
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

2017

Differential privacy for growing databases Differential privacy for growing databases

Gi Heung (Robin) Kim
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Kim, Gi Heung (Robin), "Differential privacy for growing databases" (2017). Honors Theses. 995.
https://scholarship.richmond.edu/honors-theses/995

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/995?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Differential Privacy for Growing Databases

Gi Heung (Robin) Kim

Honors Thesis∗

Department of Mathematics & Computer Science

University of Richmond

April 28, 2017

∗Under the direction of Dr. Sara Krehbiel

The signatures below, by the thesis advisor, the departmental reader, and the honors coordi-

nator for computer science, certify that this thesis, prepared by Robin (Gi Heung) Kim, has been

approved, as to style and content.

(Dr. Sara Krehbiel, thesis advisor)

(Dr. Prateek Bhakta, departmental reader)

(Dr. Lewis Barnett, honors coordinator)

Abstract

Differential privacy [DMNS06] is a strong definition of database privacy that provides indi-

viduals in a database with the guarantee that any particular person’s information has very little

effect on the output of any analysis of the overall database. In order for this type of analysis

to be practical, it must simultaneously preserve privacy and utility, where utility refers to how

well the analysis describes the contents of the database.

An analyst may additionally wish to evaluate how a database’s composition changes over

time. Consider a company, for example, that accumulates data from a growing base of customers.

This company may want to analyze how its customer base evolves over time. Despite the

practical need to conduct private analysis on growing databases, relatively little is known about

differential privacy in this setting.

In this work, we seek to expand the scope of a differentially private mechanism called the

median mechanism [RR10]. The median mechanism’s strength lies in its ability to answer many

queries interactively, satisfying both privacy and utility constraints. We examine how these

privacy and utility guarantees change in a growing database setting. First, we analyze the

median mechanism when run multiple times independently as the database size increases. This

approach is called sequential composition, and we show how to adjust parameters so that the

privacy guarantee suffers logarithmically with the number of runs of the mechanism without

any loss of utility. Having established this as a benchmark, we propose a new algorithm called

the memory mechanism. In contrast to sequential composition, the memory approach preserves

the history of the mechanism’s responses to earlier queries as the size increases. We show that

the memory mechanism’s worst case performance matches that of the sequential composition,

and we conjecture that the utility guarantee can be improved with natural constraints on the

queries asked in each phase and on the distribution of the data. Proving such a conjecture to

establish the benefit of the memory mechanism is left for future work.

Contents

1 Introduction 1

1.1 Differential Privacy . 1

1.2 Independent Laplace Perturbation and the Exponential Mechanism 2

1.3 The Median Mechanism . 2

1.4 Our Results . 3

2 Preliminaries 4

3 The Median Mechanism 6

3.1 Mechanism . 6

3.2 Utility Analysis . 8

3.3 Privacy Analysis . 10

4 The Median Mechanism for a Growing Database 15

4.1 Mechanism . 16

4.2 Utility and Privacy Analysis . 16

5 The Memory Mechanism 17

5.1 Mechanism . 17

5.2 Utility and Privacy Analysis . 19

5.3 Conjectured Utility Improvements . 21

6 Conclusion 22

1 Introduction

1.1 Differential Privacy

In June 2016, Apple announced that they had begun collecting certain user information in a manner

that guarantees users a particular type of privacy called differential privacy. In a world in which

companies must extract information from vast quantities of data to stay competitive, the field of

differential privacy offers powerful tools for conducting accurate analysis while still offering strong

privacy guarantees to individuals in a database.

This field seeks to design mechanisms that answer statistical queries about an input database,

each row of which corresponds to the private data of a single data subject. In this work, X denotes

the universe of entries in a database, D ∈ Xn denotes a database on n entries, and M : Xn → R

denotes a mechanism (algorithm) that operates on such a database and produces output in rangeR.1

A good mechanism should simultaneously provide guarantees of differential privacy and utility.

Utility refers to a mechanism’s ability to answer queries accurately, and differential privacy refers

to the property that no row in the database has too much effect on the distribution of output

produced by the mechanism. The preliminaries section provides formal notation and definitions.

Definition 1.1 (Utility, informally). For any ε, δ > 0, a mechanism M : Xn → R is (ε, δ)-useful

for query q : Xn → R if for any database D ∈ Xn, we have Pr[|M(D)− q(D)| > ε] ≤ δ.

Definition 1.2 (Privacy, informally). For any α, τ > 0, a mechanism M : Xn → R is (α, τ)-

differentially private if for any databases D,D′ ∈ Xn differing on only one row and any event

S ⊆ R, we have Pr[M(D) ∈ S] ≤ eα · Pr[M(D′) ∈ S] + τ .

Note that both guarantees are parametrized, and smaller ε, α correspond to stronger utility and

privacy guarantees. We think of δ and τ as being the probabilities that the ε-utility and α-privacy

guarantees, respectively, are not met.

1For the informal definitions, we let R = R, indicating that a mechanism outputs a single real value.

1

1.2 Independent Laplace Perturbation and the Exponential Mechanism

Output perturbation is the technique of adding random noise to the true answer for some database

query to establish a guarantee of differential privacy. More noise creates a stronger privacy guar-

antee at the cost of reduced utility. This tradeoff between privacy and utility is a central focus

of differentially private mechanism design. The simplest differentially private mechanism based on

output perturbation is called the Laplace mechanism, which adds Laplace noise to the output of a

predicate query on the input database. A predicate query q : Xn → [0, 1] calculates the proportion

of rows in a database satisfying some boolean predicate over X. Note that a single row change in

the database changes the answer to a predicate query by at most 1/n. The Laplace mechanism

draws this perturbation from Lap(1
nα), defined by probability density p(x) = nα

2 exp(−nα|x|). This

mechanism provides (α, 0)-differential privacy and (ε, nα exp(−nαε))-utility for any desired ε > 0,

which is the best possible tradeoff between privacy and utility for pure (τ = 0) differentially privacy

mechanisms [GRS09].

However, if we wish to answer multiple queries on the same database using independent Laplace

perturbation, the parameter of the noise added to each query must scale linearly with the number

of queries to maintain privacy. This means only O(n) queries can be answered with meaningful

privacy and utility [RR10]. To avoid this downside of independent output perturbations, [BLR08]

showed how to use the exponential mechanism [MT07] to allow α to scale only logarithmically

with the number of queries with fixed α and ε. This approach guarantees both privacy and utility

over k queries, where k may be exponential in n. However, it also has two drawbacks. First,

the exponential mechanism requires all queries to be given upfront, not supporting interactive

analysis, which independent Laplace perturbation can handle. Second, the exponential mechanism

is inefficient since its running time is not polynomial in n, k and |X|.

1.3 The Median Mechanism

To circumvent these drawbacks, Roth and Roughgarden [RR10] developed a new mechanism called

the median mechanism. Compared to the Laplace mechanism whose privacy parameter α scales

linearly with the number of queries k, the median mechanism allows α to scale only logarithmically

2

with the number of queries k and the size of X, like the exponential mechanism. Moreover, the

median mechanism also avoids the drawbacks of the exponential mechanism, allowing an analyst

to supply queries interactively and admitting an efficient implementation.2

At its core, the median mechanism works by categorizing each incoming query in real-time

as either easy or hard. At a high level, the categorization works as follows. If the approximate

answer to a query can be derived from the answers to all previous queries, then the query is deemed

easy and the mechanism simply reports this fact to the analyst revealing no additional information

about the database. Otherwise, the query is deemed hard and the mechanism applies independent

Laplace perturbation. [RR10] proves that there can be only O(log k log|X|) hard queries. By only

perturbing a small fraction of the total queries, the median mechanism allows α to scale only

logarithmically with the number of queries answered. The details are covered in Section 3.

1.4 Our Results

This paper aims to broaden the scope of [RR10]. As with the vast majority of differentially

private mechanisms, the median mechanism works on a fixed database of size n. In this paper

we are considering a dynamic setting of a database where the content is constantly changing and

accumulating. We consider a simple model in which a database grows by n entries in each of

K phases. An analyst requests answers to k queries in each phase, and it is possible that the

content of new entries in a particular phase is completely different from the initial database. Our

contributions fall into three categories:

1. We first analyze sequential composition of the median mechanism. We show that we can

run the median mechanism independently K times, decreasing the privacy parameter in each

phase to maintain utility at a cost of only a logK factor in privacy. See Theorem 4.1 for the

formal statement of this result.

2. Next we propose a new mechanism called the memory mechanism, which retains the infor-

mation provided to the analyst across phases. We analyze this mechanism and show that it

2This work actually focuses on the less efficient implementation of the median mechanism described in [RR10],
but we expect our results to extend to their efficient implementation.

3

achieves the same performance as sequential composition of the median mechanism.

3. Finally, we conjecture that under natural assumptions about the distribution of new data

entries across phases and the queries requested in each phase, the memory mechanism can

provide stronger guarantees in later phases than sequential composition.

In Section 2, we formalize the notion of differential privacy and other background information

necessary for the rest of the paper. In Section 3, we restate the median mechanism from [RR10] and

reproduce their theorems and proofs. In Section 4 we formalize the sequential composition of the

median mechanism and show that the privacy parameter decreases with each additional phase. In

Section 5, we propose the memory mechanism, show that its performance matches that of sequential

composition of the median mechanism, and we conjecture that the memory mechanism can provide

a stronger utility guarantee. Finally in Section 6, we discuss future work to be done of the paper.

2 Preliminaries

This section presents the formal notation and definitions used throughout. We use R to denote

the reals, Z to denote the integers, and Z+ to denote the positive integers. For n ∈ Z+ we write

the nth harmonic number as Hn =
∑

i∈[n] 1/i. For any set X and n ∈ Z+, Xn denotes the set of

n-tuples of elements in X.

In our database setting, sach of n data subjects has information described as an element in

data universe X. The data for each subject is stored as a row in database D ∈ Xn. We consider

mechanisms that operate on a database D ∈ Xn and answer a sequence of k ∈ Z+ queries f =

(f1, . . . , fk). We let M(D, f) denote the random variable describing the distribution of outputs on

the specified inputs. Differential privacy bounds how much this random variable can change due

to a change in a single row of the database. Databases D and D′ are said to be neighboring if they

differ on a single row, and in this case we write D ∼ D′. Using this notation, we can now state

formal definitions of (ε, δ)-usefulness and (α, τ)-privacy:

Definition 2.1. For α, τ > 0, a mechanism M : Xn → Rk that responds to k queries is (α, τ)-

differentially private if for any pair of neighboring databases D,D′ ∈ Xn, any sequence of queries

4

f1, . . . , fk : Xn → R, and any subset S ⊆ Rk:

Pr[M(D, f1, . . . , fk) ∈ S] ≤ eα · Pr[M(D′, f1, . . . , fk) ∈ S] + τ.

Definition 2.2. For ε, δ > 0, a mechanism M : Xn → Rk that responds to k queries is (ε, δ)-useful

if for any database D ∈ Xn and any sequence of queries f1, . . . , fk : Xn → R, it provides answers

a1, . . . , ak such that with all but probability at most δ each answer is ε-accurate, i.e.,

Pr[∀ i ∈ [k], |fi(D)− ai| ≤ ε] ≥ 1− δ

We strive for δ to be inverse polynomial in k and n so that the mechanism outputs answers

within ε of the true answer with high probability. We strive for τ to be negligible in k and n so

that changing a single element of the input database impacts the probability of any outcome by at

most a small factor eα with overwhelming probability.

For any real-valued query q : Xn → R and any desired α > 0, [DMNS06] show how to construct

a mechanism that is (α, 0)-differentially private (often simply called α-differentially private) by

computing q(D) and adding Laplace noise that is calibrated to the sensitivity of the query. The

sensitivity of any real-valued query q is the maximum amount it can change due to a single row

change, denoted ∆(q) = maxD∼D′ |q(D)− q(D′)|. The definition of the Laplace distribution and

description of how to calibrate noise to sensitivity are as follows:

Definition 2.3. For any b > 0, let Lap(b) denote the Laplace distribution, with probability density

p(x) = 1
2b exp(−|x|/b) for any x ∈ R.

Theorem 2.4. For any real-valued query q : Xn → R and any α > 0, the Laplace mechanism

M(D) = q(D) + Lap(∆(q)/α) is α-differentially private.

A mechanism can reply to multiple queries via independent output perturbation, also called

sequential composition, but the privacy parameter suffers linearly with the number of queries

answered. It is not hard to show the following more general result:

Lemma 2.5 (Composition lemma). Let αi, τi > 0 for i ∈ [k], and let Mi : Xn → R be a (αi, τi-

5

differentially private for each i ∈ [k]. Then the mechanism M(D) = (M1(D), . . . ,Mk(D)) concate-

nating the outputs of each Mi is (
∑

i∈[k] αi,
∑

i∈[k] τi)-differentially private.

Finally we note that this work is primarily concerned with mechanisms for approximating

predicate queries on databases. A predicate over X maps each element in X to a bit. For predicate

f : X → {0, 1}, we also use f to denote the corresponding predicate query over a database,

evaluated as f(D) = |{x∈D:f(X)=1}|
|D| , which computes the fraction of elements of the database D

that satisfies predicate f . Note that predicate queries have sensitivity 1/n for databases of size n.

3 The Median Mechanism

3.1 Mechanism

The median mechanism [RR10] is parametrized by privacy and utility parameters α, ε > 0, data

universe X, and query budget k ∈ Z+. It takes as input a database D ∈ Xn and first initializes a set

C of all databases of size m = Θ(
log k log 1

ε
ε2

). Throughout the life of the mechanism, C represents the

set of all databases consistent with D based only on the information that the mechanism provides

to the analyst.

Queries f1, . . . , fk arrive online. The mechanism categorizes each query fi as either easy (di = 0)

or hard (di = 1) based on how well the query answer on the true database coheres with C. To do

this while respecting privacy, the mechanism compares a noisy version of the query’s easiness ri

(a measure of similarity between fi(D) and fi(S) for each S ∈ C) to a noisy threshold ti. The

mechanism replies to hard queries via output perturbation and further removes from C all databases

far away from the noisy reply. The mechanism replies to easy queries with the median value of the

query on databases in C.

Note that after receiving a noisy answer to a hard query, the analyst knows exactly how the

mechanism updates C, and so upon learning that a query is easy, the analyst already knows the

query’s median value on C. This observation is important in the privacy analysis of the mechanism,

and it is the central reason the mechanism is able to answer exponentially many queries interactively

while maintaining meaningful privacy and utility.

6

Algorithm 1 The median mechanism for privacy and utility parameters α, ε > 0, data universe X,
and query budget k ∈ Z+

• Upon initialization with database D ∈ Xn:

Let m =
160000 ln k ln 1

ε
ε2

.

Let α′ = α
720m ln|X| .

Let γ = 4
α′εn ln 2k

α .

Let C be the set of all databases of size m.

Let i, h = 0.

• Upon receipt of a new query with i < k and h < 20m log|X|:
Increment i and let fi be the new query.

Let ri =
∑
S∈C exp(−|fi(D)−fi(S)|/ε)

|C| and r̂i = ri + Lap(2
εnα′).

Let ti = 3
4 + ξ · γ for ξ ∈ {0, 1, . . . , 3

20γ } chosen with probability proportional to 2−ξ.

If r̂i ≥ ti,
Let di = 0 (easy).

Let ai = median{fi(S) : S ∈ C}.
Otherwise,

Let di = 1 (hard) and increment h.

Let ai = fi(D) + Lap(1
nα′).

Remove from C all S ∈ C with |fi(S)− ai| > ε/50.

Output (di, ai).

In this section, we provide a more detailed proof of the below theorem for the median mechanism

from [RR10], which serves as the starting point for the analysis of sequential composition of the

median mechanism and the memory mechanism described in the following sections.

Theorem 3.1. There exist constants cτ , cδ, cn > 0 such that for any privacy and utility parame-

ters α, ε > 0, data universe X, and query budget k ∈ Z+, the median mechanism satisfies (α, τ)-

differential privacy and (ε, δ)-utility for τ = exp(− cτ ln k ln
1
ε
ln|X|

ε2
) and δ = k exp(− cδnαε

3

ln k ln 1
ε
ln|X|) when

run on databases of size n ≥ cn ln 2k
α

ln2 k ln 1
ε
ln|X|

αε3
.

Note that for n as above, τ and δ are negligible and inverse polynomial, respectively, in k and

n. We separately prove the privacy and utility guarantees in the following two subsections. All of

7

the following lemmas are with respect to arbitrary parameters α, ε > 0, X, and k ∈ Z+, arbitrary

input data D ∈ Xn for sufficiently large n, and arbitrary predicate queries f1, . . . , fk. The values

of m,α′, γ used in the proofs are as initialized by the mechanism.

3.2 Utility Analysis

To establish utility, [RR10] shows that with all but probability δ = k exp(−cδεnα′) for sufficiently

small constant cδ, sufficient conditions hold to ensure that every query is answered with ε-accuracy

and the mechanism does not exceed the hard query budget h = 20m log|X|. Lemmas 3.2 and 3.3

respectively show that with high probability, not too much noise is added to any query’s easiness

measure and not too much noise is added to any hard query answer. Lemma 3.4 shows that

accurate easiness measures guarantee ε-accuracy for easy queries. Finally Lemma 3.6 uses a uniform

convergence bound to show that if easiness measures are accurate, then the mechanism will not

categorize more than the maximum allowed number of queries as hard.

Lemma 3.2. With probability at least 1− δ
2 , |ri − r̂i| ≤

1
100 for every query i.

Proof. Recall r̂i = ri + Lap(2
εnα′). Then by definition of the Laplace distribution, we have

Pr[|r̂i − ri| > 1/100] = Pr[|Lap(2/(εnα′))| > 1/100] = exp(− 1

100
· εnα

′

2
).

By union bound over every query i ∈ [k], this event occurs for any query with ≤ δ/2 probability.

Lemma 3.3. With probability at least 1− δ
2 , the answer to every hard query is (ε

100)-accurate.

Proof. Recall that an answer to a hard query i is calculated as ai = fi(D)+Lap(1
nα′), and a query

answer is (ε
100)-accurate if |fi(D)− ai| ≤ ε

100 by Definition 2.2. Then we have

Pr[|fi(D)− ai| > ε/100] = Pr[|Lap(1/(nα′))| > ε/100] = exp(− ε

100
· nα′).

There are at most k hard queries, so union bound again gives us our desired result.

Lemma 3.4. If |ri − r̂i| ≤ 1
100 for every query i, then every answer to an easy query is ε-accurate.

8

Proof. Let C be the current set of hypothetical databases stored by the mechanism when it is about

to answer some easy query fi, and let G = {S ∈ C : |fi(D)− fi(S)| ≤ ε} denote the subset of good

databases in C that align with the real answer fi(D) within at most ε error. If |G| ≥ .51|C|, the

median value of fi on C is ε-accurate. It is therefore enough to prove that if |ri − r̂i| ≤ 1/100 and

i is categorized as easy, then |G| ≥ .51|C|.

Noting that ti ≥ 3/4, and i is categorized easy if and only if r̂i ≥ ti, easiness implies ri ≥ 74/100

assuming |r̂i − ri| ≤ 1/100. It is therefore enough to show that |G| < .51|C| implies ri < 74/100.

ri =

∑
S∈G exp(−|fi(D)− fi(S)|/ε) +

∑
S∈C\G exp(−|fi(D)− fi(S)|/ε)

|C|

=
|G|+ |C\G|/e

|C|

=
|G|(1− 1/e) + |C|/e

|C|

<
.51|C|(1− 1/e) + |C|/e

|C|

= .51(1− 1/e) + 1/e

< 74/100

Finally, we must show that the mechanism is not likely to abort by classifying too many

queries as hard. Lemma 3.6 does this by showing that the set of hypothetical databases C shrinks

substantially after every hard query, assuming the conclusion of Lemma 3.2. The following uniform

convergence bound determines an appropriate value of m to ensure that one of the hypothetical

databases simulates D for all k queries, guaranteeing that C contains at least one database that

will survive all phases of contraction.

Proposition 3.5. (Uniform Convergence Bound). For every collection of k predicate queries

fi, . . . , fk and every database D, a database S obtained by sampling points from D uniformly at

9

random will satisfy |fi(D)− fi(S)| ≤ ε for all i except with probability δ, provided

|S| ≥ 1

2ε2
(log k + log

2

δ
).

In particular, some database S of size m =
160000 ln k ln 1

ε
ε2

satisfies |fi(D)− fi(S)| ≤ ε
400 for all i ∈ [k].

Lemma 3.6. If |r̂i − ri| ≤ 1
100 for every query i and every answer to a hard query is (ε

100)-accurate,

then the median mechanism classifies fewer than 20m log|X| queries as hard.

Proof. We track how C contracts as we answer hard queries. For any hard query i, we have:

By assumption︷ ︸︸ ︷
ri ≤ ︸ ︷︷ ︸

i is hard so r̂i < ti

r̂i +
1

100

ξ≤ 3
20γ

so ti=
3
4
+ξγ≤ 90

100︷ ︸︸ ︷
< ti +

1

100
≤ 91

100

At least 6% of the databases S ∈ C have |fi(S)− ai| > ε/50, because otherwise:

ri =

∑
S∈C exp(−|fi(D)− fi(S)|/ε)

|C|
>

94

100
e−

1
50 >

92

100

Let h be the number queries classified as hard out of the k total queries. Then noting that initially

|C| = |X|m, the size of C after all k queries can be bounded as:

|C| ≤ (
94

100
)h|X|m

The uniform convergence bound says that some database in C must survive all hard queries, so:

h ≤ 1

ln(10094)
m ln|X| < 20m ln|X|

3.3 Privacy Analysis

This section reproduces the proofs from [RR10] to show that the median mechanism is (α, τ)-

differentially private. The median mechanism essentially outputs two values: a vector query answers

10

a ∈ Rk and a vector d ∈ {0, 1}k indicating whether each query fi was classified as easy (di = 0)

or hard (di = 1). Since an analyst can compute easy answers herself and Laplace perturbation is

added to hard answers, the privacy of a is straightforward. This section focuses on arguing that the

noise encapsulated in d suffices for privacy without causing the mechanism’s behavior to diverge

much on neighboring inputs with more than probability τ .

In Lemma 3.7, we first reproduce the proof that the easiness measure ri has small sensitivity,

which informs how much noise should be added to ri for privacy. Along with the correct calibration

of noise added to hard query answers, this ensures that (di, ai) for any particular query suffers

privacy cost 2α′. However, this is not enough for our desired privacy guarantee for the overall

mechanism, which must answer k queries, many of them easy. In Lemma 3.8, we show that with

overwhelming probability, the thresholds ti generated by the mechanism are good in that most

queries are classified as very easy, which in turn allows [RR10] to bound the probability differences

between the behavior of the mechanism on neighboring databases as required in Lemma 3.9.

Lemma 3.7. For every fixed set C of databases and predicate query f , the easiness function

ri(D) =
∑
S∈C exp(−|f(D)−f(S)|/ε)

|C| has sensitivity ∆(ri) = 2
εn .

Proof. Noting that the sensitivity of any predicate query is n, for any predicate query f , set C of

databases, and neighboring databases D and D′ of size n ∈ N, we have:

ri(D) =

∑
S∈C exp(− |f(D)−f(S)|

ε)

|C|

≤
∑

S∈C exp(− |f(D
′)−f(S)|− 1

n
ε)

|C|

= exp(
1

εn
) · ri(D′)

≤ (1 +
2

εn
) · ri(D′)

≤ ri(D′) +
2

εn
,

where the second to last inequality holds as long as n ≥ 1/ε, which is implied by the bound on n

in Theorem 3.1.

11

The next lemma demonstrates that with all but probability τ = exp(−cτm ln|X|) for sufficiently

small constant cτ > 0, all but 180m ln|X| of the thresholds ti generated randomly by the mechanism

are good. A threshold ti is good for query i if the query was categorized as easy (di = 0) and its

noiseless easiness value ri exceeds ti by at least γ.

di = 0 di = 1

ri ≥ ti + γ ti is good ti is bad

ri < ti + γ ti is bad ti is bad

Lemma 3.8. For every database D, with all but τ probability, the thresholds t generated by the

median mechanism are good for its output (d, a).

Proof. Lemma 3.6 shows that there are at most 20m ln|X| queries i with di = 1. It suffices to

show that at most 160m ln|X| queries i have ri < ti + γ. Let Yi be a random variable indicating

ri < ti + γ, and let Y =
∑

i∈[k] Yi. We first show that queries i with ri ≥ 9/10 contribute at most

m ln|X| to Y , and then we show that queries i with ri < 9/10 contribute at most 159m ln|X|.

Suppose ri ≥ 9/10. Then Yi = 1 only if ti = 9/10. Since ti = 3
4 +γ · ξ with ξ ∈ {0, 1, . . . , 1γ ·

3
20},

the only way to have ti = 9/10 is if ξ = 1
γ ·

3
20 , which occurs with probability proportional to 2−3/(20γ).

With γ = 4
α′εn ln 2k

α and n ≥ 30 ln 2k
α

log k

α′ε , as implied by the bound in Theorem 3.1, this event occurs

with probability ≤ 1/k. Therefore such queries contribute at most 1 to Y in expectation. Since the

ti are chosen independently at random for each i, the Chernoff bound implies that the probability

that there are more than m ln|X| such queries is at most τ/2.

Now suppose ri < 9/10. Let T be the set of all possible thresholds ti such that ri < ti + γ.

Let si be the smallest threshold in T . Note that |T | > 1. By choosing ξ proportional to 2−ξ, we

guarantee that Pr[ti ∈ Ti] ≤ 2 Pr[ti ∈ Ti\{si}] + c/k for some constant c. Note that for every

12

threshold ti ∈ T\{si}, ti > ri. Together, these observations give us:

Pr[ti > r̂i] ≥ Pr[ti > ri] · Pr[Lap(
2

εnα′
) ≤ 0]

= Pr[ti ∈ Ti\{si}] ·
1

2

≥ 1

4
(Pr[ti ∈ Ti]− c/k)

=
1

4
Pr[ri < ti + γ]− c/(4k)

The mechanism ensures that the total number of i with ti > r̂i is at most 20m ln|X|. Then with

linearity of expectation, the Chernoff bound implies that queries with ri ≤ 9/10 contribute at most

159m ln|X| to Y except with probability τ/2.

Let MM(D, f) denote either the distribution of outputs (d, a) or the distribution of outputs

(t, d, a) for internally chosen thresholds t, we observe that by the previous lemma, we have

Pr[MM(D, f) ∈ S] ≤ τ +
∑

(d,a)∈S

∑
t good
for (d,a)

Pr[MM(D, f) = (t, d, a)]

The following lemma therefore suffices for privacy.

Lemma 3.9. For any neighboring databases D and D′, queries f = (f1, . . . , fk), outputs (d, a), and

corresponding good thresholds t, we have Pr[MM(D, f) = (t, d, a)] ≤ eα Pr[MM(D′, f) = (t, d, a)].

Proof. For any query i, let Ei denote the event that MM(D, f) matches the target output (d, a)

on the first i queries. Let E ′i denote the analogous event for MM(D′, f). Let bi indicate that

MM(D, f) classifies query i as hard, and let b′i indicate that MM(D′, f) classifies query i as hard.

Both bi and b′i depend on C, so we condition on the events Ei−1 and E ′i−1 respectively to

ensure that the mechanisms running on D and D′ have the same C when processing query i. The

randomness of the threshold is independent of the state of the mechanism, and since the mechanism

adds Lap(2
α′εn) noise to ri, which by Lemma 3.7 has sensitivity 2

εn , the single-query categorization

13

process is α′-differentially private in the following sense:

Pr[bi = 0 | Ei−1] ≤ eα
′ · Pr[b′i = 0 | E ′i−1] (3.1)

Pr[bi = 1 | Ei−1] ≤ eα
′ · Pr[b′i = 1 | E ′i−1]. (3.2)

To evaluate the respective probabilities of a particular ai for the mechanism running on neigh-

boring databases, we first consider the case that the target classification of i is hard (di = 1), and

then we consider the case that the target classification of i is easy (di = 0).

Suppose di = 1 and let si and s′i denote the mechanism’s noisy answer to query i when running

on D and D′, respectively. Agreeing with the target output on query i requires agreeing with both

the target classification and the target answer, which are subject to independent perturbations, so:

Pr[Ei | Ei−1] = Pr[bi = 1 | Ei−1] · Pr[si = ai | Ei−1]

Pr[E ′i | E ′i−1] = Pr[b′i = 1 | E ′i−1] · Pr[s′i = ai | E ′i−1]

Then by Equation 3.2 and the noise added to easiness computations and hard query answers:

P [Ei | Ei−1] = e2α
′
P [E ′i | E ′i−1] (3.3)

Now suppose di = 0 and let mi the median value of fi on C conditioning on Ei or E ′i. Then we

have the following possibilities:

Pr[Ei | Ei−1] =

0 if mi 6= ai

Pr[bi = 0 | Ei−1] if mi = ai

and similarly for Pr[E ′i | E ′i−1]. As before, we can argue that Pr[Ei | Ei−1] ≤ eα
′
Pr[E ′i | E ′i−1], but

paying this cost for all the easy queries will quickly exceed our privacy budget.

Note that since we only have to compare target outputs for possible runs of the mechanism,

assuming events Ei−1, E ′i−1 and di = d′i = 0, it is safe to also assume that mi = m′i = ai, so it suffices

to bound Pr[Ei | Ei−1] ≤ 1 with respect to Pr[E ′i | E ′i−1] = Pr[b′i = 0 | E ′i−1]. Let ri and r′i denote the

14

true easiness of query i for MM(D, f) and MM(D′, f) given Ei−1 and E ′i−1, respectively. Suppose

additionally that ri ≤ ti+γ, which is true for all but 180m ln|X| thresholds by the assumption that

t is good for (d, a). By the sensitivity of ri, we also have r′i ≥ ti + γ − 2
εn ≥ ti + γ/2. This means

that i is classified easy by MM(D′, f) whenever MM adds > −γ/2 noise to r′i:

Pr[b′i = 0 | E ′i−1] ≥ Pr[r′i − r̂′i < γ/2]

= Pr[Lap(
2

εnα′
) > −γ/2]

= 1− 1

2
e−γεnα

′/4

= 1− α

4k

Rearranging this, noting that Pr[Ei | Ei−1] ≤ 1:

Pr[Ei | Ei−1] ≤ (1− α

4k
)−1 Pr[E ′i | E ′i−1]. (3.4)

Applying Equation 3.3 to at most 180m ln|X| bad queries and Equation 3.4 to all other queries,

we complete the proof as follows:

Pr[MM(D, f) = (t, d, a)] =
k∏
i=1

P [Ei | Ei−1]

≤ e360α′m ln|X| · (1− α

4k
)−k ·

k∏
i=1

Pr[E ′i | E ′i−1]

≤ eα · Pr[MM(D′, f) = (t, d, a)]

4 The Median Mechanism for a Growing Database

Although the median mechanism allows an analyst to submit queries interactively, it assumes that

the database is fixed. We now show how to run the mechanism multiple times so that an analyst

may ask queries as the database grows, and we give privacy and utility results for this setting.

15

4.1 Mechanism

We consider K ∈ Z+ phases of database growth, where each phase involves n entries being added

to the database. For every growth phase j ∈ [K], we initialize a new run of the median mechanism

on the larger database for up to k queries with a fixed utility parameter but a decreasing privacy

parameter.

Algorithm 2 Sequential composition of the median mechanism for privacy and utility parameters
α, ε > 0, data universe X, query budget k ∈ Z+, cK > 1, and number of phases K ∈ Z+

• Upon initialization with a database size n ∈ Z+:

Let D be a database of size 0 over X.

Let j = 0.

• Upon receipt of ≥ n new data entries in X with j < K:

Increment j and let D be the concatenation of itself with the new data.

Initialize the median mechanism with parameters cKα/j, ε,X, k and input database D.

Forward up to k queries to the current instantiation of the median mechanism.

The following subsection sketches a generalization of the argument that if we use privacy pa-

rameter cKα/j for phase j ∈ [K], we lose only a logK factor in the privacy parameter, as long as

K ≤ cK(2k/α)cK−1. The following theorem states this result formally:

Theorem 4.1. There exist constants cτ , cδ, cn > 0 such that for any privacy and utility pa-

rameters α, ε > 0, data universe X, query budget k ∈ Z+, cK > 1, and number of phases

K ≤ cK(2kα)cK−1, sequential composition of the median mechanism as described above satis-

fies (cKHKα,Kτ)-differential privacy and (ε,Kδ)-utility for τ = exp(− cτ ln k ln
1
ε
ln|X|

ε2
) and δ =

k exp(− cδnαε
3

ln k ln 1
ε
ln|X|) when initialized with database size n ≥ cn ln 2k

α
ln2 k ln 1

ε
ln|X|

αε3
.

4.2 Utility and Privacy Analysis

For fixed α, ε > 0, X, k ∈ Z+cK > 1,K ≤ cK(2k/α)cK−1, and for constant cn as in the above

theorem, let C =
cn ln2 k ln 1

ε
ln|X|

ε3
. It is enough to show that n ≥ C ln 2k

α
α as required for a single phase

of the median mechanism implies jn ≥ C
ln 2k
cKα/j

cKα/j
for j ≤ cK(2kα)cK−1, allowing us apply the median

mechanism results for phase j with privacy parameter cK
α
j . Then the composition theorem will

16

give (cKHKα,Kτ)-privacy, and the results from the median mechanism’s utility proof will compose

with no change in ε and δ suffering linearly with K by union bound. We apply the bounds on n

and j as follows to get this result:

jn ≥ jC
ln 2k

α

α

≥ C
ln(2kα)cK

cKα/j

≥ C
ln 2k

cKα/j

cKα/j

5 The Memory Mechanism

5.1 Mechanism

The memory mechanism seeks to preserve the information about previous phases that repeated

independent application of the median mechanism ignores. For simplicity, first consider this two-

phased scenario. Our mechanism will start with an initial database D1 of size n and answers k

queries, consistent with the median mechanism. In phase 2, we append another database D2 of

size n to the original database D1 and answer another set of k queries. In order to answer the

phase 2 queries, we replace the set of hypothetical databases at the end of phase 1 with its cross

product with a new set of all databases of size m at the beginning of phase 2, and then we proceed

to answer the phase 2 queries using this larger space of hypothetical databases. We present this

idea generalized to K-phased scenario, reducing our privacy parameter as the database increases

size as we did when analyzing sequential composition of the median mechanism.

The size of the databases in C increases by m for each phase, but the number of new data

entries each phase needn’t be the same as long as each phase it is at least nmin. Comparing f(D)

to the result of the query run on database S ∈ C, we must appropriately weight the blocks of m

rows in S. For predicate query f and a set C of databases of size jm for some j ∈ [K], define:

fC(S) =
∑
`∈[j]

|D`|
|D|

f(S`) where S` represents the `th block of m rows of S.

17

Algorithm 3 The memory mechanism for privacy and utility parameters α, ε > 0, data universe X,
query budget k ∈ Z+, and number of phases K ∈ Z+

• Upon initialization:

Let m =
160000 ln(Kk) ln 1

ε
ε2

Let nmin =
21600m ln 2k

α
log2 k ln|X|

αε

Let D be a database of size 0 over X.

Let C be a set of databases containing a single database of size 0 over X.

Let j, i, h = 0.

• Upon receipt of ≥ nmin new data entries with j < K:

Increment j.

Replace D with its concatenation with the new data Dj .

Replace C with its cross product with the set of all databases of size m.

Let α′j = α
720jm ln|X| .

Let γj = 4
α′jε|D|

ln 2k
α/j .

Let imax = i+ k, hmax = 20jm log|X|.

• Upon receipt of a new query with i < imax and h < hmax:

Increment i and let fi be the new query.

Let ri =
∑
S∈C exp(−|fi(D)−fCi (S)|/ε)

|C| and r̂i = ri + Lap(2
ε|D|α′j

).

Let ti = 3
4 + ξ · γj for ξ ∈ {0, 1, . . . , 3

20γj
} chosen with probability proportional to 2−ξ.

If r̂i ≥ ti,
Let ai = median{fCi (S) : S ∈ C}.

Otherwise,

Let ai = fi(D) + Lap(1
|D|α′j

).

Remove from C all S ∈ C with |fCi (S)− ai| > ε/50 and increment h.

Output ai.

Our privacy and utility results for the memory mechanism are summarized in Theorem 5.1.

We note that the mechanism may refuse to either accept a new set of data that contains too few

entries or process queries beyond the per-phase total query budget of k in a given phase. Avoiding

these events are the user’s responsibility, whereas reaching hmax before reaching imax is considered

a utility failure of the mechanism, because a user should be allowed to make k arbitrary queries and

18

cannot know before the request whether a given query will be easy or hard. This is the purpose

of Lemma 5.3 in conjunction with the other lemmas in the utility section. An (ε,Kδ)-usefulness

guarantee therefore ensures that with all but probability Kδ, the mechanism will answer the first k

queries in each phase with ε-accuracy. Since the minimum size increase threshold and the number

of queries per phase is not affected by the data itself, no-ops caused by users failing to abide by

these restrictions impose no additional privacy cost, so the privacy guarantee has the exact same

meaning as in the single-phase median mechanism.

Theorem 5.1. There exist constants cτ , cδ > 0 such that for any privacy and utility parameters

α, ε > 0, data universe X, query budget k ∈ Z+, and number of phases K ∈ Z+, the memory

mechanism satisfies (HKα,Kτ)-differential privacy and (ε, 2Kδ)-utility for τ = exp(− cτ ln k ln
1
ε
ln|X|

ε2
)

and δ = k exp(− cδnαε
3

ln k ln 1
ε
ln|X|).

5.2 Utility and Privacy Analysis

Our proof of usefulness follows that the proof structure in [RR10]. With high probability, not too

much noise is added to any query’s easiness ri and all hard queries are answered ε/100-accurately;

Lemmas 3.2 and 3.3 present and prove these results for the median mechanism. Here we present

the first of these results for the memory mechanism (Lemma 5.2) with proof to show how the

proof must be modified in the multi-phase setting; the second result can be proven analogously.

Lemma 3.4 for the median mechanism shows that the former event is enough to guarantee that

all easy queries are answered ε-accurately; its proof is independent of database size and privacy

parameters, so the analogous result for the memory mechanism is immediate. Finally we present

and prove that with high probability the memory mechanism does not classify too many queries

as hard in any of the K phases (Lemma 5.3, analogous to Lemma 3.6 for the median mechanism).

Together, these results give our (ε,Kδ)-usefulness result.

Lemma 5.2. With all but < Kδ probability, |r̂i − ri| ≤ 1/100 for every query i.

Proof. For any query i in phase j ∈ [K], we add Lap(2
ε|D|α′j

) noise to ri. Noting that the parameter

19

can be bounded by 2
ε|D|α′j

≤ 1
15 ln 2k

α
log2 k

, we have:

Pr[|r̂i − ri| ≤ 1/100] ≤ 2 · Pr[Lap(
1

15 ln 2k
α log2 k

) ≤ −1/100]

= exp(−15 ln
2k

α
log2 k/100)

≤ 1

kcδ ln
2k
α

= δ/k.

Then by union bound over the maximum number of queries Kk, we get our desired result.

Lemma 5.3. If |r̂i − ri| ≤ 1/100 for every query i and |ai − fi(D)| ≤ ε/100 for every hard query

i, then h ≤ 20jm log|X| at the end of any phase j ∈ [K].

Proof. By the argument given in RR, |C| decreases by at least 6% after each hard query and

increases by a multiplicative factor |X|m at the beginning of each new phase. Hence if hj denotes

h at the end of phase j ∈ [K] and if cj denotes |C| at the end of phase j ∈ [K], we have

cj ≤
(

94

100

)hj
|X|jm

Applying the uniform convergence bound given in RR, we know there exists a database S∗j ∈ Xm

for each j ∈ [K] such that |fi(Dj)− fi(S∗j)| ≤ ε/100 for each hard query i in phases j, . . . ,K. The

concatenation of these S∗j databases remains in C since for hard query i in phase j ∈ [K], we have:

|fCi (S∗1 || . . . ||S∗j)− ai| ≤ |fCi (S∗1 || . . . ||S∗j)− fi(D)|+ |fi(D)− ai|

≤ |
∑
`∈[j]

|D`|
|D|

(fi(S
∗
`)− fi(D`))|+

ε

100

≤ ε

100
·
∑
`∈[j]

|D`|
|D|

+
ε

100

= ε/50.

20

Thus c1, . . . , cK ≥ 1, so we conclude that for each j ∈ [K], we have

hj ≤
1

ln 100
94

jm ln|X| ≤ 20jm log|X|.

The privacy result for the memory mechanism follows with minimal modification to the privacy

analysis for the median mechanism. A direct analog of Lemma 3.8 for the median mechanism

establishes with all but Kτ probability, the memory mechanism generates good thresholds. An

analog of Lemma 3.9 updated to reflect the differing values of α′ in each phase shows that the

difference in probability of any particular output for neighboring databases is bounded conditioning

on the event that the mechanism generates good thresholds. As with the median mechanism, these

two results are enough to give the desired privacy guarantee.

5.3 Conjectured Utility Improvements

We remark that Theorem 5.1 for the memory mechanism does not illustrate an asymptotic im-

provement over the results for sequential composition of the median mechanism, and it seems likely

that these results are tight in the worst case. However, the state of the memory mechanism cap-

tures strictly more information than that of the median mechanism. We therefore conjecture that

for some notion of a typical use case of the memory mechanism, it is possible to improve on the

utility guarantees with no further privacy cost. Here we briefly describe two classes of assumptions

we might reasonably make about typical use cases that would allow us to answer more queries in

subsequent phases with greater accuracy.

For many realistic settings, it may be fair to assume that the database composition does not

change too much across phases. Of course if the exact same entries are received in each phase, the

data after the first phase are useless. However, if any constant number of predicate queries are

allowed to have arbitrarily different answers across phases, we can assume that all but a negligible

fraction of the 2|X| total possible predicate queries are meaningfully affected. For super-constant k,

this means that a vanishing fraction of queries asked in a particular phase will have an answer

21

significantly different from the answer that would have been provided in an earlier phase.

We may combine with this assumption the assumption that the analyst does not ask too many

new queries in each phase. On one hand, a core function of our mechanism is to support analysis

that is interactive not only in response to new information from fixed data but also in response to

information learned from new data. On the other hand, an analyst’s primary questions of interest

will not necessarily change much, even as the answers to these questions evolve with new data. If

we allow an analyst to ask only a constant number of new queries each phase, the prior assumption

that the new data only affects answers for a constant number of new queries ensures that only a

constant fraction of queries each phase will be hard.

We hope that these two assumptions together may allow us to provide refined utility analysis

for later phases when more is known about the data. If this refined analysis is not possible for the

memory mechanism as is, the assumptions may provide guidance for how to modify the memory

mechanism to answer queries in a way that makes more careful use of the statefulness of the

mechanism and in turn yields better utility.

6 Conclusion

In this paper, we examined the inner workings of the median mechanism by deconstructing the

proofs in [RR10] and establishing a baseline for the future work, motivated by the need for a

mechanism that can accommodate a dynamically growing database. To establish that it is possible

to handle this setting, we analyzed the privacy and utility of both sequential composition of the

median mechanism and our new memory mechanism.

We have shown that sequential composition gives a privacy guarantee that suffers only log-

arithmically in the number of phases of database growth. The worst case performance for the

memory mechanism matches that of sequential composition. In the future, we hope to formally

prove that under natural assumptions, keeping track of both the composition of smaller databases

from previous phases as well as the information the analyst has learned about them will allow for

improved utility in later phases.

22

References

[BLR08] A Blum, K Ligett, and A Roth. A learning theory approach to non-interactive database

privacy. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC),

pages 609–618, 2008.

[DMNS06] C Dwork, F McSherry, K Nissim, and A Smith. Calibrating noise to sensitivity in

private data analysis. In Proceedings of the 3rd Theory of Cryptography Conference

(TCC), pages 265–284, 2006.

[GRS09] A Ghosh, T Roughgarden, and M Sundararajan. Universally utility-maximizing privacy

mechanisms. In Proceedings of the 41st ACM Symposium on Theory of Computing

(STOC), pages 351–360, 2009.

[MT07] F McSherry and K Talwar. Mechanism design via differential privacy. In Proceedings of

the 48th ACM Symposium on Foundations of Computer Science (FOCS), pages 94–103,

2007.

[RR10] T Roughgarden and A Roth. Interactive privacy via the median mechanism. In Proceed-

ings of the 42nd ACM Symposium on Theory of Computing (STOC), pages 765–774,

2010.

23

	Differential privacy for growing databases
	Recommended Citation

	Introduction
	Differential Privacy
	Independent Laplace Perturbation and the Exponential Mechanism
	The Median Mechanism
	Our Results

	Preliminaries
	The Median Mechanism
	Mechanism
	Utility Analysis
	Privacy Analysis

	The Median Mechanism for a Growing Database
	Mechanism
	Utility and Privacy Analysis

	The Memory Mechanism
	Mechanism
	Utility and Privacy Analysis
	Conjectured Utility Improvements

	Conclusion

