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INTRODUCTION 

The recent development of solid state electronics has 

opened new possibilities in instrumentation design. One 

development has been the availability of compact, low cost, 

high gain, .,D. C. a~plifiers which can be used in the design 

and construction of sensitive laboratory instruments (11). 

Using these amplifiers a thermostat capable of precise control 

can be constructed and its oerformance compared with the 

performance expected by an analysis of the closed loop control 

Aquations. 
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HISTORICAL 

Some of the earliest examples.of .p~oqess control (4) are 

found in the biological d.evelopments which allow plants to 

point toward·the sun and animals to regulate respiration and 

heart beat. One of the first man-made control systems was the 

flyball governor which Watts invented for his steam engine in 

1788 ( 3.). 

The understanding of control systems began with the 

theorems of Laplace and Fourier, who in the early 19th century 

expressed the osc1iiation and damping of physical systems as 

differential equations. In the early 20th century these 

differential· equations were applied to the development of 

control theory. Some of the principal contributors were Routh 

in stability analysis, Kirckhoff in the analysis of electrical 

circuits, and Kelvin and Heaviside in the continued development 

of techniques for the solution of differential equations (3). 

The major advances in automatic control practice occurred 

during World. War II. The design of systems such as the 

servomechanisms required for aircraft controls, radar control 

of gun fire.and the remote control systems required in the 

manipulation of radioactive materials, necessitated exact 

performance data. .Designers had· to know the instant by instant 

behavior of the controlled ·system. Transient response tests 
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were developed to test the system recovery after impulse and 

step changes in set point or load; while frequency response 

tests, originallv used in radio and telephone work, were used 

to determine system stability to cyclic distrubances at 

various control amplifications (3). 

Since World War II the application of control theory and 

process dynamics to chemical processes has become increasingly 

important. In some cases (i.e. petroleum refineries) without 

automatic control systems, the process would be impossible to 

operate (2). As these changes h~ve taken place, it has become 

necessary for the practicing cJ1emist or engineer to have at 

least a rudimentary knowledge of the principles of control 

theory. 

The control of temperature is a common problem which is 

part of most experimental work. Many older controllers were 

of the simple off-on type. They could be constructed easily 

but inherently produced an oscillatory control. A typical 

controller of this type, as reported by J. M. Walsh (16), 

consisted of an imersion heater with a cartridge thermoregulator 

to produce the off-on control. With this device precision of 

+1or. was reported for baths between 1.5 and 14 liters volume. 

The next degree of complexity is proportional control 

which produces a correcting response proportional to the 

deviation from the controller set point. With proportional 

control the oscillation of off-on controllers can be eliminated. 

An inexpensive proportional control thermostat was devised by 

R. A.: Anderson (l) using either a mercury thermometer or a 
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thermister bridge sensor. The error signal was amplified in 

a transistorized ci~cuit and the signal used to trigger a 

silicon controlled rectifier (SCR) into conduction. A larger 

bridge unbalance causes a SCR to conduct earlier in the AC 

wave cycle· (FiQure 1) and thus to conduct a greater average 

current. Control of +0.02°C. was reported. 

starts 

conduction stops 

-•---------
Fi~ure 1. Conduction Cycle of an SCR 

c. A. ~iller (10) designed a temperature controller 

using prop6~tional, integral and derivative modes for the 

operation of a furnace at about 1400°C. [The integral mode 

generates a.control action proportional to the integral of 

the deviation from the set point, while the derivative mode 

generates a control action proportional to the rate at which 

a deviation.from the set point is occurring.] A Pt -Rh 

thermocouple was compared with a reference voltage generated 

by zener diodes. The error signal was amplified with a D.C. 

operational amplifier to provide the signal for a derivative 
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and integral cont~ol amplifier. A saturable core reactor 

providea···-heat to' the furnace. (Figure 2) 

-~t-1 ,+15v 

750 
Cf 75k 

Slk 

-15v 

Figure 2. Furnace Temperature Controller 

With this device control within +0.5°C. was reported. 
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THEORETICAL 

In general a control operation consists of the functions 

of sensing,' comparison and correction. A sensor and trans­

ducer convert the property which is to be controlled into a 

control signal. The most common control signals are air 

pressure, electric voltage and electric current. The control 

signal is compared with the desired value and a difference or 

error is determined. This error signal is fed into a controller 

which determines the amount of corrective action to be taken 

and sends a signal to the control element, often a valve, so 

that the system property is changed towards the desired value. 

There are several modes of control action. The two types 

used in this work are proportional control and proportional 

plus integral control. With proportional control the amount 

of corrective action taken is proportional to the deviation 

from the set point. With a proportional control system there 

must be a deviation from the set point (offset) to produce a 

change in the final control element. A proportional control 

system is usually adjusted or set so that at one set of 

operating conditions the deviation from the set point is zero. 

For any other combination of operating conditions, there will 
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be some off set between the desired value and the actual value 

of the controlled variable. 

The offset in a proportional controller could be eliminated 

by resetting the controller for the new conditions. Resetting 

the controller.to eliminate the offset can be done automatically 

by adding an integrating action to the controller [Integral 

control is sometimes called reset action]. With integral 

control the controller output is made proportional to the 

integral of the deviation from the set point, and the.deviation 

is brought to zero. 

The anal~sis of the dynamic aspects of a control system 

involves the solution of differential equations. By using 

Laplace transforms the solution of t.hese equations can proceed 

in a systemati"c manner through algebraic manipulation of .the:· 

terms in the equation. After solving for.the dependent vari­

able using the' Laplace transform variabl.e !' the transfo:t;>ms are 

inverted or returned to terms involving the original variable. 
~ ' 

The operation ,i.s analogous to the use of logarithms to replace 

multiplication and division of numbers by addition and sub­

traction of their logarithms and then taking the inverse of 

the logarithm to obtain the numerical result. 

One important limitation on the use of the transforms is 

that their use is restricted to linear equations. This means 

that 

L[af1Ct) + bf2Ct)] = aLCfl(t)) + bLf2Ct) 

where L is Laplace transform operator, a and b are constants 

and fl(t) and f2Ct) are two functions of t. Man~ ~eal systems 
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are nonlinear (i.e. the dependent variable is of degree other 

than 0 or 1 in one or more terms in the equation), and in 

making linear approximations the range oyer wpich the mathe­

matical model accurately describes the real system becomes 

restricted. 

In working with the control equations, it is convenient 

to consider deviations from the set point rather than absolute 

values. Deviation variables will be used throughout this 

paper. 

As an illustrative example, the heat balance of a vessel 

will be considered. Liquid of specific heat cp and 

temperature Tiri'enters a well mixed vessel, and the liquid 

leaves the vessel with temperature Tv. (Figure 3) A relation­

ship between the temperature of the vessel contents and the 

temperature of ~he entering liquid will be developed. 

Tv 
M 

Figure 3. Heat Balance of a Vessel 
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!Rate of 1 ~ate of 1 !Rate of l 
L heat enterinaj - Lheat leavin~ = L heat accumulatio~ 

dTv 
CpmTin - CpmTv = CpM~ 

At steady state Tin = Tv = Tsteady state and 

dT 
cpmTs.s. cpmTs.s. M s.s. 0 - = Op dt = 

By subtracting equation (2) from equation (1) the system 

can be represented in deviations from the steady state. 

I 

Let (Tin - Ts) = Tin 
I 

(Tv - Ts) = Tv 

The Laplace transform of this equation is 

cpmTinCs) - cpmTvCs) = cpMSTv(s) 

where 

TinCs) = Laplace transform of Tin 
Tv(s) = Laplace transform of Tv 

Rearranging terms equation (5) becomes 

Equation (7) relates the Laplace transform of the 

temperature in the vessel to the Laplace transform of the 

entering temperature. The time variation of the vessel 

temperature can be obtained by inversion of the Laplace 

transforms back to time variables for a particular change 

9 
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(3) 

(4) 

(5) 

(6) 
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in the entering 

for a unit step 

temperature. 

change is 1 -· s 

For example, the Laplace transform 

A unit step change in Tin gives 

Cpm 

Tv(S) = 
cEM . 1 -

(s + Cp~) s 
Cp; 

The inverse transform of a • 1 is not found in the 
s+a s 

tables; however, the inverse transforms of the individual 

( 8) 

factors are. given. The separation of quotients of polynomials 

into a series of partial fractions is one procedure used to 

find the inverse transforms. In equation (8), let cpm/cpM 

equal a. 

a 1, A + B 
s+a · s = s+a s 

In order to.· determine the value of A both sides of 

equation (9) ~re multiplied by s+a. 

~ = A + Bcs+a) 
s s 

when s = -a 

a = A 
-a 

A = -1 

Similarly, to determine the value of B, both sides of 

equation (9) are multiplied by s. 

a __ As + B 
s+a S+a 

At s = 0 

a = B 
a 

B = 1 

10 
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a 1 
Tv(s) = s+a • s = 1 + 1 

s+a s 
1 

The inverse transform of s+a is e-at, and the inverse 

transform of } is 1. 

Tv(t) = l e-at 

_ Cpmt 

Tv(t) ·•· = 1 - e 'cpM 

Tv 

1 2 . :m 
gt 

3 4 

Figure .4. Response of the Vessel Temperature 
to a Step Change in Inlet Temperature 

Equation ( 15) is shown graphically in Figure 4". 

Block Diagram 

(14) 

(15) 

5 

In combining the process and control components into an 

integrated system, the block diagram aids in visualizing the 

system relationships and organizing the calculations. In the 

development of a block diagram of the system, the individual 

components are represented by a block which acts on an input 

to produce an output. The transfer function inputs and 
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outputs are interconnected as they occur in the process to 

form a control loop. 

u 

Control le '---~, final Control~...___. 
Element 

1----1 Process f---.---c 

Ge G1 

B Measuring 
'--~~~~~~~~~-f Element 

H 

Figure 5. Block Diagram 

R ,_ Set Point 
E = Error 
M = Manipulated Variable 
u = Load Variable 
c = Controlled Variable 
B = Measuring Element Signal 

H, G· = Mathematical function which wifil convert the 
J. 

input to the output for the it block 

The overall transfer function relates the dependent variable,C, 

to the independent variables, U and R,for the process it can he deter-

mined by reducing the block diagram to a single block repre­

senting a single equation. Because the use of the block diagram 

and its reduction to a single bl9ck representing the overall 

function is necessary to the understanding of the rest of the 

paper, a brief description of the technique (7,8) follows. 
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u 

R x i----c 

B H 

Figure 6. Series Reduction 

1. Combining two blocks in series. 

Therefore M = G1GcE 

Several blocks in series can be represented by the.product 

of the individual transfer functions. 

2. Overall transfer function for a change in set point_. 

(Relationship between C and R.) 

R C + E G .. 
B 

H 

Figure 7. Loop Reduction for Set Point Change 

13 



c = GE 
E = R - B 
B = HC 

Therefore 

E = R HC 
c = G[R - HC] 
c G = 1 + HG R 

3. Overall transfer function for a change in load (i.e. R is 0). 

(Relationship between C and U.) 

u 

R M i------C 

B 
H 

Figure 8. Loop Reduction for Load Change 

C = G2(M+U) 
M = GcE 
E = -B = -HC 

Therefore 

C = G2 C-GcHC + U) 
C = G2U - G2GcHC 
C = G2 U 

l + G2GcH 

In all cases of negative feedback the denominator of the 

closed loop transfer function is l+ the open loop transfer 

function G2GcH· [The open loop transfer function relates the 
14 



measured variable B to the set point R if the feedback loop were 

opened at the error detector. The closed loop transfer function 

relates a pair of variables with the feedback loop closed.] 

Root Locus Method 

The differential equations describing the con~rol system, 

after being written in terms of the Laplac·e~ transform variable , 

and being manipulated with the aid of the block diagrams, must 

be returned to the time variable form in order to determine 

the time response of the system variable •. As discussed_ earlier, 

the ~nversion of a quotient of polynomials into a series of 

partial, fractions is one procedure used to find the inverse 

transform; however, ·the use of partial fractions requires that 

the denominator of rhe control equation be factored. 

The root locus method is a graphical procedure, first 

introduced by w. R. Evans (9), which can be used to locate the 

roots of the denominator. With the equation roots determined, 

the denominator may be factored and the Laplace transform 

inverted into the time domain by the partial fraction technique. 

The plotting of a root locus diagram (7,8) proceeds in 

the following manner: 

The denominator of the feedback control equation 1 + G, 

when s.et equal to zero, is called the characteristic e_s,uation 

6f the closed loop system. The roots of· the characteristic 

equation determine th_e form of the time response of the system. 

The open loop transfer function, G, ,may be written in 

the form 

G = KN 
D 
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where the numerator, N, and denominator, D, are in factored form 

as derived from the process components. 

where 

N = (S 
D = (S 

Z2) • • • • ( S - Zm) 
P2)·••(S - Pn) 

Z1,2,···m are zeros of the open loop transfer function 

(when S = Z the numerator and hence the 

equation equals zero.) 

P1,2···n are poles of the open loop transfer function 

(when S = P the denominator equals zero and the 

equation becomes indeterminate.) 

The characteristic closed loop equation 

l + G = 0 

can be written 

G = -1 = K (S + Zl)(S + Z2)···(S + Zm) 
cs+ P1)CS + P2) •.• cs + Pn) • 

In terms of a magnitude and phase angle the equation may be 

written as 

and 

KI s - P1 IS - P2 I ..• 
Is - z1I ts - z21 • • • IS - Zm = l 

IS - Pnl 

<} ( S - Z 1 ) + <'f ( S - Z 2 ) + • • • +<l ( S - Zm) 

- <J ( S - Pl) - ~ ( S - P2) - • • • • - ~ ( S - Pn) 

= (2j + l) 

where j is any positive or negative integer or zero. 

There are several rules cited by Coughanowr and Koppel (7) 

which enable the location of the roots at the characteristic 

16 



closed loop equation at various proportional gains to be 

plotted rapidly. 

1. The number of branches equals the number of 
open loop poles, Pn. 

2. The root loci begin at open loop poles and 
terminate at open loop zeros. The termination 
of (n - m) of the loci are at infinity along 
asymptotes. A multiple order pole or zero 
will be the beginning or termination of the 
number of loci equal to its order. 

3. The real axis is part of the root locus when 
the sum of the number of poles and zeros to 
the right of the point on the real axis is 
odd. A multiple pole or zero is counted the 
same number of times as its order. 

4. Asymptotes 

There are (n - m) loci which approach 
(n - m) straight lines radiating from the 
center of gravity of the poles and zeros. 
The center of gravity is given by 

n m 
~ Pj - ~ 

J·=1 i=l r = - n - m 

The lines make angles of ((2K = 1) (n - m)J 
with the real axis (K = 0,1,2,···n - m - 1) 

5. Breakaway Point 

The point at which two root loci, emerging 
from adjacent poles or toward adjacent zeros on 
the real axis, intersect and then leave the real 
axis is determined by the solution of the 
equation 

m 1 
i ~ 

1 
..,,.s __ -....z-i = 

n 1 
2_ -s ---P-J· 

j = 1 

With the roots of the characteristic equation known, the 

control equation can be inverted to the time domain by either 

graphic or algebraic means, and the transient and final 
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response of the system can be calculated. From the location 

of the roots in relation to the real and imaginary axes, the 

general characteristics of the response - whether oscillatory 

or not and the rate at which it will approach a steady state -

can be obtained by ·inspection. 

A shortcoming of the root locus method concerns the 

handling of time delays in the system• The term representing 

the dead time, e - ~s can not be expressed in rational form. 

One method used to circumvent the problem is to use the first 

t t f Ta 1 n · f e- ~s/2 = s - 2/r wo erms o a y or·expa sion o --..,..~--..~ - s + 2/T" • 
e+ rs/2 

An example which will illustrate the techniques used is 

the temperature control of the water out· of a heater. 

M 

..... 
I .. 

q 

Figure 9. Water Heater System 

m = lbs./min. water entering.and leaving the hea~er 
c = specific heat 
Tl = Temperature of the entering water 
To = Temperatu.r.e of the leaving water 
M = lbs. of water held in 'the heater 
q = ·heat added to the system' BTU/min. 

18 



r-----1 Heater r----.-- To 

H 

Figure 10. Block Diagram 

For this example let 

Ge = 10 
H = 1 
Cp- = 1 

The transfer function for the. heater must be determined 

the heat balance equations 

mTi = q - mTo = MdTo 
dt 

. using 

(16) 

After taking the Laplace transform and using deviation variables, 

equation (16) becomes 

mTi(s) + q(s) - mTo(s) = MsT0 (s) 

MsT0 (s) + mTo(s) = mTi(s) + q(s) 

Solving equation (18) for T0 (s) in terms of the two 

independent variables, Ti(s) and q(s), the relationship 

becomes 

T0 (s) 
m l 

= Ms + m Ti ( 5 ) + Ms + m q ( 8 ) • 

l/M l/M 
= s + m/M mTiCs) + s + m/M q(s) 

19 
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(18) 

(19) 
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The block diagram can now be redrawn in terms of the 

transfer functions. 

.mTf Cs) 

R(s) T0 (s) + E 
10 

1/M 
s + m7M 

l 

Figure 11. Block Diagram with Transfer 
Functions for Water Heater 

The techniques fQr reducing a block diagram to a single 

function were developed earlier. The results are directly 

applicable to the present case, and the control equation can 

be written as follows: 

l/M 
10s + m7M 

~~~~~~~l~/~M:--- R(s) + 
Cl0)(1Hs + m/M) 1 + 

l/M (21) 

In this example the response to a step change in set point 

at constant entering water temperature (Ti(s) = 0) will be 

considered. 

To(s) = 
. l/M 

lOs + m/M 
~~~~~~-1-/-M~- R(s) 

(lO)(l)(s + m/M) 1 + 

20 

(22) 



For this example let 

m = 3 
M = 12 

T0 (s) = _1_o __ s __ + ___ 3~/_1_2~ R(s) 
1712 

l + lO s + 3712 

1/12 

10 1 
__ rr--. .... s_+_!...,..7_4 __ R < s > 

10 1 
1 + IT <s + 1/4> 

The inversion from the Laplace transform variable to 

(23) 

(24) 

the time variable can proceed by either the algebraic or the 

root locus methods. Inversion by algebraic methods proceeds 

as follows: 

10 1 I2 s + 174 12(s + 1/4) 
T0 (s)';'= --.,.....,..----=--------- R(s) 

~Cs +1
174 > 12Cs + 1/4) 

(25) 
1 + 

To(s) 
10 

= 12(s + 174) + 10 R(s) (26) 

10/12 
To(s) = s + 13712 R(s) (27) 

The Laplace transform for a unit step change in set 

point is ~· Evaluating equation (27) for a unit step change 

in set point gives 
10/12 1 

To(s) = (s + 13712) s · 
The quotient may be separated into the sum of its 

factors by the partial fractions method. 

10/12 1 _ A + B cs + 13/12) s - s s + 13/12 

21 
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Multiplying by s gives 

10/12 Bs = A + Cs + 13712) s + 13/12 

At s = 0 

10/12 = A 
13712 

10 
A = IT 

Multiplying equation (29) by s + 13/12 gives 

10/12 : A(s + 13/12) ------+ B. s 

At s = -13/12 

10/12 -
-13/12 - B 

10 : B 
-13 

To Cs) = 
10 
n 
s 

s 

10 -n 
s + 13712 

Th . t f f 1 . 1 d h . e inverse rans orm o ~ is , an t e inverse 

transform of s + i 3712 is e-13t/12. 

1o(t) = ~ (1 - e-13t/12) 

Notice that even after the exponential term 'vanishes, the 

temperature of the heater will not reach the desired set 

point change. 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Returning to equation (24), the same inversion will be 

made using the root locus procedure. 

10 1 

To(s) = 12 s + 1/4 (24) 10 l 
l + rr s + 174 
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1. The first step is to locate the open loop poles and 

zeros from the open loop transfer function. 

G --K~- K 1 
u - IT cs + 0.25) (36) 

The open loop transfer function has a pole at S = 
there are no open loop zeros in this case. 

-0.25, and 

2. The root locus begins at the open loop pole and 

terminates at - infinity since there are no open loop zeros. 

3. The real axis forms the root locus in this example 

since the sum of the poles and zeros to the right of the 

point is odd. 

4. The location of the roots as a function of the 

proportional gain can be obtained from the magnitude criterion 

equation 

_ Is - Z1I J s - Z2 f Is - Zml _ K 1 
1 - KI s - P1I Is - P21 Is - p I - IT Is - (-. 2 5 >I (37) 

The location of the roots of the characteristic equation 

can be computed for several values of K from equation (37). 

s for root of characteristic equation 

-1 
-13/12 
-2 
-3 

K 
Il 

0.75 
10/12 

1;. 7 5 
2.75 

K 

9 
10 
21 
33 

In this case for a proportional gain of 10, the characteristic 

equation has one root located at -13/12. 
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Returning to the control equation (24), the denominator 

can now be expressed in factored form. 

10 
1/12 

s + 174 T0 (s) = 17!2 R(s) 
1 + 10. s + 174 

(24) 

10 

T0 (s) 12 R(s) = 
+ M-<1) Cs + 1/4) I 

(38) 

10 

T0 (s) IT R(s) = s - r1 (39) 

where r1 = -13/12 

10 

T0 (s) Il 1 = 13712 
. -·s + s (40) 

This equation can be inverted by separating the factors 

using the partial· fractions method and solved as shown in the 

algebraic solution. The root locus method has the advantage 

of showing the effect of a change in a process or control 

variable. The more negative the location of the root, the 

more rapid will be the decay of the transient terms. 

Development of the Control Equations 
fo~ a Controlled Temperature Bath 

Set 
Po in 

Tem erature 
Feedback Pag 

T 

Controller t----+-"' Heat er 

i------Heat Loss to Room 
TR 

Figure 12. Controlled Temperature Bath 
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The basic control equations for a controlled temperature 

bath will be developed from a heat balance around the bath 

and the Laplace transforms of the control element transfer 

functions. The heat balance around the bath starts with the 

equation 

Rate Heat in - Rate Heat out = Rate of Accumulation 

In this case heat was added by the stirring and by the heater, 

and heat was lost to the surrounding room. 

The,heat balance can be written 

P + Q - UA(T - TR) = cpmgTt (41) Stirrer Heater 

p = Power input from stirrer, cal./min. 
Power input from he~t~r, cal./min. cal. • cm2 
Heat transfer coefficient x Area, cm2 min. co 

Q = 
UA = 

T = Temperature of bath, 0 c. 
Temperature of room, 0 c. 
Specific heat, cal. 

gm 

TR : 

Cp = 
m = Mass of bath, gm. 

After substituting deviation variables and taking the Laplace 

transform, equation (41) can be written 

Pst<s) + QH(s) - UAT(s) + UATR(S) = CpmsT(s) 

which can be solved for the temperature of the bath as a 

function of the independent variables. 

Ccpms + UA)T(s) = PstCs) + QH(s) + UATR(s) 

T ( ) l Pst ( s) + l Q ( s) 
s = Ccpms + UA) Ccpms + UA) 

+ cpm~A+ OA TR(s) 

The independent variable Q(s) is to be controlled in 

order to achieve control of t,he bath temperature. The 

relationship between the heat added to the bath and the 
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set point is determined by the error detector and controller. 

This can most readily be seen from the block diagram (Figure 13) • 

. 

~ Controller e Control Q +~ "\ 
Element Bath T 

""' 
Pag 

R Measu·ring T 
Element 

Figure 13. Block Diagram for Controlled Temperature Bath 

The particular bridge network used to detect the difference 

between the set point and bath temperature as shown in Figure 14 

had the following relationship 

_ [Rn -- "Rtl1 Eo 
eo - - Rth 2'"" 

Thermistor 
R 

R R 
,__ ___ -I, 1..-------1 

Eo 

Figure 14. Error Detector 
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This bridge (11) was chosen because of its linear output for 

changes in (Rn - Rth). At steady state Rn = Rth, and the 

error signal is zero. For a deviation from steady state, the 

term (Rn - Rth> may be represented as the deviation variable R. 

eo = - Eo. R 2 Rth. (46) 

After taking the Laplace transform, the error bridge transfer 

function becomes 

e 0 (s) 
R(s) (47) 

There will be two types of controllers used in this 

work - proportional control and proportional plus integral 

control. The transfer function for proportional control is 

simply a constant Kc• The transfer function for an integral 

controller (11) is derived from the integrating amplifier 

circuit shown in Figure 15. 

c 

R 
e in---~r-----'---1 

Figure 15. Integral Amplifier Circuit 

eo = - ic j eindt (48) 
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Taking the Laplace transform ·and using deviation variables, 

equation (48) becomes 

e 0 (s) 

e0 (s) = 
einCs) 

1 
- RCs (49) 

The final control element can have many types of transfer 

function, . not all of them necessarily linear. The transfer 

function of the transistor heater system used in this work was 

determined experimentally. At this point the transfer function 

will be represented symbolically by the symbol Kp. 

A thermistor was used as the feedback measuring element. 

A thermistor is a temperature sensitive semiconductor which 

is used to convert temperature measurement into electrical 

resistance. The transfer function may be developed from the 

equations relating resistanc~ and temperature of a 

thermistor (6) 

where 

ln R = lnRs + A [ f - ~] 

R = Thermistor resistance 
Rs = Thermistor resistance at 

temperature Ts 
T = Temperature °K 
A = Temperature coefficient of thermistor 

(50) 

The relationship between R and T is not linear; therefore, 

a linear approximation of equation (50) must be made. A 

Taylo~'s series expansion of equation (48) can be used to make 

the linearization (13). 
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l l 
A(T - Ts) 

R = Rs e (51) 

R = a 0 + a1 (T - T6 + a2 (T - Ts> 2 + •••• (52) 

where 

a 0 = f(T 5 ) = Rs 

a1 = f'<Ts> =·- ARs 
~ 

f'' (Ts) = ARs2 
- t;r a2 = 2 ! 

Keeping only the linear terms, the result is 

R ARs 
R = s - ~ (T - Ts). 

Ts 
(53) 

Utilizing deviation variables and taking the Laplace transform 

( ) ARs 
R s = - ·p T(s) 

s 
(54) 

For the derivation of the control equation, the transfer 

function for the thermistor feedback loop will be represented 

in deviation variables as KH• The value of KH will be 

determined in the experimental section using experimental 

data and equation (54). 

Combining the elements of the control loop, the control 

equation expressed in deviation variables is obtained by 

substitution in equation (44). This gives 
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T(sh:= 

The normal.procedure in evaluating the response 

characteristics is to let all but one of the deviation 

(55) 

variables equal,zero. The remaining variable is given the 

type of forc1~g runction to be evaluated, and the resulting 

temperature response is then calculated. 
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EXPERIMENTAL 

The bath was a 2,000 ml. beaker filled with l.BL of 

stabilized bath oil. The beaker was lightly insulated to 

control.heat loss to the room. The bath was agitated with a 

variable speed motor and serrated disk agitator. By varying 

the speed of the agitator, a change in the process (load) 

variable could be made (Figure 16). 

The linear error bridge, shown in figure 14, and control 

circuit, the integral part of which is shown in figure 15, were 

constructed using model P-85AU Philbrick high gain D.C. 

amplifiers (11). Precision resistors and a 2 microfarad 

mylar capacitor were used to construct the error bridge and 

control circuit. Shielded cable was required in the error 

bridge and integrator circuit to prevent excessive noise in 

the signal. 

The final amplifier in the control circuit, shown in 

figure 16, was a model P-45AU because of its larger current output 

of 20ma. The final control element was a GE-4 6822 PNP power 

transistor mounted on a heat exchanger which was used to control 

the current to a 46.4 ohm immersion resistance heater. A Heathkit 

D.C. constant voltage supply set at 20 volts was used to supply 

power to the transistor - resistance heater circuit. 

Temperature feedback to the error bridge was provided by 

a thermistor sensor. Bath oil was used in the temperature 
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Figure 16. System Schematics 
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bath in order to eliminate electrolytic corrosion of the 

immersion heater. This also eliminated heat losses due to 

evaporation, which· simplified the heat balance equations 

(Figure 16). 

A separate system was used to obtain a temperature record 

of the bath._. A Leeds and Northrup model R820-l recorder was 

used to record the unbalance of a thermistor bridge circuit 

(Figure 16). 

In order to analyze the control system, the value of 

several constants had to be determined. These included the 

proportional gain constant, the change in thermistor resistance 

with temperature, the integrator time constant, the transistor -

heater power transfer function, and the heat loss to the room. 

Thermistor Transfer .Function KH 

As discussed ear~ier, the transfer function for the 

thermistor follows the relationship 

ARs ( R(s) = - ~ T s) 
T8 2 

( 54) 

The value of A can be determined from the least squares slope 

of a plot of lnR vs. l/T. As shown in Figures 17 and 18 and 

Table I, the transfer function for the control bath thermistor 

is -(2610 +120) ohms/°C., and the transfer function for the 

recorder thermistor is -(2870 +60) ohms/°C. 
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TABLE I 

Thermistor Transfer -Functions 

Recorder Thermistor 

Rk..n T0 k 103/T Lo~ R 

85.8 302.5 3.306 4.9335 
80.9 303.B 3.292 4.9080 
76.2 305.2 3.277 4.8820 
71.1 306.8 3.259 4.8519 
67.0 308.l 3.246 4.8261 
65.9 308.5 3.241 4.8189 
63.l 309.5 3.231 4.8000 
60.1 310.6 3.220 4.7789 

Slope = (1.78 +.04) 103 k 0 

R(s) = _2.303x(-l.78+.04)103x(66,800+200) 
T(s)@ 35oc. (aoa.2+.l) = 

R(s) 
iTI"7"::"T =-2870+60 ohm/C. 0 

i\~1@35oc. -
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Rk.n 

62.0 
60.2 
57.2 
54.0 
49.6 
52.3 

Controller Thermistor 

T0 k 10 3/T 

307.0 
307.6 
308.8 
310.l 
310.9 
312.0 

3.257 
3.251 
3.238 
3.225 
3.216 
3.205 

Slope= (1.83 ~.08) 103 k0 

Log R 
4.7924 
4.7796 
4.7574 
4.7324 
4.7185 
4.6955 

RCs> = _c2.303)Cl.83+.00>103c5a.0+.2>103 
TCs>@ 35oc. (308.2+.1)2 

R(s) 
;;;-r.::"\"" = -2610+120 ohm/C. 0 

i\~1@35oc. 
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Control Element Transfer Function KF 

The power dissipated in the heater was calculated from 

the voltage drop across the heater and the heater resistance. 

The voltage drop across the heater was measured at specific 

voltage inputs to the transistor base circuit with the 

transistor wired in its common emitter configuration as used. 

A' plot was made of the heat supplied to the bath in calories 

per minute vs. th.e voltage to the transif)tor base (Figure 19). 

The slope was calculated using a least squares fit over the. 

linear region of the curve. At a.heater dissipation above 

75 cal./min. and at some point below 10 cal./min., the data 

could no longer be fitted by a straight line. (The thermostat 

was operated within the linear region of the curve.) 

Table II 

Control Element Transfer Function 

Volts to Base 

-0.43 
-0.65 
-0.70 
-0.90 
-1. 00 
-1. 20 

Cal./Min. 

12.0 
27.5 
33.5 
46.0 
55.5 
70.5 

Slope = -( 7 5. 9 + 5) cal. /volt •Jnin. 

Heat Loss to Room 

In order to calculate the heat transfer to the room from 

the bath, UA, an energy balance was made around the bath. This 

is illustrated by the following equation: 

Rate Heat In - Rate Heat Out = Rate Accumulation. 

There were two sources of energy into the bath - the heater 
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and ,the stirrer. The heat loss to the surroundings is dependent 

on the relationship 

Q = UA (TBath - Tsurround)• (56) 

The rate of heat accumulation in the bath is 

(57) 

In orqer to determine the value of the heat transfer 

coefficient-area term, UA, the difference in heat supplied to 

the bath at two different s.urrounding temperatures was 

determined. Using simult~neous .. equations the heat generated 

by the stirrer could be eliminated. A second determination was 

made by using the rate of cooling with only the agitator running 

and by using the steady state conditions with only the agitator 

running. Again by using simultaneous equations the agitator 

power could be eliminated. 

Rate Rate 
Heat In - Heat Out = Rate Accumulation (58) 

PAgitator + PHeater - UACTsath - TRoom> 

= c mdT (59) 
p dt 

Pag + 21.7 cal./min. - UA (33.9 - 24.4) = 0 (60) 

Pag + 44.9 cal./min. UA (33.9 2p.7)°C. = o (61) 

23.2 cal./min. - UA (3.7°C.) f O 
cal. 

UA = 6.3 mi~. 0 c. 
Pag + 0 cal./min. - UA (34.75 - 20.45)°C. 

= 8 .. 0 ( - 0 • 5 go C • ) "' Io min. 
Pag - UA Cl4.3°C.) = -49.7 £!!..=._ min. 
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Pag + O cal./min. - UA (2S.4 - 19.8)°C. = o 

Pag - UA (S.S°C.) = 

7.7oc. UA = 49.7 cal. -min. 

UA = S 4 cal. 
• min. oc. 

Pag + 51.8 ~~~: - UA (34.9 - 20.5)°C. : O 

Pag = UA (6.S°C.) 

0 

UA (6.S°C.) + 51.8 ~ - UA (14.4°C.) = O min. 

UA 1.a0 c. = 51.8 ~~~: 
c'al. 

UA = 6.6 min. oc. 

(S4) 

(64)-(63) 

(65) 

(SS) 

(67) 

( 68 ), 

(69) 

The average value of the heat transfer coefficient-area 
cal. 

term, UA, was 6.4 ~0.2 min. 0 c. · 

Integrating Amplifier Time Constant 

After assembling the apparatus the operational amplifiers 

were balanced. With the integrator circuit the above was 

accomplished by grounding the input end of the resistance tee 

network and adjusting the amplifier offset bias until the 

integrator output remained constant. 

Th.e integrator circuit gain was checked by timing the 

output voltage change £or constant input voltages. The time 

required for the change in output voltage to equal the input 

voltage, the integrator time constant, was checked in the 

positive and negative direction and found to be equal and 

within 4% of the value calculated from the nominal component 

values. 
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ti 
E = l f edt ~ (70) 

t=o 

E 
1 

(t1 - to> - Ree - (71) 

E = 
t 

e RC (72) 

when t = RC E = e 

where RC = (52 x 106)(2 x io-6> 

= 104 sec. (73) 

The proportional control amplifier was originally set at 

a gain of 10. It was found that at gains of 10 and later 5, 

the control action was off-on rather than proportional. A 

0.5 gain factor was used in the proportional control circuit 

because it gave a good balance between the speed of response 

and the oscillation produced by the integrator. 

System Time Delays 

The stability of any control system is affected by the time 

delays in the system. This is the time it takes the control 

system to sense the need and translate the need into control 

action ·by the final control element. The time delay in the 

thermostat system was determined as follows: The bath was 

allowed to warm due to the heat supplied by the stirrer alone 

until a constant rate of rise in temperature was observed. Then 

a large change in set point was made so that the controller 

immediately went from zero power to the bath to full power to 

the bath (Figure 20, point A). The time required for the 

temperature recorder to reach a new rate of rise was 0.2 minutes. 

The process was repea~ed i·n reve~se (from full power on to 
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power off), and a new rate of temperature rise was again observed 

in 0.2 minutes (Figure 20, point B). 

Because the time delays were short in comparison with the 

other time constants in the system and in comparison with the 

frequency of changes in the system, the effect of the time 

delay can be neglected. If the delay were approximated by 

the term (1 - e-at), the exponential decay factor would be 23. 

Terms introduced by this factor would rapidly vanish. 
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CALCULATIONS 

Using the relationships and constants developed in the 

Theoretical and Experimental sections, the transient response 

of the constant temperature bath to changes in set point and 

load can be calculated. The numerical value of the error 

detector and controller transfer functions must. first be 

determined from their components. Figure 16 gives a schematic 

electrical diagram and a block diagram of the system. 

The transfer function for the error bridge was given as 

e(s) = _ Eo 
RrsT 2 Rth 

in equation (47). In the temperature range under investi­

gation Rth was 58.8 kohm, and a 15 volt energy source was 

used. The transfer function was then 

e(s) _ 15 
RTSJ" - - 2(58,800) 

= -1.27 x io-4 volt onm-

(47) 

(74) 

Amplifier nQmber two served to multiply the error signal 

output by a factor of -100, making the combined transfer 

function for the error detector 

e(s) - +1.27 x lo-2 volt/ohm 
iITS1" -

(75) 

High gain n.c. amplifiers were used to obtain.propor­

tional gain and integral gain transfer functions. Amplifier 
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number three was used to provide a proportional gain of -o.s. 
Amplifier number four was used to provide integral control. The 

transfer function for the integrating amplifier was given as 

e1t(s) __ 1 
e2Cs) - RCs (49) 

in equation (49). A resistance tee network was used to increase 

the equivalent resistance and obtain a longer integrator time 

constant. 

The equivalent resistance of the-tee network (Figure 21) 

is 

Req = R1 + R2 + 
R1R2 (76) -ra-

= ios + 106 + 106.106 
2 x 164 (77) 

Req = 52 x 10 6 ohms (78) 

2 MFD 

Figure 21. Resistance Tee Network 
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The transfer function for the integrator can be written as 

e4(S) l l 
e2Cs) = -52 x 106 x 2 x 106 s (79) 

with the time in seconds. Converting this into minutes gives 

= - l 
1. 74s. 

Amplifier number five was used to sum the output of 

the proportional gain amplifier and the integral c~ntrol 
> 

(80) 

~mplifiers. A un~ty gain was used on the summing amplifier. 

The transfer function for the combined proportional gain and 

integrating amplifiers was 

es(s) = 
e2Cs) -c~>C-0.50) <100)( 1 ) 

.Luu - IOO -1. 74s 

es Cs) 1 = +a.so Cl + o.a1s> e2(S) 
(81) 

Combining the transfer function for the error detector 

and the control amplifiers, the output of the controller can 

be related to the set point 

es Cs) e~~=~ = x lo- 2)(.50)(1 + 
1 

(1.27 :srs> (82) 
e2Cs) . 

es Cs) = 102 1 volts (83) 0.635 x (1 + :ars> ohm R(s) 

The determination of the transistor heater. system transfer 
. 1 . 75 cal. function, as reported in the experimenta section, was - .9 volt 

The transfer function for the thermistor temperature 

feedback system, GH, was experimentally determined to be 

-2610 ohms/co. (reported in the experimental section). 
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The transfer function for the bath was given in equation 

(44) as 

T(s) = 1 p ( ) + 1 Q(s) cpms + UA St s cpms + UA 

UA 
(44) 

T(s) 
1 1 

= cpm- Cs + UA/c m) PstCs) p 

1 1 Q(s) + Cpm cs + UA/cpm) 

UA 1 
TR(s) + Cpm cs + OA/cpm) (84) 

Q(s) 
PstCs) 
TR(s) 

= 
= 
= 

Deviation in heat entering through the heater 
Deviation in heat entering due to the stirrer 
Deviation in the temperature of the room 

UA 

c~m 
T s) 

= 

= 
= 

Heat transfer coefficient from vessel area, 
6. 4 , ca\; 

min. C. 
Specific heat x mass of vessel, 840 cal./°C. 
Deviation in the temperature of the bath. 

1 1 1 1 
T(s) = ~ 6 4 PstCs) + 840 + 6.4) Q(s) 

0 ~u (s + "S'inr) Cs 'B1nr 

+ 6.4 1 TR(S) 

'940 Cs + ~) 

Temperature Recorder 

(85) 

The temperature recording was made using a Leeds Northrup 

model R820-l recorder to monitor the unbalance of a thermistor 

bridge circuit (Figure 22). The relationship between a chan~e 

iri the chart reading and a change in temperature is derived 

below. 

Eo 
A 
Rth 
R 

· Eo A R - Rtb 
6E = --"2A R + Rth 

= 
= 
= 
= 

Bridge voltage 15 volt 
5,000 ohms 
Resistance of thermistor 
Resistance of decade box 
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Leeds Northrup 
recorder 

Figure 22. Thermistor Bridge Circuit 

For small changes in temperature near the bridge balance point, 

equation (86) may be written 

A E _ Eo 6. R 
w - T 21r (87) 

Evaluating equation (87) at 35°C., R was 66.8 K ohms 

and 
15 

6.E = 2 • 2 (66.8 x 103) 6.R (88) 

6.E = ( 5. 60 x lo- 5 vol ts/ohm) 6.R (89) 

The recorder had a full scale reading of 12 millivolts 

for 100 scale divisions so 

AE = cl2 xlOl00-3 .. LJ. ~~~~ volts/scale division) 6. scale 
divisions (90) 

6. scale divisions 
· TO:o· s·c·a1e· divis"ions) AR 

= (5.60 x lo-5 i2 x io-3 ohm (91) 
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The relationship between a change in resistance and a change 

in temperature for the recorder thermistor as determined in the 

experimental section was 

'.6.R = - (2870 ohm/°C.) .6.T 

6. scale divisions 

100 
= s.60 x lo-5 x 12 x lo-3 x -2010 .6.T (92) 

-4 oc. 
6.T = -(7.4 x 10 scale division> 6.scale (

93
) 

divisions 

Calculated Response for a Step Change in Set Point 

Now that the system constants and differential equations 

have been developed, the control equations for a set point 

change can be written for the proportional control and for 

proportional plus integral control cases. Taking the pro­

portional control equations first, the block diagram shown 

in Figure 23 yields equation (94). 

I 6.4 I 

R(s 
r 

-75.9 1/840 o.637x10-~ 
}-±.{)-- volt/ohm cal. /volt 6.4 

- s + 84'0 

-2610 
ohm/°C. 

Figure 23. Block Diagram for Proportional Control 
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l 
co.637 x io-2>C-75.9)C'B"4Q>C i > 

s + 6.4 
T(s) 8IiO R1SY = ~~~~~~~~~------~~~~~~~~~-

1 + co.637 x io- 2 >C-75.9)C-2610>C 8 ~ 0 >c 
s 

1 ) 
+ 6.4 

840 

Consolidating factors gives 

TCs> - -5.76 x io-2 Cs + o:oo76> 
RrsT -

1 + 150 <s + 0.0076) 

(94) 

(9.5) 

Multip.lying numeI;'ator and denominator by Cs + 0.0076) gives 

TCs> = -5.76 x io-4 

RrsT s + 1.508 (96) 

This equation may be evaluated for a unit step change in set 

point by letting R(s) = 1 • s 

TCs> _ -5.76 x lo-4 cs 7> 
- s Cs+ i.soe) 

The inverse transform may be obtained 

from Jf (t) = ~Lf(t) = 

therefore, L-l !res> 
t 

= I f(t). 
0 

The inverse transfQrm of -s-'!;;.._..a = e-at. 

T(t) = -5.76 l0-4 i e-l. 508t 
X. 

0 

1 
9f(s); 

x lo~·4 
1 ce-1. 508t - eO)] = -5.76 [1.soa 

- 5.76 x io-4 Cl - e-l.508t) 

(98) 

(99) 

(100) 
-- 1.508 

TCt) = -3.81 x io-4 Cl - e-l.508t> 
oc, (101) 

.J'l-Set Point 
Change 
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This is the desired result - a relation between a step change 

in set point and the temperature of the bath at any time after 

the set point change. 

The corresponding equation fo~ proportional plus integral 

control will be developed next. The block diagram is the same 

as the proportional control diagram except for the inclusion of 

the term Cl + 1 ) representing the integral control action. :878 

TCs) -
ITTS1"" -

l l 1 
C0.637 x lo-2>c1 + ~. s·>C-75.9)C~>c> 

o0f5 O'tU + 6.4 
s 840 

l + (0.637 x 10~2 )Cl + I 1 C :ars>C-75.9)C-2610)C841)> s 

Consolidating terms gives 

TCs) 
R1SY l + 1.50 Cl + l )( 

~ s 

l 
6 4) 

-5.76 x lo-4 cs + 1 •15 >< 1 > T(s) _ s s + 0.0076 
ITTST - cs + 1.15>< 1 > 

1 + 1.50 s s + 0.0076 

Multiplying numerator and denominator by s Cs + 0.0076) 

gives 

TCs> _ -5.76 x lo-4 Cs + 1.15) 
if{S) - s (s + 0.0076) + 1.50 Cs + 1.15) 

T(s) _ -5.76 x 10-4 Cs + 1.15) 
lfCST - s2 + 1.508s + (1.50)(1.15) 

For a unit step change in set point R(s) = ;, and 

equation (106) yields 
.. ·5·.·1·s- :x· i-o- 4 ·c·s· + l'.1'5 > 

T(s) = s cs2 + l.508s + 1.725) 
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The inversion from Laplace transform variable to the time 

variable will be accomplished using the partial fractions 

method. As a first step the quadratic term is factored. 

-5.76 x lo-4 Cs + 1.15) 
TCs) = s Cs + o.754 + l.Oaj)(s + o.754 - 1.oaj) Cl08) 

The equation is then separated into a series of fractions. 

-5.76 x lo-4 Cs + 1.15) 
s cs + o.754 + 1.oaj)(s + o.754 - 1.oaj) 

A+ B + C C ) = s s + o.754 + 1.oaj s + o.754 - i.oaj 109 

To determine A, both sides of the equation will be multiplied 

by s,and the resulting equation will be solved at s = O. 

-5.76 x lo-4 Cs+ 1.15) 
cs+ o.754 + l.osj)(s + o.754 - 1.o8j) 

Bs Cs CllO) 
=A+ s + o.754 + i.oaj + s + o.754 - 1.oaj 

-5.76 x lo-4 Cl.15) =A 
co.754 + l.daj)(0.754-_1.oaj) 

Clll) 

-5.76 x io-4 c1.15> 
A= 1.725 

A = -3.83 x 10-4 Cll2) 

To evaluate B, equation Cl09) will be multip~ied by 

(s + o.754 + l.OSj),and the resulting equation will be solved at 

s = -754 - l.OSj. 

-5.76 x lo-4 Cs + 1.15) 
s cs + o.754 1.oaj) 

=A Cs + 0.754 + l.OSj) + B 
s 

c Cs + 0.754 + l.08j) 
+ cs + o.754 - 1.osjJ 
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By similar calculations C can be shown to be 

(+1.915 + l.34j) lo-4. Equation (109) can be rewritten 

T(s) = -3.83 x io-4 (1.915 - l.34j) lo~4 
s + s + o.754 + 1.oaj 

+ Cl.915 + l.34i> lo-4 
s + o~,754 - .oaj 

The inverse transform of equation (120) is 

T(t) = -3.83 x lo-4 + e-0.765t 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

( 12 0)-

' -4 x 10 (3.83cos l.08t - 2.68sin l.08t) 0c. (121) 

The sin cos portion of this equation may be simplified 

by using polar coordinates, 

p cos A + q sin A - r sin (A + -e) 

r = (p2 + q2)1/2 = tan-1 P 
q 

T{t) = -3.83 x 10-4 + e-o. 754 t 4.67 x 10-4 sin c 1 • 0 ~;_35 o)t + 1250) 

(122) 

This is the desired relationship for the time response 

of the temperature to a step change in the set point. 
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[The negative sign in equations (101) and (122) is caused 

by the nature of a thermistor. A decrease in thermistor 

resistance corresponds to an increase in temperature. A decrease 

of 20 ohms in set point will result in an increase in the 

thermostat temperature.] 

Calculated Response for a Step Change in Load 

The dynamic response of the system to a change in load was 

investigated by making a step change in the stirring speed. 

The control equations can be written for proportional control 

and proportional plus integral control cases. Starting with 

the block diagram for proportional control (Figure 24), 

6.4 

+~ o.637x10- 2 -75.9 1/840 
+ 6.4 --· 

cal./ 
R(s)f; --T(s) 

volt/ohm + 
unlt s ~ 

P(s) 

-· -2610 
ohm/°C. 

Figure 24. Block Diagram for Proportional Control 

the control equation for a change in load, P(s), can be written 

T(s) : 
P(s) 

1 
840 

( 

S + RL~O 

1 + 0 • 637 x io-2 x C-7S.9>C-261o>cJ.n->< 
1

6 • 4 > 
s + 8iil) 
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Consolidating terms gives 

T (s) = 
PrsY 

1 l 
840 <s + 0.0076) 

1 1 + 1 • 5° Cs + o.oo7s> 
(124) 

Multiplying by Cs + 0.0076) in the numerator and denominator 
' 

equation (124) becomes 

T(s) 
PTSY 

= 0.119 x 10-2 
s + o.oo7s = l.5o 

Equation (125) can be evaluated for a unit step change in 

load by setting the forcing function PCs) = 1. s 
0.119 x lo-2 

T(s) = s (s + 1.508) 

The inversion of equation (126) can proceed along lines 

similqr to the inversion of equation (97). 

t 
TCt) = o.119 x lo-2 loe-1.soat dt 

T(t) = o.119 x io-2 ce-l.508tl
0

t 
-1.soa 

T(t) = 7.9 x 104 (l - e-l.508t) oc. 

(125) 

(126) 

(127) 

(128) 

(129) 

This is the temperature response of the proportional 

controlled thermostat to a step change in load of l calorie/ 

min. 
... 

The thermostat temperature response for a step change 

in load will now be derived for the proportional plus integral 

control case. With proportional plus integral control, the 

controller transfer function is modified to include the term 

1 (1 + o.a?s> representing the integral control. 
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1/840 
Cs + 6.4) T(s) _ 840 

PTS1" -
1 + .637 x io-2 x Cl+ :-ats>C-75.9)(-2610)Caia>< 

Consolidating factors gives 

T (s) : 
1 1 

ffi" <s + .0076) 
PrsJ 1 + 1.50 cs + 1.15)( 

s s + 
1 

0.0016> 

s 

(130) 

1 ) 
+ 6.4 

840 

(131) 

Multiplying the numerator and denominator by s (s + 0.0076) 

gives 
1 

TCs) _ m-s Cl32) 
PrsY - s (s + 0.0076) + l.SOs + (i.50)(1.15) · 

T(s). = 0.119 x 10-2 s c133 ) 
PCST s2 + l.508s + 1.725 

For ~ unit step change in load PCs) = ;. 
0.119 x io-2 ~ 

TCs) + s (s2 + l.S08s + 1.725) C134) 

Inversion of equation Cl34) may proceed through the partial 

fractions method. Factoring the denominator, equation Cl34) gives 

TCs) 
·.: 

0.119 x 10-2 
(s + o.754 + i.oaj)(s + o.754 

0.119 x lo-2 
cs + o.754 + I.o8j)Cs + o.754 1. OBJ) 

A. 
·- (s + o.754 + L oS:j > 

B 
+ Cs + o.754 i.osj> . 

l.08j) 

Solving for A by multiplying by Cs+ 0.754 + l.08j) gives 

51 

Cl35) 

Cl36) 



0.119 x 10-2
. = A+ B (s + 0.754 + l.08j) 

Cs + o.754 - l.osj> ·· cs+ 0.754 - 1.o8jJ (137) 

At s = -0.754 - 1.08j 

0.119 x io- 2 
--::::--;;-"FT."~-.:--:i:-::--w-....;;,.:.....;;;...;~,.,_~....---- = A -o.754 - 1.osj + o.754 - 1.oaj (138) 

0.119 x lo- 2 _ A 
-2.16j - (139) 

By a similar process B was found equal to -0.055 x 10-2j. 

Equation (136) can be written 

.055 x lo-2j -0.055 x lo-2 · 
T(s) = o.754 + o.754 

l 
s + + L oaj s + - l.08j 

The inversion of equation (141) is 

T(t) = e-o. 754t (.110 x 10-2 )sinc1 • 08 2~0 t) 

This is the desired response of the thermostat to a step 

change in load with proportional plus integral control. 
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RESULTS 

Long Term Stability of Bath 

On two occasions the bath temperature was recorded for 

16 hour periods, the recorder calibration having been checked 

with a Beckman Thermometer. In both instances temperatures 

were controlled within 0.005°C. of the set point and +o.002soc. 

of the median value (Figure 25). 

Observation of the Transient Response Characteristics 

The control system response ~o step set point changes and 

to step load changes was observed experimentally for a pro­

portional control and a proportional plus integral contI?ol 

system and compared with the computed control curves. Pro­

portional control was obtained by placing a jumper wire around 

the capacitor in the integrator controller, mak;ng the output 

of amplifier number 4 in Figure 16 equal to zero. The first 

step in the procedure was to bring the system to stable 

operating conditions. A step change in set point was then made, 

and the change in temperature was observed over a period of time. 

A separate plot was made of the voltage across the bath 

heater. Samples of the temperature recorder charts are shown 

in Figures 26 and 27. 

In order to remain in the linear portion of the transfer 

function, the changes were restricted to less than 40 ohms, 
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which correspond to a change of s0.0l6°C. Larger step changes 

caused the output of the heater to ·enter the nonlinear portion 

of the transfer function. 

A second type of control problem occurs when a change is 

made in the input condition (a load change). Load change 

observations were made by making step changes in the stirring 

speed and recording the change in the bath temperature and bath 

heater voltage. Samples of the temperature charts are shown 

in Figures 28 and 29. 
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DISCUSSION OF RESULTS 

Uncertainty of the Calculated Responses 

Are the calculated and observed responses of the thermostat 

in agreement within the uncertainties of the system constants? 

This question will be broken into several phases. The first 

concerns the temperature of the thermostat after the transient 

disturbances have vanished following step changes in set point 

and load. The constants which have the greatest effect upon 

the final temperature can be determined by using the final 

value theorem for the Laplace transform of the control equation. 

This theorem states that the lim [f(t)] = lim [sf(s)]. 
t-a> s--o 

The final value theorem will be applied to the control 

equation for a set point change with proportional plus integral 

control. 
T(s) = -5.76 x 10-4 Cs + 1.15) 

s (s2 + l.508s + 1.15 x 1.50) 

From the final value theorem the 

Lim T(t) = s T(s) 

sT ( s) = t 

Lim sT(s) 
s-o 

s-o 
-5.76 x 10-4 (s + 1.15) ¢ 
(s2 + l.508s + 1.15 x 1.50) 

4 ' -5.76 x 10-~ = ::J:OT"'P.F'x 1 • 5 0 
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In order to determine the most important transfer functions, 

equation (145) must be expanded to show the individual factors 

making up the numerator and denominator. 

Lim sT(s) x 10-2 
1 

= .637 x C-75.9)(81fQ) 
s-o .637 x 10-2 x C-75.9)(-2610)Caio> 

= -5.76 x lo-4 
1. so (146) 

Lim sT(s) = 1 
-3.83 x 10-4 0 c. -2610 = s-o (147) 

Lim sT(s) = 1 
s-o RH (148) 

where KH = thermistor feedback transfer-function 

The important result is that with proportional p.lus 

integral control the final temperature for a step change in 

load is entirely determined by the thermistor feedback transfer 

function. The feed back fraction was determined by the 

equation ~ = - ~. As discussed in the experimental section, 
T \S / T~ 

the value of A was determined by a least squares slope of. 

lnR vs ¥· The uncertainty of the slope and the uncertanties 

of the other factors will be used to calculate the uncertainty 

in the calculated temperature change. 

R(s) = - AR 
TTST T2" 

A = (1.83 +.08)10 3 °K 
R = 58.8 x-103 +0.2 ohms 
T =, 30B. 2 :!_. l ° K 

In combining several terms of varying precision, the 

variances of the individual measurements may be combined. 
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The general relationship for the variance of Y where 

is 

;a: ( (;t f) 2 ~x. 
~Xi J. • 

(150) 

The uncertainty in Y is then the square root of the sum of 

the variances (15). As an example if 

Y = AX + BZ (151) 
then 2 

Y!_y = [(A) 2 (t:rx) 2 + (X)2G::rA) + (B)2(o-z)2 

+ (z)2(~B)2] 1/2 (152) 

This procedure takes into account the probability that 

some of the uncertainties will be of opposite sign and hence 

will have cancelling effects. 

The uncertainty in the calculated temperature change 

was 

Lim T(t) = 1 b. R = 1 .6 R = R(s) 6.R 
t-Ct:> Ktt R(s) TZST 

'r"rs1"" 
(308.2 +.1> 2 .0.R 

= - 10 3 ((58.8 2.303 (1. 83 +.08) +0.2) x 

= -(3. 83 +5%) io-4 °c. /ohm 

= -(3.83 +0.2) 10~ 4 °C./ohm 

for a 40 ohm change in set point 

Lim T(t) = -(3.83 +0.2) 10-4 (40) 
t-- co 

Lim T(t) = -(1. 53 +0.08) 10-2 °C. 
t-+- co 

57 

(153) 

+1% 
io3J 
(154) 

(155) 

(156) 

(157) 

(158) 



A similar analysis of the control equation for a unit step 

set point change with proportional control alone shows the 

final value to be dependent upon 

Lim T(t) = 
t- Ct) 

Lim sT(s) = 
s-o 

1 
KH + UA 

KcKf 

Lim T(t) = -3.80 x 10-4 °C./ohm 

= 1 
-2610 - 15 (159) 

(160) 

Because of the relatively small magnitude of .the term UA 
RTt 

in comparison with the t:erm KH, the uncertainty in the final 

temperature is, as was found in the proportional plus integral 

control case, (-3.80 +0.2) lo-4 °C./ohm. 

When the final value theorem is applied to a load change, 

the basic difference between proportional plus integral control 

and proportional control can be seen. For proportional plus 

integral control (161) 

t 0.119 x 10-2 s Lim T(t) = Lim sT(s) 
t__..ai s-o = s (s2 + l.508s + (1.50)(1.15)] P 

Lim T(t) = o 
t~ co 

For proportional control alone the response to a load 

change is 

Lim T(t) = Lim sT(s) - s (0.119 x lo-2 > 6. P 
t-+c:o s-o - t Cs + 1.508) 

Lim sT(s) = 
s_. o 

0.119 x 10-2 6P 
i.508 

Lim T(t) = 7.9 x 10-4 °C./ca_l./min. 6P 
t ....... ll:) 

(162) 

(163) 

(164) 

(165) 

The system components which have an effect on the final 

value can be found by expanding equation (165) to show the 
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individual transfer functions. 

Lim T(t) = Lim sT(s) = 
s-o 

1 
Cpm 

1 
= KcKfKH + UA t:. p 

Inserting the. appropriate vct.iues for the individual terms 

gives 

Lim T(t) = t. 
1 t:. p 

co.64 +.04)(-75.9 +5)(2610 +ioo) + ~.4 +.4) - -
Because of its relatively small magnitude, the second term 

may be dropped. 

Lim T(t) = 7.9 x lo-4 
t-~ 

[ ,0. p .!_6%] 

Lim T(t) = 7.9 x lo-4 t:. p 

t 
+ 36]1 12 + [38 + 40 + 19 

Lim T(t) = [7.9 x lo-4 6 ~ .!_11% 
t 

Uncertainty of Temperature Recording 

(166) 

(167) 

(168) 

f·l69) 

(170) 

(171) 

An additional source of uncertainty in the thermostat 

temperature is associated with the temperature recorder. The 

uncertainty in the recording includes the uncertainties 

connected with the bridge circuit and the noise in the record 

chart recording. 

The uncertainty in the bridge circuit relationship 

between b.. T and the ~scale divisions is determined by the 

resistor uncertainties and by the uncertainty in the thermistor 

resistance change with temperature. 
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In the calculations section, the relationship between 

the chan~e in temperature and the change in chart reading was 

shown to be 

D. T 
4 oc. 

= -(7.4 x 10- scale division)(6scale divisions) 

Expanding the constant so that the individual factors and 

their uncertainties are shown, equation (172) gives 

2(5000 +50 ohm)(66800 +700 ohm)2(12 x lo-3 volt) 

(172) 

.6.T = (15 +.l-volt)(5000 +50-ohm) (100)(-2870 +60 ohms) x 

(.6. scale division) 

l6. scale divisions] 

.6.T = (-7.4 x 10-4 + (8.4%) 1/2] [D. scale divisionSJ 

6 T = (-7. 4 x 10-4 +3%] [D. scale divisions] 

6T = ((-7.4 +.2) lo-4] [.6.scale division~ 

(173) 

(174) 

(175) 

(176) 

(177) 

In addition to the component uncertainties, the 

temperature recording had a random variation of +l scale 

division which had the appearance of electrical noise. The 

average change in the chart reading was 15 scale divisions 

making the uncertainty +6.6% with a minimum uncertainty of 

+7 x 10-4 °C. 

The uncertainty in the temperature recording is 

.6. T = -7. 4 x 10-4 x D. scale divisions 

.6.T 

+ ( (3%)2 + (6.6%) 2 ) >112 

= (-7.4 x 10-4 :!:_ (9 + 44)
1

12Jx 

[A scale division$] 
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6T = [-7 • 4 x io-4 +7] 6 scale divisions 

.6.T = [-(7.4 !_0.5) x 104 °C.] 6 scale divisions 

(180) 

(181) 

The results of the uncertainty analyses are summarized 

in the following table. 

Control 
Change System 

40 
ohm 
Set 

Point 

40 
ohm 
Set 

Point 

13.5 
cal. I 
min. 
Load 

Change 

10 
cal./ 
min. 
Load 

Change 

Propor­
tional 
plus 

Integral 

Propor­
tional 

Propor-
tional 

plus 
Integral 

Propor-
tional 

TABLE III 

C~lculated 
Response Calculated Observed 

Response DependentOn ~~R~e~s~p~o~n~s~e~ 

1 
RH 

1 
KH + UA 

KcKf 

No long 
term 

deviation 
from 

set point 

1 
KcKf KH + UA 

-(1.53 +.08) -(1.63 +.11) 
10-2 °c. io-2 °c. 

-(1.52, +.08) -(l.63 +.11) 
10-2 °c. io-2 °c. 

0 (0.0 +.07) 
lo-2°c. 

(.79 +.09) (.65 +.07) 
lo-2-0 c. lo-20c. 

Transient Response Decay and Period of Oscillation for 
Proportional plus Integral Control 

Are 
values 
within 
experi-
mental 

uncer­
tainty? 

Yes 

Yes 

Yes 

Yes 

The transient response decay and period of oscillation, 

as calculated from the system ,control equation, were e-0.75t 

and 5,8 minutes respectively. The effect of changes in the 

proportional gain and integrator time constant can be shown 

graphically with a root locus plot. As discussed earlier when 
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the denominator of the closed loop system equation, 1 + G, is 

set equal to zero, the result is called the characteristic 

equation of the closed loop system. The roots of the 

characteristic equation determ~ne the form of the system 

response to a forcing function. A root locus plot is a 

graphical display of the value of the roots with changing 

proportional gain •. A root locus plot for the closed ,loop 
' t .. 

characteristic equation of the thermostat is shown in 

Figure 30. The plot was developed for proportional plus 

integral control in the following manner: 

1. The open loop zeros and poles are determined from 

the open loop transfer f~nction (equation 182) 

G = KN = K (s - Z1)(s - Z2)(S - Zm) 
D (s - P1)Cs - p2)(s - Pm) 

(182) 

K (s + 1.15) 
G = s (s + 0.0076) (183) 

There is a zero located at -1.15 and poles located at zero 

and -0.0076. 

2. Because there are two poles, there are two 

branches to the location plot~ 

3. The number of asymptotes is equal to the number of 

poles minus the number of zeros, or in this case, one. 

angle the asymptote makes with the real axis is 

~ = 
1)"'(2K + 1 
n - m 

CK = 0,1,2· •• ' n-m-1) 
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4. The real axis is a portion of the locus between 

0 and -0.0076 and from -1.15 to minus infinity. 

5. The locus breaks away from the real axis at 

2. _1-=- = 2 1 
s - z s - p (186) 

s + 
1 

= 1.15 
1 

+ s + 
1 

s - 0 .0076 (187) 

s2 + .0076 = s2 + l.157s + .087 + s (s + 1.15) (188) 

o = s 2 + 2.30s + .0087 

s = 

s = 

-2.30 + (5.29 - (4)(.0087))1/2 
2 

-2.30 + (5.255)112 

'.I 

-2.30 +2.293 
s = ! 

s - -2.296, -.003 

6. The location of the locus as it leaves the real 

(189) 

(190) 

(191) 

(192) 

(193) 

axis is determined by selecting a trial point and determining 

if the phase angle equation is satisfied. 

1: (s + ~(s - Zm) 

= (2i + l)?r (194) 

where 

<}: is measured from the real axis to the line 

connecting the trial point and the pole or zero. 

i is any positive or negative integer including zero. 
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For trial point -0.2, + 0.64j 

? 
34 - [106 + 108] = (2 i + l)fr (195) 

? 
34 - 214 = (2 i + l)'fr' (196) 

-180° = (2i + 1)1/ for i = -1 (197) 

After several points on the root locus have been plotted, 

the root locus can be sketched. The proportional gain at any 

point on the locus can be found from the magnitude criteria 

K Is - z1f js - z2j 
Is - P1j Is - P2/ 

... js - Zml -
/s - Pmj -

1 

The distances may be measured directly with a ruler in 

units consistent with those used on the graph axis. 

For the point -.2, +.64j 

K 1.15 
.68 .68 = 1 

K = (.68)(.68) 
(1.15) 

K = 0.40 

The pole at zero is inherent with integral control. 

The location of the pole at 0.0076 was determined by UA , 
Cpm 

(198) 

(199) 

(200) 

(201) 

(202 

and the location of the zero at 1.15 was determined by the 

reciprocal of the integrator time constant. 

From the root ·locus diagram it can be seen that only 

a large change in the proportional control constant would 

appreciably change the exponential decay (position on x axis) 

or cycle time (position on y axis). 

The uncertainty in the exponential decay factor and 

cycle time can be determined from the factored control equation. 
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A Laplace transform of the form 

a + jb + a - jb 
s + K1 + jK2 s + K1 - jK2 

inverts to an equation of the form 

e-K1t [ -2acosK2t + 2bjsinK2tJ , 

The exponential decay factor is determined by K1, and the 

cycle time is determined by K2• 

In the present case K1 and K2 were determined by 

factoring the equation 

where 

2 1 1 1 
s + Kf KcKH cpm s + Kf KcKH cpm ;:y- = 0 

I 

Kf - final control element constant 
cal. = -75.9 +5 volt 

Kc = controller constant 
2 volt = (0.64 !·04) 10- ohm 

KH = feed back constant 
ohm = (-2610 +100) ~ 

1 --

1 ---
TI 

[(specific heat)(mass of bath)]-l 
1 

= 840 +120 

Integrator time constant 

1 
= 0.87 !·03 • 

1 1 
The term Ki is equal to 2 (KfKcKH cpm>· The uncertainty 

in K1 is 
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(204) 

(205) 



K1 = 1 2 (-75.9 !5)(0.64 !·04) io- 2 

(-2610 +100)(840 +85)-1 (206) - -
K1 1 x io- 2 ><2610><~> = '2" (75.9)(.64 (207) 

+ [(6.6%)2 + (6.2%)2 + (3.8%)2 + (10%) 2J112 

K1 = .754 +14% 

K1 = .754 +.11, 

The uncertainty in the exponential decay is then as 

follows: 

exponential decay = Y = e-K1t 

uncertainty in Y =±y = [(~a~~lt) 2 Ca2 K)J 112 

with K1 = 0.7547 "9K1 = +0.11 

+y = e-0.754t(-t)(+.ll) 

at t = 1 minute 

exponential decay = 0.47 +0.05 

at t = 3 minutes 

exponential decay = 0.104 !0.03 • 

(208) 

(209) 

(210) 

(211) 

(212) 

(213) 

(214) 

Th~ period of the oscillation is determined by K2 in 

equation (204). The value of K2 was determined by factoring 

the equation 

(215) 

(216) 

where 

66 



c = b 1 
r 
I 

The change in K2 with changes in b and ?"r is 

dK2 = dK2 
a-ab 

0K2 
+ alI"dTI 

The uncertainty in K2 would again be the square root of 

the squared partial derivatives. 

From the previous case 

b = 1. so +14% 

b = 1.50 +.21 

1 - 1.15 +3.5% 7r = 

= 1.15 +.04 

dK2 = ~K2 c?b an 
;n<2 

+ ffroi Tr 

dK2 =.:!:_~[~Cb 2 - 4b C?-r>-1 >-112 

c 2 b - 4 c r1 > -1 >ab 

+ }cb2 - 4b <lr>,-1 >-112 

C-4b)a7'1-1J 
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(217) 

(218) 

(219) 

(220) 

(221) 

(222) 

(223) 

(224) 



dK2 = +~[~(1.so2 4 ci.so><i.1s>J-112 

(2•1.50 - 4·1.15)(+.21) 

+ ~[1.so 2 - 4 c1.so>c1.1s>J~l/2 
(-4·1.50)(+.04) 

1 1 1 ) 112 
= !.2r7<2.2s - s.so 

(3.0 - 4.60) +.21 

+ 1( 1 1/ 
2 2.25 - 6.90) 2 

(-6.00)(.:!:..04)] 

1 1 1 1/ = +1[2<-4.65) 2 (-1.60)(+.21) 

le 1 1/ 
+ ~ -4.65) 2 (-6.00)(.:!:..04)] 

dK2 = [(-.215) 1 12 (-.40)(+.21) 

+ C-.215) 1 12 C+.50)(+.04)] 

The uncertainty in K2 is then 

uncertainty K2 = (.215 (.16)(.04) 

+ .215 (2.25)(.0016)] 1 12 

uncertainty K2 = [. 0016 + .0008] 1 '2 

uncertainty K2 = !.[.OS radians] 

.K2 = 1.08 +.05 radians 

The effect of this uncertainty on the period of the 

oscillation is determined by the change made in the time 

required by the angle function to increase 2 1r radians. 

(1. 08 +.OS)t = 2 'tr' 

t = 2 n- +4.6% 
1. 08 -

t = 5.8 +.3 minutes 
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(225) 

(226) 

(227) 

(228) 

(229) 

(230) 

(231) 

(232) 

(233) 

(234) 

(235) 
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Figure 31. 

Time, Minutes 

Transient Response to Change in Set Point 
Proportional plus integral control temperature chart 
compared with the calculated temperature 



Figure 32. 

Time, Minutes 

Transient Response to Change in Set Point 
Proportional control temperature chart 
compared with calculated temperature 
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Figure 33. 
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Time, Minutes 

Transient Response to a Change in Load 
Proportional plus integral control temperature chart 
compared with the calculated temperature 
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Transient Response to Change in Load 
Proportional control temperature chart 
compared with calculated temperature 



A graphical comparison of the observed and calculated 

temperature response curves is shown in Figures 31 through 34. 

Use as a Calorimeter 

One possible application for the temperature controller 

is as a device for determining heats of reaction or heats of 

physical changes. As a demonstration of the feasibility of 

the procedure, the heat required to melt ice and raise its 

temperature to the temperature of the bath was determined. 

A 25 ml. flask was placed in the oil bath and the bath 

allowed to come to steady state. While the power to the 

heater was being recorded, a small, weighed quantity of ice 

was added to the flask and the change in power requirements 

was recorded. The integral of the difference between the 

steady state power requirement and the power required to 

return the bath to the steady state condition was equal to 

the heats of fusion plus the sensible heat required. 

Three experimental determinations were made to determine 

the accuracy of the method. The calculations and experimental 

data are shown in Table IV. 
; 

Results 

The experimental and calculated heat requirements were 

as follows: 

Trial 

1 
2 
3 

Calculated 

85. 0 cal. 
153.0 
106.0 

Experimental 

83. 3 cal. 
149.3 

87 .• 4 

% Difference 

-2.0% 
-2.4 
-8.0 

The average experimental result was 4.1% below the 

calculated requirement. The calculated results are biased 

69 



to overestimate the heat required since there was no compen­

sation taken for any of the weight being present as surf ace 

moisture. 
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TABLE IV 

Use as a Calorimeter 

Trial l 

~Cal. /Min. 
Cal. /Min. From 

Time To Bath Steady State Cal. 

0 29.0 a.a 0 
0.2 31.0 2.0 0.4 
0.4 37.0 8.0 1. 6 

.Q.6 76.0 47.0 9.4 
Q.8 97.0 68.0 13.6 
l.O 110.0 81. 0 16.2 
l·. 2 113.5 84.5 16.9 
1.4 113.5 84.5 16.9 
1.6 113.5 84.5 16.9 
1.8 106.0 77.0 15.4 
2.0 94.0 65.0 13.0 
2.2 75.5 46.5 9.3 
2.4 63.0 3·4. 0 6.8 
2.6 52.0 23.0 4.6 
2.8 42.0 13.0 2.6 
3.0 36.0 7. 0 1.4 
3.2 32.0 3.0 0.6 
3.4 27.0 -2.0 '-0. 4 
3.6 26. 'o -3.0 -0.6 
3.8 26.0 -3.0 -0.6 
4.0 27.5 -1.5 -0.3 
4. 2, 27.5 -1. 5 -0.3 
4.4 27.5 -1.5 -0.3 
4.6 27.5 -1.5 -0.3 
4.8 29.0 0 0 
5.0 30.0 LO 0.2 
5.2 31. 0 2.0 0.4 
5.4 32.0 3.0 0.6 
5.6 31. 0 2.0 0.4 
5.8 31.0 2.0 0.4 
6.0 31. 0 2.0 0.4 
6.2 32.0 2.0 0.4 
6.4 32.0 2.0 0.4 
6.6 32.5 3.5 0.7 
6.8 33.0 4.0 0.8 
7.0 32.5 3.5 0.7 
7.2 31. 0 2.0 0.4 
7.4 30.5 1~5 0.3 
7.6 ,30.5 l.5 0. 3 
7.8 29.5 0.5 O~l 

8.0 29.0 0 0 

Bath 1. 33, Bath @ 35°C. 
149.3 cal. 

gm. ice to 
Cal. required l. 33 x 80 = 106.5 

1. 33 x 35 = 46.5 
15$.0 cal. 
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TABLE IV - (Continued) 

· T·rt·aT 2 

.6. Cal. /Min. 
Cal./Min. From 

Time To Bath Stead:i: State Cal. 

o.o 3LO 0 0 
0.2 35.0 4.0 0.8 
0.4 46.0 15.0 3.0 
0.6 73.0 42.0 8.4 
a.a 85.0 54.0 10.8 
LO 90.0 59.0 11.8 
L2 87.5 56.5 11.3 
L4 81.5 50.5 10.1 
1.6 70.0 39.0 7.8 
L8 60.0 29.0 5.8 
2.0 54.0 23.0 4.6 
2.2 so.a 19.0 3.8 
2.4 47.5 16.5 3.3 
2.6 40.0 9.a 1.8 
2.8 35.0 4.0 0.8 
3.0 32.0 LO 0.2 
3.2 27.5 -3.5 -0.7 
3.4 26.0 -5.0 -1.0 
3.6 26.0 -5.0 -1.0 
3.8 27.5 -3.5 -0.7 
4.0 27.5 -3.5 -0.7 
4.2 29.0 -2.0 -0.4 
4.4 29.0 -2.0 -0.4 
4.6 29.0 -2.0 -0.4 
4.8 29.0 -2.0 -0.4 
s.o 29.5 -1.5 -0.3 
5.2 31.0 0 a 
5.4 3LO 0 0 
5.6 32.a l.O -0.2 
5.8 32.5 LS -0.3 
6.0 33.0 2.0 -a.4 
6.2 33.5 2.5 0.5 
6.4 32.5 LS 0.3 
6.6 33.0 2.0 0.4 
6.8 33.5 2.5 o.s 
7.0 34.a 3.0 0.6 
7.2 34.5 3.5 0.7 
7.4 33.5 2.5 o.s 
7.6 33.0 2.0 a.4 
7.8 32.0 l.O a.2 

a.a 31.0 a 0 
83.3 cal. 

gm. ice to Bath 0.74 gm., Bath @ 35°C. 
Cal. required 0.74 x 80 = 59.0 

0.74 x 35 = 26.0 
85.o cal. 
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TABLE IV - (Continued) 

Trial 3 

A Cal. /Min. 
Cal. /Min. From 

Time To Bath Steady State Cal. 

o.o 31. 0 0 0 
0.2 36.S 5.5 1.1 
0.4 51. 5 20.5 4.1 
0.6 70.0 39.0 7.8 
o.a 87.S 56.5 11.3 
1.0 97.0 66.0 13.2 
1.2 94.0 63.0 12.6 
1.4 87.5 56.5 11.3 
1.6 81.S 50.5 10.1 
1.8 70.0 39.0 7.8 
2.0 60.0 29.0 5.8 
2.2 51. 5 20.s 4.1 
2.4 48.0 17.0 3.4 
2.6 44.S 13.5 2.7 
2.8 44.5 13.5 2.7 
3.0 40.0 9.0 1.8 
3.2 35.0 4.0 0.8 
3.4 32.0 1.0 0.2 
3.6 29.0 -2.0 -0.4 
3.8 27.5 -3.5 -0.7 
4.0 27.5 .;.3. 5 -0.7 
4.2 27.5 -3.5 -0.7 
4.4 27.5 -3.5 -0.7 
4.6 29.0 -2.0 -0.4 
4.8 30.0 -1. 0 -0.2 
5.0 30.0 -1.0 -0.2 
5.2 30.0 -1. 0 -0.2 
5.4 31. 0 0 0 
5.6 32.0 1.0 0.2 
5.8 32.0 1. 0 0.2 
6.0 32.0 1. 0 0.2 
6.2 32.0 1.0 0.2 
6.4 31.0 0 0 
6.6 31. 0 0 0 
6.8 31. 0 0 0 

97.4 cal. 

gm. ice to Bath 0. 9 3 gm. , Bath @ 35°C. 
Cal. required, 0.93 x 80 = 74.0 

0.93 x 35 = 32.0 
106.0 cal. 
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SUMMARY 

The thermostat was shown to be capable of control to 

within 0.005°C. of the set point over a 16 hr. test. The 

control experienced over 30 minute periods, while investi­

gating transient response characteristics, was within 

+0.0015°C. With proportional plus integral control, the 

thermostat was able to return to +0.0015°C. of the original 

set point after varying the heat added to the bath through 

the stirrer (change in load or regulatory control). During 

the study of set point changes (servomechanism control), the 

repeatability of the temperature control at the same set 

point was also within :!:_0.0015°C. 
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