Abstract
One popular test for distinguishing linked and convergent argument structures is Robert Yanal's Ordinary Summing Test. Douglas Walton, in his comprehensive survey of possible candidates for the linked/convergent distinction, advocates a particular version of Yanal's test. In a recent article, Alexander Tyaglo proposes to generalize and verify Yanal's algorithm for convergent arguments, the basis for Yanal's Ordinary Summing Test. In this paper I will argue that Yanal's ordinary summing equation does not demarcate convergence and so his Ordinary Summing Test fails. Hence, despite Walton's recommendation or Tyaglo's generalization, the Ordinary Summing Test should not be used for distinguishing linked argument structures from convergent argument structures.
Document Type
Article
Publication Date
2003
Publisher Statement
Copyright © 2003, Informal Logic. This article first appeared in Informal Logic: 23:3 (2003), 215-236.
Please note that downloads of the article are for private/personal use only.
Recommended Citation
Goddu, G.C. "Against the 'Ordinary Summing' Test for Convergence." Informal Logic 23, no. 3 (2003): 215-236.