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Chapter 1

Introduction

1.1 Background

The rise of antibiotic resistance has created a significant burden on healthcare systems around the

world. Antibiotic resistance arises from the increased use of antibiotic drugs and antimicrobial

agents, which kill susceptible bacterial strains, but have little e↵ect on strains that have a mutation

allowing them to survive antibiotic treatment, defined as “resistant” strains. With no non-resistant

bacteria to compete for resources, the resistant bacteria thrives in this environment, continuing

to reproduce and infect the host with an infection that does not respond to traditional antibiotic

treatment.

The US Centers for Disease Control and Prevention estimates that in 2014, on a given day 1 in

25 hospital patients had at least one healthcare-acquired infection (HAI), defined as an infection

secondary to the primary cause of hospitalization [18]. This places an incredible burden on hospital

systems, with an annual estimated cost on US hospitals between $28.4 and $45 billion [49].

A number of strategies have been proposed to tackle the problem of antibiotic resistance, such

as replacing broad-spectrum antibiotic (those that are generalized to kill non-specific strains of

bacteria) treatments with pathogen-specific antibiotics and immunotherapies. However, testing

these strategies with clinical experiments presents a significant time and financial burden, and are

limited by ethical considerations for the human test subjects. Mathematical models, and their



implementation as computer simulation tools, can provide researchers with the means to simulate

controlled experiments designed to assess the e↵ectiveness of these strategies.

1.2 Starting Model

The present work builds upon a hybrid agent-based and mathematical model simulating the dy-

namics between pathogen and the host immune response to infection and antibiotic treatment in an

ICU [5, 6]. The model has two levels: an agent-based inter-host model that models the interactions

between hosts (patients and healthcare workers), with some probability of pathogen transfer for

each interaction. At the in-host level, the model utilizes an ordinary di↵erential equations (ODE)

system to simulate interactions between the invading bacteria and the host’s immune response over

time.

The genesis of the present project lies in seeking to incorporate patient mortality into this hybrid

HAI model. The e�cacy of a given treatment option can be evaluated in its ability to reduce host

death, making mortality rates an important metric to track in experiments. Thus, the goal of

our project is to incorporate host death by pathogen infection into the model. Tissue damage

and organ dysfunction, resulting largely from the body’s inflammatory response to infection, is

a primary cause of death in hospital-acquired infections [53], so we focus on incorporating tissue

damage/dysfunction, defined as the proportion of functionality of a given organ, into the existing

in-host model. While some infections are localized to a single organ, dysfunction in one organ

can cause problems in other organ systems, exacerbating the existing challenges to the host’s

mortality. Also, since conditions such as septic shock (systemic organ failure resulting from an

uncontrolled inflammatory response), are also prevalent in infected patients, we incorporate the

e↵ects of collateral and multiple organ failure into the model.

1.3 Previous Models

Previous attempts have been made to model the consequences of the pro-inflammatory response.

Kumar et al [28] modeled pathogen-immune dynamics, including the feedback e↵ects of two types



of pro-inflammatory mediators. Building on this work, Reynolds et al [45] incorporated inhibition

of inflammation by anti-inflammatory mediators and include a non-specific tissue damage term.

The work of Kheifetz et al [26] models the e↵ects of pro-inflammatory mediators on the levels of

C-reactive protein, a cellular marker of inflammation.

The mathematical models used in this research are just one component of a significantly larger

simulation, and thus we attempt to keep the model uncomplicated to maintain computational ef-

ficiency while preserving biological accuracy. Incorporating one of these models would add, at

minimum, three additional di↵erential equations to the in-host model. Furthermore, none of these

existing models include a concrete measure of tissue damage, which is required for our simula-

tion. Thus, we construct a model incorporating the e↵ects of the immune system’s pro- and

anti-inflammatory responses, including memory immune cells, and quantify tissue damage as a

proportion of organ functionality. Here we present two mathematical models incorporating the

damage caused by the body’s pro-inflammatory response to infection, first in a single-organ sys-

tem, and then in a sequential organ failure model that can be expanded to capture the interactions

and dependencies of multiple organ systems.

In Chapter 2, we present our single-organ model with analysis and numerical demonstrations,

and in Chapter 3 we present our multi-organ model with analysis and an experimental demon-

stration of sequential lung and kidney failure. In Chapter 4 we discuss our conclusions and future

directions.



Chapter 2

Single Organ Damage Model

2.1 Biological Background

The body’s response to infection is a highly complex process, some dynamics of which are still not

fully understood. The goal of the immune response is to rid the body of antigens and restore the

a↵ected area to a healthy state through the pro-inflammatory response, but this response often

comes with negative consequences in the form of local tissue damage.

The pro-inflammatory response is initiated by a “cytokine cascade,” in which cytokines, small

proteins that release chemical signals to incite responses in other cells, are released in the infection

site. The most prominent cytokines in the pro-inflammatory response, including Interleukin-1 (IL-1)

and Tumor Necrosis Factor-↵ (TNF-↵), are released in the infection site, initiating the local pro-

inflammatory response [9]. The pro-inflammatory response is characterized by increased vascular

permeability, increased leukocyte (white blood cell) adhesion to tissues, and the release of cytotoxic

(cell-killing) neutrophil granules [11]. While the goal of the pro-inflammatory response is to remove

antigens and necrotic cells from the infection site, this response can result in impaired function and

cell death in healthy proximal tissues [57].

The pro-inflammatory action of the cytokine cascade is coupled with the release of anti-inflammatory

cytokines (AIC), which help to mitigate the damage caused by the pro-inflammatory response. The

AIC response has two primary mechanisms: IL-10, the predominant AIC in the immune response,



regulates the production of pro-inflammatory cytokines, while IL-22 promotes local tissue recovery

([11], [52], [39]).

When the pathogen threat has been su�ciently controlled, the immune system begins to return

to its healthy state. Most of the immune responders targeted to the pathogen decay naturally,

while some are transferred into the “memory” state. The memory state is characterized by a cell’s

decreased size, lack of proliferation, and reduced metabolic rate [61]. If a secondary infection by

the same pathogen is detected, these cells serve to quickly activate local cytotoxic immune cells, in

order to more quickly and e↵ectively mount an immune response to the infection, a process known

as the “immunological memory” property [13].

Our mathematical model of damage to a single organ caused by the immune response to a

pathogen captures the dynamics of both pro- and anti-inflammation triggered by the immune

response to pathogen, as well as the transfer of activated immune cells to the memory state in the

case of pathogen clearance.

2.2 Proposed Model

2.2.1 Starting Model

The starting in-host di↵erential equations model for this project is from Caudill ([4]), and models

the change in concentration of pathogens P and active immune responders I over time, t.

dP

dt
=

aP

�
� bPI

�(E + P )
, P (0) = P0, (2.1)

dI

dt
=

p
�cP

K + P
+

p
�qI

B + I
� rI

�
, I(0) = I0. (2.2)

The terms on the right hand side of (2.1) represent natural pathogen growth and pathogen

removal by immune responders, respectively. The terms in (2.2) represent the recruitment of im-

mune cells when the presence of a pathogen is detected, additional recruitment e↵ects by activated

immune repsonders (a process known known as autocatalysis), and natural immune cell decay,

respectively. The dimensionless parameter � is known as the immunocompetence parameter (or



IC-parameter), and represents an individual host’s level of immunocompetence, with a large �

representing a stronger immune response. As demonstrated in [4], the model (2.1)-(2.2) has the

following key properties:

• positivity of solutions, i.e. if P0 > 0 and I0 > 0, then, for every t > 0, P (t) � 0 and I(t) � 0,

• the existence, under mild conditions on the coe�cients of (2.1)-(2.2), of two constants 0 <

L1 < L2, for which

– 0 < � < L1 =) lim
t!1

P (t) = +1, i.e. the pathogen grows unboundedly;

– L1 < � < L2 =) 0 < lim
t!1

P (t) < 1, i.e. the pathogen growth is controlled, but the

pathogen is not eliminated;

– L2 < � =) lim
t!1

P (t) = 0, i.e. the pathogen is eventually eliminated.

So, by varying the IC-parameter, otherwise identical patients can experience all three

of the potential treatment outcomes, indicating that the IC-parameter is an accurate

measure of immune strength.

• the immunologic memory property, in which a host that has previously cleared the pathogen

invasion is able to mount a faster, stronger immune response upon secondary infection by the

same pathogen.

In order to model pathogen-induced tissue damage, it is necessary to modify the existing

pathogen-immune model. As part of the immunologic memory property, the model (2.1)-(2.2)

predicts that upon pathogen clearance, a positive number of immune responders remain in the

host. This presents an issue, as the “autocatalysis term” would result in continued recruitment

of additional immune responders despite the cleared pathogen threat. Thus, we modify the auto-

catalysis term of (2.2) to incorporate a dependence on the presence of a pathogen, which prevents

active immune responders from recruiting additional active immune responders when the pathogen

threat has been cleared. We also modify the pathogen growth term to indicate logistic growth with

a finite carrying capacity, P
max

, resulting in the following modified model:



dP

dt
=

aP

�

✓
1� P

P
max

◆
� bPI

�(E + P )
, P (0) = P0, (2.3)

dI

dt
=

p
�

✓
c+

qI

B + I

◆
P

K + P
� rI

�
, I(0) = I0. (2.4)

2.2.2 Memory Immune Response

Next, we di↵erentiate the model’s immune responder cells into two categories: active immune

cells, which are actively combatting the pathogen threat, and memory immune cells, which have

been converted into an inactive state to reinitiate an immune response in the case of a secondary

infection. (These dynamics are illustrated in Figure 2.1.) We re-task the variable I to represent

the active immune responders and we introduce a new variable, Q to denote memory immune cells.

The updated pathogen-immune dynamics from Fig. 2.1 are expressed in Equations (2.5)-(2.7):

dP

dt
= (a)� (b), (2.5)

dI

dt
= (c) + (d) + (e)� (f)� (g), (2.6)

dQ

dt
= (g)� (h). (2.7)

The terms (a), (b), (c), (e), and (f) remain the same as the model (2.3)-(2.4). As memory immune

cells do not reproduce, the terms in (2.7) indicate only the transfer of active immune cells to the

memory state when pathogen concentrations are low (g) and natural cell decay (h). The activation

of quiescent immune cells to the active state is represented by (d). The bouncing arrow indicates

a dependency on both Q and P being non-zero for this transfer to occur, as there must be both a

pathogen threat and existing memory cells for the immunologic memory property to apply. The

following 3⇥3 ODE system of pathogen, memory immune cell, and pathogen immune cell dynamics

follows from (2.5)-(2.7):



Figure 2.1: Box diagram of the pathogen-immune model incorporating active (I) and memory (Q)
immune cells.



dP

dt
=

aP

�

✓
1� P

P
max

◆
� bPI

�(E + P )
, P (0) = P0, (2.8)

dI

dt
=

p
�

✓
c+ ⌫Q+

qI

B + I

◆
P

K + P
� rI

�
� uIe��P , I(0) = I0, (2.9)

dQ

dt
= uIe��P � Q, Q(0) = Q0, (2.10)

2.2.3 Anti-Inflammatory Mediators

As described in 2.1, AIC’s such as IL-10 and Il-22 are critical in mitigating the damage caused by

the pro-inflammatory response to infection. Since these are produced as part of the larger cytokine

cascade, the concentration of AICs is dependent on the overall size of the immune response, and

thus we denote AICs with the term C(I), a function of the active immune cells. Since, for small

concentrations of active immune responders, the inhibitory e↵ects of AICs are negligible, while

at large concentrations the AIC population will be proportional to the active immune responder

population, we propose the following continuous piecewise function:

C(I) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 if I  I
c

� �
I

µ

4�I
(I � (I

c

� �
I

))2 if I
c

� �
I

< I  I
c

+ �
I

µ(I � I
c

) if I > I
c

+ �
I

. (2.11)

When the concentration of activated immune responders surpasses a threshold value, I
c

, the AICs

are produced at a rate proportional to the number of active immune responders, and below this level

the concentration is 0. When I is in the �
I

-neighborhood of I
c

(for a small, positive �
I

), we model

the concentration of AICs with a connecting polynomial function in order to ensure continuity.



Figure 2.2: Box diagram of the dynamics of tissue damage caused by the active immune response,
and regulated by anti-inflammatory immune cells (C(I)).

2.2.4 Tissue Damage

Building on the system described by (2.8) - (2.11) and the dynamics described in Fig. 2.2, we can

develop our tissue damage model. With the terms described by arrows (a), (b), (c), (d), (e), (f),

(g), (h), and (m) in Fig. 2.2 the same as in sections 2.2.2 and 2.2.3, we can introduce our tissue

damage variable, M , where:

dM

dt
= (i)� (j) + (k). (2.12)

M represents the proportion of organ dysfunction, with M = 0 indicating a fully functional

organ and M = 1 indicating an organ with total tissue dysfunction. Equation (2.12) represents the

rate of damage to the tissue, with damage resulting from the presence of active immune responders

and regulated by the presence of AICs (i). This model assumes all tissue to be fully recoverable,

and thus tissue repair is modeled with a baseline rate (j), with enhanced recovery in the presence

of AICs (k).

Thus, our final model of single-organ inflammatory tissue damage due to a pathogen is as



follows:

dP

dt
=

aP

�

✓
1� P

P
max

◆
� bPI

�(E + P )
, P (0) = P0, (2.13)

dI

dt
=

p
�

✓
c+ ⌫Q+

qI

B + I

◆
P

K + P
� rI

�
� uIe��P , I(0) = I0, (2.14)

dQ

dt
= uIe��P � Q, Q(0) = Q0, (2.15)

dM

dt
=

kI

A+ C(I)
�
✓
↵+

�C(I)

N + C(I)

◆
M, M(0) = M0, (2.16)

where,

C(I) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 if I  I
c

� �
I

µ

4�I
(I � (I

c

� �
I

))2 if I
c

� �
I

< I  I
c

+ �
I

µ(I � I
c

) if I > I
c

+ �
I

. (2.17)

2.3 Model Analysis

Given that the IVP system (2.13)-(2.16) is intended to model the interactions between four physical

quantities, it is important to verify that solutions of this system cannot become negative.

Theorem 1. If P0, I0, Q0, M0 > 0, then the solution (P (t), I(t), Q(t),M(t)) of the IVP system

(2.13)-(2.16) must satisfy P (t) > 0, I(t) > 0, Q(t) > 0, and M(t) > 0 for every t > 0.

Proof. Assume (by way of contradiction) that, for some t > 0, at least one of these inequalities

hold: P (t)  0, I(t)  0, Q(t)  0, or M(t)  0. Then, there exists a first t-value, t0, for which

P (t0)I(t0)Q(t0)M(t0) = 0. Then, since P (t) � 0, I(t) � 0, Q(t) � 0 and M(t) � 0 for 0  t  t0,

the four functions



 
P

(t) ⌘ a

�

✓
1� P

P
max

◆
� b

�

I(t)

E + P (t)

 
I

(t) ⌘
p
�

q

B + I(t)

P (t)

K + P (t)
� r

�
� ue��P (t)

 
Q

(t) ⌘ �

 
M

(t) ⌘ �
✓
↵+

�C(I(t))

N + C(I(t))

◆

are each continuous on 0  t  t0, and have finite absolute minima ⇤
P

, ⇤
I

, ⇤
Q

, and ⇤
M

, respec-

tively, on this interval. So,

dP

dt
=  

P

(t)P � ⇤
P

P ,

dI

dt
=

p
�(c+ ⌫Q)

P

K + P
+  

I

(t)I � ⇤
I

I ,

dQ

dt
= uIe��P +  

Q

(t)Q � ⇤
Q

Q ,

dM

dt
=

kI

A+ ⇢C(I)
+  

M

(t)M � ⇤
M

M.

Consequently, the Mean Value Theorem yields

P (t0) � P0e
⇤P t0 > 0 ,

I(t0) � I0e
⇤I t0 > 0 ,

Q(t0) � Q0e
⇤Qt0 > 0 ,

M(t0) � M0e
⇤M t0 > 0 ,



which contradicts the assumption that P (t0)I(t0)Q(t0)M(t0) = 0. Thus, P (t) > 0, I(t) > 0, Q(t) >

0, and M(t) > 0 for every t > 0.

Given our interpretation of M(t) as the proportion of the host’s tissue that is damaged at time

t, we must establish conditions on our model to ensure that 0  M(t)  1 for all t > 0. Before

doing so, it will be convenient to prove two simple lemmas.

Lemma 2. If � > 0 and 0  y0  1, then any continuously di↵erentiable function y(t) that satisfies

the di↵erential inequality

dy

dt
 �(1� y), y(0) = y0 , t > 0 ,

must also satisfy y(t)  y0, 8t > 0.

Proof. The initial value problem

d!

dt
= �(1� !), !(0) = y0 ,

has solution !(t) = 1� (1� y0)e��t. It then follows from the Mean Value Theorem that a solution

y(t) of the di↵erential inequality must satisfy, for each t > 0,

y(t)  !(t) = 1� (1� y0)e
��t  1� (1� y0) = y0 .

So, y(t)  y0 8t > 0.

Lemma 3. Consider the auxiliary function �(x) =
�µ

k

✓
A+ µx

N + µx

◆
, with �, µ, k, A,N > 0. If

�µ

k
min

⇢
A

N
, 1

�
� 1, then �(x) � 1 8x > 0.

Proof. A direct calculation reveals that � is an increasing function of x if N > A, and decreasing

if N  A. So, if N > A, we have, for any x > 0,

�(x) � inf
x�0

�(x) = �(0) =
�µA

kN
� �µ

k
min

⇢
A

N
, 1

�
� 1 .

Likewise, if N  A, we have, for any x > 0,



�(x) � inf
x>0

�(x) = lim
x!1

�(x) =
�µ

k
� �µ

k
min

⇢
A

N
, 1

�
� 1 .

Thus, �(x) � 1 8x > 0.

Theorem 4. If M0  1,
kI

c

↵A
 1, and

�µ

k
min

⇢
A

N
,

�
� 1, then the solution M(t) of equation

(2.16) satisfies 0  M(t)  1 8t > 0.

Proof. First, note that the result 0  M(t) is an immediate consequence of Theorem 1. For the

other inequality, we first consider the case where I  I
c

, in which (2.16) becomes

dM

dt
=

kI

A
� ↵M. (2.18)

Since
kI

c

↵A
 1, we have

kI
c

A
 ↵, so (2.18) yields

dM

dt
 kI

c

A
� ↵M  ↵� ↵M = ↵(1�M).

It then follows from Lemma 2 that M(t)  1 8t > 0.

Now, for I > I
c

, (2.16) becomes

dM

dt
=

kI

A+ µ(I � I
c

)
�

✓
↵+

�µ(I � I
c

)

N + µ(I � I
c

)

◆
M

=
kI

c

A+ µ(I � I
c

)
+

k(I � I
c

)

A+ µ(I � I
c

)
� ↵M � �µ(I � I

c

)

N + µ(I � I
c

)
M

 kI
c

A
� ↵M +

k(I � I
c

)

A+ µ(I � I
c

)
� �µ(I � I

c

)

N + µ(I � I
c

)
M . (2.19)

Since
kI

c

↵A
 1, we have

kI
c

A
 ↵, so (2.19) yields



dM

dt
 ↵� ↵M +

k(I � I
c

)

A+ µ(I � I
c

)

✓
1� �µ

k

✓
A+ µ(I � I

c

)

N + µ(I � I
c

)

◆
M

◆

= ↵(1�M) +
k(I � I

c

)

A+ µ(I � I
c

)
(1� �(I � I

c

)M) , (2.20)

where � is the function defined in Lemma 3. From that result, we know that �(I�I
c

) � 1 8 I > I
c

,

so 1� �(I � I
c

)M  1�M . Inequality (2.20) now yields

dM

dt
 ↵(1�M) +

k(I � I
c

)

A+ µ(I � I
c

)
(1�M) =

✓
↵+

k(I � I
c

)

A+ µ(I � I
c

)

◆
(1�M) .

So, by Lemma 2, M(t)  M0  1 8 t > 0.

2.4 Parameter Estimation

This model is intended to model human body to evaluate treatment strategies, so it is important

to ensure that the parameters are reflective of actual physiological conditions. We embarked on

an extensive literature search in order to estimate physiological values for our model parameters.

While some of these parameters (e.g. pathogen growth rates) are widely available in the scientific

literature, most required creative searching and data manipulation in order to determine a biolog-

ically relevant estimate. While the process for finding our parameters varied based upon the ease

of quantifying each individual parameter, our general search methodology was as follows:

1. Determine a reasonable biological interpretation of the parameter.

2. Identify quantifiable proxies for the dependent variables associated with the parameter.

3. Identify a “dream data set” relating the proxies from Step 2.

4. Search published models for parameters corresponding to ours, and investigate their values.

(Note: this step is not usually beneficial, but is still worth doing, because, if successful, it can



save a great deal of time.)

5. Search the biological and medical literature for papers containing data matching the “dream

data set.” (Note: frequently, this involves synthesizing multiple data sets from multiple

sources.)

6. Derive an estimate for the parameter from the given data set.

It would be impractical to present the details of every parameter to which we applied this

approach. Instead, we illustrate our method by describing the derivation of our estimates for the

parameters µ and I
c

from Equation (2.17) (See Section 2.2.3 for the relevant biological details.):

1. µ represents the rate of AIC production per unit of I, the concentration of active immune

responders, while I
c

is the active immune responder threshold, beyond which the AIC-

concentration becomes physiologically relevant.

2. We want data relating C(I) to I. We use IL-10, the most common AIC as our proxy for

C(I). We identify I with the concentration of CD14+ cells in the blood. (CD14 serves as a

receptor for bacterial antigens and is expressed exclusively on immune responder cells.)

3. Based on the identification in Step 2, one “dream data set” to determine both µ and I
crit

would be in vivo data for IL-10 concentration vs. CD14+-cell concentration.

4. We searched the models described in Section 1.3, but found no parameters that corresponded

biologically to µ or I
c

.

5. After reviewing many biomedical research papers, we found one by Paats et al ([40]) with

measures of IL-6 (a pro-inflammatory mediator) and IL-10 (our anti-inflammatory proxy)

versus pneumonia severity index (PSI), a score used to quantify a patient’s 30-day risk of

mortality from pneumonia ([17],[16]). We also found work from Louis et al ([31]) which

provided data relating TNF-↵ concentrations to CD14+ cells, which allowed us to convert

from pro-inflammatory cytokine measurements to an estimate of I (see Fig. 2.3).



Figure 2.3: Diagram of the process to convert data from Louis et al ([31]) and Paats et al ([40]), in
order to estimate a relationship between CD14+, our proxy for I and IL-10, our proxy for C(I).

6. We began by using the Louis et al data to determine a conversion between CD14+ (our proxy

for I) and IL-6 (our proxy for C(I)). Figure 3a. in the Louis paper plotted TNF-↵ versus

CD14+ and Figure 2c. plotted TNF-↵ versus IL-6. We fit a line to each of these plots to

return an equations for TNF-↵ as a function of IL-6 and as a function of CD14+. Setting

these two equations equal to one another, we determined the following relationship between

IL-6 and CD14+:

IL-6 = 303 CD14+� 42.12. (2.21)

Next, we repeated the process for the the Paats data. Figure 4a. from Paats plotted logIL-6

vs. PSI and Figure 4b. plotted logIL-10 vs. PSI. After determining a linear relationship for

both data sets, we fit a linear regression to the data, resulting in the following formulas:

y1 = 0.015 ⇤ PSI� 0.694 (2.22)

y2 = 0.0148 ⇤ PSI� 0.4408, (2.23)

where,

y1 = log IL-6 and

y2 = log IL-10.



Solving (2.22) and (2.23) for PSI and setting both sides equal to each other, we get the

following relationship:

log IL-10 = 0.9867 ⇤ log IL-6� 1.1255,

and thus,

IL-10 =
IL-6

101.1255
.

Then, using the formula from (2.21), we get:

IL-10 =
303 CD14+� 42.12

101.1255
= 22.7(CD14+� 0.139),

which becomes for our model:

C(I) = 22.7(I � 0.139).

This matches the model for C(I) in (2.17), and thus we have µ = 22.7 and I
c

= 0.139.

Repeating this process for the other model parameters, we were able to generate the estimates

shown in Table 2.1, which are used for our numerical experiments in Section 2.5. This was an

incredibly time consuming process, and many parameters were simply not quantifiable in the current

scientific literature. While we were able to find some biologically relevant estimates, in many cases

we simply must estimate our parameters in order to fit the desired final behavior of the system.

2.5 Numerical Experiments

Numerical experiments are a useful tool in demonstrating key properties of our model. In par-

ticular, numerical simulations can be used to determine if the model (2.16)-(2.17) maintains the

key properties of the Caudill model and to simulate experiments that compare patient outcomes

under di↵erent treatment protocols. To this end, we determine whether the “immunologic mem-

ory” property is retained in our new model, and investigate the incorporation of three di↵erent

treatment interventions into this model: antibiotics, anti-inflammatory drugs, and infusion with



Table 2.1: Model parameter values used in the numerical demonstrations in Section 2.5.
Model

Parameter Description (units) Equation Value Source

a Per capita bacterial growth rate (min�1) (2.13) 0.2 [22]

P
max

Maximum bacterial concentration (P -cells/mL) (2.13) 107 [22]

� Immunocompetence parameter (unitless) (2.13), (2.14) 0.8 [4]

b Bacterial death rate due to immune response (P -cells/(I-cell ·min)) (2.13) 0.0458 [3]

E Immune kill rate saturation constant (P -cells/mL) (2.13) 1.0 estimated

c Rate of pathogen-induced immune responder activation (P -cells/(mL ·min)) (2.14) 7.0 estimated

K Pathogen-induced immune activation saturation constant (P -cells/mL) (2.14) 100.0 estimated

q Rate of autocatalysis-induced immune responder activation (I-cells/(mL ·min)) (2.14) 0.6 estimated

B Autocatalysis-induced immune activation saturation constant (I-cells/mL) (2.14) 1.0 estimated

r Immune responder decay rate (min�1) (2.14) 0.05 [44]

⌫ Rate of enhanced immune responder activation (2.14) 10.0 estimated

due to memory cells (I-cells/(Q-cell ·min))

u Maximum conversion rate of activated immune responders (2.14), (2.15) 0.5 estimated

into memory cells (Q-cells/(I-cell ·min))

� Parameter governing conversion rate of activated (2.14), (2.15) 0.5 estimated

immune responders (mL/(P -cell))

 Memory cell decay rate (min�1) (2.15) 0.01 estimated

anti-inflammatory cytokines, and the resulting level of tissue damage that follows.

For the purpose of this demonstration, we will focus specifically on bacteria-induced pneumonia,

and its impact on respiratory function. Before we can proceed, we must describe precisely what

the tissue damage/dysfunction variable M (from model equation (2.16)) represents in this context.

The P/F-ratio, defined as the ratio of the partial pressure of arterial oxygen to the fraction of

inspired oxygen, is used by a number of lung-function scoring systems, including the widely-used

Sequential Organ Failure Assessment (SOFA) score ([56]) and the Lung Injury Score (LIS) ([37]),

to quantify lung function. Larger P/F-ratio values indicate greater lung functionality, with values

in the 400-500 range being typical for healthy adults [58]. Assuming a maximum P/F-ratio of

500mmHg, we define M in terms of the P/F-ratio like this:

M(t) = 1� P/Fratio

500
. (2.24)

To provide some context for M(t) in this setting, we list, in Table 2.2, the breakpoints used by LIS



Table 2.2: P/F-ratio (abbreviated PF ) ranges used in the lung function subscore of the Lung Injury
Score (LIS), with corresponding values for M(t), as defined in Equation (2.24).

LIS Subscore P/F-ratio Range M(t) Range

0 PF > 300 M(t) < 0.40

1 225 < PF  300 0.40  M(t) < 0.55

2 175 < PF  225 0.55  M(t) < 0.65

3 100 < PF  175 0.65  M(t) < 0.80

4 PF  100 M(t) � 0.80

to distinguish di↵erent levels of lung dysfunction, and the corresponding M(t)-values.

2.5.1 Memory Property Experiment

First, we demonstrate that the model (2.13)-(2.15) retains the immunologic memory property, by

determining the state of two patients who di↵er only in previous exposure to the causative pathogen.

In this model, prior exposure to a pathogen in a host would be indicated by a positive Q0-value.

Using the parameters from Table 2.1, an initial pathogen load P0 of 100 P -cells/mL and an initial

active immune responder load of 0, we ran experiments in two hosts. The “immunologic memory”

host had an initial memory cell concentration (Q0) of 200 Q-cells/mL, while the “no memory” host

had Q0 = 0.

The results from this experiment are shown in Figure 2.4. The “immunologic memory” host

is able to clear the pathogen threat (plot (a)) while the otherwise identical “no memory” host’s

immune system is overwhelmed by the pathogen (plot (b)). The presence of memory immune

cells in the “immunologic memory” host allows the active immune responder population to rapidly

increase, creating a strong defense against the pathogen (plot (c)), while the “no-memory” host

takes a longer time to build an immune response (plot (d)), and is subsequently unable to combat



Figure 2.4: Results of immunological memory property demonstration: (a) Plot of pathogen con-
centration vs. time for “immunologic memory” property host, (b) plot of pathogen concentration
vs. time for “no memory” host, (c) plot of active immune responder concentration vs. time for
“immunologic memory” property host, (d) plot of active immune responder concentration vs. time
for “no memory” host.

the pathogen threat (plot (b)).Therefore, we confirm that the “immunologic memory” property is

maintained in the updated model (2.13)-(2.15).

2.5.2 Antibiotic treatment

Following [5, 6], we incorporate the pathogen-killing e↵ect of an antibiotic by augmenting (2.13)

with an additional removal term of the form

d(A� ⇤)P ,

where A = A(t) gives the concentration of the antibiotic in the blood at time t, and the function

d(A� ⇤) is defined as

d(A� ⇤) =

8
>>>><

>>>>:

0 if A� ⇤  0

v(A�⇤)
1+w(A�⇤) if A� ⇤ > 0

. (2.25)



The constant ⇤ in (2.27) is the minimum inhibitory concentration (MIC) of the antibiotic with

respect to the pathogen. The MIC represents the minimum antibiotic concentration required to

prevent the pathogen population from growing, and is a standard measure of the level of suscep-

tibility of the pathogen to that antibiotic. The constants v and w in (2.25) are characteristics

of the pathogen-antibiotic combination. Note that the piecewise structure of (2.25) results in the

antibiotic having no killing e↵ect unless the antibiotic concentration A exceeds the MIC ⇤.

We model the time-evolution of the antibiotic concentration A via standard pharmacokinetics

models. (See, e.g., [19].), as follows: For a single dose of G mg of a drug administered via bolus

injection (i.e. injected instantaneously directly into the bloodstream) at time t0, the amount A(1)(t)

of this dose that remains in the bloodstream at any later time t may be approximated by

A(1)(t) = Ge�h(t�t0) , t � t0 ,

for some positive constant h. If additional doses of the same amount G are given, each T hours

after the preceding one, then the amount of the jth dose (given at time t0+(j� 1)T ) that remains

at a later time t will be

A(j)(t) = Ge�h(t�(t0+(j�1)T )) , t � t0 + (j � 1)T . (2.26)

Noting that the total concentration A(t) of drug in the bloodstream at time t is the sum of the

amounts remaining from all previous doses, divided by the patient’s blood volume V , we have the

model

A(t) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 if t < t0

1
V

P
h
t�t0
T

i

j=1 A(j)(t) if t0  t < t0 + (J � 1)T

1
V

P
J

j=1A
(j)(t) if t � t0 + (J � 1)T

, (2.27)

where J is the total number of doses given, and the square brackets represent the ceiling function



(i.e. the smallest integer that is not less than the argument inside the brackets). So, we incorporate

antibiotic usage into our tissue damage model (2.13)-(2.17) by replacing (2.13) with

dP

dt
=

aP

�

✓
1� P

P
max

◆
� bPI

�(E + P )
� d(A� ⇤)P, P (0) = P0 , (2.28)

and incorporating equation (2.27). The antibiotic-kill term is additive � if the patient is being

treated with, say, two di↵erent antibiotics, then the removal term �d(A�⇤)P is replaced by a pair

of terms �d1(A1 � ⇤1)P � d2(A2 � ⇤2)P , where A
J

, ⇤
j

, and d
j

correspond to antibiotic j. (The

functions d1 and d2 both correspond to equation (2.25), but with di↵erent parameter values.)

2.5.3 Use of anti-inflammatory drugs

When inflammation leads to tissue and organ damage or dysfunction, a patient may be given

one or more medications intended to reduce inflammation to less-destructive levels. Here, we

focus on non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, aspirin, and naproxin.

Assuming that the drug is administered in the same fashion (multiple equal doses given at fixed

time intervals) as the antibiotic in the previous subsection, and assuming that this NSAID follows

the same pharmacokinetics as the antibiotic, then we can use equation (2.27) (suitably re-labeled)

to model the NSAID concentration D(t) over time. We model the e↵ects of the NSAID as a

reduction in the population size of the activated immune responders I. So, we incorporate NSAID

usage into our tissue damage model (2.13)-(2.17) by replacing (2.14) with

dI

dt
=

p
�

✓
c+ ⌫Q+

qI

B + I

◆
P

K + P
� rI

�
� uIe��P � pDI

L+D
, I(0) = I0 , (2.29)

where

g(D) =
1

V

✓
1� D

U +D

◆
, (2.30)

and adding equation (2.27) with A(t) replaced by D(t).



2.5.4 Infusion with anti-inflammatory cytokines

Within the past two decades, researchers have investigated the use of anti-inflammatory cytokines

(AIC) (principally Interleukin-10, or IL-10) as therapeutic agents for inflammation-based health

challenges, including psoriasis ([43]), inflammatory bowel disease ([30]), and Crohn’s disease ([48]).

IL-10 has also been investigated as a means to mediate the negative impact of excessive inflam-

mation consequent to viral (e.g. hepatitis C [38]) and bacterial (e.g. Pseudomonas aeruginosa

pneumonia [51]) infections. Here, we will model AIC therapy as a series of instantaneous infusions

of AIC that raise the bloodstream concentration of AIC from C(I) to C(I) + �(t). Assuming mul-

tiple administrations of the same dosage at fixed time intervals, and assuming first-order removal

kinetics, we can model the time-evolution of �(t), representing the additional AIC concentration

due to this therapy, with equation (2.27) with A(t) replaced by �(t). Then, we incorporate AIC

therapy into our tissue damage model (2.13)-(2.17) by replacing (2.16) with

dM

dt
=

kI

1 + ⇢(C(I) + �(t))
�
✓
↵+

�(C(I) + �(t))

N + (C(I) + �(t))

◆
M, M(0) = M0 , (2.31)

and adding equation (2.27) with A(t) replaced by �(t).

2.5.5 Treatment Experiments

E↵orts to minimize the rise and spread of antibiotic-resistant (AR) bacterial pathogens have fo-

cused, in large part, on the use of broad-spectrum antibiotics, i.e. drugs that are e↵ective against

a wide-range of bacterial species. Broad-spectrum agents are often used as front-line therapy

for suspected bacterial infections, because the causative agent is rarely known at the time treat-

ment is initiated. The frequent exposure of pathogen populations to these antibiotics increases

the likelihood that genetic mutations, with decreased susceptibility to the antibiotic, will grow to

dominate the pathogen population. To combat this, hospitals often recommend, as an antibiotic

stewardship measure, for clinicians to culture an infection immediately after initial diagnosis, to

identify the causative pathogen species. Once the pathogen is identified, the broad-spectrum an-

tibiotic treatment is discontinued, in favor of treatment with a narrow-spectrum antibiotic that



specifically targets this particular pathogen, with the intention of minimizing the total volume of

broad-spectrum antibiotic used hospital-wide.

In recent years, researchers have proposed an alternative protocol that eliminates the use of

broad-spectrum antibiotics during the period from initial diagnosis to pathogen identification, in

favor of anti-virulence drugs during this initial treatment period [8, 42]. The idea is to minimize

the negative impact of the pathogen’s presence during the initial treatment period, to buy time for

two things to happen: (i) pathogen identification results to become available, and (ii) the patient’s

immune response to activate against the infection [54]. Anti-virulence agents may work by interfer-

ing directly with vital bacterial functions ([20, 42, 60]), counteracting the e↵ects of bacterial toxins

([15, 24, 47]), or ameliorating the destructive e↵ects of the pro-inflammatory immune response

([51]).

To demonstrate the potential of our model in clinical investigation, we will use it to simulate

an experiment in which three patients, identical in all relevant ways and facing the same bacterial

pneumonia challenge, receive three di↵erent forms of initial therapy during the first 24 hours of

treatment:

• Patient 1 is treated with the broad-spectrum antibiotic imipenem for the first 24 hours.

• Patient 2 is treated with an NSAID for the first 24 hours.

• Patient 3 is treated with AIC infusion for the first 24 hours.

At the 24-hour mark, we assume that the causative pathogen has been identified, and the ini-

tial therapies for all four patients are replaced by treatment with the narrow-spectrum antibiotic

oxacillin.

Studies suggest that P/F-ratio alone, as a measure of hypoxemia, is not a good predictor of

patient outcome in pneumonia, but that a combination of hypoxemia severity and time-duration

of that severity serves as a more e↵ective predictor [35, 59]. Consequently, we will use the quantity

M24(t) ⌘
1

24

Z
t

t�24
M(s) ds , t � 24,



Table 2.3: Model parameter values used in the numerical HAP experiment in Section 2.5.

Model

Parameter Description (units) Equation Value Source

k Rate of development of tissue damage/dysfunction due to (2.16) 2.14 estimated

immune response ((M -cells · pg)/(I-cell ·mL ·min))

A Saturation constant for immune-induced tissue damage (pg/mL) (2.16) 6.0 estimated

↵ Baseline rate of tissue repair/recovery (min�1) (2.16) 0.05 [44]

� Tissue repair/recovery rate enhancement due to (2.16) 0.1 estimated

anti-inflammatory cytokine activity (min�1)

N Saturation constant for tissue repair/recovery enhancement (pg/mL) (2.16) 1.0 estimated

µ Per capita anti-inflammatory cytokine rate of production (2.16), (2.17) 22.7 [31, 40]

by activated immune responders (pg/(I-cell))

�
I

Half-width of transition I-interval for C(I) (I-cells/mL) (2.17) 0.05

I
c

Immune responder concentration corresponding to a critical (2.17) 0.139 [31, 40]

concentration of anti-inflammatory cytokines (I-cells/mL)

V Blood volume of patient (L) (2.27) 5.5

representing a rolling 24-hour average of respiratory damage/dysfunction, as our outcome of interest

for each patient. We simulate each patient’s progress over a 96-hour period with the model pa-

rameter values listed in Tables 2.1 and 2.3, and the treatment parameter values listed in Table 3.1.

Each patient begins with P0 = 104 and I0 = Q0 = M0 = 0.

Numerical implementation of our tissue damage model, and its variants, requires special han-

dling in the event of small pathogen population size. In this setting, our representation of this pop-

ulation by a continuous quantity diverges from reality in the following sense: In reality, complete

pathogen clearance is possible in finite time, whereas, this is not possible in our model system. (The

validity of the “continuous pathogen population” assumption is a decreasing function of pathogen

population size.) As a result, a positive initial pathogen population will remain forever positive

(although infinitesimally small, in the case of e↵ective treatment) within our system. Consequently,

when the immune response returns to its pre-challenge state and when treatments have ceased, the

infinitesimally-small pathogen population will grow, eventually to levels that again trigger an im-

mune response, and, possibly, additional tissue damage. Left unaddressed, this cycle will continue



Table 2.4: User-defined treatment-specific model parameter values used in the numerical HAP
experiment in Section 2.5.5. Abbreviations in the table: BS-AB = broad-spectrum antibi-
otic (imipenem), NS-AB = narrow-spectrum antibiotic (oxacillin), NSAID = non-steroidal anti-
inflammatory drug, AIC = anti-inflammatory cytokine.

Model

Parameter Description (units) Equation BS-AB NS-AB NSAID AIC

G Dosage (mg) (2.26) 500 2000 800 600

h Decay rate parameter (hr�1) (2.26) 0.12 0.12 0.35 0.082

T Time between consecutive doses (hr) (2.27) 4 6 6 8

⇤ MIC of pathogen (µg/mL) (2.25) 1.0 4.0 — —

v AB-induced kill-rate parameter (min�1) (2.25) 0.5 0.6 — —

w AB-induced kill-rate parameter (µg/mL) (2.25) 1.0 1.0 — —

U Saturation constant in NSAID e↵ect (µg/mL) (2.30) — — 12.0 —

in the model system indefinitely. We manage this issue by introducing a thresholding criterion into

our numerical implementation. Specifically, we set a threshold for the pathogen population, and

agree to consider any population size below the threshold as equivalent to zero. Implementation

involves stopping the ODE integration periodically, and comparing the current pathogen popula-

tion size to the threshold value, resetting the former to zero if it is smaller than the latter. For the

experimental results here, we use a threshold of 10�4cells/mL, applied every 9.6 hours.

Numerical results over the first 96 hours of treatment are shown in Figures 2.5 and 2.6. Fig-

ure 2.5 shows M(t) vs. time for each patient, reflecting the time-course of lung function recovery.

All four patients have comparable peak levels of lung dysfunction, but recover at di↵erent rates.

As expected, Patient 1 (broad-spectrum antibiotic initially) recovers lung function most quickly,

while Patient 4 (no treatment initially) takes the longest to recover. Of the remaining two, Patient

3 (AIC infusion initially) fares better than Patient 2 (NSAID initially) for a while, although their

M(t)-profiles are comparable beyond 72 hours, as the transient e↵ects of the initial treatments are

essentially gone. Figure 2.6 shows M24(t) vs. time for each patient, reflecting risk of death or other

complicating event. For each patient, the peak M24-value exceeds 0.55, indicating a moderate-level

of lung dysfunction. However, the length of time at which this threshold is exceeded varies between

patients, with Patient 1 the smallest, followed by Patients 3, 2, and 4.



Figure 2.5: Tissue damage measureM(t) vs. time (t, in hours) for the four patients in the numerical
experiment: Solid = Patient 1, dashed = Patient 2, dotted = Patient 3, and dot-dashed = Patient
4. Horizontal lines represent LIS breakpoints from Table 2.2.

Figure 2.6: Moving 24-hour average M24 of tissue damage measure M(t) vs. time (t, in hours) for
the four patients in the numerical experiment: Solid = Patient 1, dashed = Patient 2, dotted =
Patient 3, and dot-dashed = Patient 4. Horizontal lines represent LIS breakpoints from Table 2.2.



Given the number of model parameters that were estimated by the authors, we must be clear

that these simulation results do not imply any comparative advantages for AIC-infusion over NSAID

treatment as alternatives for initial broad-spectrum antibiotic use. Rather, this work should be

understood as an illustration of the types of controlled experiments that may be simulated with

the present model, given biologically realistic parameter values.



Chapter 3

Multiple Organ Damage Model

3.1 Biological Background

Like most things, organ failure does not occur in a vacuum. Each organ system is interdependent

on the others, and impaired function in one organ can result in widespread damage throughout

the entire body. Even if an infection is localized to one specific organ, the damage inflicted to

that organ can have significant downstream e↵ects in other organ systems. For example, the lungs

are responsible for re-oxygenating the body’s bloodstream, and thus control the oxygen supply

to all tissues and organs. The kidneys, which filter waste from the bloodstream, are critically

important in maintaining healthy organ function. Furthermore, the kidneys require a consistent

oxygen source in order to properly function [21], so lung dysfunction can lead to kidney dysfunction.

Conversely, damage in the kidney releases excess toxins into the bloodstream, causing inflammation

in the lungs, indicating a critical feedback dynamic between the two organ systems. Our goal is

to extend our model to include this feedback between lungs and kidneys, which will allow us to

investigate the e↵ect of antibiotic use on kidney function. The CDC reports that two of the three

most common HAIs include ventilator-associated pneumonia and catheter-associated urinary tract

infections [18], so building our model between these two organ systems is consistent with our overall

goal of studying antibiotic resistance in a hospital setting.



3.1.1 E↵ect of Hypoxemia on Kidneys

Impaired lung function can result in hypoxemia, a state of low blood oxygen, which causes hypoxia,

in which organ tissues become deprived of oxygen [33]. Hypoxemia has widespread e↵ects through-

out the body, including respiratory acidosis, right-sided heart failure, cyanosis, tachycardia, and

edema [33]. In the kidneys, hypoxemia has been shown to cause decreased renal output, decreased

glomerular filtration rate (GFR), and acute tubular necrosis (a condition characterized by the rapid

death of tubule cells, which help transport waste through the kidney) ([33], [50], [10], [2]).

The primary function of the kidneys is to filter waste from the bloodstream. Thus, when this

ability is compromised, the repercussions can be devastating. Kidney function can be measured

clinically in a number of ways. Creatinine, a byproduct of the breakdown of creatine phosphate

during muscle metabolism, is produced by the body at a constant rate. Thus, when kidney func-

tion is impaired, the concentrations of creatinine in the bloodstream or in urine will be elevated,

indicating a problem. GFR measures the rate at which waste (e.g. creatinine, urea) flows through

the kidneys. A low GFR indicates dysfunction, and a possible build up of toxins in the kidneys.

3.1.2 E↵ect of Kidney Damage on Lungs

Evidence suggests that, when respiratory failure and acute kidney injury (AKI) occur together, the

chance of survival is only 20%, principally because impaired lung function impacts kidney function,

and that subsequent kidney damage can also result in further damage to the lungs [14]. By limiting

their ability to filter waste, damage to the kidneys results in increased serum creatinine and urea

[33]. This can result in severe damage to multiple organ systems, including the lung [33]. In

high concentrations, creatinine in the lungs can activate the pro-inflammatory immune response,

resulting in further lung damage [27].

3.2 Proposed Model

Our mathematical model of inflammation-induced tissue damage builds on our single organ damage

model and incorporates the e↵ects of hypoxemia and increased serum creatinine on kidney and organ



Figure 3.1: A schematic diagram between the damage and feedback dynamics of inflammatory lung
and kidney damage.

function. Though our model currently simulates a two-organ system, we allow for the possibility

to incorporate additional organs and their dynamics.

We describe the development of our multi-organ damage model in two parts: first, we copy our

single-organ pathogen-induced damage model and localize it to either organ system (the lungs or

the kidneys). Second, we link the two organ systems through creatinine and arterial oxygen.

We base our two-organ model upon the single-organ model described in Section 2.2. Since the

dynamics of pathogen-induced inflammation described in our single-organ damage model are not

limited to one particular organ, and to allow for the possibility of an infection originating in either

organ, we simply duplicate our 4x4 ODE model. We a�x the subscripts “L” to variables that apply

to the lung and “K” for variables that apply to the kidney:
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where, for X = L or X = K,

C
X

(I) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 if I
X

 I
X,c

� �
X,I

µ

4�X,I
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X

� (I
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X,c

� �
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X
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X,c

+ �
X,I

µ(I
X

� I
X,c

) if I
X

> I
X,c

+ �
X,I

. (3.9)

Next, we turn to modeling the linkage between the lungs and kidneys through arterial oxygen

and creatinine.

3.2.1 Modeling Blood Oxygen

The mechanism of kidney damage due to hypoxemia, as described in Section 3.1 and Fig. 3.1, is due

to decreased arterial oxygen pressure, so we must model the oxygen-level of the blood flowing to

the kidneys. Since the kidneys receive their blood directly from the lungs through the renal artery,



Figure 3.2: Box model of the process of lung-kidney dysfunction due to decreased oxygen levels.

we assume that the partial pressure of the blood leaving the lungs, which we denote O
L

, is the

same as the partial pressure of the blood entering the kidneys. Since, as described in Section 2.5,

we quantify lung function by the PF-ratio, we incorporate the F
i

O2 (fraction of inspired oxygen)

value O
insp

. This will also allow us to investigate the e↵ects of mechanical ventilation, which often

provides patients with an inspired oxygen level higher than atmospheric oxygen.

We derive our function for arterial oxygen pressure by starting with the PF-ratio formula:

PF =
P
a

O2

F
i

O2
=

O
L

O
insp

.

Then, since a patient’s PF-score decreases with lung function, we know that a patient’s PF-

score for a given level of functionality is a decreasing function of M
L

, with some maximum healthy

PF-score (which we denote O
L,healthy

), or:

PF = O
L,healthy

(1�M
L

),

so:

O
L,healthy

(1�M
L

) =
O

L

O
insp

.

Rearranging to solve for O
L

gives us:

O
L

= O
L,healthy

(1�M
L

)O
insp

, (3.10)

which expresses O
L

as an explicit function of lung dysfunction, M
L

.



Figure 3.3: Box model of the process of lung-kidney dysfunction due to increased serum creatinine.

3.2.2 Modeling Creatinine Levels

Since kidney function is measured by the rate of filtration of creatinine and other waste products,

we must incorporate a measure of creatinine levels in the bloodstream. Since increased serum

creatinine levels cause damage by activating the immune response in the lung, we must incorporate

a term for lung creatine, W
L

. Because the elevated creatinine in the body is a result of impaired

kidney function, the additional concentration of creatinine in the lung is dependent on kidney

dysfunction, M
K

. However, we must also account for the time it takes for the creatinine-filled

blood to flow from the kidneys and settle in the lungs by incorporating the time that it takes for

blood to cycle through the organs and return to the lungs, which we denote �t.

Assuming an initial concentration of creatinine W
L,0 at time t = 0, we model the rate of

creatinine clearance with an exponential decay term, with removal dependent on the presence of

active immune responders, I
L

.



dW
L

dt
= � I

L

W
L

, W
L

(n�t) = W
L,n�t

, (3.11)

where

W
L

(0) = W
L,0 , (3.12)

W
L,n�t

= max [R+ ⇢W
L

((n� 1)�t)�W
max

(M
K

((n� 1)�t)) , 0] , (3.13)

W
max

(M
K

) = C
max,0(1�M

K

) . (3.14)

The initial value for the creatinine concentration is recalculated for every �t time step of the

model, starting at time t = 0, based upon the concentration of creatinine in the lungs and the

level of kidney dysfunction one blood cycle earlier. W
max

(M
K

) is a decreasing function of M
K

and

represents the maximum concentration of creatinine that the kidney can process for a given level of

kidney damage. If the creatinine level output from the lungs from the previous blood cycle (denoted

by the term ⇢W
L

((n� 1)�t)) plus the creatinine output from the auxiliary organs (a constant,

R) is greater than the W
max

(M
K

) value for M
K

during the (n� 1)st blood cycle, then that excess

concentration will be deposited in the lungs, becoming the starting lung creatinine concentration

for the nth blood cycle. Otherwise, the initial creatinine level in the lung will simply be 0.

3.2.3 Consequences of Oxygen- and Creatinine-Levels

Next, we model the impact of O
L

on kidney function, and of W
L

on lung function. While we have

shown that hypoxia can cause significant lung damage, elevated oxygen levels (known as hyperoxia)

can have negative consequences as well. As demonstrated in ([32]), hyperoxia leads to the release

of reactive oxygen species, which cause damage to healthy tissues. Therefore, we incorporate an

additional damage term f
L

(O
L

) to (3.4) that propagates lung tissue damage when blood-oxygen

levels are either above or below the healthy level, O
L,healthy

:

f
L

(O
L

) = !(O
L

�O
L,healthy

)2.



Then, model equation 2.16 becomes,
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As noted in Sec. 3.1.2, the presence of circulating creatinine and urea in the bloodstream causes

an inflammatory response in the lungs. Thus, we will treat W
L

, the creatinine level in the lung,

as an immune-provoking toxin, using the model structure of Alex and Painter [1]. Specifically, we

add a W
L

-dependent term g(W
L

) to the lung immune responder equation (3.2):

g(W
L

) =
⌘W

L

H +W
L

Then, model equation (3.2) becomes,

dI
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We model the additional damage to the kidney due to reduced blood oxygen levels (O
L

) as

an additional term f
K

(O
L

) for the kidney dysfunction equation (3.8). Since we use GFR as our

biological indicator of kidney damage, we can assume that kidney dysfunction, M
K

, is a decreasing

function of GFR. In the absence of pathogen-induced inflammation, we represent this relationship

by

M
K

= 1� GFR

GFR
healthy

,

so by the Chain Rule,

dM
k

dt
= f

K

(O
L

) = � 1

GFR
healthy

dGFR

dt
.

Since dGFR

dt

is proportional to the di↵erence between the blood oxygen level and the healthy



(O
L,healthy

�O
L

), this becomes:

f
K

(O
L

) = �(O
L

�O
L,healthy

),

where � / 1
GFRhealthy

. Adding this term to model equation (3.8) to account for the possibility of

inflammation-induced damage, we get:

dM
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3.2.4 Final Model

Incorporating equations (3.10) - (3.19) into the model described by equations (3.1) - (3.9) results

in the following final model:
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3.3 Numerical Experiments

The model (3.21)-(3.33) can provide a number of interesting insights into the dynamics of cascading

lung-kidney damage. In particular, it can validate results observed in a clinical setting. Since our

experiments in Sec. 2.5 focus on an infection originating in the lungs we investigate the e↵ects

of pre-existing kidney damage (e.g. from diabetes) on the amount and duration of lung damage

during pneumonia. Studies have shown that diabetics and patients with chronic kidney disease

(CKD) who contract health care-associated pneumonia (HCAP) experience longer hospital stays

and an increased risk of mortality ([55], [23]), so incorporating these e↵ects into the overall model

would capture important e↵ects observed clinically.

In order to incorporate pre-existing kidney damage into the model (3.21)-(3.33) we introduce

a new constant, M
perm

, which represents the proportion of kidney function lost to the presumed

chronic kidney condition. We assume that there is no pathogen infection in the kidney, so therefore

P
K

(t), I
K

(t), Q
K

(t), and C
K

(I
K

(t)) are are equal to 0 for all t. Thus we can simplify equation

(3.28) to:

dM
K

dt
= �(O

L

�O
L,healthy

)� ↵
K

M
K

. (3.34)

In the case of pre-existing kidney damage, if the infection is cleared, and the kidneys begin to

recover, instead of recovering to M
K

= 0, M
K

will approach the long-term damage value, M
perm

.

Thus, we modify Equation (3.34) to:

dM
K

dt
= �(O

L

�O
L,healthy

)� ↵
K

(M
K

�M
perm

). (3.35)



Figure 3.4: Plots of lung tissue dysfunction, M
L

(t), vs. time (hr). Plot (a) represents lung tissue
damage for Patient 1, with no pre-existing kidney damage, modeled by the single-organ model from
Section 2. Plot (b) represents lung tissue damage for Patient 2, with pre-existing kidney damage
modeled using the multi-organ damage model described in Section 3.

To determine the e↵ects of kidney dysfunction on pneumonia severity, we compare two patients.

Patient 1 has no pre-existing kidney damage and is modeled using the single-organ model from

Chapter 2. Patient 2 has a positive M
perm

= 0.2, indicating pre-existing kidney damage, and is

modeled using the multi-organ damage equations. For the lung equations for both patients (3.21)-

(3.24), we use the same parameters from Tables 2.1 and 2.3, with initial pathogen load, P
L,0 = 100

and I
L,0 = Q

L

0 = M
L,0 = 0.

For the kidney equations (3.25)-(3.28) for Patient 2, we duplicate the parameters from above,

with P
K,0 = I

K,0 = Q
K,0 = M

K,0 = 0. Parameters for the linkage terms are listed in Table 3.1.

Note: in order to ensure that our hypothesis: 0  M
K

 1 holds, we must impose the following

conditions on our Eqn. 3.35 parameters:

0 
�O

L,healthy

↵
K

 1�M
perm

In order to determine the severity of lung tissue damage, we take the average M
K

for each

patient over the course of the experiment (0  t  96) by integrating as below:

M
L,avg

=
1

96

Z 96

0
M

L

(t)dt,

allowing us to compare lung function between patients.



Table 3.1: Parameter values for the lung-kidney damage linkage terms used in the numerical demon-
stration in Section 3.3.

Model

Parameter Description (units) Equation Value

⌘ Rate of immune responder activation due to creatinine in lungs (I
L

-cells/mg/dL/min) (3.22) 1.0

H Saturation constant for immune responder activation due to creatinine (3.22) 10.0

! Rate of lung damage due to the presence of hypoxemia (M -cells/mmHg/min) (3.24) 2x10�6

O
L,healthy

Healthy P
a

O2 (mmHg) (3.24),(3.29) 100

� Rate of kidney damage due to hypoxia (M
K

-cells/mmHg/min) (3.28) 4.0x10�4

M
perm

Permanent proportion of kidney dysfunction (unitless) (3.28) 0.2

O
insp

F
i

O2 (mmHg) (3.29) 0.2

 Rate of creatinine removal by active immune cells from the lungs (W
L

-cells/I
L

-cell/min) (3.30) 0.01

R Normal creatinine output from the liver and other auxiliary organs (mg/dL) (3.31) 1.5

⇢ Rate of additional creatinine output from the lungs (mg/dL/min) (3.31) 0.1

W
max,0 Maximum creatinine concentration that can be processed by fully-functional kidneys (mg/dL/min) (3.32) 2

The results of the simulation are shown in Figure 3.4. Plot (a) models the proportion of lung

dysfunction over time for Patient 1, while plot (b) models the lung dysfunction vs. time for a

Patient 2. Patient 1 had a M
L,avg

value of 0.58, corresponding to LIS of 2 (i.e. moderate lung

damage) a Patient 2 had M
L,ave

= 0.68807, corresponding to an LIS score of 3. Since a LIS

score of 2.5 or higher is indicative of Acute Respiratory Distress Syndrome (ARDS), a state of

severe lung dysfunction that has a high mortality rate ([37], [34]). Since, as in Section 2.5.5,

these parameters were estimated and are not necessarily biologically accurate, the results of this

experiment do not necessarily indicate that pre-existing kidney damage is a precursor to ARDS.

Rather, by producing two significantly di↵erent lung damage outcomes, this example illustrates the

importance of incorporating the e↵ects of multiple organ damage in predicting patient outcomes.



Chapter 4

Conclusion

We have presented a di↵erential equations model of pathogen-induced inflammatory tissue damage,

first in a single-organ system caused by the active immune response to a pathogen threat. Expand-

ing this model, we incorporate cascading lung-kidney damage caused both by the inflammatory

response and by feedback e↵ects caused by decreased arterial oxygen pressure and circulating cre-

atinine. We have demonstrated through numerical examples the key properties of both models,

including immunological memory, and the potential of the model to be used as a tool to compare

treatment options and investigate the e↵ects of pre-existing damage on patient outcomes.

While the current multi-organ damage model has specific linkage terms for lung and kidney

damage, the general structure of the model allows for the possibility to incorporate other relevant

organ systems and their interdependencies. Of particular interest for future study would be the

liver or heart, as the functionality of both organs is interdependent on the function of the kidneys

and lungs and they play an important role in sustaining human life. Furthermore, though our

numerical experiments have thus far focused on modeling pneumonia, our model allows for the

possibility for the pathogen to originate in any organ system included in the model. Ultimately,

this model can be expanded to incorporate the e↵ects of sepsis, a condition characterized by a

system-wide inflammatory response that is often fatal [7].

Our model assumes that tissue damage in the lungs and kidneys is caused only by the inflam-

matory response to pathogen or creatinine and hypoxia or hyperoxia. However, there are a number



of other factors that contribute to organ dysfunction. Especially relevant to this model is damage

caused by bacterial exotoxins and drug use. Bacterial exotoxins are released by some pathogen

species upon entering the body and can cause dysfunction in one of two ways: either by directly

damaging organ tissue, or by provoking an active immune response ([46], [12]). Furthermore, these

exotoxins can remain in the body even when the pathogen is cleared, so they must be studied

and modeled separately from the current investigation [46]. Many of the treatment options inves-

tigated in this study, particularly antibiotics and NSAIDs, are processed by the kidneys. When

these drugs accumulate in the kidneys, they have been shown to cause kidney damage in the form

of acute tubular necrosis, and these e↵ects are compounded when the NSAIDs and penicillin-type

antibiotics are combined ([41], [36]). Therefore, future investigations into treatment options must

also take into account the nephrotoxic e↵ects of a particular drug.

Finally, our model assumes that tissue damage is entirely reparable. However, when inflamma-

tion is left uncontrolled, the release of reactive oxygen species can cause severe cell damage which

can become irreparable [29]. Furthermore, the presence of scar tissue in certain organs can impede

function, causing more damage [25]. Therefore, a future goal of this research will be to incorporate

irreparable damage.
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