (3.2). 

* Lemma 1 is important for characterizing Tz· It says that there 

is some smallest stage index, r~.such that,if Ar=2 for r~r~ then 

Ar should be chosen. 'ro complete t he characterization, -we need the 

analog to DeGroot's Lemma 2 (1970, pp. 328-29). •· . 

LEM.MA 2 If ur(2,l) = r(r-1)/n(n-1) for some r=2, ... ,n, then 

2(r-l) (r-2) [ 1 
vr-1 (1) = n(n-1) r-7 +. · .+ n:2 J. (3.5) 

I>HOOF Use b"ickwa rd induction on r. If r=n, then v 1 (1) = 1/n + n- . 
1/n un(2,1) = 2/n, by (3.4) and the hypothesis respectively. Also, 

2/n = RHS of ( 3. 5) . Assume now thut Lemma 2 holds for r=l(+l, 

and consider r=lc The hYPothesis of Lemma 2 gives uk(2,l) = 

k(k-1)/n(n-1), so Lemma 1 yields uk+l (2, ·1) = k(k+l)/n(n-1). 

Therefore , we may invoke the induction hypothesis to compute v1<. ( 1) . 
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From (3 . 4) and th e pr e cedin g , 

k-1 
= n(n-1} 

I • l{(k - 1) Jc-2 f 21((1c-l) ( 1 . 1 )l + R n(n - 1) + 7r l n(n - IJ k-T + . • . + n-2 j 

_ 2 (l-::-1) f Jc-2) ( 1 
- n(n- ) K-7 + ••• + 

Now , we may actually comp uter* , From (3 . 2) and (3 . 5), r * is 
2 r ( r-1 ) ( 1 1 ) <-r ( r - 1 } th e smalle s t r su ch tha t vr(l) = n(n - 1) r-1 + ••• + .n - 2, n(n-l) , 

or 

* 

1 1 1 
~~r-=r+r 

1 . 
+ . • • + n - 2 . (3 . 6) 

For 0~ ·4, r is well defined ; and , for n=2 or 3 , the pro bl e m is tr i vial 

anyway . 

The optimal s to ppi n g ti me for obtaining the secon d object is now 

fully character i zed . If T 1 is any stopping time for which AT
1

=1 , the n 

( 3.7) 

Aft er having sele cted one object , ~e stop with Ar=l . If no Ar=l is 

enc ounte r ed , then we s elect an A =2 after r* s ta ges are observed . r 
Fi nally , we will be stuck with the l ast object in the ~eque n ce if 

neither Ar=l nor, fo r r~r*, Ar =2 is pre vio usly encountered . 

The foll o wing two resu lts will be u s eful in our s el ectio n of an 

initial obje ct . 

LEMMA 3 * Fo r r=2 , .•. , r - 1, 

r(r.*- r -1) 
= n( n - 1) v r* - 1 ( l) . (3 . 8) 

PROOF Let 2~r <r* be give:m, and define T = min (i : r<i~r*-1 , Ai =1) . 

Conditioning o n T , we hav e 

r*-1 
Yr .(1) = ~ ui( l,l) P( T'= i ) + vr* - l(l ) P{ t =O) . 

. i =r+l 

- 6 -
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From (3.1), ui {1,1) = i(i-1)/n(n - L) . Al!:;O, Ht=i) = P(Ar+l>l, ... , 

i-2 1 r 
i-1 . i = i(i-1) Simi la rly, 

P(T=O) = r; _
1 

• Substitution into (3.9) yields (3.0). 

LEMt1A 4 The function vr(l) is strict l y increasing on r=2, ... , r*-1, achieves 

its maximum at r=r* - 1, and is strictly decreasing on r=r*, ... ,n. 

PROOF For r~r* -1, vr(l} is given in (3.5). Taking first differences 

2r [ 1 1 ,l 
yields AVr(l) = vr+l (1) - vr(l) ;= n(n - l) 2(r + • • • -t- n-Z) - 1J• 

F ( 3 6 ) l ...,_ l l so ~v ( 1 ) _,, 0 • F th t rom • -~ - + + --, , ur ermore, excep • 2 ;;;,-r n-2 r 

for the trivial case when n=4 and r*=3, strict inequality holds in 

(3.6). Consider now r.t::r*-1'. Combine (3.8) and (3.5) to obtain 

~vr-l (1) = vr(l) - vr_ 1 (1) = 

r*-2r + _1_ . 2(r*-l) (r*-2) ( 1 1 ) 
= n(n-1) r* - 1 n(n -1) r*-2 + · • · + n- 2 • 

1 1 1 r* - 2r r*-2 
r*-2 + ... + n- 2>2 1 so DVr-l(l)>n(n-1) + n(n - 1) = 

From ( 3. 6) , 

-n-(.cc~---1-) ( r* -r-1) ~ 0. 

· 4. CHOOSING 'I'HE FIRST OBJEC'l' ( d=2) 

From (2.3), we need to consider only those stages for which 

A =l. If A =l is selected , when d=2, then the process continues just r r 
as if A =l had been passed, with d=l, sou (1 , 2) = v (1) . If A =l r r r r 

is passed, then u (1,2) = v (2), so r r 

(4.1) 

The next lemma focuses our attention upon those stages r<r* -1 . 

PROOF Suppose ur(l, 2) = v (2) > v (1), and let T denote the random stage index at 
r r 

which the first object is finally selected. Then, r<. T'~ n-1, and ur(l,2) = EvT'(l). 

By Lemma 4, vr(l)>v-r(l), so vr(l)~ur(l,2), a contradiction . 
.., 



Henceforth, we presume that ~<r *-1. Next, we prove the analog 

to Lemma 1 for the case d=2. 

LEMMA 6 

1 
PROOF If ur+l (1,2) = vr+l (2)> vr+l (1), then vr(2) .= r+l ur+l (1,2) + 

r~l vr+l (2)' = vr+l (2)>'vr+l (1). By the hypothesis and (4.1), vr(l) = 

, so v (1) ~ v ( 2) > v +l ( 1) ; r r r b u t , this last 

inequality contradicts Lemma 4. 

To compute v (2), we consider the analog to Lemma 2. r 

LEMMA 7 If u (1,2) = v (1) for some r~r*-1, then r r . 
n-1 v. (1) 

v r - 1 ( 2 ) = ( r-1 ) ~ i ( f-1 ) . 
1=r 

PROOF With some manipu lative acrobatics, one can obtain (4.2) 

directly from (3.5) and (3 . 8). Conside r instead the following 

argument. According to Lemma 6, we must select A-t, where T = 

min {i: i~r. Ai =l} • Them , vr - 1(2) = E v, ( 1 ) = 
n - 1 r-1 r i-2 1 
~ 

. . 
V. ( 1) -- • r+l 

. . .. . 
:t=r --= l r l. l=r 

n- 1 
= (r-1) L vi (l)/i(i-1). 

i =r 

(4 . 2) 

The optimal stopping time, Ti, for selection of the first object is 

computed in a manner simila r to that of the preceding section for T;. 
Lets* denote the smallest integer such that v (1)_.>v (2), or 

s s 

n- 1 
v

5
0) ~s L vi (l)/i(i-1) . (4.3) 

i=s+l 

Thats* exist and s*~r*-1 follow from Lemma 5 . Then, 
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Numerical results at·e given in tlw t.1bl e at the en<l of the p:iper, but 

our attempts to provide further charac terization of s*, beyond ( 4-. 3) , 

have been frustrating . However, when t he number of objects is 

large, we obtain some interesting results . 

5 . ASY.MPT0'l'IC RESULTS 

Application of standard techniques- see DeGroot (1970, pp . 330 -

31) - to (3.6) and (3 . 5) yields 

. L 

r*~ e - -2n::::: . 607n , ( 5 . 1 ) 

- 1 . 
v:r* _ 1 ( 1) ;:::: e == • 368. (5.2) 

Given that a first object has been se lect ed prior to stager *, we 

pass all Ar=2 until 60.7% of all the objects have been observed. 

During this interval, we wait for the occurrence .. of , .an. ~r ;:l. Beginning 

with stager*, however , we behave as if the first se le ction were best 

and we are willing to complem e nt it with what we hope will be the 

next best object . Coincidentally, (5.2) is precisely the limiting 

probability of s electing the single best object in the classical 

model. - !- • . - 1 
In the present model , we wait long e r (cf . e 2n toe n) but 

we have, potentiully , two objects to choose -- the best or next best . 

The analysis for the initial selection is based on (4 .2 ) and 

(4 . 3). Using (3 . 8) and (3 . 5 ) to evaluate v.{1) f or i~r*-1 and 
l. 

i~r* -1, respectively , in (4.2), we get 

v
5

,,_._1 (2) =(s,~ - lYn(n - 1) {[r* + 2(r*-2)c(r*)] [c(s*) - ~(r*-1}} -

(5.3) 

- r * + s * + 1 + 2 ·. f_ 1 
c ( i) } , 

1.=r* -1 

where c(i) = 1/(i-l) + 1/i + .•• + l/(n-2). Noting that the direction 

o f the inequality in (4.3) is reverse1 for s•s* - 1, we get 
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n-1 
(r*-2)c(r*-l) [3 + 2c(r*-l)J + 2r* - 2 L _ c(i) 

~ (r*-2)c(s*) ( 1 + 2c(r 1'·-l)l 
Now, return to (4.3), with s=s*. 

i=r*-1 

+ 2s* + 1. 

(5.4) 

Modifying (5.3) accordingly, and denoting the LHS of (5,'1) by L, we 

get 

L~ (r*-2) c(s*+l) [ 1+2c(r*-l)] + 2 s* + 3. 

From (3.6), c(r*),;:;f,1/2, and (5.1) gives r*/n--;::,e-\. 

n-r,.c+l-(r*-3)c(r*-l), so 

lim n -l 
n • rc 

n- 1 -½ L c(i) = l-3/2e . 
i=r*-1 

n-1 
Also,. L, c(i) = 

L=r, 'r- 1 

(5.5) 

\ \ -1 -
Let A == lim L/n. fro m (5.4), we obtain A~ 2e 2 

li~ c(s*) + 2 _!im s*/n, ,while, 
f'l~o,O 

from (5.5), we obtain A~ 2e -~ lim c(s*) + 2 ·lim s*/n. It follows that lim c(s*) 
n~ ;x:> 

and lim s*/n exist and equality holds, asymptotically, in (5.4) and (5.5). 
r7 - > 0::,0 

,H we let CX = lim s*/n, then lim c(s*) =-logo<. Dividing (5.4) by n and 
n->t>O ()• r.o 

taking the limit gives 

(5.6) 

Solving (5.6) numerically yicldso<= .2291; thus 

s * ~ . 229n. ( 5. 7) 

Also, from (5.3), we obtain 

vs*-l (2) ~ .225. (5.8) 

After 9i:1ssing approximately 23% of the objects, we t~hall then 

select the first object which is better than ull the preceding . 

..--:- -·- --There is an approximately 22½';~ chance that the best pair l'.'ill 
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The results (5.1) and (5.6) - (5 . f ' were obtained by Niko l aev (1977) in a 

different manner . Nikol aev develops an c~pression , equ i valent to our (5.3), for 

t he prob.:1bility , P , of winning. Assuming that()(. = 1~m s*/n and R = lim r*/n exist , 
n-,,ro t' n • :-., 

he c ompu tes the limit of P as a function ofo<. and p . The l imit is maxim i zed , 

subject to the constraints O~c<.~r:::; 1. 

Now, compare the optimal rule given asymptotically by (5 . 1) and 

(5 . 7) with results obtained by Gilbert and Hosteller (1966). In 

one model, they are given two choices to select the single best 

object. Their results arc 

* s
1 
~ • 223n, * r 

1 
~ • 368n, 

where the subscript "l " merely denotes a different model . Thus , 

they make their first selection at about the same stage as we do . 

However, their second choi.ce is exercised only o·n obser v c1tions A =l , r 

which we never pass once the? first selection is made . Because there 

is no value to their also selecting the second best object, they are 

* * wil l ing to pass the second occurrence of Ar = l for s 1 < r< r 1 . 

Indeed, that just means their first choice isn ' t the best, so they 

are now following the optimal strategy for the classic~i, one - choice 

model . 

In another model , Gilbert an d Mosteller (1966) have just one 

chance to piclc either of the two best objects . They get 

* .347n , r 2 ~ .667n . 

After passing c1pproximately 3-1. 7% of the ~equence, they will select 

the first Ar=l thereafter . It malces sense that they can afford to 

wait longer than our 23% , because their criterion is less demanding . 

'I: * 
In the event an Ar=l doesn ' t occur between s 2<. r < r 2 , there is a 

danger that the very best object occurred previously . Thus , they 

will then select an A =2 after two - thirds of the sequence is passed , 
r 
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bccuwJc the second best i:; just ;is good to them a~:; the very best. 

Their r;~ .G67n compares closeJ ·{ to our r*~ .607n, and the 

interpretation is essentially tl1c same - apparently we have captured 

the best, and now we want the second best . * Nevertheless, r 
2 

> r*; 
they can still afford to be just a little bit more discriminating 

than we can . 

NUMERJ.CAL RESULTS 

····-····--··--·-f -·-··---.. io-- ··ni S numbe~O of or~6cts 500 ____ 00 -

~::r: -::-~:_-::: L::: _L::: ~: :::8: _::~ 
v (2) . 333 • 271 l · 24d . 233 . 229 . 226 . 225 

s*-1 
,__ ___ ..._ __ .. ... -- . . -- - . - ... - ...... -~ ..... ··- - .. .. -- ... . ---
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