
University of Richmond
UR Scholarship Repository

Law Faculty Publications School of Law

2014

Debugging Software's Schemas
Kristen Osenga
University of Richmond, kosenga@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/law-faculty-publications

Part of the Intellectual Property Law Commons

This Article is brought to you for free and open access by the School of Law at UR Scholarship Repository. It has been accepted for inclusion in Law
Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact
scholarshiprepository@richmond.edu.

Recommended Citation
Kristen Osenga, Debugging Software's Schemas, 82 Geo. Wash. L. Rev. 1832 (2014).

http://law.richmond.edu/?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://law.richmond.edu/?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/law-faculty-publications?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/law?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/law-faculty-publications?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.richmond.edu%2Flaw-faculty-publications%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Debugging Software's Schemas

Kristen Osenga*

ABSTRACT

The analytical framework being used to assess the patent eligibility of
software and computer-related inventions is fraught with errors, or bugs, in
the system. A bug in a schema, or framework, in computer science may cause
the system or software to produce unexpected results or shut down altogether.
Similarly, errors in the patent eligibility framework are causing unexpected
results, as well as calls to shut down patent eligibility for software and com
puter-related inventions.

There are two general schemas that are shaping current discussions about
software and computer-related invention patents-that software patents are
generally bad (the bad patent schema) and that software patent holders are
problematic (the troll schema). Because these frameworks were created and
are maintained through a series of cognitive biases, they suffer from a variety
of bugs. A larger fiaw in the system, however, is that using these two schemas
to frame the issue of patent eligibility for software and computer-related inven
tions misses the underlying question that is at the heart of the analysis-what
is an unpatentable "abstract idea." To improve the present debate about the
patent eligibility for these inventions, it is therefore critical that the software
patent system be debugged.

TABLE OF CONTENTS

INTRODUCTION . 1833
I. THE STATE OF SOFTWARE PATENTS 1836

A. What Is Software. 1836
B. The Software Patent Mess 1838

II. THE BIASES IN SOFTWARE'S SCHEMAS 1843
A. Defining Software's Schemas . 1843

1. The Bad Patent Schema . 1844
2. The Troll Schema 1846

B. Additional Cognitive Biases 1847
1. Confirmation Bias 1847
2. Availability Bias . 1849
3. Grouping Biases . 1851

C. Debugging the Biases . 1853

* Professor of Law, University of Richmond School of Law. I would like to thank
Michael Risch, Lisa Larrimore Ouellette, Timothy Holbrook, Jim Gibson, and Cynthia Ho for
their helpful comments, as well as the members of The George Washington Law Review and
participants at the Law Review's "Cracking the Code: Ongoing Section 101 Patentability Con
cerns in Biotechnology and Computer Software" Symposium.

November 2014 Vol. 82 No. 6

1832

2014] DEBUGGING SOFTWARE'S SCHEMAS 1833

III. A MORE CRITICAL BUG IN THE SCHEMAS. 1856
CONCLUSION 1857

INTRODUCTION

In computer terminology, a schema is a diagram or model used to
describe structures for containing and processing data.1 For example,
a database schema may include information about the various fields of
the database, the types of data each field may contain, and how the
fields may be related.2 A flawed schema in the computer world poten
tially results in a bug-an error that results in a computer program or
system producing an incorrect result, acting in unexpected ways, or
shutting down altogether.3 In cognitive theory, a schema is a structure
or framework that helps organize and interpret information.4 While
cognitive schemas are generally useful because they allow efficient
processing of information, they too can lead to incorrect results, unex
pected behaviors, or system shutdowns. This erroneous decisionmak
ing may be due to cognitive biases, such as confirmation bias or
stereotyping.5 These two worlds-computer science and cognitive sci
ence-have collided at the intersection of eligibility for patent protec
tion of software and computer-related inventions; unfortunately, the
resulting system is in dire need of debugging.6

Bugs in the software patent framework are causing problems,
largely manifested by a lack of organization and guidance regarding

1 See, e.g., Schema, TEcHTERMS.COM (June 18, 2013), http://www.techterms.com/defini
tion/schema.

2 See id.
3 See, e.g., Bug, TEcHTERMS.COM (Dec. 17, 2008), http://www.techterms.com/definition/

bug.
4 See, e.g., MARTHA AuGousnNos, IAIN WALKER & NGAIRE DONAGHUE, Soc1AL COG

NITION: AN INTEGRATED INTRODUCTION 68 (2d ed. 2006) (explaining that "[a] schema is concep
tualized as a cognitive structure, which contains general expectations and knowledge of the
world," and that these structures are used to "select and process incoming information froqi the
social environment"); Ronald Chen & Jon Hanson, Categorically Biased: The Influence of
Knowledge Structures on Law and Legal Theory, 77 S. CAL. L. REV. 1103, 1131 (2004) ("Catego
ries and schemas are critical building blocks of the human cognitive process. They allow humans
to process or at least cope with the infinite amount of information in their environs." (footnote
omitted)).

5 See, e.g., Sara Gordon, Through the Eyes of Jurors: The Use of Schemas in the Applica
tion of "Plain-Language" Jury Instructions, 64 HASTINGS L.J. 643, 657-58 (2013) (noting that
confirmation bias occurs when individuals disregard information that contradicts their schemas);
see also Chen & Hanson, supra note 4, at 1231 ("Stereotypes ... illustrate the difficulty of
resisting the potential biases that schemas present.").

6 Debugging is the elimination of errors in computer programs, ideally before releasing
the program to the public. See, e.g., Debug, TecHTERMS.COM, http://www.techterms.com/defini
tion/debug (last visited Dec. 19, 2014).

1834 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

the patent eligibility of software and computer-related inventions.
Whether, and to what extent, these inventions are eligible for patent
ing is a complete toss-up under current law, and this lack of certainty
is having a widespread effect on the entire patent system.7 Judicial
opinions about software patent eligibility produce unexpected results,8

legislative proposals attempting to fix such problems might produce
incorrect results,9 and, as some commentators hope, the software pat
ent system is in danger of shutting down altogether.10

Legislative and judicial decisionmaking for software patents are
influenced by preconceived frameworks. These decisionmakers be
lieve that software patents are generally bad (the bad patent schema)
and that software patent holders are problematic (the troll schema). 11

There are two problems with these frameworks. First, the bad patent
schema and the troll schema have been created through various cogni
tive biases, resulting in flaws. Second, these two schemas that are
helping to frame the issue for decisionmakers are not the right struc
tures to answer the underlying question about whether patent protec
tion should be available for software and computer-related
inventions.12

A large number of software patent applications are filed each
year,13 and it is estimated that hundreds of thousands of patents cover-

7 See, e.g., Donald S. Chisum, Weeds and Seeds in the Supreme Court's Business Method
Patents Decision: New Directions for Regulating Patent Scope, 15 LEWIS & CLARK L. REV. 11, 14
(2011) (noting that the software patent framework, as it currently stands, "can lead to subjec
tively-derived, arbitrary and unpredictable results. This uncertainty does substantial harm to the
effective operation of the patent system."); Michael Risch, Forward to the Past, 2010 CATO SuP.
CT. REV. 333, 362 (noting that Bilski v. Kappas, 130 S. Ct. 3218 (2010), "reaffirms decades-old
case law-both the substance and the resulting uncertainty"); see also infra Part LB.

s See infra Part II.A.
9 See, e.g., Timothy B. Lee, Software Patent Reform Just Died in the House, Thanks to

IBM and Microsoft, WASH. PosT (Nov. 20, 2013), http://www.washingtonpost.com/blogs/the
switch/wp/2013/ll/20/software-patent-reform-just-died-in-the-house-thanks-to-ibm-and-micro
soft/ (citing a letter signed by IBM, Microsoft, and others claiming that the reform measures
"could harm U.S. innovators by unnecessarily undermining the rights of patent holders" (inter

nal quotation marks omitted)).
10 Some are not shy about their willingness to kill software patents. See, e.g., Colleen V.

Chien, Reforming Software Patents, 50 Hous. L. REv. 325, 352 (2012) (noting that abolishing
software patents "has enormous popular appeal" as well as "historical and recent precedent").
Others take a more measured approach. See, e.g., JAMES BESSEN & MICHAEL J. MEURER, PAT
ENT FAILURE: How JUDGES, BUREAUCRATS, AND LAWYERS PUT INNOVATORS AT RISK 235-53
(2008) (allowing for reform of software patents but freely accepting exclusion of software pat
ents if reform is unsuccessful).

11 See infra Part II.A.
12 See infra Part II.A.

13 Although the United States Patent and Trademark Office ("USPTO") has no classifica
tion specifically directed towards software and computer-related inventions, it does try to quan-

2014] DEBUGGING SOFTWARE'S SCHEMAS 1835

ing software and computer-related inventions are in force. 14 Although
efficient information processing via schemas and other cognitive bi
ases has its place, there are times when objective, deliberate, and care
ful consideration of an issue is more appropriate.15 Whether software
and computer-related inventions are patent eligible is far too impor
tant a question to rely on biased or incorrect schemas.

Before the conversation goes any further, we should try to debug
the software patent schemas. To be sure, it is not possible to fully
debug the system; cognitive biases can never be completely elimi
nated, and some level of shortcut is desirable when assessing the vast
number of patent applications filed each year.16 But with an aware
ness of these bugs in the software patent system, we should be better
able to make a principled, objective decision about the patent eligibil
ity of software and computer-related inventions.17

This Essay proceeds in three parts. Part I discusses the current
state of patent eligibility for software and computer-related inven
tions, detailing the incorrect results, unexpected behavior, and system
shutdowns caused by the bugs in the system. Part II explains the
schemas behind the chaos in the patent system and explains how some
relevant cognitive biases are implicated in the creation and mainte
nance of these frameworks. Part III explains why these schemas, even
if not biased, are not the right framework to use in analyzing the ques
tion of patent protection for software and computer-related inven
tions. Although this Essay does not propose a test for patent
eligibility of these inventions, or even defend the position that these

tify how many "software" patents it issues each year, stating that as many as one-half of the

nearly 250,000 patents issued annually are directed towards software inventions. See U.S. Gov'T

ACCOUNTABILITY OFFICE, GA0-13-465, INTELLECTUAL PROPERTY: ASSESSING FACTORS THAT

AFFECT PATENT INFRINGEMENT LITIGATION COULD HELP IMPROVE PATENT QUALITY 12 fig.l

& n.27 (2013).

14 See, e.g., Mark A. Lemley, Software Patents and the Return of Functional Claiming, 2013

Wis. L. REv. 905, 928.

15 See Cynthia M. Ho, Drugged Out: How Cognitive Bias Hurts Drug Innovation, 51 SAN

DIEGO L. REv. 419, 436-37 (2014) (noting that quick and intuitive decisionmaking is useful

when avoiding a car accident, while at other times, deliberation is a better course of action).

16 In 2012, a total of 542,815 utility patent applications were filed. See, e.g., U.S. Patent

Statistics Chart Calendar Years 1963-2013, U.S. PAT. & TRADEMARK OFF. (July 24, 2014, 6:22
PM), http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm.

17 See Ian Weinstein, Don't Believe Everything You Think: Cognitive Bias in Legal Deci
sion Making, 9 CLINICAL L. REV. 783, 792 (2003); see also Troy A. Paredes, Too Much Pay, Too
Much Deference: Behavioral Corporate Finance, CEOs, and Corporate Governance, 32 FLA. ST.

U. L. REv. 673, 739 (2005) ("Making [decisionmakers] aware of their cognitive tendencies and
how they process and interpret information (that is, teaching [decisionmakers] how they deviate

from perfect rationality) can mitigate cognitive bias.").

1836 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

inventions should be eligible for patent protection, it presents addi
tional information to the ongoing software patent conversation.

I. THE STA TE OF Sorrw ARE p A TENTS

A discussion of the current state of patent eligibility for software
and computer-related inventions naturally must begin with a defini
tion of what is even meant by "software." After defining software, the
present state of patent eligibility jurisprudence for these inventions is
reviewed.

A. What Is Software

Defining software is no easy task. Given that we are discussing
technology, one potential definition would be a technical definition.
For example, the Institute of Electrical and Electronics Engineers
("IEEE") defines software as "[c]omputer programs, procedures, and
possibly associated documentation and data pertaining to the opera
tion of a computer system."18 Another option would be to start with a
legal definition for software; after all, we are considering legal rights
in the form of a patent. However, the United States Patent and
Trademark Office ("USPTO") does not have a specific classification
for software patents.19 Studies on software patents generally define
such patents as "a logic algorithm for processing data that is imple
mented via stored instructions residing on a disk."20 Using this defini
tion, researchers often identify software patents by two main
methods-keyword searches and USPTO technology classes, such as
data processing (USPTO technology classes 700-707 and 715-717).21

18 See INsT. OF ELEC. & ELECS. ENG'Rs, IEEE STANDARD GLOSSARY OF SOFTWARE EN
GINEERING TERMINOLOGY 66 (1990).

19 See US Classes by Number with Title Menu, U.S. PAT. & TRADEMARK OFF., http://www
.uspto.gov/web/patents/classification/selectnumwithtitle.htm (last visited Dec. 5, 2014).

20 James Bessen, A Generation of Software Patents, 18 B.U. J. SCI. & TECH. L. 241, 251
(2012); see also Sebastian von Engelhardt, The Economic Properties of Software (Jena Econ.
Research Papers, Paper No. 2008-045, 2008), available at http://hdl.handle.net/10419/25729.

21 See Bessen, supra note 20, at 251-52. Bessen, for example, used USPTO classes for data
processing (class numbers 700-707 and 715-717) and other classes that are reliant on software
for example, coded data generation (class number 341), computer graphics processing (class
number 345), multiplex communication (class number 370), digital communications (class num
ber 375), cryptography (class number 380), audio signal processing (class number 381), image
analysis (class number 382), information security (class number 726), and electronic funds trans
fer (class number 902). See id. at 252 (based on USPTO classifications as of Dec. 28, 2010).
There are other methods that have been used to categorize "software patents." For example,
Stuart J.H. Graham and David C. Mowery use International Patent Classification ("IPC") clas
ses, subclasses, and groups. Intellectual Property Protection in the U.S. Software Industry, in PAT
ENTS IN THE KNOWLEDGE-BASED EcoNOMY 219, 232 (Wesley M. Cohen & Stephen A. Merrill

2014] DEBUGGING SOFTWARE'S SCHEMAS 1837

One particular difficulty in defining software is that, due to the
uncertain state of patent eligibility for software and computer-related
inventions, patent attorneys often draft claims to obscure the true na
ture of the patented invention.22 To avoid this, one method would be
to define software patents as widely inclusive. For example, a recent
patent reform bill, popularly known as the SHIELD Act of 2012,23

defines software as "any process that could be implemented in a com
puter regardless of whether a computer is specifically mentioned in
the patent," as well as "any computer system that is programmed to
perform [such] a process."24 A "computer" is similarly broadly de
fined as an "electronic, magnetic, optical, electrochemical, or other
high-speed data processing device performing logical, arithmetic, or
storage functions. "25

Another difficulty in defining software is that software is an ever
changing target. The shape and format of software keeps evolving as
the machines for which it is written also progress-whereas room
sized computers ran early software using shift registers, now surpris
ingly powerful software can run on a device that fits in your pocket (or
smaller).26 Today, software companies, Internet and social media
companies, hardware manufacturers, nonsoftware firms, and even
software users develop software.27 And while there is software qua
software, there is also software in your hybrid car that switches from

eds., 2003). For a comparison of various methods of defining "software patents," see Anne
Layne-Farrar, Defining Software Patents: A Research Field Guide (Feb. 15, 2006) (unpublished
manuscript), available at http://ssrn.com/abstract=1818025.

22 See Chien, supra note 10, at 354; Julie E. Cohen & Mark A. Lemley, Patent Scope and
Innovation in the Software Industry, 89 CALIF. L. REv. 1, 9 (2001) (unveiling the "doctrine of the
magic words," the practice of drafting software patent claims to appear to cover something else
(internal quotation marks omitted)).

23 Saving High-Tech Innovators from Egregious Legal Disputes (SHIELD) Act of 2012,
H.R. 6245, 112th Cong. (2012).

24 Id. § 2(a).
2s Id.

26 See, e.g., Clayton M. Christensen et al., The Great Disruption, FOREIGN AFF., Mar./ Apr.
2001, at 80, 83-85 (discussing the evolution of computers from 1946 and the room-sized Elec
tronic Numerical Integrator and Computer ("ENIAC") to modern day personal computers).
Obviously, in the time since the Christensen article was written, computers have evolved even
further. See, e.g., John Markoff, From Stanford, a Computer to Push Beyond the Boundaries of
Silicon, N.Y. TIMES, Sept. 26, 2013, at B3 (noting that the "shrinking of transistor size over the
last half-century has been important because it has significantly lowered the cost of computing,
making it possible to build ever more powerful computers that are faster and cheaper, and con
sume less power with each generation," and highlighting a new advance using nanotechnology
that will shrink transistor size even more).

27 See Wendy Seltzer, Software Patents and/or Software Development, 78 BROOK. L. REv.
929, 947 (2013).

1838 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

gasoline power to electric power, software in your washing machine
that adjusts the wash cycle depending on how dirty the clothes are,
software in your cell phone that knows that it is night and turns off the
ringer, and so on.28 Software may not even run on the device in ques
tion, but instead function as some form of client-server application.29

The reality is that software is everywhere.30

B. The Software Patent Mess

If defining software is a difficult task, untangling the fiasco that is
the law surrounding patent eligibility for software and computer-re
lated inventions is nearly impossible. Neither the U.S. Court of Ap
peals for the Federal Circuit nor the Supreme Court has provided any
solid framework for determining the level of patent protection, if any,
available for these inventions. Without guidance, patent eligibility de
cisions of the Patent Office, as well as the district and appellate courts,
are all over the board.31 It is no wonder, then, that there are calls to

28 See, e.g., Peter Fairley, Software Looks at the Road Ahead to Boost Hybrid-Car Effi
ciency, IEEE SPECTRUM (Feb. 3, 2009, 5:00 AM), http://spectrum.ieee.org/computing/software/
software-looks-at-the-road-ahead-to-boost-hybridcar-efficiency (discussing control algorithms in
hybrid cars that "plan how and when to use stored battery power so as to burn as little gasoline
as possible"); Michael Kanellos, The Sleeping TV, LED Lights and a Washing Machine That Sees
Sweat Stains: The Latest from Japan, GREEN TECH MEDIA (Oct. 6, 2009), http://www.greentech
media.com/articles/read/the-sleeping-tv-led-lights-and-a-washing-machine-that-sees-sweat
stains-the (touting a washing machine that detects how dirty clothes are); Justin Shillock, Silent
Time Automatically Silences Your Android Phone Based on Time of Day, LIFEHACKER (Feb. 18,
2011, 2:00 PM), http://lifehacker.com/5764363/silent-time-automatically-silences-your-android
phone-based-on-time-of-day (describing a phone application that allows a person to silence the
ringer at certain times).

29 See Seltzer, supra note 27, at 954 (noting that technology has changed even further, and
that now, client-client-and-multiple-servers is more dominant than client-server).

30 See Paul Krill, Microsoft Exec: The World Runs on Software, INFoWoRLD (Apr. 12,
2010), http://infoworld.com/d/developer-world/microsoft-exec-the-world-runs-software-391
("Everything is powered by software and developers are the ones who make it all happen."
(internal quotation marks omitted)).

31 For an example of conflicting court opinions, compare CLS Bank Int'/ v. Alice Corp.
Pty. Ltd., 685 F.3d 1341, 1355 (Fed. Cir.) (holding method (software) claims to be eligible for
patent protection because the computer limitations "play(ed) a significant part in the perform
ance of the invention or ... the claims [were] limited to a very specific application of the con
cept"), vacated, 717 F.3d 1269 (Fed. Cir. 2012) (en bane), aff'd, 134 S. Ct. 2347 (2014), with
Bancorp Servs., L.L. C. v. Sun Life Assurance Co. of Can. (U.S.), 687 F.3d 1266 (Fed. Cir. 2012)
(denying patent eligibility where computer limitations were found not to be significant). At the
agency level, compare SAP Am., Inc. v. Versata Dev. Grp., Inc., No. CBM 2012-00001 (P.T.A.B.
Jan. 9, 2013), with Apple Inc. v. Sightsound Techs., LLC, No. CBM 2013-00019 (P.T.A.B. Oct. 8,
2013).

2014] DEBUGGING SOFTWARE'S SCHEMAS 1839

eliminate patent protection altogether for software and computer-re
lated inventions simply to avoid the chaos.32

The statute that defines patent-eligible subject matter is decep
tively simple; its interpretation at the hands of the courts is anything
but simple. Section 101 of the Patent Act permits patenting of "any
new and useful process, machine, manufacture, or composition of
matter."33 This provision has long been construed broadly as encom
passing "anything under the sun that is made by man,"34 excluding
only "[t]he laws of nature, physical phenomena, and abstract ideas."35

The battle line for the patent eligibility of software and computer
related inventions is in the definition of "abstract idea," or more pre
cisely, when an idea is too abstract to warrant patent protection. As
Judge Linn of the Federal Circuit has recently stated:

The abstractness of the "abstract ideas" test to patent
eligibility has become a serious problem, leading to great un
certainty and to the devaluing of inventions of practical util
ity and economic potential. ... This court has ... attempted
to define "abstract ideas," explaining that "abstract ideas
constitute disembodied concepts or truths which are not
'useful' from a practical standpoint standing alone, i.e., they
are not 'useful' until reduced to some practical application."
More recently, this court explained that the "disqualifying
characteristic" of abstractness must exhibit itself "mani
festly" "to override the broad statutory categories of patent
eligible subject matter." Notwithstanding these well-inten
tioned efforts ... the dividing line between inventions that
are directed to patent ineligible abstract ideas and those that
are not remains elusive. "Put simply, the problem is that no
one understands what makes an idea 'abstract.' "36

32 See, e.g., Joshua D. Sarnoff, Patent-Eligible Inventions After Bilski: History and Theory,
63 HASTINGS L.J. 53, 106--07 (2011) (calling for categorical eligibility rules as superior to other
means of gatekeeping); Brian J. Love, Why Patentable Subject Matter Matters for Software, 81
GEo. WASH. L. REv. ARGUENDO 1, 3 (2012), available at http://www.gwlr.org/wp-contentl
uploads/2012/09/Love_Arguendo_81_1.pdf (noting that although eligibility is not the best solu
tion for the software patent problem, it is "the only defensive mechanism left").

33 35 u.s.c. § 101 (2012).
34 Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (quoting S. REP. No. 82-1979, at 5

(1952)).
35 Id.

36 CLS Bank lnt'l, 685 F.3d at 1348-49 (citations omitted). The very "utility and economic
potential" of software and computer-related inventions is why this question is so important. Id.
at 1349. Further, as noted by Judge Rader in Research Corp. Technologies v. Microsoft Corp.,
627 F.3d 859 (Fed. Cir. 2010), the whole point of software is to provide an implementation of an
idea designed to reach a commercially valuable end, which is the exact opposite of abstractness.

1840 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

The fact that "no one understands what makes an idea 'ab
stract' "37 could be related to the historical path patent eligibility juris
prudence has taken. The course leading to the software patent mess is
no less of a "murky morass" than the state of the jurisprudence
itself.38

In the last few years, there has been a discourse between the Fed
eral Circuit and the Supreme Court in an attempt to define an "ab
stract idea" that renders an invention ineligible for patenting. Despite
the flurry of activity in recent years, the path to the present state of
affairs dates back to the 1970s and early 1980s when the Supreme
Court provided a relatively unworkable standard in a trilogy of cases
concerning early software inventions (the "trilogy cases"): Gottschalk
v. Benson,39 Parker v. Flook,40 and Diamond v. Diehr.41 The resulting
standard, to the extent there was one, was that claims including algo
rithms were suspected of being "abstract ideas," and that algorithms
per se were not eligible for patenting.42 Courts used, and struggled
with, this standard for nearly a quarter century.43

Then, in the late 1990s, the Federal Circuit decided a pair of cases
widely believed to have opened the doors of the Patent Office to
software and business method patents44: State Street Bank & Trust Co.
v. Signature Financial Group, Inc. 45 and AT & T Corp. v. Excel Com
munications, Inc.46 In these cases, the Federal Circuit implemented
the "useful, concrete, and tangible result" test for "abstract ideas"-if
an invention produced a useful, concrete, and tangible result, it was

See id. at 869 ("[I)nventions with specific applications or improvements to technologies in the
marketplace are not likely to be [deemed abstract and unpatentable)."); see also Dina Roumiant
seva, Note, The Eye of the Storm: Software and the Abstract Idea Doctrine in CLS Bank v. Alice,
28 BERKELEY TECH. L.J. 569, 579 (2013).

37 CLS Bank Int'/, 685 F.3d at 1349 (internal quotation marks omitted).

38 See MySpace, Inc. v. GraphOn Corp., 672 F.3d 1250, 1259-{iO (Fed. Cir. 2012).

39 Gottschalk v. Benson, 409 U.S. 63 (1972).

40 Parker v. Flook, 437 U.S. 584 (1978).

41 Diamond v. Diehr, 450 U.S. 175 (1981).

42 See, e.g., Kevin Emerson Collins, Patent Law's Functionality Malfunction and the Prob
lem of Overbroad, Functional Software Patents, 90 WASH. U. L. REv. 1399, 1467 (2013).

43 See id. at 1467-{i8 & nn.317-22.

44 See, e.g., Jonathan M. Barnett, Property as Process: How Innovation Markets Select In
novation Regimes, 119 YALE L.J. 384, 408 n.55 (2009) (explaining how AT&T allowed for pat
entability of software qua software); id. at 415-16 (explaining how the State Street decision
"explicitly rejected the historical exclusion of business method patents"). Other scholars disa
gree with this narrative. See Risch, supra note 7, at 341 (stating that Diehr opened the door to
software patenting well before State Street).

45 State St. Bank & Trust Co. v. Signature Fin. Grp., Inc., 149 F.3d 1368 (Fed. Cir. 1998).

46 AT&T Corp. v. Excel Commc'ns, Inc., 172 F.3d 1352 (Fed. Cir. 1999).

2014] DEBUGGING SOFTWARE'S SCHEMAS 1841

not abstract and could be patented.47 After some years, the Supreme
Court began to signal some discomfort with the viability of the "use
ful, concrete, and tangible result" test, pointing backwards to the tril
ogy cases but providing little additional guidance.48

After a turn, the en bane Federal Circuit implemented a new test
to determine whether an invention was an "abstract idea." This new
test, the "machine-or-transformation" test,49 allowed for patenting of
inventions that either: (1) were tied to a "particular machine or appa
ratus" or (2) transformed an article to a "different state or thing."50

The Supreme Court immediately took issue with this new test, indicat
ing that it should not be used as the "sole test" for patent eligibility.51

Instead, the Court again turned back to the trilogy cases, noting that
the Court "need not define further what constitutes a patentable 'pro
cess,' beyond . . . looking to the guideposts in Benson, Flook, and
Diehr."s2 This proved less than helpful.S3

Lacking a coherent framework or constructive leadership from
the Supreme Court, the Federal Circuit continued to flounder, trying
to apply vague precedent to today's technology, while navigating the
"swamp of verbiage that is § l0l "s4 and the Supreme Court's prece
dent on software patenting. The Federal Circuit also had to contend
with increasingly hostile public outcry against patent protection for
these types of inventions.ss Subsequent Supreme Court opinions
about patent-eligible subject matter did not provide any additional
guidance for defining "abstract ideas."s6 Then, in 2013, the Federal

47 See State Street, 149 F.3d at 1373; see also AT&T, 172 F.3d at 1360-61 (applying State
Street's "useful, concrete, and tangible result" test to software-related inventions).

48 See Lab. Corp. of Am. Holdings v. Metabolite Labs., Inc., 548 U.S. 124, 134-36 (2006)
(Breyer, J., dissenting).

49 See In re Bilski, 545 F.3d 943, 955 (Fed. Cir. 2008) (en bane), affd sub nom. Bilski v.
Kappos, 130 S. Ct. 3218 (2010).

so Id. at 954.
Sl See Bilski v. Kappos, 130 S. Ct. 3218, 3221 (2010).
s2 See id. at 3222.
S3 See, e.g., Collins, supra note 42, at 1458 (describing how, in Bilski, the Supreme Court

"held that its earlier (and difficult to parse) opinions" in the trilogy cases were the ultimate test,
and that the Court's holding was based on rhetoric, rather than reasoning, from those cases).

S4 MySpace, Inc. v. GraphOn Corp., 672 F.3d 1250, 1259-60 (Fed. Cir. 2012).
ss For one boisterous, although not unrepresentative, example of the public's outcry

against software patents, consider Mark Cuban, who established the "Mark Cuban Chair to
Eliminate Stupid Patents." Cuban characterizes software patents as '"stupid' patents that
should have been completely abolished or at least have a shorter legal life." See, e.g., Efrat
Kasznik, Troll Slayer: Can Mark Cuban Cure the U.S. Patent System?, VENTUREBEAT (Feb. 9,
2013, 12:59 PM), http://venturebeat.com/2013/02/09/troll-slayer-can-mark-cuban-cure-the-u-s
patent-system/.

56 See Ass'n for Molecular Pathology v. Myriad Genetics, Inc., 133 S. Ct. 2107, 2116 (2013)

1842 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

Circuit published an en bane opinion in CLS Bank International v.
Alice Corp. Pty. Ltd.57 In an attempt to provide clarity about patent
protection for software and computer-related inventions, the Federal
Circuit's decision instead included seven separate opinions, represent
ing at least three distinct viewpoints on the subject.58 The only thing a
majority of the court agreed on was that the invention in question was
not eligible for patenting; there was no agreement as to why.59 At the
annual meeting of the American Intellectual Property Association in
May 2013, former Chief Judge Rader noted that the failure of the Fed
eral Circuit to provide guidance about software patentability in the
CLS Bank case was the "greatest failure" in his judicial career.60

The Supreme Court granted certiorari in the CLS Bank case on
December 6, 2013.61 After hearing arguments on March 31, 2014, the
Supreme Court issued its opinion on June 19, 2014.62 Unfortunately,
the Court still provided no guidance on what constitutes an abstract
idea, and in fact explicitly dodged the question.63 Although the Court
did not specifically prohibit patenting of this type of invention, the
Court's advice consisted generally of reference to the early trilogy
cases,64 leaving inventors, practitioners, and courts to muddle through
on the issue of patent eligibility for software and computer-related
inventions. Although the CLS Bank decision could be seen as
software's definitive trip to the Supreme Court, the lack of guidance
provided by the Court means that questions will continue to persist.
For this reason, addressing the bugs in software's schemas remains a
primary issue in patent eligibility jurisprudence going forward.

(discussing what is ineligible as a "naturally occurring phenomena"); Mayo Collaborative Servs.
v. Prometheus Labs., Inc., 132 S. Ct. 1289, 1294 (2012) (finding inventions that were "well-under
stood, routine, conventional activity previously engaged in by researchers in the field" to be
ineligible for patenting).

57 CLS Bank Int'! v. Alice Corp. Pty. Ltd., 717 F.3d 1269 (Fed. Cir. 2013) (en bane), affd,
134 S. Ct. 2347 (2014).

58 See id.
59 See id. at 1273 (per curiam); see also Mike Masnick, Supreme Court to Hear Key Case on

Software Patents that Appeals Court Couldn't Figure Out, TECHDIRT (Dec. 6, 2013, 3:43 PM),
http://www.techdirt.com/articles/20131206/15334125492/supreme-court-to-hear-key-case-soft
ware-patents-that-appeals-court-couldnt-figure-out.shtml (noting that the Federal Circuit opin
ion "was one of the biggest judicial messes you'll ever see," with "135 pages of different judges
all disagreeing with each other" and "only one single paragraph that the court agreed on").

60 Brian Mahoney, Software Patent Ruling a Major Judicial Failure, Rader Says, LAw360
(Oct. 25, 2013, 6:36 PM), http://www.law360.com/articles/482264.

61 Alice Corp. Pty. Ltd. v. CLS Bank Int'!, 134 S. Ct. 734 (2013) (mem.).
62 Alice Corp. Pty. Ltd. v. CLS Bank Int'!, 134 S. Ct. 2347 (2014).
63 See id. at 2357 ("In any event, we need not labor to delimit the precise contours of the

'abstract ideas' category in this case.").
64 See id. at 2357-59 (describing Benson, Flook, and Diehr, as well as Bilski).

2014] DEBUGGING SOFTWARE'S SCHEMAS 1843

II. THE BIASES IN SOFTWARE'S SCHEMAS

Cognitive science has long studied how people make judgments
and choices, often in ways that seem irrational.65 In part, these poor
choices are made because the human brain can only manage so much
information, and effective navigation of daily life requires efficient
management of scarce cognitive resources.66 To aid in processing the
vast amount of information people face on a daily basis, humans use
cognitive biases-various filters and heuristics-as shortcuts, rather
than relying on deliberative, deductive logic.67 The two primary short
cuts are schemas and heuristics.68 Schemas, as noted previously, are
frameworks that help to organize and interpret information, while
helping to avoid irrelevant information.69 Heuristics are mental short
cuts, or "rules of thumb," that permit information to be processed
quickly.70

For the most part, schemas and heuristics are helpful and neces
sary. They can, however, lead to poor decisionmaking if there are
flaws in the frameworks that distort how the information is processed,
or bugs that focus attention on irrelevant data rather than pertinent
details.71 In processing the vast information related to the patent eligi
bility of software, we have been relying on two schemas, both of which
have been created and maintained by additional cognitive biases or
shortcuts.

A. Defining Software's Schemas

As noted above, the current software patent mess is unlikely to
be fixed without debugging the schemas that undergird how informa
tion about software and computer-related inventions is understood.
This is because schemas "affect our perception of new information,"
as well as the decisions we make "based on that information."72 The

65 See, e.g., Adam S. Zimmerman, Funding Irrationality, 59 DuKE L.J. 1105, 1108 (2010).

66 See Jeffrey J. Rachlinski & Cynthia R. Farina, Cognitive Psychology and Optimal Gov
ernment Design, 87 CORNELL L. REv. 549, 555 (2002); Jeffrey J. Rachlinski, The Uncertain Psy
chological Case for Paternalism, 97 Nw. U. L. REV. 1165, 1170-71 (2003).

67 See Derek E. Bambauer, Shopping Badly: Cognitive Biases, Communications, and the
Fallacy of the Marketplace of Ideas, 77 U. Cow. L. REV. 649, 673 (2006); Peter Lee, Patent Law
and the Two Cultures, 120 YALE L.J. 2, 22-24 (2010); Rachlinski, supra note 66, at 1170-71.

68 See Rachlinski & Farina, supra note 66, at 555.

69 See id. at 555-56.

70 See id. at 555.

71 See id. at 555-58.

72 See, e.g., Gordon, supra note 5, at 652.

1844 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

current understanding of software patents can be broken into two pri
mary schemas-the bad patent schema and the troll schema.

1. The Bad Patent Schema

The bad patent schema begins with the premise that the patent
system as a whole is bad,73 and that software patents are even worse
due to a nonsensical standard for patent-eligible subject matter and
overly broad and vague claim language.74 Because bad patents have
not been curbed through other mechanisms, software and computer
related inventions should be denied patent protection, generally under
the "abstract idea" exception.75 This is appealing because patent eligi
bility has often been referred to as a "threshold test"76 or a "screen
ing" device,77 allowing for quick disposal of these undesirable patent
applications.

There are two main arguments used to support the bad patent
schema. These arguments are (1) patents are not required for innova
tion in the field of software and computer-related inventions and (2)
software patents are too broad, poorly examined, and include inade
quate disclosure.

First, patent eligibility for software and computer-related inven
tions is often challenged on the notion that patents are not required as
an "incentive to innovate."78 If software patents should be granted as
an incentive, then the questions that should be asked include: what
level of innovation would occur without a patent grant, whether a pat
ent grant would cause a greater loss to society than the benefit it pro
vides, and whether a line can be drawn between subject matter that

73 Alternatively, it is possible that the patent system as a whole is not bad, but that a lot of
bad, or invalid, patents are being issued by the Patent Office. See, e.g., Timothy Holbrook, Not
All Patent Trolls Are Demons, CNNOP!NION (Feb. 21, 2014, 9:08 AM), http://www.cnn.com/
2014/02/21/opinion/holbrook-patent-trolls-demons/index.html.

74 See, e.g., Julie Samuels, Finally: This Is How to Fix the 'Patent Fix' We're All In, WIRED
(Apr. 2, 2013, 9:30 AM), http://www.wired.com/opinion/2013/04/this-is-how-to-fix-the-patent-fix
were-in/.

75 See, e.g., BESSEN & MEURER, supra note 10, at 235-53; Sarnoff, supra note 32, at
106-07; Love, supra note 32, at 2-3.

76 See Bilski v. Kappos, 130 S. Ct. 3218, 3225 (2010).
77 See Mayo Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289, 1303 (2012);

see also In re Comiskey, 554 F.3d 967, 973 (Fed. Cir. 2009) ("Only if the requirements of§ 101
are satisfied is the inventor 'allowed to pass through to' the other requirements for patentability,
such as novelty under § 102 and ... non-obviousness under§ 103." (quoting In Re Bergy, 596
F.2d 952, 960 (C.C.P.A. 1979))).

78 See, e.g., David S. Olson, Taking the Utilitarian Basis for Patent Law Seriously: The Case
for Restricting Patentable Subject Matter, 82 TEMP. L. REv. 181, 183-84 (2009); Seltzer, supra
note 27, at 929.

2014] DEBUGGING SOFTWARE'S SCHEMAS 1845

needs protection and subject matter that does not.79 In answering
these questions, a common response is that, even if an incentive is
needed, software patents provide very little societal benefit because of
inadequate disclosure.80 Specifically, the application can describe
what the software should do, in sufficiently specific terms to obtain a
patent, without providing any details about how the software will ac
tually work.81 What is being patented is not an invention, but rather
simply an unimplemented idea.

Some commentators argue that even an ideal software patent
with complete disclosure and covering a completed invention-does
not deserve patent protection, because it does not induce the develop
ment of innovative software, as the monopoly period is unnecessary to
recapture development investments.82 The nature of software devel
opment does not require patent incentives, because there is a low bar
to entry, capital costs are low, and human capital requirements are
small; even a single programmer can make significant progress on a
project.83 Although software development is uncertain, software de
velopment permits "rapid prototyping" and the ability to "release
early, release often"-with bug fixes being available even after a
product release.84

Second, many commentators complain that software patents are
too broad, poorly examined, and inadequately disclosed,85 even where
the underlying invention may be more than a simple unimplemented
idea. Software patents have "notoriously fuzzy" boundaries, making
it difficult to determine where the rights of the inventor end and pub
lic domain begins.86 The fuzzy boundaries also make examination dif
ficult, as it is not easy to tell when the software patent application
overlaps prior art.87 Another problem is that prior art in the software
and computer-related inventions field is allegedly difficult to find,
leaving examiners without the resources to reject claims that are not

79 See Olson, supra note 78, at 184.

so See, e.g., Greg R. Vetter, Patent Law's Unpredictability Doctrine and the Software Arts,

76 Mo. L. REv. 763, 776 (2011).

81 See Seltzer, supra note 27, at 944.

82 See id. at 930, 943.

83 See id. at 944, 975; Samuels, supra note 74.

84 See Seltzer, supra note 27, at 956-57.

85 See, e.g., Collins, supra note 42, at 1400.

86 Peter Menell, It's Time to Make Vague Software Patents More Clear, WIRED (Feb. 7,
2013, 4:10 PM), http://www.wired.com/opinion/2013/02/its-time-to-make-vague-software-patents
more-clear/.

87 See Seltzer, supra note 27, at 955.

1846 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

novel or nonobvious.88 Finally, to the extent these inventions do not
require patent protection in order to incentivize invention, the multi
tude of patent applications pending at the Patent Office is simply an
extra burden,89 further exacerbating examination difficulties and the
issuance of bad patents.90

2. The Troll Schema

The other framework manipulating our understanding of
software patents is the troll schema. The argument here is that the
"troll," or patent assertion entity ("PAE"), problem is particularly
present in the software industry.91 Commentators justify the troll
schema on the basis that the software industry has a low barrier to
entry, and software patent quality is suspect, so it is easy to obtain
these patents (either ab initio or from a failed company).92 These pat
ents are then asserted, at times relentlessly, against successful produc
ers of products that incorporate the software.93 Troll litigation has
also been labeled "simple extortion" and even "a 'Tony Soprano' pro
tection racket. "94 Because software patents are nearly five times as
likely to be litigated as other patents, they are more susceptible to
abuse by trolls.95

88 See Cohen & Lemley, supra note 21, at 42; James Gleick, Patently Absurd, N.Y. TIMES
MAG., Mar. 12, 2000, at 50, available at http://www.nytimes.com/2000/03/12/magazine/patently
absurd.html. One problem with this argument, however, is that it is getting stale. Because
software and business method inventions have been widely considered to be eligible for patent
ing since State Street in 1999, the amount and availability of prior art must have increased. Yet
current articles relying on the bad patent schema still rely on prior art arguments from over a
decade ago. Consider Wendy Seltzer's article from 2013. Seltzer, supra note 27. For the pro
position that the USPTO has inadequate information to properly examine software-type patent
applications, Seltzer cites an article from 2000. See id. at 954-55 & n.129 (citing Richard S.
Gruner, Better Living Through Software: Promoting Information Processing Advances Through
Patent Incentives, 74 ST. JottN's L. REv. 977, 1063-64 (2000)).

89 See BESSEN & MEURER, supra note 10, at 247.

90 See Olson, supra note 78, at 189.

91 See, e.g., Lemley, supra note 14, at 932 ("Patent 'trolls' ... are legion in the software
industry.").

92 See, e.g., Seltzer, supra note 27, at 976-77.

93 See id.

94 See N.V., Obituary for Software Patents, EcoNOMIST (Dec. 13, 2013, 6:32 AM), http://
www.economist.com/blogs/babbage/2013/12/difference-engine-O (internal quotation marks
omitted).

95 See Samuels, supra note 74.

2014] DEBUGGING SOFTWARE'S SCHEMAS 1847

B. Additional Cognitive Biases

Schemas are one type of cognitive bias,96 but there are additional
cognitive biases that are particularly relevant in the development and
maintenance of the flawed schemas that influence the patent eligibility
analysis for software and computer-related inventions.97 These in
clude confirmation bias, availability bias, and grouping biases.98

1. Confirmation Bias

Confirmation bias is the natural tendency to reinforce beliefs by
seeking out consistent information, ignoring inconsistent information,
and, when faced with consistent and inconsistent information, giving
greater weight to evidence that validates the existing belief.99 Typi
cally, confirmation bias is less likely to occur when the cost of making
incorrect decisions is high.100 When faced with conflicting informa
tion, we prefer information that supports our perspective, and are un
likely to shift our conclusions simply because we receive additional or
better information.101 We also have great difficulty when processing
adverse information that is posed in the negative or asymmetrically.102

For an example of how confirmation bias may be at play in the
bad patent schema, consider the empirical work of Professors John
Allison and Ronald Mann.103 In particular, they performed a study of
the quality of software and nonsoftware patents, looking at "(1) the
number of claims in the patent, (2) the number of prior art references
in the patent, and (3) the number of forward citations to the pat
ent. "104 Although they admit their work is suggestive due to the com-

96 See, e.g., Gregory S. Alexander, A Cognitive Theory of Fiduciary Relationships, 85 COR
NELL L. REV. 767, 768-69 (2000).

97 For a broader claim, see Lisa Larrimore Ouellette, Cultural Cognition of Patents, 4 IP

THEORY 28, 33 (2014) (claiming that "cultural cognition likely contributes to the dysfunctional
public discourse over patents").

98 See infra Part II.B.1-3.

99 See Margit E. Oswald & Stefan Grosjean, Confirmation Bias, in COGNITIVE ILLUSIONS:

A HANDBOOK ON FALLACIES AND BIASES IN THINKING, JUDGMENT AND MEMORY 79 (Rudiger

F. Pohl ed., 2004); see also, e.g., Scorr PLOUS, THE PSYCHOLOGY OF JUDGMENT AND DECISION
MAKING 233 (1993); ARTHURS. REBER, THE PENGUIN DICTIONARY OF PSYCHOLOGY 151 (2d

ed. 1995); Michael A. McCann, It's Not About the Money: The Role of Preferences, Cognitive
Biases, and Heuristics Among Professional Athletes, 71 BROOK. L. REv. 1459, 1460 (2006).

100 See Oswald & Grosjean, supra note 99, at 91-92.
101 See id.
102 See Bambatier, supra note 67, at 679.

103 See John R. Allison & Ronald J. Mann, The Disputed Quality of Software Patents, 85

WASH. u. L. REV. 297 (2007).

104 See id. at 321. These factors were chosen because of their dominance in existing empiri
cal literature. See id.

1848 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

plexity of the questions at issue, they found that "by objective
standards, software patents as a group compare quite favorably to pat
ents that the same firms are obtaining, at the same time, on non
software inventions."105 Further, they found that "patents obtained by
small firms are no worse than the patents of the large firms. "106

The findings in this study provide some evidence that is contrary
to both the bad patent schema and the troll schema. In their article,
Allison and Mann specifically take issue with the bad patent schema,
stating that their findings "undercut the common suggestions that
software patents should be prohibited entirely or should face special
hurdles for examination designed to stem the alleged flood of low
quality patents."107 Although the article does not particularly address
the troll schema, patents held by trolls generally come from small
firms;108 Allison and Mann's findings suggest that patents from small
firms are no worse in quality than patents obtained by large firms. 109

Despite Allison and Mann's work, confirmation bias may make it
difficult for other scholars to accept this information, because it is in
consistent with the popularly held bad patent schema and troll
schema. Confirmation bias makes scholars prefer information that
supports their own perspectives.11° Consider the following: a quick le
gal research search for law review articles about bad patents or patent
quality yielded over 200 results.111 However, only fifteen articles cited
Allison and Mann's study.112 Of these fifteen articles, only one explic
itly cited the study's findings with approval.113 On the other hand, at

105 See id. at 333-34.
106 See id. at 334.
107 See id. In the same vein, there is more recent research that suggests that software pat

ent applications are examined at least as rigorously as nonsoftware patent applications. See Stu
art Graham & Saurabh Vishnubhakat, Of Smart Phone Wars and Software Patents, 27 J. EcoN.
PERSPS. 67, 73 (2013).

108 See Michael Risch, Patent Troll Myths, 42 SETON HALL L. REv. 457, 486-87 (2012).
109 See Allison & Mann, supra note 103, at 334.
110 See Christopher R. Leslie, Rationality Analysis in Antitrust, 158 U. PA. L. REv. 261, 314

(2010).
111 A search on Lexis Advance consisting of "software /p patent Ip quality" in the Secon

dary Materials: Law Reviews and Journals database from 1/112007 through 12/31/2013 yielded
230 results, including the Allison and Mann article. A similar search consisting of "software /p
patent /p bad" yielded 167 results, in addition to the Allison and Mann article.

112 This data is a result of running a Shepard's search in Lexis Advance. The search re
vealed that fifteen law review articles cited the article. To be sure, there are other descriptive
empirical studies that may provide similar information; however, this is exemplary. Future re
search would be useful to consider other confirmation bias arguments that may persist concern
ing the troll schema.

113 See Barnett, supra note 44, at 428 n.103. Other citing articles refer to Allison and
Mann's definition of "software." See, e.g., Stephen Clowney, Property in Law: Government

2014] DEBUGGING SOFTWARE'S SCHEMAS 1849

least five cited the article as a contrary, or conflicting, data point.114

The other articles about software patent quality that followed the Al
lison and Mann article failed to even mention the study's opposing
data.115 To be sure, there are many reasons behind why scholars cite
and fail to cite other scholarship; however, one inference is that con
firmation bias is affecting our intake of new or additional information
about software's schemas, which results in authors choosing to avoid
referencing the Allison and Mann article.

2. Availability Bias

Availability bias explains how the amount and source of informa
tion affects decisionmaking. This bias reflects that people assess fre
quency or probability based on the ease with which information about
an event can be recalled.116 Because it is easier to bring to mind a
vivid or sensational story or a story that receives a large amount of
media attention, rather than routine stories of everyday activity, we
are more likely to overestimate the presence of the sensational activ
ity .117 Similarly, the availability cascade refers to the old adage that if
you repeat something often enough, it will become true. More for
mally, scholars have defined the availability cascade as "a self-rein
forcing process of collective belief formation by which an expressed
perception triggers a chain reaction that gives the perception increas
ing plausibility through its rising availability in public discourse."118

The effect of availability bias can be heightened if individuals lack suf-

Rights in Legal Innovations, 72 Omo ST. L.J. 1, 46 n.193 (2011) (referring the reader to Allison
and Mann's definition of software patents).

114 See, e.g., Bernard Chao, Finding the Point of Novelty in Software Patents, 28 BERKELEY
TECH. L.J. 1217, 1224 n.48 (2013) (citing Allison and Mann's article with a "but see" signal
following the author's statement that software patents are of low quality); Tun-Jen Chiang, The
Rules and Standards of Patentable Subject Matter, 2010 Wis. L. REv. 1353, 1407 n.266 (using
Allison and Mann as a comparison to another study to illustrate conflicting views on patent
quality); Jeanne C. Framer, The Compatibility of Patent Law and the Internet, 78 FORDHAM L.
REV. 2783, 2796 n.88 (2010) ("That said, Allison and Mann demonstrate ... that software pat
ents are indistinguishable [from others patents)." (emphasis added)); Stephen McJohn, Scary
Patents, 7 Nw J. TECH. & INTELL. PROP. 343, 344 n.12 (2009) (citing Allison & Mann's article
with a "but see" signal); Vetter, supra note 80, at 776 & n.52 (referring to Allison and Mann as
"contrarians among the commentators").

115 See, e.g., Alan Devlin, Systemic Bias in Patent Law, 61 DEPAUL L. REv. 57, 81 n.179
(2011) (referring to the definition of software patents put forth in the Allison and Mann article
without discussing the study's results).

116 See Amitai Aviram, The Placebo Effect of Law: Law's Role in Manipulating Perceptions,
75 GEO. WASH. L. REV. 54, 71-72 (2006).

117 See id. at 72.
118 Timur Kuran & Cass R. Sunstein, Availability Cascades and Risk Regulation, 51 STAN.

L. REV. 683, 683 (1999).

1850 THE GEORGE WASHINGTON LAW REVIEW (Vol. 82:1832

ficient information to form their own beliefs about an issue, or if they
adopt the popular, repeated viewpoint to garner approval or simply
because other people have also adopted that view (i.e., jumping on the
bandwagon) .119

One example of availability bias in the context of software's
schemas is the fact that, although there are some hundreds of
thousands of patents on software and computer-related inventions es
timated to be currently in force,120 the most readily available informa
tion is focused on the sensational-or more accurately, the
underwhelming-patents.121 The popular media features reports on
"notorious" patents, like Amazon's patent for one-click shopping and
Priceline's patent for a reverse auction, 122 or other seemingly silly in
ventions like Apple's patent application for offering author auto
graphs on e-books.123 Despite the abundance of articles decrying poor
software patents, there are few, if any, that highlight the positive pat
ents, like the hybrid engine patent.124

The troll schema is similarly reinforced by stories such as the one
that appeared in the Palm Beach Post, reporting the efforts of patent
owner ArrivalStar to enforce its patents.125 The article noted that Ar
rivalStar's head had been called not just a "patent troll" but also a
"shakedown artist" and a "cockroach."126 The story upped the ante by
reporting that the company was once based in Delray Beach, but has
changed incorporation to "the tax haven of Luxembourg. "127 With
stories like this, it is hard to recall the many colorful stories written
about other patent lawsuits where the invention in question was an

119 See id. at 685-87.
120 See Lemley, supra note 14, at 928.
121 This adjective is based on the attitude of the articles, not the author. See, e.g., Tim

Cushing, US Patent Office Grants "Photography Against a White Background" Patent to Ama
zon, TECHDIRT (May 8, 2014, 5:41 AM), https://www.techdirt.com/articles/20140507/041023271
44/us-patent-office-grants-photography-against-white-background-patent-to-amazon.shtml.

122 See, e.g., Rod Cooper et al., Patents Are Not the Enemy, CHI. TRIB., Aug. 15, 2012, at
C21 (deeming Amazon's one-click patent "notorious"); Jube Shiver, Jr., Little Gain Seen in Pat
ent Filings, L.A. TIMES, Oct. 21, 2002, at C4.

123 See L. Gordon Crovitz, Op-Ed., Information Age: Jimmy Carter's Costly Patent Mistake,
WALL ST. J., Dec. 16, 2013, at A13.

124 Even the articles discussing positive patents have a negative spin. See, e.g., John Mur
phy, Toyota Builds Thicket of Patents Around Hybrid to Block Competitors, WALL ST. J. (July 1,
2009, 11:59 PM), http://online.wsj.com/news/articles/SB124640553503576637.

125 Jeff Ostrowski, Patent Trolls Build Piles of Cases in Court, PALM BEACH PosT, Sept. 1,
2013, at Dl.

126 Id.

121 Id. Among other irrelevant yet salacious facts, the story also highlighted that the head
of ArrivalStar had moved to Canada. Id.

2014] DEBUGGING SOFTWARE'S SCHEMAS 1851

important software invention. Or perhaps it is difficult to recall those
stories because they have not been written. In any case, the troll
schema has, in part, been created, and certainly perpetuated, through
accounts such as this.

One final aspect of the availability bias is that information is also
recalled based on the perceived importance of its source. When the
President of the United States says that there is a patent troll problem,
as President Obama did in June 2013,128 it certainly brings added at
tention to the schema. This increases the amount of press the frame
work receives, heightening its credibility-particularly among those
who lack information to make an independent decision.129

3. Grouping Biases

The final set of cognitive biases relates to attributing certain char
acteristics to a group without regard to individual differences of mem
bers of that group. This is often called the stereotyping bias. In these
cases, a specific, vivid case will often "evoke affective reactions to
ward the entire class of objects it represents, despite countervailing
but pallid assurances about typicality."130 The representativeness bias
prompts a belief that individuals with one characteristic share a sec
ond characteristic, based on how often or how closely individuals with
the second characteristic exhibit the first. 131 Although these heuristics
are helpful, as individual information is often difficult to ascertain,
they can lead people to ignore relevant, actual data.132

The problem for software's schemas is that there is no such thing
as a typical software or computer-related invention, nor is there one
type of patent troll, at least as the term has been broadly applied.133

128 See Edward Wyatt, Obama Orders Regulators to Root Out "Patent Trolls," N.Y. TIMES,

June 5, 2013, at Bl.
129 Of course, it may not be irrational to trust a public official; however, trusting a public

official simply because of his position, rather than any particular expertise, would be an example

of placing perceived importance over full information.

130 Richard E. Nisbett et al., Improving Inductive Inference, in JUDGMENT UNDER UNCER
TAINTY: HEURISTICS AND BIASES 445, 454 (Daniel Kahneman et al. eds., 1982).

131 See Nancy Levit, Confronting Conventional Thinking: The Heuristics Problem in Femi
nist Legal Theory, 28 CARDOZO L. REV. 391, 396-97 (2006); James S. Liebman et al., The Evi
dence of Things Not Seen: Non-Matches as Evidence of Innocence, 98 low A L. REv. 577, 624

(2013).
132 See, e.g., Chris Guthrie et al., Inside the Judicial Mind, 86 CORNELL L. REv. 777, 805

(2001).

133 For example, consider the working definition the Federal Trade Commission is using to

study patent assertion entities ("PAE") or patent trolls: "PAEs are firms with a business model

based primarily on purchasing patents and then attempting to generate revenue by asserting the

intellectual property against persons who are already practicing the patented technology" but

1852 THE GEORGE WASHINGTON LAW REVIEW (Vol. 82:1832

As noted above, there is no such thing as a software industry, because
software is anywhere and everywhere, produced by multitudes of dif
ferent producers for different devices and different purposes.134 Addi
tionally, at least one commentator has identified three types of patent
trolls; there may be more.135 Yet commentary and legislation regard
ing software or patent trolls generally fail to differentiate at all. In
stead, the negative characteristics of one piece of software or one
patent holder are being ascribed to all members of the category.136

For example, although there may be patent trolls that engage in abu
sive patent litigation tactics, the SHIELD Act of 2013137 proposes fee
shifting against a losing patent holder in patent infringement cases un

less the patent holder is the original inventor or assignee, the patent
holder can show "substantial investment made ... in the exploitation
of the patent through production or sale of an item covered by the
patent," or the patent holder is a university or "technology transfer
organization."138 As another example, consider the breadth of the
definition of software in the SHIELD Act of 2012, where fee-shifting
would be permitted in the case of litigation involving software
patents.139

Stereotyping or representativeness bias disposes us to focus on
the fact that a software patent may be more likely to be bad or invalid.
More importantly, this bias may make us forget that any particular
software patent may be just fine, or that enforcement of a software
patent, even by an entity that does not produce its own goods, is a
valid use of the patent system. Instead, we rely on resemblance and
ignore individualized information.

not entities "that primarily seek to develop and transfer technology, such as universities, re
search entities, and design firms." See Agency Information Collection Activities, 78 Fed. Reg.
61,352, 61,352 n.1 (proposed Oct. 3, 2013).

134 See supra Part I.A.

135 See Mark A. Lemley & A. Douglas Melamed, Missing the Forest for the Trolls, 113
CoLUM. L. REv. 2117, 2126 (2013) (defining the three types of trolls as (1) "a company that owns
a patent and hopes to strike it big in court," (2) a company "interested in quick, low-value
settlements for a variety of patents" that do not want to actually go to trial, and (3) a company
engaged in "patent aggregation"). Another study identifies twelve classes of trolls or nonprac
ticing entities. See John R. Allison et al., Extreme Values or Trolls on Top? The Characteristics
of the Most-Litigated Patents, 158 U. PA. L. REv. 1, 10 tbl.1 (2009).

136 But see Graham & Vishnubhakat, supra note 107, at 69 (arguing against the bad patent
schema for software patent applications).

137 Saving High-Tech Innovators from Egregious Legal Disputes (SHIELD} Act of 2013,
H.R. 845, 113th Cong. (2013).

138 See id. § 2(d).

139 See supra note 24 and accompanying text.

2014] DEBUGGING SOFTWARE'S SCHEMAS 1853

One objection is that these schemas are not irrational or wrong.
After all, it is difficult to find concrete evidence of socially beneficial
patents that would not have been invented but for the availability of
patent protection. The lack of positive patent troll narratives may
very well be due to the fact that there are none. And even if software
patents are good for society, perhaps the administrative costs and po
tential for erroneous patent grants outweigh the benefits. However,
even if we cannot prove these schemas to be wrong, we also do not
know that they are correct and rational. For this reason, it is inappro
priate to use these schemas to undergird the software patent
conversation.

C. Debugging the Biases

One way to debug software's schemas is to acknowledge the role
of cognitive biases in the bad patent schema and the troll schema, and
to acknowledge that these schemas influence decisionmaking by
courts140 and legislators141 regarding the patent eligibility of software
and computer-related inventions. These cognitive biases operate at an
unconscious level and are so ingrained that even without our knowl
edge they may impact discussion and decisionmaking. 142 However,
there is research that suggests that our decisionmaking can be im
proved if we are aware of cognitive biases and consider them while
making decisions and seeking solutions.143

Consider some popular suggestions to fix the software patent sys
tem. One often proposed fix is to rely more heavily on other sections
of the Patent Act, such as the novelty, nonobviousness, and written
description requirements.144 This proposal conforms to the bad patent
schema, but is perhaps immune to the grouping biases, since it sug-

140 See RICHARD A. PosNER, How JUDGES THINK 68-70 (2008).
141 See supra notes 8-10 and accompanying text.
142 See Anthony G. Greenwald & Linda Hamilton Krieger, Implicit Bias: Scientific Founda

tions, 94 CALIF. L. REv. 945, 946 (2006).
143 Weinstein, supra note 17, at 792; see also Paredes, supra note 17, at 739.
144 See, e.g., Dennis Crouch & Robert P. Merges, Operating Efficiently Post-Bilski by Or

dering Patent Doctrine Decision-Making, 25 BERKELEY TECH. L.J. 1673, 1674 (2010) (arguing
that other sections of the Patent Act should be used to examine patents first, resorting to patent
eligibility as a last resort); Kristen Osenga, Ants, Elephant Guns, and Statutory Subject Matter, 39
Amz. ST. L.J. 1087 (2007) (arguing that patent eligibility is a proxy for other, more proper pat
entability inquiries); Michael Risch, Everything Is Patentable, 75 TENN. L. REv. 591 (2008) (argu
ing that patent eligibility should not be part of the patentability inquiry). These arguments have
been criticized as ineffective or unduly costly. See Lemley, supra note 14, at 938-39 (arguing
that "beefing up examination" to fix bad software patents is too costly); Love, supra note 32, at 7
(stating that "sections 102, 103, and 112 have proven woefully ineffective at screening overbroad
software patents").

1854 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

gests increased individualized attention for software patent
applications.

Other commentators have proposed a different tactic for fixing
the software patent system: adjusting the patent maintenance fee sys
tem.145 For example, one proposal from James Bessen suggests that
patent maintenance fees should be greatly increased to compensate
for patents' burden on society, and would raise the fees to reflect the
likelihood of assertion, which would put an additional tax on software
and business methods, as these inventions have been shown to be dis
proportionately asserted.146 Alternatively, another proposal asserts
that because patent trolls often bring suits late in the life of a patent,
maintenance fees could be structured to increase as a patent ages and
to include additional late-term fees. 147 These plans do not differenti
ate among individualized patents or patent holders, and thus may be
subject to the grouping biases. In addition, the Bessen proposal anal
ogizes software patents to pollution;148 this is the type of vivid analogy
that may reinforce the availability bias.

For another example, consider the SHIELD Act of 2013. When
the Act was introduced in March 2013, Representative Peter DeFazio,
the bill's sponsor, asserted that "patent troll suits cost American tech
nology companies over $29 billion in 2011 alone."149 This figure is the
take-home (and oft repeated) message from a study by James Bessen
and Mike Meurer.150 However, a study from another set of well
respected scholars, David Schwartz and Jay Kesan, casts doubt on the

145 See Eric Goldman, Fixing Software Patents l, 9 (Santa Clara Univ. Sch. of Law Legal
Studies Research Papers Series, Paper No. 01-13, 2013), available at http://ssrn.com/abstract=219
9180 (summarizing two separate maintenance fee proposals).

146 See James Bessen, Can New Fees Fix the Patent System? Experts Weigh In: Make the
Polluters Pay!, WIRED (Sept. 6, 2012, 2:10 PM), http://www.wired.com/opinion/2012/09/can-new
fees-fix-the-patent-system.

147 See Brian J. Love, An Empirical Study of Patent Litigation Timing: Could a Patent Term
Reduction Decimate Trolls Without Harming Innovators?, 161 U. PA. L. REV 1309 (2013); see
also Brian J. Love, Let's Use Patent Fees to Stop the Trolls, WIRED (Dec. 20, 2012, 3:30 PM),
http://www.wired.com/opinion/2012/12/how-to-stop-patent-trolls-lets-use-fees.

148 See Goldman, supra note 145, at 9 (discussing Bessen's proposal).
149 See, e.g., Adam Mossoff, The SHIELD Act: When Bad Economic Studies Make Bad

Laws, TRUTH ON THE MARKET (Mar. 15, 2013), http://truthonthemarket.com/2013/03/15/the-
shield-act-when-bad-studies-make-bad-laws/.

150 See James Bessen & Michael J. Meurer, The Direct Costs from NPE Disputes, 99 CoR
NELL L. REv. 387, 389 (2014).

2014] DEBUGGING SOFTWARE'S SCHEMAS 1855

$29 billion figure.151 This situation may present another good example
of confirmation bias.152

Finally, consider the ultimate subject matter related proposal: to
ban software patents altogether.153 The reasons most often given for
these proposals are that no software patent can be appropriately ex
amined-grouping bias-and that all software patents and patent ap
plications are drawn to abstract ideas-again, grouping bias.154 These
articles do not consider individual patent applications to determine
whether one could be appropriately examined, or is drawn to a non
abstract idea.155 Additionally, these proposals often appeal to the
availability bias, with one such essay starting off with the colorful line
that "[i]t's not hard to see why many think software patents are a
scourge. "156

The presence of these schemas and biases in the patent-eligible
subject matter debate is skewing the conversation and affecting deci
sionmaking about how to handle software and computer-related in
ventions. It may be possible to fix the software patent mess by
acknowledging the biases in the bad patent schema and the troll
schema. However, as computer programmers know, the process of
debugging often introduces new, unintended bugs, or uncovers previ
ously undiscovered errors.157 What if the errors are not related to the
biases in the current schemas at all, but rather arise because we have
set up the wrong structure entirely to assess the patent eligibility of
software and computer-related inventions? After clearing out the bi
ases, it seems that there is a more critical bug.

151 See Mossoff, supra note 149 (discussing David L. Schwartz & Jay P. Kesan, Analyzing
the Role of Non-Practicing Entities in the Patent System, 99 CORNELL L. REv. 425 (2014)).

152 See Joff Wild, The PR Genius of Messrs Bessen and Meurer, IAM MAG. (June 28, 2012),
http://www.iam-magazine.com/blog/detail.aspx? g=e780e3b8-715d-484f-9318-
d04d81e0e9d8&c=5850974 ("What [is] truly fascinating about the work that Bessen and Meurer
do is the extraordinary coverage it gets. Whether it is accurate or not, what it does do very
quickly is become an accepted truth in the general media.").

153 See Love, supra note 32, at 3; Andrew Nieh, Note, Software Wars: The Patent Menace,
55 N.Y.L. Sett. L. REv. 295, 299 (2010/11) (proposing a per se exception, barring all software
from patent eligibility).

154 See Nieh, supra note 153, at 299.
155 See Chien, supra note 10.
156 See Love, supra note 32, at 1.
157 See Debug, TEcttTERMs.coM, http://www.techterms.com/definition/debug (last visited

Dec. 19, 2014).

1856 THE GEORGE WASHINGTON LAW REVIEW [Vol. 82:1832

III. A MORE CRITICAL Bua IN THE SCHEMAS

Schemas, whether cognitive or computer-related, are supposed to
help organize and process relevant information and data. Yet the
schemas that are influencing the software patent analysis are of ques
tionable relevance, at least as the question is currently framed. We
are trying to define an "abstract idea," but instead we are asking
whether a patent is necessary for this type of invention or whether
some holders of these patents engage in abusive litigation behavior.
Only one part of the current bad patent schema is even marginally
related to the "abstract idea" question-and that deals with the poten
tially overbroad and vague claims that some software patents
include.158

Consider an analogy from the computer schema field. There is a
database that includes vital information about a person. This
database may include fields for the person's name, place of birth, par
ents, and so on. The question at issue is whether or not the person is
of legal driving age. It would be logical to query the database for an
"age" field as a direct inquiry and then compare the results from that
field to the legal driving age. Or, if no "age" field were available, then
perhaps the system would query the database for a "birthdate" field
(permitting an analytical or computational inquiry based on the re
sults of that field). Imagine, though, that in trying to determine
whether the person was of legal driving age, the system was built to
query the "gender" field or the "parents' nationality" field. Clearly, it
would be difficult to determine if the person were of legal driving age
if the system's response was "female" or "Norwegian."

This is very similar to what is happening in the current conversa
tions about patent eligibility for software and computer-related inven
tions. Rather than trying to answer the question of whether the
particular invention is an ineligible "abstract idea" by direct or analyt
ical inquiry, we are instead asking whether it is software (gender) or
who the patent holder is (parents' nationality). Although the question
of whether the invention is software may have some relevance to the
question of abstraction, the nature of the patent holder is completely
immaterial.159 It is unlikely that the conversation about patent eligibil
ity for software and computer-related inventions will reach the critical
question of "abstract idea" as long as the analysis is obscured by irrel
evant data. The failure to ask the right question has substantial conse-

158 See supra Part II.Al.
159 To the extent that anything needs to be done about the patent troll problem, it is an

issue separate and apart from software and has no relation to the definition of "abstract idea."

2014] DEBUGGING SOFTWARE'S SCHEMAS 1857

quences, because not all software 1s undeserving of patent
protection.160

CONCLUSION

This Essay does not pretend to solve the perplexing problem of
patent eligibility for software and computer-related inventions.
Rather, its purpose is to add some awareness to the underlying
schemas and shortcuts that are influencing judicial, legislative, and
public perceptions about these inventions. Starting from a position of
cognizance should result in a better conversation-less one-sided and
more deliberative and objective-going forward. Further, we should
be aware that the question we ultimately want to answer, defining
"abstract idea," may require us to shift the framework away from easy
inquiries and instead dig deeper for a workable analysis. Whether and
to what extent software and computer-related inventions should be
eligible for patenting is not a question that should be answered on
intuition, based on selective information or overly simplistic proxies; it
should receive its due consideration, and only then should we be com
fortable in releasing the newly debugged software patent schemas to
the public.

160 See DAN L. BuRK & MARK A. LEMLEY, THE PATENT CRrs1s AND How THE CouRTS
CAN SoLVE IT 157-58 (2009) (noting that there are software inventions that deserve protection);
Note, Everlasting Software, 125 HARV. L. REv. 1454, 1475 (2012) ("Cutting back on the software
patent regime risks cutting back on many innovative, good patents in addition to the potentially
bad ones.").

	University of Richmond
	UR Scholarship Repository
	2014

	Debugging Software's Schemas
	Kristen Osenga
	Recommended Citation

	tmp.1436964983.pdf.rfA9T

