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INTRODUCTION

o The~recent“dévelopment of solid state electronics has
opened new possibilities in instrumentation design. One
development has been the availability of compéct, low cost,
high gain, D.C. amplifiers which can be used in thé design
and construction of sensitive laboratory instruments (11).
Using these amplifierska thermostat capable of precise control
can be constructed and its performance compared with the
performance expected by an analysis of the closed loop control

equations..



HISTORICAL

Some of the earliest examples of process control (4) are
found in the biélogical developments which allow plants to
point towéfd:fhg sun and animals to regulate respiration and
heart beaf;'?One of the first man-made control systems was the
flyball gerrnor which Watts invented for his steam engine in
1788 (3).

The understanding of control systems began with‘the
theorems of Laplace and Fourier, wﬁo in the early 19th century
expressed the oscillation and damping of physical systems as
differential equations. In the early 20th century these
differential equations were applied to the development of
control theofy;V Some of the principal contributors were Routh
in stability analysis, Kirpkhoff in the analysis of electrical
circuits, and Kelvin and ﬁeaviéide in the continued development
of techniques for the solution of differential equations (3).

The major advances in automatic control practice occurred
during World.War II. The design of systems such as the
servomechanisms required for aircraft controls, radar control
of gun fire. and the remote control systems required in the
manipulation of radioactive materials, necessitated exact
performance data. -Designers had to know the instant by instant
behavior of the controlled 'system. Transient response tests
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were developed to test the system recovery after impulse and
step changes in set point or load; while frequency response
tests, originally used in radio and telephone work, were used
to determine system stability to cyclic distrubénces at
various control amplifications (3).

Since World War II the application of control theory and
‘process dynamics to chemical processes has become increasingly
important. In some cases (i.e. petroleum refineries) without
automatic control systems, the process would be impossible to
operate (2). As these changes have taken place, it has become
necessary for the practicing chemist or engineer to have at
least a rudimentary knowledge of the principles of control
theory.

The control of temperature is a common problem which is
part of most experimental work. Many older controllers were
of the simple off-on type. Théy could be constructed easily
but inherently produced aﬁ oscillatory control. A typical
controller of this type, as réported by J. M. Walsh (16),
consisted of an imersion heater with a cartridge thermoregulator
to produce the off-on confrol; With this device precision of
+1°F. was reported for baths between 1.5 and 14 liters volume.

The next degree of compiekity is proportional control
which produces a correcting response proportional to the
deviation from the controller set point. With proportional
control the oscillation of off-on controllers can be eliminated.
An inexpensive proportional control thermostat was devised by

R. A. Anderson (1) .using either a mercury thermometer or a



thermister bridge sensor. The error signal was amplified in
a transistérized;circuit and the signal used to trigger a
silicon controlled rectifier (SCR) into conduction. A larger
bridge unbalance causes a SCR to conduct earlier in the AC
wave cycle’ (Figure 1) and thus to conduct a greater average

current. Control of +0.02°C. was reported.

conduction starts

conduction stops

D Y.

Figure 1. Conduction Cycle of an SCR

C. A. Miller (10) designed a temperature controller
using proportional, integral and derivative modes for the
operation of :a furnace at about 14#00°C. [The integral mode
generates a control action proportional to the integral of
the deviation from the set point, while the derivative mode
generates a control action proportidnal to the rate at which
a deviation’from the set point is occurring.] A Pt -Rh
thermocouple was compared with a reference voltage generated
by zener diodes.,‘The'error signal was amplified with a D.C.

operational amplifier to provide the signal for a derivative

n



and integral‘confiol amplifier. A saturable core reactor

providea”heat tofthe furnace. (Figure 2)

et +15v
C §7s50° I
@ — S i 75k
| My wpp—t: ._.MAM_I:_' 51k
o To
. . 10k saturable
z . ] Al MWW ‘l"‘"‘_‘ o~
b d ——— L % core
' — | reactor
-15v

Figure 2. Furnace Temperature Controller

With this device control within +0.5°C. was reported.

(2}




THEORETICAL

In general a control operation consists of the functions
of sensing, comparison and correction. A sensor and trans-
ducer convert the property which is to be controlled into a
control signal. The most common control signals are air
pressure, electric voltage and electric current. The control
signal is ébmpared with the desired value and a difference or
error is determined. This error signal is fed into a controller
which determines the amount of corrective action to be taken
and sends a signal to the control element, often a valve, so
that the system property is chénged towards the desired value.

There are several modes of control action. The two types
used in this work are proportiénal control and proportional
plus integral control. With proportional control the amount
of corrective action taken ié proportional to the deviation
from the set point. With a proportional control system there
must be a deviation from the sét point (offset) to produce a
chaﬁge in tﬁe final control element. A proportional control
system is usually adjusted or set so that at one set of
operating conditions the deviation from the set point is zero.

For any other combination of operating conditions, there will



be some offset between the desired value and the actual value
of the controlled variable.

The offset in a proportional controller could be eliminated
by resetting the controller for the new conditiohs. Resetting
the controller to eliminate the offset can be done automatically
by adding an integrating action to the controller [Integral
control is sometimes called reset action]. With integral
control the controller output is made proportional to the
integral of the deviation from the set point, and the deviation
is brought to zero.

The analysis of the dynamic aspects of a control system
involves the solution of differential equations. By using
Laplace transforms the solution of these equations can proceed
in a systematic manner through algebraic manipulation ofwfhe}j
terms in the equation. After éolving for the dependent v;ri-
able using the’ Laplace trénsfofm variable s, the transforms are
inverted or returned to terms involving fhe.original variable.
The operationhis analogous to fhe use 6f logarithms to replace
multiplication and division of numbers by addition and sub-
traction of their logarithms and then taking the inverse of
the logarithm to obtain the numerical result.

One important limitation on the use of the transforms is
that their use is restricted to linear equations. This means
that

Llafy(t) + bf2(t)] = aL(f1(t)) + bLf2(t)
where L is'Laplace,transform operator, a and b are constants
and £1(t) and f2(t) are two functions of t. Many real systems

7



are nonlinear (i.e. the dependent variable is of degree other
than 0 or 1 in bne or more terms in the equation), and in
making linear approximations the range over which the mathe-
matical model accurately describes the real systém becomes
restricted. |

In working with the control equations, it is convenient
to consider deviations from the set point rather than absolute
values. Deviation variables will be used throughout this
paper.

As an illustrative example, the heat balance of a vessel
will be considered. Liquid of specific heat cp and
temperature Tin enters a well mixed vessel, and the liquid
leaves the vessel with temperature Ty. (Figure 3) A relation-

ship between the temperature of the vessel contents and the

temperature of the entering liquid will be developed.

Figure 3. Heat Balance of a Vessel



[Rate of _ Rate of | _ [Rate of
heat entering heat leaving| | heat accumulation

. oT
cpnTin - cpnTyv = cpMa (1)

At steady state Tip = Ty = Tsteady state and

dTS.S.
CPstos. - CPMTs.s. = CPM—at—"""‘ =0 (2)

By subtracting equation (2) from equation (1) the system

can be represented in deviations from the steady state.

‘ dT
Cpm(Tin"'Ts) - Cpm(Tv-Ts) = CPIVLa_t_V (3)

' t
Let (Tin - Ts) = ?in
(Ty. - Tg) = Ty

. ' dT'
cpmTipn - cpmly = CPMH?V (%)

The Laplace transform of this equation is
CpIﬂTin(S) - Cmev(S) = CpMsTv(S) (5)

where

Tin(s) = Laplace transform of Tip
Ty(s) = Laplace transform of Ty

Rearranging terms equation (5) becomes

(cpm + cpMs)Tv(s) = cpmTin(s) (6)
cpm
Ty(s) = cpMS *+ cpm Tin(s) (7)

Equation (7) relates the Laplace transform of the
temperature in the vessel fo the Laplace transform of the
entering temperature. The time variation of the vessel
temperature can be obtained by inversion of the Laplace

transforms back to time variables for a particular change




in the entering temperature. For example, the Laplace transform
for a unit step change is %. A unit step change in Tip gives
cpm '
T, (8) = . : (8)

cnm
(s + )
Cpht

The inverse transform of E%- . 1 is not found in the
a S ’
tables; however, the inverse transforms of the individual
factors are given. The separation of quotients of polynomials

into a series of partial fractions is one procedure used to

find the inverse transforms. In equation (8), let cpm/cpM

equal a.
a .1 _ A _B
sta s - s*ta s (9)

In order to.determine the value of A both sides of

equation (9) are multiplied by s+a.

8 = A + B(s+a) (10)
S 5

when 8 = -a

A

A=-1 (11
Similarly, to determine the value of B, both sides of

equation (9) are multiplied by s.

a - As + B (12)
s+a s+a
At s =0
& =8B
a
B=1 (13)

10
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is e"at, and the inverse

|-

The inverse transform of 3

-+,
o

transform of é is 1.

Ty(t) = 1 - e™at
_,cht
Ty(t) =1 - e CPN (15)
4 [ —
]
Ty
1 2 3 y 5
m
gt

Figure U4, Response of the Vessel Temperature
to a Step Change in Inlet Temperature

Equation (15) is shown graphically in Figure k.

Block Diagram

In combining the process and control components into an
integrated system, the block diagram aids in visualizing the
system relationships and organizing the calculations. In the
deVeiopment of a block diagram of the system, the individual
components are represented by a block which acts on an input

to produce an:output. The transfer function inputs and
11




outputs are interconnected as they occur in the process

form a control loop.

R+(:%E_ Controller

Ge

Final Control
Element

61

U
v
Y%

to

Measuring

He

The overall transfer function relates the dependent variable,C,

to the independent variables, U and R, for the process it can bhe deter-
mined by reducing the block diagram to a single block repre-

senting a single equation.

wOoOCxm™

Element
H

Process

Go

‘=z :Set Point

- Error

Manipulated Variable
Load Variable
Controlled Variable
Measuring Element Signal
Mathematical function which will convert the
input to the output for the it

Figure 5. Block Diagram

block

Because the use of the block diagram

and its reduction to a single block representing the overall

function is necessary to the understanding of the rest of the

paper, a brief description of the technique (7,8) follows.
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Figure 6. Series Reduction

1. Combining two blocks in series,

X
M

GeE
G1X

Therefore M = G1GoE
Several blocks in series can be represented by the product
of the individual transfer functions.

2. Overall transfer function for a change in set point.

(Relationship between C and R.)

Figure 7. Loop Reduction for Set Point Change

13



C = GE

E=zR-B

B = HC

Therefore

E = R - HC

C = G[R - HC]
- G

C = T+ ¢ R

3. Overall transfer function for a change in load (i.e. R is

(Relationship between C and U.)

U
R—OF 6 M (5' G2 c

ta o}

Figure 8. Loop Reduction for Load Change

C = Gy (M+U)

M = GgE

E = -B = -HC
Therefore

C = G2 (-GcHC + U)

C = G2U - G2GgHC

G2
C = T+ G6H Y

In all cases of negative feedback the denominator of the
closed loop transfer function is 1+ the open loop transfer

function G2GoH. [The open loop transfer function relates the
1y

0).




measured variable B to the set point R if the feedback loop were
opened at the error detector. The closed loop transfer function
relates a pair of variables with the feedback loop closed.]

Root Locus Method

The differential equations describing the control system,
after being written in terms of the Laplace: transform variable,
and being manlpulated with the aid of the block diagrams, must
be returned to the time varlable form in order to determine
the tlme response of the system variable. . As discussed. earlier,
the inversion of a quotient of polynomlals into a series of
pabtialjfractions is one procedure used to find the inverse
transform; however, the use of partial fractions requires that
the denominator of the control equation be factored.

The root locus method is a graphical procedure, first
introduced by W. R. Evans (9), whicﬁ can be used to locate the
roots of the denominafor. With the equation roots determined,
the denominator may be factored and the Laplace transform
inverted into the time domain by the partial fraction technique.

The plotting of a root locus diagram (7,8) proceeds in
the following manneﬁ: -

The denominator of the feedback control equation 1 + G,
when set equal to 2ero, is calléd the characteristic eguation
6f the closed loop system. The roots of the characteristic
‘equation determine the form of the time response of the system.

The open loop transfer function, G, may. be written in

the form

(]

H

=
o=

15



where the numerator, N, and denominator, D, are in factored form
as derived from the process components.

N
D

(S - Z21)(8 - Z2)++++(S = Zp)
(S - P1)(S - P2)*++(S - Pn)

where

21,2,+++m are zeros of the open loop transfer function
(when S = Z the numerator and hence the
equation equals zero.)

P1,2...n are poles of the open loop transfer function
(when S = P the denominator equals zero and the
equation becomes indeterminate.)

The characteristic closed loop equation

1 +G=20

can be written

g=-1=x (5t 21)(S + Z2)+++(S + Zp)

In terms of a magnitude and phase angle the equation may be

written as

|s -2y s - Zaf--- IS - Zm| . 4
|s - Pi| IS - P2|+++ IS - Pn

and
J(S - 2Z1) + (S - Z3) + =+ +W(S - Zp)
-J(S - P1) = (S -~ P2) = ¢+«+ =J(S - Pp)
= (23 + 1)

where j is any positive or negative integer or zero.
There are several rules cited by Coughanowr and Koppel (7)

which enable the location of the roots at the characteristic

16



closed loop equation at various proportional gains to be

plotted rapidly.

1.

2.

The number of branches equals the number of
open locop poles, Pp.

The root loci begin at open loop poles and
terminate at open loop zeros. The termination
of (n - m) of the loci are at infinity along
asymptotes. A multiple order pole or zero
will be the beginning or termination of the
number of loci equal to its order.

The real axis is part of the root locus when
the sum of the number of poles and zeros to
the right of the point on the real axis is
odd. A multiple pole or zero is counted the
same number of times as its order.

Asymptotes

There are (n - m) loci which approach
(n - m) straight lines radiating from the
center of gravity of the poles and zeros.
The center of gravity is given by

uhA:

m
. . Py - éi.l Zi
- 3 1=
‘7 - n-nm

The lines make angles of [(2K = 1) (n - m)l]
with the real axis (K = 0,1,2,***n - m - 1)

Breakaway Point

The point at which two root loci, emerging
from adjacent poles or toward adjacent zeros on
the real axis, intersect and then leave the real
axis is determined by the solution of the

equation

With the roots of the characteristic equation known, the

control equation can be inverted to the time domain by either

graphic or algebraic means, and the transient and final

17



response of the system can be calculated. From the location
of the roots in relation to the real and imaginary axes, the

general characteristics of the response - whether oscillatory

or not and the rate at which it will approach a steady state
can be obtained by inspection.

A shortcoming of the root locus method concerns the
handling of time delays in the system. The term representing
the dead time, e = 7% can not be expressed in rational form.

One method used to circumvent the problem is to use the first

e-'T'S/2=_s—2/7-.
Serz 0 T sE T

e

two terms of a Taylor expansion of

An example which will illustrate the techniques used is

the temperature control of the water out of a heater.

: chTiT_-———» A" mcpTo

T

o

Figure 9. Water Heater System

= 1bs./min. water entering and leaving the heater

m
ep = specific heat

Ti{ = Temperature of the entering water
To = Temperature of the leaving water
M = 1lbs. of water held in the heater

q = heat added to the system BTU/min.

18



mepTy

+ |
Rﬁ“*?)“ﬂ Ge O : Heater |~ To

Figure 10. Block Diagram

For this example let

H = 1
cp = 1

The transfer function for the heater must be determined using

the heat balance equations

mTi = ¢ - mTg = Mg-',i—° (16)

After taking the Laplace transform and using deviation variables,
equation (iﬁ) becomes
mTi(s) + q(s) - mTols) = MsTq(s) (17)
MsTo(s) + mTo(s) = mTi(s) + q(s) (18)
Solving equation (18) for To(s) in terms of the two

independent variables, Ti(s) and q(s), the relationship

becomes
m o 1
Tols) = Mg+ m Til8) * Mg+ m a(s). (19)
M 1/M
Tots) = gromzm MTi(s) * 575 w7m (S) (20)

19




The block diagram can now be redrawn in terms of the

transfer functions.

nT4{(s)

[

O

1/M
s + m/M To(s)

R(s) —+O)-E 4 19

Figure 11. Block Diagram with Transfer
Functions for Water Heater

‘The techniques for reducing a block diagram to a single
function were developed earlier. The results are directly
applicable to the present case, and the control equation can

be written as follows:

. 1/M 1/M (21)
f.(w v- N 108 + m/M R(s) + s + m/M T4 (
° s) = / ) VAL EE mly s)
1+ (L)W /N 1+ QO (G

In this example the response to a step change in set point

at constant entering water temperature (Tji(s) = 0) will be

considered. 1/M
105 + m/M
To(s) = 1/M
1+ Q0D (gF

R(s) (22)

20



For this example let

m= 3
M= 12
| 10 1712
To(s) = s + iiig R(s) (23)
1+ 10 553717
10 1

T R(s) (2&)

1+ Geom

The inversion from the Laplace transform variable to
the time variable can proceed by either the algebraic or the
root locus methods. Inversion by algebraic methods proceeds

as follows:

s ¢

10 1
) 12(s + 1/4)
Tols)i= bes i 1;“ R(s) (25)
1l + 1-2- (s—+—m) 12(s + 1/'4)
: 10 k
To(s) = 12(s + 1/4) + 10 R(s) (26)
To(s) = —=0/12  p(s) (27)

The Laplace transform for a unit step change in set

point is %. Evaluating equation (27) for a unit step change

in set point gives

10/12 1
To(s) = {g+ 137127 & - (28)

The quotient may be separated into the sum of its
factors by the partial fractions method.

10/12 1 _ A B
(s + 137/12) 5§ ~ s * 57 I37I (29)

21



Multiplying by s gives

10/12 ) Bs
G+ 131y - A svIi37e — (30)
At s = 0
10/12 = 4
13717
A = %% (31)
Multiplying equation (29) by s + 13/12 gives
10212 = A(S +Sl3/l2) + B. (32)

At s = -13/12

10/12 . p
13712
10 =B
55 (33)
The inverse transform of % is 1, and the inverse
. 1 is e-13t/12
transform of ¥ 13717 18 e .
To(t) = %% (1 - e-13t/12) - (35)

Notice that even after the exponential term vanishes, the

temperature of the heater will not reach the desired set

point change.

Returning to equation (24), the same inversion will be

made using the root locus procedure.

10 1
12 s + 1/%
1+ 17 5+ 1I7%

To(s) =

22



1. The first step is to locate the open loop poles and

zeros from the open loop transfer function.

N K 1
€ =Ky =17 T6 ¥ 0.25) (36)

The open loop transfer function has a pole at S = -0.25, and
there are no open loop zeros in this case.

2, The root locus begins at the open loop pole and
terminates at - infinity since thére are no open'loop zeros.

3. The real axis forms the root locus in this example
since the sum of the poles and zeros to the right of the
pbint is odd.

4. The location of the roots as a funcfion of the
proportional gain can be obtained from the magnitude criterion

equation

s =2 |s - Zal|s ~ Zm| _ K 1
1= Mg =P s = Paf(s =PI - IZ [5 - .25 37

The location of the roots of the characteristic equation

can be computed for several values of K from equation (37).

K
s for root of characteristic equation 17 X
-1 0.75 9
-13/12 10/12 10
=2 .75 21
-3 2.75 33

In this case for a proportional gain of 10, the characteristic

equation has one root located at -13/12.

23



Returning to the control equation (24), the denominator

can now be expressed in factored form.

. 1/12

10 s+ 1/%

TQ(S) = 2 +l}12 R(s) (24)
1+ 10 5517w
10
To(s) = 12 R(s) (38)
° (s + 1/4) + 22(1) -

10

To(s) g—gz%I R(s) (39)
where r] = -13/12

%%

To(s) =-§—T_i§7T7 . % (40)

This equation can be inverted by

separating the factors

using the partial fractions method and solved as shown in the

algebfaic solution. The root locus method has the advantage

of showing the effect of a change in a process or control

variable. The more negative the location of the root, the

more fapid will be the decay of the transient terms.

Development of the Control Equations
for a Controlled Temperature Bath

Temperature
Feedback Pag
N
Set
Point——] Controller _ZHeater

- = Heat Loss to Room
T
R

" Figure 12. Controlled Temperature Bath

24



The basic control equétions for a controlled temperature
bath‘will be developed from a heat balance around the bath
and the Laplace transforms of the control element transfer
functions. The heat balance around the bath starts with the
equation

Rate Heat in - Rate Heat out = Rate of Accumulation
In this case heat was added by the stirring and by the heater,
and heat was lost to the surrounding room.

The heat balance can be written

= dT
Pstirrer * QHeater = UA(T - TR) = °r"yE (41)

P = Power input from stirrer, cal./min.

Q = Power input from heater, cal./min. cal. 2
UA = Heat transfer coefficient x Area, o7 =——Go * M
T = Temperature of bath, °C.

TR = Temperature of room, °C.

cp = Specific heat, c;l.

m = Mass of bath, gm.

After substituting deviation variables and taking the Laplace
transform, equation (41) can be written

Pgt(s) + Qy(s) - UAT(s) + UATR(s) = cpmsT(s) (%2)
which can be solved for tﬁe temperature of the bath as a

function of the independent variables.

(cpms + UA)T(s) = Pgt(s) + Qu(s) + UATR(s) (43)
- 1 1
T(s) = (cpms + UA) Pst(s) + (cpms + UA) Q(s)
+ ————chpmlsjA+ Tr(s) (4y)

The independent variable Q(s) is to be controlled in
order to achieve control of the bath temperature. The

relationship between the heat added to the bath and the
25



set point is determined by the error detector and controller.

This can most readily be seen from the block diagram (Figure 13).

UATR
rt O €o| Controll e Control Q +i
A roter Element " Bath T
R Measuring T
Element

Figure 13. Block Diagram for Controlled Temperature Bath

The particular bridge network used to detect the difference
between the set point and bath temperature as shown in Figure 14

had the following relationship

eo = ’[il)‘ﬁcl_&:ﬂ Zo (45)

Thermistor R
R s
///// N
uA' ‘”v‘v
R R
all ]
Eo

Figure 1l4. Error Detector
26



This bridge (11) was chosen because of its linear output for
changes in (Rp - Rth). At steady state Rp = Rth, and the
error signal is zero. For a deviation from steady state, the

term (Rp - Rth) may be represented as the deviation variable R.

. _ Eo
€o = ‘mR _ (46)

After taking the Laplace transform, the error bridge transfer
function becomes

80(8) - - Eo .
R(s) 2 Rth . (47)

There will be two types of controllers used in this
work - proportional control andvproportional plus integral
control. The transfer function for proportional control is
simply a constant K,. The transfer function for an integral
controller (1ll) is derived from the integrating amplifier

circuit shown in Figure 15.

<4 A

e‘in wyy

—
>

Figure 15. Integral Amplifier Circuit
1, .
eo = - RC Jeindt (48)
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Taking the Laplace transform and using deviation variables,

equation (48) becomes

eg(s) = - f% % ein(s)

Sl s - s (49)

The final control element can have many types of transfer
function,  not all of them necessarily linear. The transfer
function of the transistor heater system used in this work was
determined experimentally. At this point the transfer function
will be represented symbolically by the symbol Kp.

A thermistor was used as the feedback measuring element.
A thermistor is a temperature sensitive semiconductor which
is used to convert temperature measurement into electrical
resistance. The transfer function may be developed from the

equations relating resistance and temperature of a

thermistor (6)

1n R = InRg + A[%r - Tlg] (50)

Thermistor resistance

Thermistor resistance at

temperature Ts

Temperature °K

Temperature coefficient of thermistor

~
(0]
un

-3
wn

The relationship between R and T is not linear; therefore,
a linear approximation of equation (50) must be made. A
Taylor's series expansion of equation (48) can be used to make

the linearization (13).
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AT - 77)
R=Rge s (51)
R=ag+aj (T ~Tg + ap (T - Tg)2 + +vev (52)
where
ap = f(Tg) = Rg
AR

a; = f'(Tg) =-- 8

1 s TsZ

_£''(Ts)  pRg2
42 = =Tt T 53

s

Keeping only the linear terms, the result is
- AR
R=Rs - —— (T - Ts). (53)
8

Utilizing deviation variables and taking the Laplace transform

R(s) = - = T(s) (54)

For the derivation of the control equation, the transfer
function for the thermistor feedback loop will be represented
in deviation variables as Ky. The value of Ky will be
determined in the experimental section using experimental
data and equation (54).

Combining the elements of the control loop, the control

equation expressed in deviation variables is obtained by

substitution in equation (4u4). This gives
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1
(CpmS + UA )

T(s)u="= Eo I

1+ (7—§;H?(Kc)(Kf)(KH)(ESﬁg—I—ﬁK )

Pag(S)

+

() (K (K (g v g R(S)

1+ (?-%E)(Kc)(xf)(KH)(_cpmSl"' A ¢

(—VYA_
Cpms + UA

TR(S)

‘ Eq 1 (55)
1+ (7‘?;5)(Kc)(Kf)(KH)(EEEE—I—UK)

‘The normal-procedure in evaluating the response
characteristics is to let all but one of the deviation
variables equal ‘zero. The remaining variable is given the
type of forcing tunction to be evaluated, and the resulting

temperature response is then calculated.
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EXPERIMENTAL

The bath was a 2,000 ml. beaker filled with 1.8L of
stabilized bath oil. The beaker was lightly insulated to
control heat loss to the room. The bath was agitated with a
variable speed motor and serrated disk agitator. By varying
the speed of the agitator, a change in the process (load)
variable could be made (Figure 16).

The linear error bridge, shown in figure 14, and control
circuit, the integral part of which is shown in figure 15, were
constructed using model P-85AU Philbrick high gain D.C.
amplifiers (11). Precision resistors and a 2 microfarad
mylar capacitor were used to cénstruct the error bridge and
control circuit. Shielded cable was required in the error
bridge and integrator circuit to prevent excessive noise in
the signal.

The final ahplifier in the control circuit, shown in
figure 16, was a model P-U45AU because of its larger current output
of 20ma. The final control element was a GE-4 6822 PNP power
transistor mounted on a heat exchanger which was used to control
the current to a u46.4 ohm immersioh resistance heater. A Heathkit
D.C. constant voltage supply set at 20 volts was used to supply
power to the transistor - resistance heater circuit.

Temperature feedback to the error bridge was provided by

a thermistor sensor. Bath oil was used in the temperature
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Block Diagram

Tr

Heat Transfer

UA
Set__i(P.;g_Controlle e Heater Bath Temp.
Point > 1 K 1
Power
Agitator
R Thermistor
Ky

Electrical Diagram

Decade Box 1 Meg 500k

fony—— A —— i e
Contr. 100k
Therm.! 10k 1 Meg o
1 12 " 10'61?
10k 10k
W —
+15 )
e 1 Megz 1
l 4 AN ? k
Ver 46.4n -20v
<1 Meg | 4
20kz2

Temperature Recorder

Recorder

Figure 16. System Schematics

Heaten

Heath Kit Recorder
Record of voltage across
the bath heater.

Leeds Northrup
Recorder
12mv. full scale



bath in order to eliminaté electrolytic corrosion of the
immersion heater. This also eliminated heat losses due to
evaporation, which'simplified the heat balance eQuations
(Figure 16).

A separate system was used to obtain a temperature record
of the bath. A Leeds and Northrup model R820-1 recorder was
used to record the unbalancé of a thermistor bridge circuit
(Figure 16).

In order to analyze the control system, the value of
several constants had to be determined. These included the
proportionallgain constant, the change in thermistor resistance
with temperature, the integrator time constant, the transistor -
heater power transfer function, and the heat loss to the room.

Thermistor Transfer Function Ky

As discussed earlier, the transfer function for the

thermistor follows the relationship

- ARg
R(s) = =~ 'T—S—Z_ T(s) (54)

The value of A can be determined from the least squares slope
of a plot of 1nR vs. l/T.' As shown in Figures 17 and 18 and
Table I, the transfer function for the control bath thermistor
is -(2610 +120) ohms/°C., and the transfer function for the

recorder thermistor is -(2870 +60) ohms/°C.
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TABLE I

Thermistor Transfer Functions

Recorder Thermistor Controller Thermistor
Rk Tk 103/T Log R Rkn Tk 103/T Log R
85.8 302.5 3.306 4.9335 62.0 307.0 3.257 4.7924
80.9 303.8 3.292 4.9080 60.2 307.6 3.251 4.7796
76.2 305.2 3.277 4.8820 57.2 308.8 3.238 4.7574
71.1 306.8 3.259 4.8519 54.0 310.1 3.225 4.7324
67.0 308.1 3.2u46 4.8261 49.6 310.9 3.216 4.7185
65.9 308.5 3.241 4.8189 52.3 312.0 3.205 4.6955
63.1 309.5 3.231 4.8000
60.1 310.6 3.220 4.7789
Slope = (1.78 +.04) 103 Xx° Slope = (1.83 +.08) 103 k°
R(s) = -2.303x(-1.78+.04)103x(66,800+200) R(s) = -(2.303)(1.83+.08)103(58.8+.2)103
T(s)g350c. (308.2+%.1) T(s)g3s5oc. (308.2+.1)7
R(s) _ R(s) _
T-737-@3500‘.-2870150 ohm/C.° TV ass0c. -26104120 ohm/C.°
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Control Element Transfer Function Kp

The power dissipated in the heater was calculated from
the voltage Arop across the heater and the heater resistanée.‘
The voltage drop across the heater was measured at specific
voltage inputs to the transistor base circuit with the |
transistor wired in its common emitter confiéuration’as used.
A'plof was made of the heat supplied to the bath in calories
per minute vs. the voltage to the transistor bgse (Figure 19).
The slope was calc&lated using a least squares fit over the
linear region of the curve. At a heater dissipation above
75 cal./min. and at some point below 10 cal./min., the data
could no longer be fitted by a straight line. (The thermostat
was operated within the linear region of the curve.)

Table II

Control Element Transfer Function

Volts to Base Cal./Min.
-0.43 12.0
~-0,65 27.5
-0.70 33.5
-~-0.90 46.0
-1,00 55.56
-1.20 70.5

Slope = -(75.9 #+5) cal./volt'min.

Heat Loss to Room

In order to calculate the heat transfer to the room from
the bath, UA, an energy balance was made around the bath. This
is illustrated by the following equation:

Rate Heat In - Rate Heat Out = Rate Accumulation.

There wepre two sources of energy into the bath - the heater
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and the stirrer. The heat loss to the surroundings is dependent
on the relationship

Q = UA (Tpath - TSurround)- (56)

The rate of heat accumulation in the bath is
Q = cpmgg . (57)

In order to determine the value of the heat transfer
coefficiené-area term, UA, the difference in heat supplied to
the bath at two different surfounding temperatures was
determined. Using simultgheous:equations the heat generated
by the stirrer could be eliminated. A second determination was
made by using the rate of cooling with only the agitator running
and by using the steady state conditions with only the agitator
running. Again by using simultaneous equations the agitator
power could be eliminated.

Rate Rate
Heat In - Heat Out = Rate Accumulation (58)

Pagitator * PHeater - UA(TBath ~ TRoom)

= cpm%% (59)
Pag + 21.7 cal./min. - UA (33.9 - 24.4) = 0 (60)
Pag + 44.9 cal./min. - UA (33.9 - 20.7)°C. = 0 (61)

23.2 cal./min. - UA (3.7°C.) 7 O (61)-(80)
UA = 6.3 ﬁ%l——rc— (62)
Pag *+ 0 cal./min. - UA (34.75 - 20.45)°cC.
- 840 (To ) (63)
Pag - UA (14.3°C.) = -49.7 S22«
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Pag + 0 cal./min. - UA (26.4 - 19.8)°C. = 0 (64)
Pag - UA (6.6°C.) = 0
7.79C. UA = 49.7 gal. (64)-(63)
VA = .4 —Sdto (65)
Pag + 51.8 S3* _ UA (34.9 - 20.5)9C. = 0 (66)
Pag = UA (6.6°C.) (67)
UA (6.6°C.) + 51.8 S22t - UA (14.49C.) = 0 (68),

UA 7.8°C. = 51.8

(69)

UA
The average value of the heat transfer coefficient-area
cal.
term, UA, was 6.4 +0.2 pin, °C. -

Integrating Amplifier Time Constant

After assembling the apparatus the operational amplifiers
were balanced. With the integrator circuit the above was
accomplished by grounding the input end of the resistance tee
network and adjusting the amplifier offset bias until the
integrator output remained constant.

The integrator circuit gain was checked by timing the
output voltage change for constant input voltages. The time
required for the change in output voltage to equal the input
voltage, the integrator time constant, was checked in the
positive and negative direction and found to be equal and

within 4% of the valﬁe calculated from the nominal component

values,
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X |

E=px Jfedt (70)

t=o0
1
E=gre (t1 - ty) (71)
t

E=exgre . (72)
when t = RC E==e
where RC = (52 x 106)(2 x 10~%)

104 sec. (73)

The proportional control amplifier was originally set at
a gain of 10. It was found that at gains of 10 and later 5,
the control action was off-on rather than proportional. A
0.5 gain factor was used in the proportional cbntrol circuit
because it gave a good balance between the speed of response
and the oscillation produced by the integrator.

System Time Delays

The stability of any control system is affected by the time
delays in the system. This is the time it takes the control
system to sense the need and translate the need into control
action by the final control element. The time delay in the
thermostat system was défermined as follows: The bath was
allowed to warm due to the heat supplied by the stirrer alone
until a constant rate of rise in temperature was observed. Then
a large change in set point was made so ‘that the coﬂtrOller
immediately went from zero power;to the bath to full pdﬁer to
the bath (Figure 20, point A). The time required for the
temperature recorder to reach a new rate of rise was 0.2 minutes.

The process was repeated in reverse (from full power on to
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power off) and a new rate of temperature riéé was again observed
in 0.2 minutes (Figure 20, point B). | |

Because the time deléys Qere short in comparison with the
other time constants in the system and in comparison with the
frequency of changes in the system, the effect of the time
delay can be neglected. If the delay were approximated by
the term (1 - e~3%), the exponential decay factor would be 23.

Terms introduced by this factor would rapidly vanish.
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CALCULATIONS

Using the relationships and constants developed in the
Theoretical and Experimental sections, the transient response
of the constant temperature bath to changes in set point and
load can be calculated. The numerical value of the error
detector and controller transfer functions must first be
determined from their components. Figure 16 gives a schematic
electrical diagram and a block diagram of the system.

The transfer function for the error bridge was given as

e(s) = . Eo
R{s) 2 Rth (47)

in equation (47). In the temperature range under investi-
gation Ryn was 58.8 kohm, and a 15 volt energy source was

ugsed. The transfer function was then

e(s) . . 15
R{s) ’ 2(55’5065
= -1.27 x 10-4 6‘%12 (74)

Amplifier number two served to multiply the error signal

output by a factor of -100, making the combined transfer
function for the error detector

e(s) - +1.27 x 102 volt/ohm (75)
R(s)

High gain D.C. amplifiers were used to obtain.propor-

tional.gain and integral gain transfer functions. Amplifier
39



number three was used to provide a proportional gain of -0.5.
Amplifier number four was used to provide integral control. The

transfer function for the integrating amplifier was given as

ey(s) = _ 1

in equation (49). A resistance tee network was used to increase
the equivalent resistance and obtain a longer integrator time
constant.

The equivalent resistance of the-tee network (Figure 21)

is
RiRp
Req = Ry + R + B Te (76)
- a6 6 ., 106.108
Req = 52 x 108 ohms (78)
2 MFD
b
1 Meg Rl RZ
1l Meg —
20 kZR,

Figure 21. Resistance Tee Network
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The transfer function for the integrator can be written as

ey(s) _ 1 1

ez(s) 52 x 100 x 2 x 109 s (79)

with the time in seconds. Converting this into minutes gives

ey(s) _ _ 1 :
0y - TS, (80)

Amplifier number five was used to sum the output of
the proportional gain amplifier and the integral control
amplifiers. A unity gainvwas used on the summing émplifier.
fhe transfer funcfiqn for the combined proportional gain and
integrating amplifiers was |

S5{88 = (30 (-0.50) ~(FI) (-pFrz)

1
-:—g{%)y = +0.50 (1 + m) . (81)
Combining the transfer function for the error detector
and the control amplifiers, the output of the controller can
be related to the set point

es(s) e%(g% = (1.27 x 1072)(.50)(1 + 7%75) (82)

e2(s)
1 volts
eg%g% = 0.635 x 102 (1 + T37s) ~ohm (83)
The determination of the transistor heater system transfer

cal.

function, as reported in the experimental section, was -75.9 o=3%

The transfer function for the thermistor temperature
feedback system, Gy, was experimentally determined to be

-2610 ohms/C°. (reported in the experimental section).
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The transfer function for the bath was given in equation

(44) as

1 1l
T(s) cpms + UA Pgt(s) + phs ¥ UA Q(s)

UA
+ Spms * UA TR(8) (44)

1 1
T(s) = cpm (s + UA7cpm) Pst(s)

1 1
+ Spm (8 ¥ UA7cpmy Q(s)

UA 1
+ cpm (s ¥ UAZcpm) TR(S) | (84)

Deviation in heat entering through the heater
Deviation in heat entering due to the stirrer

Deviation in the temperature of the room

Heat tra?sfer coefficient from vessel area,
cal.

6.4 min. °C.

Specific heat x mass of vessel, 840 cal./°C.

Deviation in the temperature of the bath.

| T(s) = g‘%‘o“"—l%"'ﬁ— Pst(s) + g 5
| (s + FﬁU) (s + F&U)

Q(s)
Pgt(s)
Tr(s)
UA

C
Xs)

Q(s)

| + St R TR(S) (85)
(s + 357

Temperature Recorder

The temperature recording was made using a Leeds Northrup
model R820-1 recorder to monitor the unbalance of a thermistor
bridge circuit (Figure 22). The relationship between a change

in the chart reading and a change in temperature is derived

below.
"Eoc AR -R -
AE = OZK +h (86)
Eo = Bridge voltage 15 volt
A = 5,000 ohms .
Rtp = Resistance of thermistor
R = Resistance of decade box
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qr Leeds Northrup
! recorder

Figure 22. Thermistor Bridge Circuit

For small changes in temperature near the bridge balance point,

equation (86) may be written

_ Eo AR ‘
AE = % = (87)

Evaluating equation (87) at 35°C., R was 66.8 K ohms

and

15
AR 88
AE = 2 . 2 (66.8 x 103) (88)

(5.60 x 10~° volts/ohm) AR (89)

AE
The recorder had a full scale reading of 12 millivolts
for 100 scale divisions so
3

AE = (lz_§ﬁ%2_- volts/scale division) A scale
divisions (90)

A scale divisions

100 'scale'divisions)
= (5.60 x 1075 7775 10-3 o AR (91)



The relationship between a change in resistance and a change
in temperature for the recorder thermistor as determined in the
experimental section was

AR = - (2870 ohm/°C.) AT

A scale divisions
100

= 5.60 x 10™° x 12 % 10-3 x -2870 AT (92)
u OC-
AT = -(7.4% x 107" 333Te division’ A scale
divisions (93)

Calculated Response for a Step Change in Set Point

Now that the system constants and differential equations
have been developed, the control equations for a set point
change can be written for the proportional control and for
proportional plus integral control cases. Taking the pro-
ﬁortional control equations first, the block diagram shown

in Figure 23 yields equation (84%).

6.4
o 1/840
0.637x10 -75.9 ,L
R(s )10 volt/ohm cal./volt \r S + S.g T(s)

-2610
ohm/°C.

Block Diagram for Proportional Control
Ty

Figure 23.



1
(0.637 x 10-2)(-75.,9) (FFF) (—=t—)

s + 0.8
T(s) _ 840 . (o)
R(s) ~ ( 2 1 1
1+ (0.637 x 107°)(~-75.9)(-2610)¢(
( m)(m)
840
Consolidating factors gives
-5.76 x 1072 ( L)
T(s) = * s + 0.0076
R(s) 1 (95)

1+ 150 (55,0078

Multiplying numerator and denominator by (s + 0.0076) gives

=4 .
T(s) = -5.76 x 10
R(s) s + 1.508 (96)

This equation may be evaluated for a unit step change in set

point by. letting R(s) = %.

"
-5.76 x 10 (97

T(s) = s (s + 1.508)

The inverse transform may be obtained

from JE() = ZLE(E) = E(s);

jr f(t).
o

1 .
The inverse transform of g ¥ 3 = e “v.

1]

therefore, -1 %f(s)

t, -
T(t) = -5.76 x 107 J/ 1.508¢t (98)
(o}
= -5.76 x 10 [I-ggg (e~1-508t _ ¢0)] (99)
-4 -
o 5:78 X 40T (1 - 71 208%) (100)
- -1.508t °C.
T(t) = -3.81 x 107% (1 - e ) Tser Fornt (FOV
Change
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This is the desired result - a relation between a step change
in set point and the temperature of the bath at any time after
the set point change. ‘

The corresponding equation for proportional plus integral
control will be developed next. The block diagram is the same
as the proportional control diagram except for the inclusion of

the term (1 + _ggg) representing the integral control action.

(0.637 x 10°2)(1 + =—g5) (=75.9) (gag) (—p—1) (102)
T(s) - s * gm0
R(s) 1
S 1 + (0.637 x 1072)(1 + 7§7§)(-75.9)(-2610)(g%g)(g—;lgjw)
R 840
Consolidating terms gives
1
-5.76 x 10~%(1 + ,3%8)( 5TT)
- 5 * 340
T(s)
R() (103)

1+ 1.50 (1 + =) (— o)
DAL 1,
-4 s + 1.15 1
1(s) , 72070 X 10 (—'_—)("TUTUWG')
R(s) : (S + 1. 15)( (104)
1 + 1.50 ____-__-—— ————mm

Multiplying numerator and denominator by s (s + 0.0076)

gives
-4
T(s) _ -5.76 x 10 (s + 1.15)
R(s) & (s * 0.0076) + 1.50 (s + 1.15) (105)
-4
y _ =5.76 x 10 (s + 1.15)
g%é? = SZ + 1.508s + (1.50)(1.15) (106)
. K - 1

For a unit step change in set point R(s) = 7, and

equation (106) yields
-5,76 x 10~% (s + 1.15)

(107)
T(s) = s (s2 + 1.508s + 1.725)
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The inversion from Laplace transform variable to the time

variable will be accomplished using the partial fractions
method. As a first step the quadratic term is factored.

-5.76 x 10~% (s + 1.15) ?
T(s) = g(s+ 0.75% + 1.083)(s ¥ 0.75% = 1,083y (108)

The equation is then separated into a series of fractions.

~5.76 x 10~% (s + 1.15)
5 (5 ¥ 0,754 + I.083)(s + 0.756 = I.083)

- A, B + o
"% "s + 0.75% ¥ I.085 s ¥ 0.75% - I.085 (109)

‘ .
To determine A, both sides of the equation will be multiplied
by s, and the resulting equation will be solved at s = 0.

-5.76 x 10~% (s + 1.15)
(s 0.75F ¥ 1.083)(s + 0.75% - 1.083)

Bs Cs
=A* T oSy ¥ I.085 Y s ¥ 0,755 = L.osy (110)

-5.76 x 10~% (1.15) = A (111)

_ -5.76 x 10-% (1.15)
A = 1.725

-3.83 x 107" (112)

A -
To evaluate B, equation (109) will be multiplied by
(s + o,75u + 1.08j) and the resulting equation will be solved at

s = -754 - 1.087.

_5.76 x 10~% (s + 1.15)
s (s ¥ 0.750 - 1.083)

_ A (s + 0.754 + 1.08j) ,
= S

C (s + 0.754 + 1.083)
* =tz +0.75% - 1.083) (113)
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~5.76 x 10™% (-.754 - 1,083 + 1.15)

(=75% = 1.085)(=.75% = 1.085 + 75§ = L0835 .~ ° (11%)
8 L A 30 S 1080 < 118)
-5.76 xz%gggz(g.i?gag 1.083) . p (116)
LTSS LI san s
Pl E A R A e
(+1.915 - 1.343) 10~% = B (119)

By similar calculations C can be shown to be
(+1.915 + 1.34j) 10~%. Equation (109) can be rewritten

-3.83 x 10-% _ (31.915 - 1.343) 10-%
s § ¥+ 0.754 + 1.083

(1.915 + 1.34§) 10-Y
5+ 0,758 = 1.083 (120).

T(s) =

+

The inverse transform of equation (120) is
T(t) = -3.83 x 10~% + -0.765t
<« 10~% (3.83cos 1.08t - 2.68sin 1.08t) °C. (121)

The sin cos portion of this equation may be simplified

by using polar coordinates,

P cos A + q sin A = r sin (A +2)

-4 4 o=0.75Mt 4 57 x 107% sin (208 (880, 450,

T(t) = -3.83 x 10 RS

(122)
This is the desired relationship for the time response

of the temperature to a step change in the set point.
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[The negative sign in equations (101) and (122) is caused
by the nature of a thermistor. A decrease in thermistor
resistance corresponds to an increase in temperature. A decrease
of 20 ohms in set point will result in an increase in the
thermostat temperature.]

Calculated Response for a Step Change in Load

The dynamic response of the system to a change in load was
investigated by making a step change in the stirring speed.
The control equations can be written for proportional control
and proportional pius integral control cases. Starting with

fhe block diagram for proportional control (Figure 24),

TR(S)
6.4
. o, _
RL§)?}—~—°'53771g'2 -73.3 g 1’82?u T(s)
- Cac . +
volt 9 m °21t R s 340
s
~2610
ohm/°C.

Figure 24. Block Diagram for Proportional Control

ol equation for a change in load, P(s), can be written

the contr
1
T 065
T(s) - 840 s + Fmn_ (123)
= — -
P(s) 1+ 0.637 x 1072 x (-75.9)(-2510)(§EU)(“———ETE)
s * 350
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Consolidating terms gives

1 1
T(s) . _8%0 s+ 0.007%) (128)
P(s) '

1
1+ 1.50 (GegTgore)
Multiplying by (s + 0.0076) in the numerator and denominator ,

equation (124) becomes

T(s) = 0.119 x 10-2 (125)
P(s) s + 0.0076 = 1,50
Equation (125) can be evaluated for a unit step change in

load by setting the forcing function P(s) = é.

-2
0.119 x 10
T(s) = (s ¥ 1.508) (128)

The inversion of equation (126) can proceed along lines

similar to the inversion of equation (97).

t
T(t) = 0.119 x 10-2J;e'1‘5°8t at (127)
-2 t
- _0.119 x 10 (e-l.SOBt (128)
T(t) TIE] o
T(t) = 7.9 x 10% (1 - e~1-508%) og, (129)

This is the temperature response of the proportional
controlled thermostat to a step change in load of 1 calorie/
min.

Tﬂe thermostat temperature response for a step change
in load will now be derivéd for the proportional plus integral
control case. With proportional plus integral control, the

controller transfer function is modified to include the term

(1 + 37%75) representing the integral control.
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1/8u0

T(s) . s * guo’
P(s) -2 1 1 1
1+ .637 x 10 + -75.9) (-
x x (1 T§7§)( 75.9)¢( 2610)(5?5)(__:'€TU)
. S 850
Consolidating factors gives
1 ( 1
T(s) - _B40 ‘S ¥ .0076) (131)
0] s + 1.15 T '
1+ 1.50( S )(s T 5. 6075

Multiplying the numerator and denominator by s (s + 0.0076)

gives
1
T(s) _ gh0 ° . (132)
P(s) " s (s + 0.0076) + 1.50s + (1.50)(1.15)
T(s) . _ 0.118 x 10-2 s (133)
F(sy s¢ + 1.508s + 1.725
For a unit step change in load P(s) = é.
| -2
0.119 x 10™% ¢ (134)

T(s) * g2 + 1.508s ¥ 1.725)

Inversion of equation (134) may proceed through the partial

fractions method. Factoring the denominator, equation (134) gives

o 0.119 x 10-2
T(s) {5+ 0. 75% + 1.083)(s + 0,755 — I.083y (13%)
: 0.119 x 1072
16 F 0,755 + 1.083)(s ¥ 0.755 - L.083)
- A i
= (5 F0.75% ¥ I1.083)

B
t (s ¥+ 0.75% - 1.083) (136)

Solving for A by multiplying by (s + 0.754 + 1.083) gives
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0.119 x 102,

= B (s + 0.754 + 1.,085)
(57 0.758 - L.ogh) ~ At e v pL s o To0es) (137
At s = -0.754 - 1,083
-2
0.119 x 10 ) |
=5.756 - 1.08] F 0.755 = 1085 - A (138)
0.119 x 1072 _ , (139

-2.163
By a similar process B was found equal to -0.055 x 10'2j.

Equation (136) can be written

-2 . _2 .
- .055 x 107 %3 -0.055 x 107 “3
T(s) = g+ 0,75 + 1085 ¥ 5+ 0.756 - 1,085  (141)

The inversion of equation (1lul) is

T(t) = e-0+754t (110 x 10-2)sin(t-08 3%;9 £)  (142)

This is the desired response of the thermostat to a step

change in load with proportional plus integral control.
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RESULTS
Long Term Stability of Bath

On two occ;sions the bath temperature was recorded for
16 hour periods,--the recorder calibration having been checked
with a Beckman Thermometer. In both instances temperatures
were controlled within 0.005°C. of the set point and +0.0025°C.
of the median value (Figure 25).

Observation of the Transient Response Characteristics

The control system response to step set point changes and
to step load changes was observed experimentally for a pro-
portional control and a proportional plus integral control
éystem and compared with the computed control curves. Pro-
portional control was obtained by placing a jumper wire around
the capacitor in the integrator controller, making the output

of amplifier number 4 in Figure 16 equal to zero. The first

step in the procedure was to bring the system to stable

operating conditions. A step change in set point was then made,

and the change in temperature was observed over a period of time.
A separate plot was made of the voltage across the bath

heater. Samples of the temperature recorder charts are shown

in Figures 26 and 27.

In order to remain in the linear portion of the transfer

function, the changes were restricted to less than 40 ohms,
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which correspond to a change of <0.016°C. Larger step changes
caused the output of the heater to enter the nonlinear portion
of the transfer function.

A second type of control problem occurs when a change is
made in the input condition (a load change). Load change
observations were made by making step changes in the stirring
speed”and recording the change in the bath temperature and bath
heater voltage. Samples of the temperature charts are shown

in Figures 28 and 29.
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DISCUSSION OF RESULTS

Uncertainty of the Calculated Responses

Are the calculated and observed responses of the thermostat
in agreement within the uncertainties of the system constants?
This question will be broken into several phases. The first
concerns the temperature of the thermostat after the transient
disturbances have vanished following step changes in set point
and load. The constants which have the greatest effect upon
the final temperature can be determined by using the final
value theorem for the Laplace transform of the control equation.

This theorem states that the lim [£f(t)] = 1lim [sf(s)].
t—+o s-—=0

The final value theorem will be applied to the control

equation for a set point change with proportional plus integral

control. -l

T(s) = s (s2 + 1.508s + 1.15 x 1.50)

From the final value theorem the

Lim T(t) = s T(s) .

t»o S—m 0
~5.76 x 10°% (s + 1.15) & (144)
sT(s) = 2
4 (s + 1.508s + 1.15 x 1.50)
- :
;0 oT(s) . -5.76 x 1071 (1457
ng_fo - I-r5x I.50 (145)
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In order to determine the most important transfer functions,
equation (145) must be expanded to show the individual factors

making up the numerator and denominator.

, 1
Lim sT(s) .  ,637 x 10~2 x (-75.9)(85D)
s—o0 .637 x 10-2 x (-75.9)(-2510)(§%ﬁ)

_ -5.76 x 10-%

- T (146)
Lim sT(s) _ 1 -

S0 | % TyETp = -3.83 x 1074 oc. (147)
Lim sT(s) - 1

S—> 0 RE (148)

where Ky = thermistor feedback transfer function

The important result is that with proportional plus
integral control the final temperature for a step change in
load is entirely determined by the thermistor feedback transfer

function. The feed back fraction was determined by the

s R(s) . _ AR a5 discussed in the experimental section
equation my =7 p ’

the value of A was determined by a least squares slope of
1nR vs %. The uncertainty of the slope and the uncertanties

of the other factors will be used to calculate the uncertainty

in the calculated temperature change.

R(s) = - AR
TRK(:; -T2 (149)
A = (1.83 +.08)103 °K
R =,58.8 x 103 +0.2 ohms
T = 308.2 +.1 °K

In combining several terms of varying precision, the

variances of the individual measurements may be combined.
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The general relationship for the variance of Y where
Y = f(x3)
is

oy = 2(2—5-)2 o’zxi (150)
oX5

The uncertainty in Y is then the square root of the sum of

the variances (15). As an example if

Y = AX + BZ (151)
then
v4y = [A2 )2 + (X)26A)2 + (B)2e2)2
+ (2)2(eB)2] /2 (152)

This procedure takes into account the probability that
some of the uncertainties will be of opposite sign and hence
will have cancelling effects.

The uncertainty in the calculated temperature change

was
Lim T(t) - 1 AR _ _1 AR _ R(s) AR (153)
t>ow Ky R(s) T(s)
I(S)
(308.2 +.1)2 AR +1%

T 72,303 (1.83 +.08) 10°[(58.8 +0.2) x 109]

(154)

= -(3.83 +5%)10™% °C./ohm (155)

= -(3.83 +0.2) 107" °C./ohm (156)

for a 40 ohm change in set point

Lim T(t) = -(3.83 +0.2) 10™% (40) (157)
t~

Lim T(t) = -(1.53 +0.08) 1072 °c, (158)
t— '



A similar analysis of the control equation for a unit step
set point change with proportional control alone shows the

final value to be dependent upon

Lim T(t) - Lim sT(s) _ 1 - 1
t—o §—0 Ky ¥+ UA_ - —7610 - 15 (159
Lim T(t) = -3.80 x 10" °C./ohm (160)
to>o

Because of the relatively small magnitude of the term KH%-
' cf

in comparison with the term Ky, the uncertainty in the final
temperature is, as was found in the proportional plus integral
control case, (-3.80 +0.2) 10-4 °C./ohm.

When the final value theorem is applied to a load change,
the basic difference between proportional plus integral control

and proportional control can be seen. For proportional plus

integral control (161)
-2
Lim T(t) = Lim sT(s) . £0.119 x 10 " s Ap
t->o s—0 ¢ [s2 + 1.508s + (1.50)(1.15)]
Lim T(t) - g (162)
t—=>w

For proportional control alone the response to a load

change is
; -2

im T(t) . Lim sT(s) _ & (0.119 x 107%) AP

ng—*aa - S—o0 . ¢ (s-+ 1.508) (163)

Lim sT(s) _ 0.119 x 1072 &P (161)
§-> 0 T.508

Lim T(t) = 7.9 x 10™% °C./cal./min. AP (165)
t—>o

The system components which have an effect on the final

value can be found by expanding equation (165) to show the
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individual transfer functions.

-
Lim T(t) _ Lim sT(s) . Cpm ’
tro  °  swo T T % i o AP (166)
— fKH + 2o
cpm c cpm
: 1 AP (187)
KcKfKyg + UA

Inserting the appropriate values for the individual terms

gives
(168)
Lim T(t) _ 1 Ap
t - (0.6h +.04)(-75.8 +5)(2610 +100) + .4 +.4)

Because of its relatively small magnitude, the second term

may be dropped.

Lim T(t) = 7.9 x 107%
t—o 1
+006.2%)2 + 6.3%)2 + u.u4%)21%/2
[AP +6%] (169)
Lim T(t) = 7.9 x 107% AP
t
+ [38 + 40 + 19 + 361172 (170)
Lim T(t) =[7.9 x 10-% AP +11% (171)
t

Uncertainty of Temperature Recording

An additional source of uncertainty in the thermostat
temperature is associated with the temperature recorder. The
uncertainty in the recording includes the uncertainties
connected with the bridge circuit and the noise in the record
chart recording. |

The uncertainty in the bridge circuit relationship
the Ascale divisions is determined by the

between AT and
presistor uncertainties and by the uncertainty in the thermistor

resistance change with temperature.
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In the calculations section, the relationship between

the change in temperature and the change in chart reading was

shown to be

_u , oc, )
AT = -(7.4 x 107" scale division)(Ascale divisions)

(172)
Expanding the constant so that the individual factors and
their uncertainties are shown, equation (172) gives

2(5000 +50 ohm)(66800 +700 ohm)2(12 x 10-3 volt)

AT = {T5¥.1 volt) (5000 ¥50 ohm) — (100)(-2870 ¥60 ohms) *
(@ scale division) (173)
AT = [-7.4 x 1074 +(C 19)2 AH2 + A2 +(2.1%)2 )1/2] x
[Ascale divisions] (174)
AT = [-7.4 x 107% + (8.4%)1/2] [A scale divisiong] (175)
AT = [-7.4 x 10~% +3%] [Ascale divisions] | (176)
AT = [(=7.4 +.2) 10-4%] [Ascale divisiong] (177)

In addition to the component uncertainties, the
temperature recording had a random variation of *1 scale
division which had the appearance of electrical noise. The
average change in the chart reading was 15 scale divisions
making the uncertainty +6.6% with a minimum uncertainty of
+7 x 1074 ec.

" The uncertainty in the temperature recording is
7.4 x 10-% x Ascale divisions
¢ (32 + (6.6%)2) K12 (178)

[-7.4 x 107% + (9 + vt/ 71y

AT

AT
[A scale divisiong] (179)
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AT

[-7.4 x 10~" 17] A scale divisions

AT

[-(7.4 +0.5) x 10% °C.] A scale divisions

(180)
(181)

The results of the uncertainty analyses are summarized

in the following table.
TABLE III
Are
values
within
experi-
Calculated mental
Control Response Calculated Observed uncer-
Change System DependentOn Response Response @ tainty?
40 Propor-
ohm tional 1 -(1.53 +.08) -(1.63 +.11) Yes
Set plus Ky 10-2 °¢, 10-2 o,
Point Integral
40 1
ohm  Propor-  ——=—qg— -(1.52.+,08) -(1.63 +.11) Yes
Set tional Ky * o 10-2 %c, 10-2 s¢,
Point cif
13.5 Propor- No long
cal./ tional term 0 (0.0 +.07) Yes
min. plus deviation 10-23¢C,
Load Integral from
Change set point
. 1 (.79 +.09) (.65 _+.07) Yes
cal./ Propor- 13+, . .
min. tignal K KgKy + UA 10-27°C, 10-2%¢,
Load
Change

Transient Response Decay and Period of Oscillation for

Proportional plus Integral Control

The transient response decay and period of oscillation,

as calculated from the system control equation, were e
and 5.8 minutes respectively.

proportional gain

The effect of changes in the

and integrator time constant can be shown

graphically with a root locus plot. As discussed earlier when
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the denominator of the closed loop system equation, 1 + G, is
set equal to zero, the result is called the characteristic
equation of the closed loop system. The roots of the
characteristic equation determine the form of the system
response to a forcing function. A root locus plot is a
graphiéal display of the value of the roofs with changing
proportional gain.g A root locus plot for the closed .loop
characteristic eaﬁétion of the thermostat is shown in‘
Figure 30. The plot wasldeveloped for proportional plus
integral control in the following manner:

1. The open loop zeros and poles are determined from
the épen loop transfer function (equation 182)

c=kN=-K(s-21)( - 22)(5 - Zp)
D s =p7)(s - p2)(s - pm) (182)

K (s + 1.15)
s (s + 0.0076) (183)

G

There is a zero located at -1.15 and poles located at zero

and -0.0076.

2. Because there are two poles, there are two

branches to the location plot.

3. The number of asymptotes is equal to the number of

poles minus the number of zeros, or in this case, one. The

angle the asymptote makes with the real axis is

g = —%—S-?-l%nj—"l' (184)

(K = 0,1,2°°°, n-m-1)
q = _’q’_ (185)
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4. The real axis is a portion of the locus between

0 and -0.0076 and from -1.15 to minus infinity.

5, The locus breaks away from the real axis at
1 = 1
= A é's—_—l-g (186)
1 -1 1 (187)

s + 1.15 " s - o s + .0076
s2 + .0076 = s2 + 1,157s + .087 + s (s + 1.15) (188)

o =52 + 2,305 + .0087 (189)
-2.30 + (5.29 - (4)(.0087))1/2

s = — > (190)
-2.30 + (5.255)1/2

s = = (191)
- . + .

g = 2230 52 29? (192)

s - -2.296, -.003 (193)

6. The location of the locus as it leaves the real

axis is determined by selecting a trial point and determining

if the phase angle equation is satisfied.

X(s - 21) +Y(s = 22) + +++ + (s - Zp)
- [ s = Py) +<d(s - Py) + +++ + (s - Pp)
=(2i + I (194)

where
4: is measured from the real axis to the line

connecting the trial point and the pole or zero.

is any positive or negative integer including zero.
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For trial point -0.2, + 0.645
?
3% - [106 + 108] = (2i + 1) (195)
?
3% - 214 = (21 + L) (196)
-180° = (2i + 1)7" for i = -1 (197)

After several points on the root locus have been plotted,
the root locus can be sketched. The proportional gain at any

point on the locus can be found from the magnitude criteria

k |5 -2 |s - 22| - |s - Zn|_

s = P1f [s = Pg[~** [s - Pm| 1 (198)

The distances may be measured directly with a ruler in

units consistent with those used on the graph axis.

For the point -.2, +.64j (199)
1.15 ; 200

K .68 .68 1 ( )

K = (.63)(.68) (201)

K = 0.40 (202

The pole at zero is inherent with integral control.
The location of the pole at 0.0076 was determined by ggﬁ’
and the location of the zero at 1.15 was determined by the
reciprocal of the integrator time constant.

From the root locus diagram it can be seen that only
a large change in the proportional control constant would
appreciaﬁly change the exponential decay (position on x axis)
or cycle time (position on y axis).

'The uncertainty in the exponential decay factor and

cycle time can be determined from the factored control equation.
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A Laplace transform of the form

a + jb + a - ib
s¥ KL+ 3Kz 57 K- 3K (203)

inverts to an equation of the form

e X1t [ _2acoskKyt + 2bjsinkKat], (204)
The exponential decay factor is determined by K3, and the
cycle time is determined by K.
In the present case K] and Ky were determined by

factoring the equation

1 1 1
s? + KeKcKy Gpm S *+ KeKeKy cpm 7 = 0 (205)
I
where
K¢ 2 final control element constant
cal.
= =75.9 +5 GoT%
Kc = controller constant
- -2 volt
Ky = feed back constant
h
= (-2610 +100) 5p-
L. [(specific heat)(mass of bath)1™t
Cpm 1
= G0 ¥120
S Integrator time constant
Ty 1

= 0.87 1003

1
1 —_ i
The term K; is equal to 3 (X£KcKH cpm). The uncertainty

in K3 is
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Ky = 5 (~75.9 #5)(0.64 +.04) 10-2
(-2610 +100)(840 +85)~1 (206)
K| = 3 (75.9)(.64 x 1072)(2610) (g (207)
+ [€6.6%)2 + (8.2%)2 + (3.8%)2 + (10%)21%/2
Ky = .754 +14% (208)
Ky = .754 +.11 , (209)

The uncertainty in the exponential decay is then as

follows:
exponential decay = Y = e K1t (210)
-Kyt
uncertainty in Y =iy = [(ggﬁgl_)z(czK)]l/z

with Ky = 0.754 K3 = +0.11 (211)
+y = e 0758t Lty (+.11) (212)

at t ='1‘minute
exponential decay = 0.47 +0.05 (213)

at t = 3 minutes
exponential decay = 0.104 +0.03, (214)

The period of the oscillation is determined by Kj in

equation (204). The value of Kz was determined by factoring

the equation

1 S S
s? + KeKoKy oom 5 * KeKeKp opm T 0 (215)
2
+ bc - 4C
Ky = = (216)
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1 1
Kf‘KCKH cpm 7-’
I

¢ =D

1
r

I

The change in K, with changes in b and 77 is

’ oK2 aK?2
dKp = ab + oT'I (217)
55 “77317'

The uncertainty in K; would again be the square root of

the squared partial derivatives.
. - oK 2 . (K2 241
uncertainty = [(gsab) (55'3b) 1t/2 (218)

From the previous case

b = 1.50 +14% (219)

b = 1.50 +.21 (220)
1

3;‘ = 1.15 +3.5% (221)

= 1.15 +.0u (222)

dK2 =-?a_-§29b + gi%a’rl (223)

-1
dKp =+ 2[5(b2 - 4b (D™D /2

(2b - 4 (Tp)~Hab

+ 302 - up (T"H1/2
(-4p)oT 1] (224)
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dKg = 1%[%[1.502 - 4 (1.50)(1.15)1"1/5
(2+1.50 - 4+1,15)(+.21)

+ %[1.502 - 4 (1.50)(1.15)1°1/2
(-4°1,50) (+.04) (225)

1
S 1 /
dKy = +3l5tror—ay)  °

(3.0 - 4,60) +.21

1 1 1/
Y 3T 2

(-6.00) (+.04)] (226)
1.1
dKp = i%[f(:g%gy)l/2 (-1.80)(+.21)
1 1 1y
+ 7mTE) 72 (c6.00)(+.08)] (227)

[(-.218)1/2 (-.u0)(+.21)
+ (~.215)Y2 (+.50) (+.01)] (228)

dKo

The uncertainty in K; is then

[.215 (.16)(C.04)

uncertainty K2

+ .215 (2.25)(.0016)1%/2 (229)

uncertainty Ko = [.0016 + .00081%/2 (230)
uncertainty K; = +[.05 radians] (231)
Kp = 1.08 *.05 radians (232)

The effect of this uncertainty on the period of the
oscillation is determined by the change made in the time

required by the angle function to increase 27 radians.

(1.08 +.05)t = 27 (233)
=27 +4.6% (234

t =108 - )

t = 5.8 *.3 minutes (235)
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A graphical comparison of the observed and calculated
temperature response curves is shown in Figures 31 through 34.

Use as a Calorimeter

One possible application for the temperature controller
is as a device for determining heats of reaction or heats of
physical changes. As a demonstration of the feasibility of
the procedure, the heat required to melt ice and raise its
temperature to the temperaturé of the bath was determined.

A 25 ml. flask was placed in the oil bath and the bath
allowed fo come to steady state. While the power to the
heater was being recorded, a small, weighed quantity of ice
was added to the flask and the change in power requiremehts
was recbrded. The integral of the difference between the
steady state power requirement and the power required to
return the bath to the steady state condition was equal fo
the heats of fusion plus the éensible heat required; |

Three experimental déterminations were made to determine

the accuracy of the method. The calculations and experimental
- data are shown in Table IV.

Resulté

The experimental and calculated heat requirements were

as follows:

Trial Calculated Experimental % Difference
1 85.0 cal. 83.3 cal. -2.0%
2 153.0 149.3 2.4
3 10600 87_0“ "'8.0

The average experimental result was 4.1% below the

calculated requirement. The calculated results are biased
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to overestimate the heat required since there was no compen-
sation taken for any of the weight being present as surface

moisture.
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TABLE IV

Use as a Calorimeter

Trial 1
ACal./Min.
Cal./Min. From
Time To Bath Steady State Cal.
0 29.0 0.0 0
0.2 31.0 2.0 0.4
0.4 37.0 8.0 1.6
0.6 76.0 47.0 9.4
0.8 97.0 68.0 : 13.6
1.0 110.0 81.0 16.2
1.2 113.5 84.5 16.9
l.4 113.5 84.5 16.9
1.6 113.5 8u.5 16.9
1.8 106.0 77.0 15.4
2.0 94.0 65.0 13.0
2.2 75.5 46.5 9.3
2.4 63.0 34.0 6.8
2,6 52.0 . 23.0 4.6
2.8 42.0 13.0 2.6
3.0 36.0 7.0 1.4
3.2 32.0 3.0 0.6
3.4 27.0 -2.0 =0.4
3.6 26.0 -3.0 -0.6
3.8 26.0 -3.0 -0.6
4,0 27.5 -1.5 -0.3
4,2 27.5 -1.5 -0.3
4.4 27.5 -1.5 -0.3
4.6 27.5 -1.5 -0.3
4.8 29.0 0 0
5.0 30.0 1.0 0.2
5.2 31.0 2.0 0.u
5.0 32.0 3.0 0.6
5.6 31.0 2.0 0.4
5.8 31.0 2.0 0.4
6.0 31.0 2.0 0.4
6.2 32.0 2.0 0.4
6.4 32.0 2.0 0.4
6.6 32,5 3.5 0.7
6.8 33.0 4.0 0.8
7.0 32.5 3.5 0.7
7.2 31.0 2.0 0.4
7.4 30.5 1.5 0.3
7.6 /30.5 1.5 0.3
7.8 29.5 0.5 0.1
8.0 29.0 0 0
gm. ice to Bath 1.33, Bath @ 35°C. 189.3 cal.

Cal. required 1.33 x 80 = 106.5
1.33 x 35 = U46.5
cal.
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TABLE IV - (Continued)

Cal./Min.
To Bath

+J
He
=]
o

31.0
35.0
46.0
73.0
85.0
90.0
87.5
81.5
70.0
60.0
54.0
50.0
47.5
40.0
35.0
32.0
27.5
26.0
26.0
27.5
27.5
29.0
29.0
29.0
29.0
29.5
31.0
31.0
32.0
32.5
33.0
33.5
32.5
33.0
33.5
34.0
34.5
33.5
33.0
32.0
31.0

ONNNNNOOOOO OO TN EEFEEFWODOWWWNNNNNNONFMHEFHEHEFEFOOOOO
OO EFNOOOINDEFEFNOXNDENOONDEFNOODDNDAFNOOODFNOODNDENOONDENO

® & 8 8 ¢ e & e S e & S B & & " 2 e * e 6 & e 6 o e 0 * o v o .

" Trial 2

ACal./Min.
From
Steady State

e o & o o o o o & s o o
OOoOCMUNNoOoUNNoOoOUTLMo o

OFHMNNWWRNRNNEFHMNDMDNNPMEMROO

gm. jice to Bath 0.74 gm., Bath @ 35°C.

Cal. required 0.74 x 80
0.74 x 35

59.0
26.0
.0 cal.
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TABLE IV - (Continued)

OO NEIFEFEFIIFOWMWWWNNNNNONNNMMEMEHEFEOOOOO

Trial 3
& Cal./Min.
Cal./Min. From

Time To Bath Steady State Cal.
.0 31.0 0 0
.2 36.5 5.5 1.1
U4 51.5 20.5 4,1
.6 70.0 39.0 7.8
.8 87.5 56.5 11.3
.0 97.0 66.0 13.2
02 94.0 63.0 12.6
o 87.5 56.5 11.3
.6 81.5 50.5 10.1
.8 70.0 39.0 7.8
.0 60.0 29.0 5.8
.2 51.5 20.5 h,1
o 48.0 17.0 3.4
.6 4y.5 13.5 2.7
.8 4u.5 13.5 2.1
.0 40.0 9.0 1.8
.2 35.0 4.0 0.8
. 32.0 1.0 0.2
.b 29.0 -2.0 -0.4
.8 27.5 ~3.5 -0.7
.0 27.5 ~-3.5 -0.7
.2 27.5 ~-3.5 -0.7
U 27.5 -3.5 -0.7
.6 29,0 -2.0 -0.u4
. 8 30.0 -1.0 -0.2
.0 30.0 -1.0 -0.2
.2 30.0 ~1.0 -0.2
4 31.0 0 . 0
.6 32.0 1.0 0.2
.8 32.0 1.0 0.2
.0 32.0 1.0 0.2
.2 32.0 1.0 0.2
" 31.0 0 0
.6 31.0 0 0
.8 31.0 0 0

7.4 cal.

gm. ice to Bath 0.93 gm., Bath @ 35°cC.

Cal. required .0.93 x 80

74.0

0.93 x 35 = 32.0

.0 cal.
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SUMMARY

The thermostat was shown to be capable of control to
within 0.005°C. of the set point over a 16 hr. test. The
control experienced over 30 minute periods, while investi-
gating transient response characteristics, was within
+0.0015°C. With proportional plus integral control, the
thermostat was able to return to *0.0015°C. of the original
set point after varying the heat added to the bath through
the stirrer (change in load or regulatory control). During
the study of set point changes (servomechanism control), the
repeatability of the temperature control at the same set

point was also within +0.0015°C.
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