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Introduction

Knot theory arguably holds claim to the title of the mathematical discipline with the most
unusually diverse applications. A knot can be defined topologically as an embedding of S1

in R3. Naturally, two knots are topologically equivalent if one cannot be smoothly deformed
into the other. The question of whether two knots are equivalent is highly non-trivial, and
so the question of knot invariants used to distinguish knots has occupied knot theorists
for over a century. Knot theory has found application in statistical mechanics [1], symbolic
logic and set theory [2], quantum field theory [3], quantum computing [4], etc. This thesis
focuses on a connection of knot invariants to a still evolving field: quantum groups. The
representation theory of a particular quantum group, Uqpsl2pCqq , encodes information that,
when expressed via a knot diagram in a well-defined graphical calculus, produces the Jones
polynomial, arguably the most famous of knot invariants. Section 1 gives an introduction
of this quantum group. Section 2 details the representation theory of Uqpsl2pCqq . Section 3
introduces category theory and the category RepUq , and shows how RepUq can produce the
Jones polynomial through an example with the trefoil knot.

I am grateful to Dr. Heather Russell in the completion of this work.
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1 Quantum algebra

Our quantum algebra Uqpsl2pCqq arises from ”deforming” a classical Lie algebra sl2pCq.
Definitions from this section closely follow [5].

Definition 1.1. An algebra A is defined by the triple pA, µ, ηq, where A is a vector space
over field k, µ, η linear maps µ : A ˆ A Ñ A, η : k Ñ A. Denote µ, η as the multiplication
and unit of the algebra, respectively.

Let pA, µ, ηq, pA1, µ1, η1q be algebras. A morphism of algebras is defined by a map f : AÑ A1

such that µ1 ˝ pf b fq “ f ˝ µ, f ˝ η “ η1 (i.e., f preserves multiplication and unit).

Definition 1.2. A is a Lie algebra if multiplication is defined by the bilinear Lie bracket
r , s :“ µ, subject to the relations

ra, bs “ ´rb, as, ra, rb, css ` rb, rc, ass ` rc, ra, bss “ 0

@a, b, c P A. These relations are known as skew-symmetry and the Jacobi identity, respec-
tively.

1.1 sl2pCq
Consider the 2ˆ 2 traceless matrices given below:

e “

ˆ

0 1
0 0

˙

f “

ˆ

0 0
1 0

˙

h “

ˆ

1 0
0 ´1

˙

(1.1)

In field C, this basis spans the vector space denoted sl2pCq. Clearly sl2pCq is not an algebra
under matrix multiplication, since

eh “

ˆ

0 1
0 0

˙ˆ

0 0
1 0

˙

“

ˆ

1 0
0 0

˙

R sl2pCq

Therefore, we define r , s : sl2pCq ˆ sl2pCq Ñ sl2pCq by px, yq Ñ xy ´ yx. This gives sl2pCq
a Lie algebra structure with Lie bracket relations

re, f s “ h, rh, f s “ ´2f, rh, es “ 2e (1.2)

However, note that the Lie bracket is not associative:

rrf ` h, hs, es “ rrf, hs ` rh, hs, es “ r2f ` 0, es “ r2f, es “ 2rf, es “ ´2h

rf ` h, rh, ess “ rf ` h, 2es “ rf, 2es ` rh, 2es “ 2rf, es ` 2rh, es “ ´2h` 4e

To recover associativity, we introduce the universal enveloping algebra Upsl2pCqq. Recov-
ering associativity is necessary for our representation theory to work properly.

5



1.2 Upsl2pCqq
For Lie algebra L, let T pLq to be the tensor algebra, generated by all tensor products of the
generators of L (that is, elements of the form e, e b f, e b e b h, etc.). Multiplication in
T pLq is the concatenation of tensor products. Take the (two-sided) ideal IpLq generated by
elements of the form x b y ´ y b x ´ rx, ys and define UpLq “ T pLq{IpLq. Since the tensor
algebra is associative, UpLq is associative [5]. If taiu is the set of generators of L with Lie
bracket defined by

rai, ajs “
ÿ

l

slal, sl P C, i ‰ j (1.3)

then UpLq has generators taiu with multiplication given by concatenation modulo the fol-
lowing relations

ai b aj ´ aj b ai “
ÿ

l

slal (1.4)

In the particular case of sl2, Upsl2q with generators e, f, h, we have

eb f ´ f b e “ 2h, hb f ´ f b h “ ´2f, hb e´ eb h “ 2e (1.5)

A quantum deformation of this algebra is what gives us Uqpsl2pCqq as seen below.

1.3 Uqpsl2pCqq
In what follows, we take Cpqq to the be the polynomial ring with indeterminate q and
coefficients in C. We can now define the quantum algebra of interest, Uqpsl2pCqq through a
one-parameter deformation (this section follows the notation in [6]). Let q R t0, 1,´1u. Our
generators are E,F,K,K´1 with multiplicative relations

KK´1
“ K´1K “ 1, KE “ q2EK, KF “ q´2FK, EF ´ FE “

K ´K´1

q ´ q´1
(1.6)

In this current presentation, it is difficult to see how Uqpsl2pCqq relates to our enveloping
algebra. There is another presentation that illuminates the relationship [5].

Definition 1.3. The algebra Uq is isomorphic to the algebra U 1q generated by the five variables
E,F,K,K´1, L and the relations

KK´1
“ K´1K “ 1, (1.7)

KEK´1
“ q2E, KFK´1

“ q´2F, (1.8)

rE,F s “ L, pq ´ q´1
qL “ K ´K´1, (1.9)

rL,Es “ qpEK `K´1Eq, rL, F s “ ´q´1
pFK `K´1F q. (1.10)

Theorem 1.1. U – U 1q“1{pK ´ 1q

Proof. The projection of U 1q“1 onto U is given by an isomorphism sending E to e, F to f ,
K to 1, and L to h, which can be checked against the U generator relations.
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1.4 Bialgebra structure on Uqpsl2pCqq
In the sequel, we’ll need to talk about how an algebra acts upon tensor products of its simple
modules, a term we’ll introduce in Section 2. To do so, we must introduce the notion of a
coalgebra and bialgebra.

Definition 1.4. A coalgebra is defined by the triple pC,∆, εq, where C is a vector space and
∆, ε are linear maps, ∆ : C Ñ C ˆ C, ε : C Ñ k. ∆, ε are the comultiplication and counit of
the coalgebra, respectively.

Definition 1.5. Let pH,∆, µ, ε, ηq be both a coalgebra and algebra. Then H is a bialgebra if
the following diagrams commute

H bH H H bH

H bH bH bH H bH bH bH

µ

µbµ

µ

∆b∆

idbτbid

H bH H

k b k – k

µ

εbε
ε

k b k – k

H bH H

ηbη

η

µ

k

H

k

id

η

ε

In Uqpsl2pCqq , the comultiplication and counit are given by the following:

∆pEq “ E b 1`K´1
b E (1.11)

∆pF q “ F bK ` 1b F (1.12)

∆pK˘1
q “ K˘1

bK˘1 (1.13)

εpEq “ εpF q “ 0, εpKq “ εpK´1
q “ 1 (1.14)

With our algebra at hand, we now turn to its representation theory.

2 Representation theory of Uqpsl2pCqq
Representation theory gives a means of discussing algebras and groups in the context of
linear algebra, illustrating an important relationship between vector spaces, linear maps,
and groups/algebras.
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Definition 2.1. Let A be an algebra with unit. An A-module is a vector space V together
with a bilinear map pa, vq ÞÑ av from Aˆ V to V such that

apa1vq “ paa1qv and 1v “ v (2.1)

for all a, a1 P A, v P V .

The action of A on an A-module V defines an algebra morphism ρ from A to End(V ) by

ρpaqpvq “ av (2.2)

ρ is a representation of A on V .
An A-submodule V 1 of an A-module V is a subspace of V with an A-module structure

such that the inclusion of V 1 into V is A-linear. A simple A-module V is one which has no
non-trivial submodules. Correspondingly, an irreducible representation ρ acts upon a simple
module V . When the context is clear, we will denote a representation by ρ or V .

To map from one representation to another, we need what are known as intertwining
maps.

Definition 2.2. Let A be an algebra, pV, ρV q, pW, ρW q A-modules, and let F : V Ñ W an
A-linear map. Then F is an intertwining map if @a P A, v P V, ρW paqpF pvqq “ F pρV paqvq.

The set of intertwining maps between V,W is a linear subspace under composition. The
tensor product of intertwining maps is also intertwining.

2.1 Irreducible representations of Uqpsl2pCqq
It was shown in [5] that for nonnegative integer n there is a unique irreducible representation
of Uqpsl2q of dimension n` 1. In [6], these are denoted Vn, with basis

tvmu,´n ď m ď n, m ” n mod 2

To start, we define a representation:

Evm “
”n´m

2

ı

vm`2 (2.3)

Fvm “
”n`m

2

ı

vm´2 (2.4)

K˘1vm “ q˘mvm (2.5)

Here

rns “
qn ´ q´n

q ´ q´1
(2.6)

We also define vn`2, v´n´2 “ 0.

Theorem 2.1. Equation (1.7-1.10) are respected by the proposed representation (i.e., the
representation is well-defined).
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Proof.
K˘1K¯1vm “ q˘mq¯mvm “ 1vm

KEvm “ K
”n´m

2

ı

vm`2
“

”n´m

2

ı

qm`2vm`2
“

qm`2 q
pn`mq{2 ´ q´pn`mq{2

q ´ q´1
vm`2

“ q2qm
qpn`mq{2 ´ q´pn`mq{2

q ´ q´1

“ q2EKvm

KF “ q´2FK (same logic as above)

rE,F svm “ EFvm ´ FEvm “
”n`m

2

ı”n´m` 2

2

ı

vm ´
”n´m

2

ı”n`m` 2

2

ı

vm

“ r
qn`1 ´ qm´1 ´ q´m`1 ` q´n´1

pq ´ q´1q2
´ p

qn`1 ´ q´m´1 ´ qm`1 ` q´n´1

pq ´ q´1q2
qsvm

“ r
´qm´1 ´ q´m`1 ` q´m´1 ` qm`1

pq ´ q´1q2
svm

“
pq ´ q´1qqm ´ pq ´ q´1qq´m

pq ´ q´1q2
vm “

qm ´ q´m

q ´ q´1
vm “

K ´K´1

q ´ q´1
vm

We know that for abb P VnbVn, Uqpsl2pCqqbUqpsl2pCqq acts via pXbY qpabbq “ XabY b
for X, Y P Uqpsl2pCqq. Our bialgebra structure makes Vn b Vn into a Uqpsl2pCqq module via
comultiplication:

XY pab bq “ ∆pXY qpab bq “ ∆pXq∆pY qpab bq (2.7)

Theorem 2.2. The action described in Equation 2.7 above defines a well-defined represen-
tation of Uqpsl2pCqq on Vn b Vn.

Proof. Let ab b P Vn b Vn.

∆pK˘K¯
qpab bq “ pK˘K¯

bK˘K¯
qpab bq “ pab bq

∆pKEqpabbq “ ∆pKq∆pEqpabbq “ pKbKqpEb1`K´1
bEqpabbq “ pKbKqpEabb`K´1abEbq

“ KEabKb`KK´1abKEb “ q2EKabKb` q2ab EKb

“ q2
pE b 1`K´1

b EqpK bKqpab bq “ q´2∆pEKqpab bq

∆pKF qpab bq “ q´2∆pFKqpab bq (same logic as above)

∆prE,F sqpab bq “ ∆pEF ´ FEqpab bq “ ∆pEF qpab bq ´∆pFEqpab bq

“ ∆pEq∆pF qpab bq ´∆pF q∆pEqpab bq

“ pE b 1`K´1
b EqpF bK ` 1b F qpab bq ´ pF bK ` 1b F qpE b 1`K´1

b Eqpab bq

“ EFabKb`EabFb`K´1FabEKb`K´1abEFb´pFEabKb`FK´1abKEb`EabFb`K´1abFEbq

“ EFabKb`EabFb`K´1FabEKb`K´1abEFb´FEabKb´FK´1abKEb´EabFb´K´1abFEb
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“ ppEF ´FEq bKqpab bq `K´1FabEKb´FK´1abKEb` pK´1
b pEF ´FEqqpab bq

“
1

q ´ q´1
ppK´K´1

qbKqpabbq`K´1FabEKb´FK´1abKEb`
1

q ´ q´1
pK´1

bpK´K´1
qqpabbq

“
1

q ´ q´1
pKabKb´K´1abKbq`K´1FabEKb´FK´1abKEb`

1

q ´ q´1
pK´1abKb´K´1abK´1bq

“
1

q ´ q´1
pKabKbq ´

1

q ´ q´1
pK´1abK´1bq `K´1Fab EKb´ FK´1abKEb

“
1

q ´ q´1
pK bK ´K´1

bK´1
qpab bq ` ppK´1F ´ q2FK´1

q bKEqpab bq

“
1

q ´ q´1
pK bK ´K´1

bK´1
qpab bq ` pK´1F ´ q2q´2K´1F q bKEqpab bq

“
1

q ´ q´1
pK bK ´K´1

bK´1
qpab bq “ ∆p

K ´K´1

q ´ q´1
qpab bq

We call the one-dimensional representation V0 – Cpqq the trivial representation, and the
two dimensional representation V1 – Cpqqv1 ‘ Cpqqv´1 the fundamental representation.

Since much of the sequel relies on explicit calculation, we take n “ 1 and specify the
action of Uqpsl2pCqq on V1 explicitly:

Ev1
“ 0, Ev´1

“ v1 (2.8)

Fv1
“ v´1, Fv´1

“ 0 (2.9)

K˘1v1
“ K˘1v´1

“ q¯1v´1 (2.10)

Theorem 2.3. V0 b V1 – V1 b V0 – V1 as Uqpsl2pCqq modules.

Proof. Set v˘1 b v0 – v0 b v˘1 – v˘1, and note that Epv0q “ F pv0q “ 0, and K is the
identity map on V0. This mapping respects the comultiplication and counit, and thus we are
done.

The following are maps between V0, V1 b V1

ε1 : V1 b V1 Ñ V0

ε1pv
1
b v1

q “ ε1pv
´1
b v´1

q “ 0, ε1pv
´1
b v1

q “ 1, ε1pv
1
b v´1

q “ ´q (2.11)

δ1 : V0 Ñ V1 b V1

δ1p1q “ v1
b v´1

´ q´1v´1
b v1 (2.12)

Two other maps, denoted by R : V1 b V1 Ñ V1 b V1 and R´1 : V1 b V1 Ñ V1 b V1, are given
below.

R :“ q1{2δ1 ˝ ε1 ` q
´1{2idV1bV1 (2.13)

R´1 :“ q´1{2δ1 ˝ ε1 ` q
1{2idV1bV1 (2.14)

The fact that these two maps are inverses of one another will be proven in Section III.
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Theorem 2.4. ε1 : V1 b V1 Ñ V0, δ1 : V0 Ñ V1 b V1 are intertwining maps.

Proof. Since ∆, ε are ring homomorphisms, it suffices to check this only for the action of the
generators E,F,K,K´1 on the bases of V0, V1b V1. For brevity in these proofs, brackets are
used to denote which equation depends on which sign choice for the tensor elements.

ε1p∆pEqpv
˘1
b v˘1

qq

“ ε1ppE b 1`K´1
b Eqpv˘1

b v˘1
qq

“ ε1pEv
˘1
b v˘1

`K´1v˘1
b Ev˘1

q “

"

ε1p0` 0q `

ε1pv
1 b v´1 ` q´1pv´1 b v1qq ´

*

“ 0 “ Ep0q “ Eε1pv
˘1
b v˘1

q

ε1p∆pF qpv
˘1
b v˘1

qq “ εppF bK ` 1b F qpv˘1
b v˘1

qq

“ ε1pFv
˘1
bKv˘1

` 1v˘1
b Fv˘1

q

“

"

ε1pv
´1 b qv1 ` v1 b v´1q `

ε1p0` 0q ´

*

“ 0 “ F p0q “ Fε1pv
1
b v1

q

ε1p∆pKqpv
˘1
b v˘1

qq “ ε1ppK bKqpv˘ b v˘qq “ ε1p2Kv
˘1
bKv˘1

q “ 2q˘2ε1pv
˘1
b v˘1

q

“ 0 “ Kp0q “ Kε1pv
˘1
b v˘1

q

K´1 proceeds exactly like above.

ε1p∆pEqpv
˘1
bv¯1

qq “ ε1ppEb1`K´1
bEqpv˘1

bv¯1
qq “ ε1pEv

˘1
bv¯1

`K´1v˘1
bEv¯1

q

“ ε1p0` 0q “ 0 “ Ep0q “ Eε1pv
˘
b v¯q

ε1p∆pF qpv
˘1
b v¯1

qq “ ε1ppF bK ` 1b F qpv˘1
b v¯1

qq “ ε1pFv
˘1
bKv¯1

` v˘1
b Fv¯1

q

“ ε1p0` 0q “ 0 “ F p0q “ Fε1pv
˘
b v¯q

ε1p∆pKqpv
˘1
b v¯1

qq “ ε1ppK bKqpv˘1
b v¯1

qq “

ε1pKv
˘1
bKv¯1

q “ ε1pv
˘1
b v¯1

q “

"

´q “ ´qKp1q “ Kε1pv
1 b v´1q `

1 “ 1Kp1q “ Kε1pv
´1 b v1q ´

*

ε1p∆pK
´1
qpv˘1

b v¯1
qq “ ε1ppK

´1
bK´1

qpv˘1
b v¯1

qq “

ε1pK
´1v˘1

bK´1v¯1
q “ ε1pv

˘1
b v¯1

q “

"

1 “ 1K´1p1q “ K´1ε1pv
´1 b v1q `

´q “ ´qK´1p1q “ K´1ε1pv
1 b v´1q ´

*

11



Now we check for δ1:

δ1pEp1qq “ δp0q “ 0 “ ∆pEqpv1
b v´1

´ q´1v´1
b v1

q “ ∆pEqpδ1p1qq

δ1pF p1qq “ δp0q “ 0 “ ∆pF qpv1
b v´1

´ q´1v´1
b v1

q “ ∆pF qpδ1p1qq

δ1pK
˘1
p1qq “ δ1p1q “ v1

bv´1
´q´1v´1

bv1
“ ∆pK˘1

qpv1
bv´1

´q´1v´1
bv1

q “ ∆pKqpδ1p1qq

Corollary 2.1. R, R´1 : V1 b V1 Ñ V1 b V1 are intertwining maps.

Proof. Follows from Definition 2.2 and Theorem 2.4.

The representation theory for Uqpsl2pCqq takes on an interesting pictorial interpretation
in the context of category theory, described in the next section.

3 Category theory

3.1 Introduction

Category theory offers a means of describing multiple fields of mathematics at once, as well
as the connections between them. In our setting and many others, category theory provides a
framework for viewing complicated mathematics from a graphical perspective which is both
visually appealing and intuitive.

Definition 3.1. A category C contains a class obpCq of objects, a class hompCq of morphisms
between objects in obpCq, and the requirement that for every a, b, c P obpCq, hompa, bq ˆ
hompb, cq Ñ hompa, cq is an (associative) composition of maps. Moreover,

@x P obpCq, D1x : xÑ x such that @f, g, f : aÑ x, g : xÑ b, 1x ˝ f “ f, g ˝ 1x “ g

Definition 3.2. A (covariant) functor F : A Ñ B is a homomorphism between categories.
That is, it maps objects to objects and morphisms to morphisms, and respects the following

F p1Xq “ 1F pXq

F pf ˝ gq “ F pfq ˝ F pgq

@X P obpAq, f, g P HompCq

A bifunctor for category C is a functor from C ˆ C Ñ C.

Though categories can seem quite vague and generic, extra constraints can be placed
upon the objects and morphisms living within a category.

Definition 3.3. A monoidal category C is a category with bifunctor b, an identity object i,
and associativity constraints between n-tuple tensor products of objects in ob(C).

12



Definition 3.4. A strict monoidal category is a monoidal category in which the associator
is an identity map.

The idea behind a monoidal category is that it mirrors tensor products of vector spaces.
Strictness implies that associativity is an identity map, rather than just an isomorphism.
An example of an important non-strict monoidal category is the modular tensor category
Fibp1, τq composed of two objects 1, τ with a direct sum decomposition 1 b τ “ 1 ‘ τ [7].
In this category associativity is certainly non-trivial.

3.2 RepUq
and Frtang

We now introduce a strict monoidal category RepUq . obpRepUqq is tensor products of the
simple modules V0, V1 (e.g., V1 b V1, V0 b V1 b V1, etc.). The morphisms are intertwining
maps between representations (e.g, ε1, δ1, R, R

´1, etc.).
Our final category is the category of un-oriented framed tangles, denoted Frtang. obpFrtangq

is the set N, and for a, b P obpFrtangq, hompa, bq is the set of C-linear combinations of un-
oriented tangle diagrams between two lines, one with a endpoints, the other with b end-
points, modulo regular isotopy, described below. Following convention, the two horizontal
lines are vertically aligned. Frtang is also a strict monoidal category. The tensoring of ob-
jects is done by placing endpoints next to one another on one of the two lines (that is,
for n,m P obpFrtangq, n b m is represented by n ` m points on a line). Composition
of morphisms is defined by ”vertical stacking”: the endpoints of one morphism is iden-
tified with the endpoints of the other, as shown below in the composition of morphisms
f ˝ g, f P homp3, 5q, g P homp3, 3q.

˝ “

By regular isotopy, we mean tangles are equivalent if and only if they can be smoothly
deformed into one another via two local moves that change crossing information, known as
Reidemeister II and III, along with planar deformation:

RII:= = =

13



RIII:= =

Planar deformation := = =

Note that any tangle diagram can be decomposed into a composition of simple tangle dia-
grams, as shown in Figure 1.

We set a covariant functor F : Frtang Ñ RepUq , pictorially described in Figure 2. The
fact that F is well-defined is shown in the next subsection.

Notice that by our definition of composition of morphisms in Frtang, we have the relations
shown in Figure 3.

Figure 1: Deforming trefoil knot (left) into vertical composition of simple tangle diagrams
(right)
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Fpnq “

#

V0, n “ 0
Ân V1, n ‰ 0

. . . . . . . . . . . . F
ÝÑ idV1 b ¨ ¨ ¨ b ε1 b ¨ ¨ ¨ b idV1

. . . . . . . . . . . . F
ÝÑ idV1 b ¨ ¨ ¨ b δ1 b ¨ ¨ ¨ b idV1

. . . . . . . . . . . . F
ÝÑ idV1 b ¨ ¨ ¨ bR b ¨ ¨ ¨ b idV1

. . . . . . . . . . . . F
ÝÑ idV1 b ¨ ¨ ¨ bR

´1 b ¨ ¨ ¨ b idV1

Figure 2: The covariant functor F

F

¨

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‚

“ F

¨

˚

˚

˝

q1{2 ` q´1{2

˛

‹

‹

‚

F
ÝÑ ´q ´ q´1 P Cpqq

Figure 3: Skein and trace relation
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3.3 Checking F respects planar deformation and Reidemeister II,
III

We first verify that F is well-defined under smooth planar deformation.

= =

In RepUq , the left hand side of the figure above corresponds to

V1
–
ÝÑ V1 b V0

idV1bδ1
ÝÝÝÝÝÑ V1 b pV1 b V1q

–
ÝÑ pV1 b V1q b V1

ε1bidV
ÝÝÝÝÑ V0 b V1

–
ÝÑ V1

The middle equality corresponds to

V1
–
ÝÑ V0 b V1

δ1bidV
ÝÝÝÝÑ pV1 b V1q b V1

–
ÝÑ V1 b pV1 b V1q

idV bε1
ÝÝÝÝÑ V1 b V0

–
ÝÑ V1

Checking with linear maps:

v˘1 –
ÝÑ v˘1

b v0 idV1bδ1
ÝÝÝÝÝÑ v˘1

b pv1
b v´1

´ q´1v´1
b v1

q “ v˘1
b v1

b v´1
´ q´1v˘1

b v´1
b v1

ε1bidV
ÝÝÝÝÑ 0` v˘1

“ v˘1

For the middle equality,

v˘1 –
ÝÑ v0

b v˘
δ1bidV
ÝÝÝÝÑ pv1

b v´1
´ q´1v´1

b v1
q b v˘1

“ v1
b v´1

b v˘1
´ q´1v´1

b v1
b v˘1

idV bε1
ÝÝÝÝÑ v1

b v0 –
ÝÑ v˘1

Algebraically, Reidemeister II corresponds to the following:

V1 b V1
R
ÝÑ V1 b V1

R´1

ÝÝÑ V1 b V1

We check with linear maps on each of the basis elements of V1 b V1 on the left hand side of
the equality:

v1
b v´1 R

ÝÑ q1{2δ1pε1pv
1
b v´1

qq ` q´1{2
pv1
b v´1

q “ ´q3{2δ1p1q ` q
´1{2

pv1
b v´1

q

“ ´q3{2
pv1
b v´1

´ q´1v´1
b v1

q ` q´1{2
pv1
b v´1

q

´q3{2v1
b v´1

` q1{2v´1
b v1

` q´1{2v1
b v´1 R´1

ÝÝÑ

´qδ1p´qq ` δ1p1q ` q
´1δ1p´qq ´ q

2v1
b v´1

` q1v´1
b v1

` v1
b v´1

“ q2
pv1
b v´1

´ q´1v´1
b v1

q ´ q2v1
b v´1

` qv´1
b v1

` v1
b v´1

“ v1
b v´1
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v´1
b v1 R

ÝÑ q1{2
pv1
b v´1

´ q´1v´1
b v1

q ` q´1{2v´1
b v1

“ q1{2v1
b v´1

´ q´1{2v´1
b v1

` q´1{2v´1
b v1

“ q1{2v1
b v´1 R´1

ÝÝÑ

´qpv1
b v´1

´ q´1v´1
b v1

q ` q1v1
b v´1

“ v´1
b v1

For the case of v˘1 b v˘1, since both are in the kernel of ε1, both elements will be sent
to 0 P V0, hence we need only worry about the identity map. Since q1{2q´1{2 “ 1, we have
equality.

Now we’ll check the middle equality.

v1
b v´1 R´1

ÝÝÑ q´1{2δ1pε1pv
1
b v´1

qq ` q1{2
pv1
b v´1

q “ ´q1{2δ1p1q ` q
1{2
pv1
b v´1

q

“ ´q1{2
pv1
b v´1

´ q´1v´1
b v1

q ` q1{2
pv1
b v´1

q

´q1{2v1
b v´1

` q´1{2v´1
b v1

` q1{2v1
b v´1 R1

ÝÑ

´q1δ1p´qq ` δ1p1q ` q
1δ1p´qq ´ v

1
b v´1

` q´1v´1
b v1

` v1
b v´1

“ v1
b v´1

v´1
b v1 R´1

ÝÝÑ q´1{2
pv1
b v´1

´ q´1v´1
b v1

q ` q1{2v´1
b v1

“ q´1{2v1
b v´1

´ q´1{2v´1
b v1

` q1{2v´1
b v1

“ q1{2v1
b v´1 R

ÝÑ

´qpv1
b v´1

´ q´1v´1
b v1

q ´ v1
b v´1

` q´1v´1
b v1

` qpv1
b v´1

´ q´1v´1
b v1

q

`q´1v1
b v´1

´ q´1v´1
b v1

` v´1
b v1

“ v´1
b v1

For the case of v˘1 b v˘1, the logic is the same as before. Thus, we’ve shown that the
composition of maps R˘1 ˝R¯1 equates to idV1bV1 , which implies R,R´1 are inverses of one
another.

The final move to check is Reidemeister III. Algebraically, it corresponds to

R b idV1 ˝ idV1 bR ˝R
´1
b idV1 “ idV1 bR

´1
˝R b idV1 ˝ idV1 bR

Here we’ll demonstrate checking Reidemeister III in the case of v b v b v´1 (Reidemeister
could also be checked by comparing the composition of maps via Mathematica).

vb vb v´1 R´1bidV1
ÝÝÝÝÝÝÑ q1{2vb vb v´1 idV1bR

ÝÝÝÝÑ q1{2
“

pq´1{2
´ q3{2

qv b v b v´1
` q1{2v b v´1

b v
‰

RbidV1
ÝÝÝÝÑ pq´1{2

´ q3{2
qv b v b v´1

` qpq´1{2
´ q3{2

qv b v´1
b v ` q3{2v´1

b v b v

From the RHS:

v b v b v´1 idV1bR
ÝÝÝÝÑ pq´1{2

´ q3{2
qv b v b v´1

` q1{2v b v´1
b v

RbidV1
ÝÝÝÝÑ q´1{2

pq´1{2
´ q3{2

qv b v b v´1
` q1{2

rpq´1{2
´ q3{2

qv b v´1
b v ` q1{2v´1

b v b vs

idV1bR
´1

ÝÝÝÝÝÝÑ pq´1{2
´ q3{2

qv b v b v´1
` qpq´1{2

´ q3{2
qv b v´1

b v ` q3{2v´1
b v b v
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3.4 Example: trefoil knot

Knots come with knot invariants, one of the most famous being the Jones polynomial. In-
terestingly, the Jones polynomial can be formally derived via the representation theory of
Uqpsl2pCqq , made possible by the covariant functor from Section 3. In particular, homp0, 0q
in Frtang is the set of un-oriented knots. Since F respects regular isotopy, if two knots K,K 1

are equivalent under regular isotopy, then F maps them to the same composition of inter-
twining maps mapping to and from Cpqq; i.e., a polynomial known as the Kauffman bracket
and denoted by xKy. With a suitable renormalization, the Kauffman bracket gives the Jones
polynomial [8]. Formally, for a knot K, the Kauffman bracket x y is defined via two relations:

A E

“ q1{2
A E

` q´1{2
A E

A E

“ ´q ´ q´1

These are precisely the relations found in the previous subsection, given by F . We use the
representation theory to determine the Kauffman bracket in the case of the trefoil knot,
which has Kauffman bracket ´q9{2 ` q´3{2 ` q1{2 ` q´7{2. Figure 1 shows the trefoil knot,
with ”critical regions” (i.e., intertwining maps) identified between dashed lines.

Via F , this diagram corresponds to the composition of intertwining maps given by

ε1 b ε1 ˝ idV1 bR b idV1 ˝ idV1 bR b idV1 ˝ idV1 bR b idV1 ˝ δ1 b δ1 (3.1)

This corresponds to (suppressing tensor symbol b on module elements for brevity)

v0 – v0v0
δ1bδ1
ÝÝÝÑ pvv´1

´ q´1v´1vqpvv´1
´ q´1v´1vq

“ vv´1v´1v ´ q´1vv´1v´1v ´ q´1v´1vvv´1
` q´2v´1vv´1v

idV1bRbidV1
ÝÝÝÝÝÝÝÝÑ q1{2vvv´1v´1

´ q´3{2vv´1v´1v ´ q´3{2v´1vvv´1
´ q´3{2vv´1v´1v

`q´2
“

pq´1{2
´ q3{2

qv´1vv´1v ` q1{2v´1v´1vv
‰

idV1bRbidV1
ÝÝÝÝÝÝÝÝÑ q1{2

“

pq´1{2
´ q3{2

qvvv´1v´1
` q1{2vv´1vv´1

‰

´q´2vv´1v´1v´q´2vv´1v´1v´q´2v´1vvv´1

`q´2
“

pq´1{2
´ q3{2

q
2v´1vv´1v ` pq´1{2

´ q3{2
qq1{2v´1v´1vv ` qv´1vv´1v

‰ idV1bRbidV1
ÝÝÝÝÝÝÝÝÑ

q1{2
“

pq´1{2
´ q3{2

q
2vvv´1v´1

` pq´1{2
´ q3{2

qq1{2vv´1vv´1
` qvvv´1v´1

‰

´q´5{2
pvv´1v´1v`v´1vvv´1

q

`q´2
“

pq´1{2
´ q3{2

q
3v´1vv´1v ` pq´1{2

´ q3{2
qv´1v´1vv ` 2pq´1{2

´ q3{2
qqv´1vv´1v ` q3{2v´1v´1vv

‰

ε1bε1
ÝÝÝÑ q3

pq´1{2
´q3{2

q`2q´3{2
`q´2

pq´1{2
´q3{2

qpq´1
´2q`q3

q`2q´1
pq´1{2

´q3{2
q “ ´q9{2

`q´3{2
`q1{2

`q´7{2

Figure 5 shows the Kauffman bracket computed via the skein relation.
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Figure 4: Kauffman bracket via skein relation
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Conclusion

The representation theory of Uqpsl2pCqq has a graphical interpretation as tangle diagrams,
allowing knots, links, and other objects to be associated with compositions of intertwining
maps. Thus, knots can be mapped to polynomials like the Jones polynomial and Kauffman
bracket that are invariant under some or all of the Reidemeister moves, meaning that they
are knot invariants.

Quantum groups/algebras offer an interesting means of generating knot invariants. Gen-
eralizing to slnpCq leads to more knot polynomials [9]. There is a larger story of categorifying
knot invariants like the Jones polynomial; in that particular case, the categorification involves
associating smoothings of knot projections with vector spaces, generating chain groups and
setting a differential, and then computing homology groups. This invariant, known as Kho-
vanov homology, is stronger than many invariants in the sense that it distinguishes more
knots [10].

As a physicist, the story of quantum groups becomes highly relevant to me in the con-
text of topological and conformal field theory. (2+1) dimensional systems exhibit statistical
properties and topological ordering unseen in (3+1) dimensions, mainly because the relevant
symmetry group for particle interchange is not the symmetric group, but the braid group
[4]. The ground state for such systems has a characteristic topological degeneracy, and the
collective excitations, known as anyons, can exhibit fractional statistics and potentially be
used for fault-tolerant topological quantum computing [11, 4, 12]. The categorical data to
describe these particles and their interactions is given by quantum groups [7]. A prescient
reader might look at knot projections and imagine particles intertwining with one another. A
knot with singularities might even represent particles interacting with one another. A Feyn-
man diagram is a graphical picture of precisely this, particles interacting with each other.
What’s more, a Feynman diagram is a picture of intertwining maps between irreducible rep-
resentations (particles) of a symmetry group. These connections make knot theory, quantum
groups, and category theory pivotal to continuing research in theoretical physics.
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