
University of Richmond University of Richmond 

UR Scholarship Repository UR Scholarship Repository 

Honors Theses Student Research 

1999 

Method for identification of origins of replication and genes Method for identification of origins of replication and genes 

regulated by DnaA in bacteria regulated by DnaA in bacteria 

Olga G. Troyanskaya 
University of Richmond 

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses 

 Part of the Biology Commons, Computer Sciences Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Troyanskaya, Olga G., "Method for identification of origins of replication and genes regulated by DnaA in 
bacteria" (1999). Honors Theses. 966. 
https://scholarship.richmond.edu/honors-theses/966 

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It 
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For 
more information, please contact scholarshiprepository@richmond.edu. 

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/966?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


UNIVERSITY OF RICHMOND LIBRARIES 

111111/11111!1/ II l!lll lllll llll II llllllll llll llllll II lllll/ 11111 
3 3082 00688 8530 

751 0 1091--­
Tr o 

Method for identification of origins of replication and genes regulated by 

DnaA in bacteria 

Olga G. Troyanskaya 

Honors Thesis 

In 

Departments of Biology and Mathematics and Computer Science 

University of Richmond 

Richmond, VA 

April 23, 1999 

Advisors:JeffElhai*, Lewis Barnett+, Steven Salzberg". 

*Department of Bio1ogy, University of Richmond 
+Department of Mathematics and Computer Science, University of Richmond 
ADepartment ofBioinformatics, The Institute for Genomic Research, MD 



This paper is part of the requirements for an interdisciplinary honors program in biology 

and computer science. The signatures below, by the advisors, a departmental reader, and a 

representative of the departmental honors committee, demonstrate that Olga Troyanskaya 

has met all the requirements needed to receive honors in biology and computer science. 

(advisor) 

(advisor) 

W. 
(reader) 

(honors committee representative) 



Abstract 
The study is focused on developing computer programs to identify origin of DNA 

replication based on analysis of total bacterial genomes, scoring regions for number of 

DnaA binding sites, AT content, DNA adenine methylase boxes, and integration host 

factors binding sites. The programs were tested on cyanobacterium Synechocystis, and 

several potential origins were identified. However, no one definite region could be 

located. Currently, software is being developed to analyze common motifs around the 

origins of all bacteria with known origins. Genes whose transcription could be regulated 

by DnaA were identified by searching for DnaA boxes preceding promoter regions. 
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Introduction 

All organisms face the problem of DNA replication, which happens once every cell 

cycle before cell division. DNA replication must be under strict control with respect to cell 

division or else daughter cells will either lack DNA or have too much DNA. In mammals, 

loss of control over the cell cycle DNA replication is a major event leading to cancer. In 

many bacteria, DNA replication is initiated at a unique site on the chromosome, the origin 

of replication (Skarstad and Boye, 1994). 

DnaA is a central protein in DNA replication initiation in bacteria. E. coli cells that 

lack functional DnaA protein and don't have secondary compensatory mutations are not 

viable (Skarstad and Boye, 1994). DnaA is found in a wide spectrum of bacteria, and is 

probably essential in all true bacteria (Skarstad and Boye, 1994). The protein recognizes the 

origin of replication and binds to a small, specific region of DNA (9 base pair DnaA box). 

DnaA boxes are frequent around the origin, and recruit the replication machinery to that 

site (Messer and Weigel, 1997). The sequence of DnaA boxes is very well conserved 

throughout bacteria: 5'-IT1Jf TNCACA-3'1, where T, C, and A represent three out of 

four monomeric subunits of the DNA polymer and N represents any of the four (Messer 

and Weigel, 1997). 

A general pattern exists in many bacterial origins of replication (Figure 1): an AT-

rich region is usually found upstream from replication initiation proteins binding sites 

(Marczynski and Shapiro, 1993). In addition to DnaA boxes, found in the origins of all 

currently characterized bacteria, origins of enteric bacteria also contain DNA adenine 

methylase (dam) methylation sites (GATq. The replication origin in E. coli (Oka, 

1 This expression is similar to regular expressions. A slash means an "OR", 5' and 3' signify DNA 
directionality. 
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Sugimoto, and Takanami, 1980) contains four DnaA boxes and twelve dam methylation 

sites. Dam methylation is found in enteric bacteria (e. g. E. eoli) and cymobacteria 

(Katayama et al., t 997). One function of the dam methylase in enteric bacteria is to 

synchronize DNA replication (Katayama et al., 1997), but its function in cyanobacteria is 

unknown. In addition, many bacterial origins contain integration host &ctor (IlIF) binding 

sites. 

Figure 1. Architectural elements at bacterial origins of replication 

E. coli origin (approx. 400 bp) 

DnaA box (blue arrows) consensus: 1TATCCACA 

IHF consensus: 

Darn binding sites (filled dots); GATC 

Synecbococus putatift origin (270 hp) 

DnaA box consensus: TITICCACA 

·m 13-rner • 
·•· .- ' . •· l!J - . 

Many cellular responses are tied to the cell cycle, so it is significant that DnaA is not 

only an initiator of DNA replication, but also controls the expression of genes in E. eoli 

(Messer and Weigel, 1997). DnaA can act as a repressor or activator of transcription of 

some genes by binding to DnaA boxes that occur upstream or within the promoter region 
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of regulated genes (Fig. 2) (Messer' and Weigel, 1997). Few genes regulated by DnaA are 

known, identified haphuatdly, and most in E. coli. There has been no systematic search for 

such genes. 

F"igure 2. A DnaA reguJated gene. 

3' 

w 
Twelve complete bacterial genomes have been sequenced2, and the origin of 

replication has been identified in many of the bacteria by biological function (ability to 

replicate individually), however some still remain unknown. In cyanobacterium 

Synechot:oats, a putative origin of replication (Liu et al., 1995), containing eight DnaA boxes 

and several dam methylation sites, was found computationally. In the replication origin of 

~lt dam methylase sites occur at a frequency of 7 per 217 base pairs, which is 

significantly higher than statistical expectation of 1 in 256 base pairs. The location of the 

origin of replication in another cyanobacterium, Syttedloqslis PCC 6803, whose genome is 

completely sequenced'j is unknown. HOWCTer, it would be reasonable to expect the origin 

in cyanobacteria to exhibit the same general characteristics as those of enteric bacteria and 

2 hup:/ /evolutioa.bmc -..sc/-mom/seqdbs.html 
3 http://-r11w---.ot.jp/cymo/cymoJitml 
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Currently, most identification of origins of replication is conducted purely through 

complex and lengthy biological experiments. The rapid sequencing of microbial genomes 

presents urgent need for automated methods of genomic analysis. Identification of origins 

of replication and of genes controlled by DnaA is crucial for development of many research 

methods that depend on controlling bacterial replication. In addition, knowledge of the 

position of the origin is important for the development of antibacterial drugs, for example 

chemicals that would target bacterial replication. This work presents a novel approach to a 

very computationally and biologically challenging and important problem. 

Methods and design 

The goal of this study was to develop computer programs to identify the origin of 

DNA replication in bacterial genomes and to computationally identify genes in E. coli whose 

transcription is regulated by DnaA. Genomes with known origins of replication were used 

to develop the method. The strategy for identifying origins of replication is being tested on 

the cyanobacterium Synechorystis PCC 6803. 

To computationally identify origins of replication, we have developed algorithms 

based on scoring regions of the genome for number ofDnaA sites, AT content, DNA 

deoxyadenine methylase (Dam) boxes, and integration host factor (IHF) binding sites. 

DnaA is a protein that regulates DNA replication in bacteria; IHF is a protein that initiates 

site-specific bending in DNA which facilitates recombination and may also facilitate 

initiation of DNA replication. Methylation at Dam sites controls synchrony of replication 

in E. coli, and Dam methylation is also universal among cyanobacteria, including Synechorystis. 
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The Synechorystis genome was searched for 500-base-pair-long regions containing 

dusters of DnaA boxes (higher than statistically predicted). The length of the region to 

consider was elucidated from the sizes of biologically determined origin regions submitted 

to Genbank4
• Two DnaA box consensus sequences were used 3' TI'%_ TN CACA 5' (from 

determination of binding constants by Schaper and Messer) or a more relaxed consensus 

3' YcYcTINCTNCo/c,CtAII'Yc 5' (a general consensus determined from various 

literature sources). Potential origin regions were then examined for presence of Dam 

binding sites (GATC). The algorithm followed in identification of regions with high 

number of DnaA binding sites is described in Figure 3 (program in PERL is included in 

Appendix I). 

Figure 3. Algorithm for finding putative origins based on DnaA boxes and Dam 
methylase sites. 

Define: DnaA box 
Dam methylase box 

Search for DnaA boxes on the genomic sequence, look until found a match. 
Remember the coordinate of DnaA box as Start of Region. 

For 500 hp region after the match: 
search for any additional DnaA boxes in the region 
search for any Dam binding sites in the region 

Print information about the coordinates of the region and of DnaA 
boxes and Dam methylase sites within the region. 

Advance coordinate for Start of Region by 1 (so the next region is displaced one 
coordinate downstream (to the right)). 

4 http://www.ncbi.nlm.nih.gov/ 
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Two methods were used to determine statistical significance of the regions with 

DnaA boxes. In the first method, the number of regions in the genome that have N (N = 

1, 2, 3, 4) DnaA binding sites was calculated both in E. coli and in Synechorzystis genomes. In 

addition, the same procedure was repeated for a random sequence with the same base 

composition and constraints (an inverse of the consensus sequence was used). The 

procedure was implemented in PERL by modifying algorithm presented in Figure 3 to 

count the number of regions with N occurrences for N > 0, the program is presented in 

Appendix II. The number of regions with N DnaA binding sites was compared to the 

number of regions with N occurrences of the random sequence. In addition, the data for 

Synechorzystis was compared to that obtained for E. coli. 

In addition, the expected number of 500 nucleotide long regions with at least one 

DnaA box was determined to be 109 if DnaA binding site sequence is assumed to occur 

randomly in the Synechorzystis genome (Figure 4). It is reasonable to assume that these 109 

regions include regions with more than one DnaA box. Because of the independence 

assumption, poisson distribution can be used to estimate the probability of DnaA boxes 

being more than 500 bases apart, which was found to be 98.5%. From that, 0.015 of the 

109 regions with DnaA binding site are expected to have two DnaA boxes in them and 

1.2*10-6 of the 109 regions would have three DnaA boxes, making expected number of 

regions be 2 and less than 0, respectively (Figure 4). 
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Figure 4. Statistical predictions based on random occurrence of DnaA 
boxes in the genome. 

If assume that DnaA boxes occur randomly. then: 

P(TI°%_ TNCACA)=(±)7 *±*1=3.05*10-5 

Length of Synechogstis genome is 3,573,470 bases 

Expected number of regions with at least one DnaA box (overlap allowed): 
Expected= P( consensus)* Length_ of _genome 

·Expected=3.05*10'5 *3,573,470=108.9~109 

What's the probabilitv of regions with more than one DnaA box? 

P(dist b/w hits> 500) = e<·PX500> = 98.5% 

P(dist b/w hits<500) = 1-.985=.015104 

Expected(2boxes) = .015*109=1.6 ~ 2 

P(3 boxes in< 500) = Gamma-
1

-
(p, 3) 

500 -x 

P(3 boxes)= J 1 x2e3.05•10-s = 1.2*10-6 
0 (3.05*10-5

)
3 

Expected(3boxes) =1.2 *10-6*109=1.3*10-4 ~ 0 

The regions with more than one DnaA box were also examined for the presence of 

IHF sites ( 3' ;f ATCAANNNNTI<% 5' or 3' GNT'Yc-Yc,A;f ;f ;f T'Yc%ANC 5'). 

The software used for searching for regions with high DnaA box content was used (Figure 

3, Appendix II) with modification that after such regions were found, they were searched 

for IHF sites instead of Dam methylase binding sites. 

In addition, the Synechorystis genome was examined for regions with AT content 

significantly higher than that of the genome. In this algorithm, described in Figure 5, 100 

base pair long regions were examined (refer to Appendix III for the program printout). 

The ratio of A and T nucleotides in the region to the total region length was compared to 
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the AT content of the genome. In addition, a program was developed to find AT content 

of a specific region (refer to Appendix IV for the program printout). 

Figure 5. Algorithm for finding regions with high AT content (in comparison with the 
AT content of the genome). 

Define: Cutoff 

Start examinif?.g 100 bp region with start coordinate at Start of Region 

calculate number of A and T nucleotides in the region 
AT content= (number of A and 1)/0ength of region) 
Ratio= (AT content of region)/(AT content of genome) 
if Ratio > Cutoff, then print out region coordinates 

Advance coordinate for Start of Region by 10 (so the next region is displaced by 
10 nucleotides downstream (to the right)). 

Genes in E. rokwhose transcription could be regulated by DnaA were identified by 

searching for DnaA boxes proceeding biologically identified promoters (Figs 4, 5). A list of 

promoters was obtained from Fred Blattner's lab (306 promoters). Positions of DnaA 

boxes in the genome were compared to the locations of the promoters, and promoters with 

a DnaA box within 200 base pairs upstream from them were identified. 

A suite of three programs were developed to process promoter coordinates file, to 

locate DnaA sites that have open reading frames within 200 base pairs downstream from 

then, and to match these DnaA sites with promoters. Program DnaA_prot.pl first searches 

for DnaA binding sites in Synech0t;ystis genome (Figure 6, Appendix V). Once a DnaA box is 

located, the program scans downstream for open reading frames (ad) and if there is an orf 
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within 500 bases downstream5
, the coordinates of both DnaA binding site and the longest 

possible orf are printed out. Program promoters.pl is utilized to create a file with 

coordinates of biologically identified promoters and information about them extracted from 

the file with promoter information received from Frad Blattner's laboratory (University of 

Wiscouncin at Madison) (Appendix VI). Another program, DnaA_promoterOfrs.pl, 

examines each coordinate from the file created by DnaA_prot.pl and searches the file with 

promoter information created by promoters.pl for coordinates of promoters within 200 

nucleotides downstream ofDnaA boxes (Appendix VII). 

Figure 6. Algorithm for identification of genes regulated by DnaA. 

Search the genome for DnaA box 
When a DnaA box is found, scan for a start codon 

if start codon found, search downstream for stop codon 
if stop codon found, check if it's in frame 
if in frame, consider this an orf and print coords into File 

Look for next DnaA box, repeat until whole genome searched 

Take a DnaA coordinate from the File 
if there is a promoter downstream of that DnaA box (search promoter 

file) 
(examine both strands) 
then print out DnaA box and promoter coordinate information 

5 Promoters are usually located upstream from the start codon. It is reasonable to assume that a promoter can 
be anywhere within 300 bases of the start codon. Since DnaA is usually located within 200 bases upstream 
from DnaA-regulated genes, it is reasonable to consider DnaA boxes up to 500 nucleotides upstream from 
the start of the or£ 
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Results and Discussion 

Several potential origins of replication have been identified in SynechotystiJ using the 

relaxed DnaA box sequence, but no region had the number of characteristic sites typical of 

bacterial origins. Both in E. coli and in Synechocystis, total number of regions with N 

DnaA boxes was much higher than the total number of regions with N occurences of the 

randomly genera_ted sequence of the same base composition as a DnaA box (fable 1, Figure 

7). The difference is more pronounced in Synechotystis than in coli: the first has 2.3 times 

more regions which contain one DnaA box than regions with randomly-generated 

sequence, whereas the fraction is 1.4 in E. coli. 

The number of regions with one DnaA box found in Synechocystis with strict 

DnaA consensus was 250, which greatly exceeds the 109 regions with one or more DnaA 

box expected in case of random DnaA box distribution (fable 1, Figure 4). The number of 

regions in which two DnaA boxes were found is 20, which is much larger than the predicted 

value of 2 in case of random distribution (fable 1, Figure 4). No 500-nucleotide-long 

regions with three DnaA boxes were expected, however, one was located (fable 1, 

Figure 4). 

Table 1. Comparison of number of DnaA boxes in genome 

E.coli Synechocystis 
Strict consensus Strict consensus Relaxed consensus 

Occurrenc 
es1 Random"7 DnaAbox Random2 

1 199 283 
2 5 20 
3 0 2 
4 0 1 ,. 
Number of DnaA boxes m 500bp region 

2Using DnaA consensus sequenced reversed 

DnaA box Random2 DnaAbox 

108 250 2589 1832 
0 20 2539 3879 
0 1 1311 4032 
0 0 429 2738 

11 



Figure 7. Occurence of DnaA boxes and random sequences in genomes of Syttec/Jogtlis 
and E.coli. 

Occ1.1'8nce of DnaA boxes and 
9bp random sequences In 

Synechocystls 

•• - ~·1 -

4 

DlaA boxes In region 

Occlftnce of DnaA boxes and 
9bp random sequences in 

regions , 
found 

E. coll 

When the strict defmition of DnaA box was used, a single 500 base pairs long 

region, which contains three DnaA binding sites and is located at 774'1J!,7 in the genome was 

identified (Figure 8). In addition to three DnaA boxes (by strict consensus), this region 

contains sevenl wiidentified repeats, which could be a characteristic of a replication origin. 

The region does overlap with an open reading frame, whereas B. coli origin does not. 

However, it has not been determined that bacterial origins necessarily have to occur in the 

intragenic regions. 

Although the putative origin region has fewer DnaA binding sites than many 

bacterial origins, the number of DnaA boxes is still much higher than statistically predicted 

(Figure 4). In addition, no regions were identified that contained three (or two) occurrences 

of the randomly generated sequence of the same base composition as DnaA box, indicating 

that clustering of DnaA boxes in the region of interest is probably not random (Table t). 
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Figure 8. Proposed origin of replication identified by using strict DnaA consensus 

DnaA boxes are highlighted in blue, green and yellow regions are unidentified repeats. 

Synechocystis sp. strain PCC6803 774287-774712 
TTTTCCACACTTAAAGCCGCTATCATTCCCACTGCTTGCCCTGTGTTCATAACTAGGGGT 
TGTAAACGGGTGCTGCCATTGGCCATGTGACTGACGGAAATATTTTTTTCACAGGGTAAA 
TAGCCCCGCGCTGTCGGAGATAAAAGAGCTGGAAAAGGAATGGTAAAGGGGGTTCCCGTC 
CATCTTCCGCCCCAAA.TTAAGGATTTGGGAGTAAGAGGAAATTCATAGCCAGGATAGTGG 
TGATCGTTGGCATAATTTCCCACCCCAATGCTAGTAACTTTTTGGTTATAAATTGGCAGG 
GATGCTACCTGACCCTGGGGTAAAATATCCCTTTCTGTAATAACTTGCTGACCTTTTAAG 
CGCCTACTTTCCCGATAGTAGGGATGGAGAGCAAAGGCGGTGGAAATATCTCCAGTTTGT 
GGAAAA 

Several genes that could be regulated by DnaA were identified (fable 2). These 

genes all haye biologically identified promoters upstream from the start site and a DnaA 

binding site within ~00 bases upstream from the promoter. 

T bl 2 G a e . enes .E_Otenb la db D aA !:!_r~ te !Y.. n 
Gene Distance between promoter and 

Function 
name DnaA box* 

queA 12 tRNA modification 

sdh 169 from sdhp2 Hydrogenase 

putP 68 from putPp5 praline utilization 

purR 50 Regulatory gene for pur regulon 

pfkB 85 level of 6-phosphofructokinase 

fadl 14 fatty acids transport 

gut 47 gut operon - dehydrogenase, 
phosphotransferase 

rpmH 132 from rpmHp1 SOS ribosomal subunit protein 

ilvG 181 Acetolactate synthase II 

rho 117 Transcription termination factor 

btuB 154 receptor for vitamin 812 

lexA 46 Regulatory gene for SOS operon 

argF 52 omithine carbomoyltransferase (cytochrome B) 

fabA 54 beta-Hydroxydecanoyl thioester dehydrase 

hisA 12 Histidine 

dapA 12 Dihydrodipicolinate synthase 

ansB 76 Asparaginase 

trmA 94 tRNA for a rare nucleotide 
.. 

*DnaA box within 200bp of promoter identified 
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The genes identified have diverse functions and no definite link between their 

function and initiation of replication can be established for most of them. Some of the 

genes have multiple promoters, which implies that DnaA protein could be regulating one or 

several promoters by its binding. 
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Appendix I 
#!/usr/bin/perl 

############################################################## 
#Author: Olga Troyanskaya 
#File: origins_Dam.pl 
#Description: program searches for DnaA binding sites, and finds 
# Dam methylase binding sites within identified regions. 
#Date last modified: 
############################################################### 
#To run the program: origins_Dam.pl <input_file> <output_file> 
# where <input_file> has genename on first line 
# and sequence with no returns on next line 
# (fasta2seq.pl can be used for seq. conversion). 
# 
# if no output file is specified, output will appear in the ter-
# minal window (standard output will be used) 
############################################################### 

#open necessary files 
$infile = $ARGV[OJ; #name of input file is the first parameter 

if (@ARGV eq 2) { #open output file 

} 

$outfile = $ARGV[1]; #output file is the second parameter 
unless (open(OUTFILE, ">$outfile'')) { 

die ('Cannot open output file $outfile\n''); 
} 
select (OUTFILE); 

else { 
select (STDOU1); #if no output file specified, use STDOUT 

#define DnaA box pattern and its reverse complement 
$DnaAbox = "(IT[f AJT[CAGT]CACA) I (fGTG[ACTG)Aff A]AA)"; #E. coli consensus from 
determination of binding constants (Schaper and Messer) 
$damBox = "GATC"; 

#initializecountvars 
$damCount = O; #keeps track of number of dam binding sites found 
$count = O; #var for array index 
$index = O; #count of the number of 2000bp regions with high frequency of DnaA boxes 

unless (open(INFILE, $infile)) { #open input file 
die ('Cannot open input file $infile\n''); 

$genename = <INFILE>; #in fasta format, the first line is info 
#on the gene 

$line = <INFILE>; 

#find all occurences of pattern in $line. index will find next position of 
#its second argument in its first argument (if third argument is given, the 
#number of chars given in the third argument is skipped) 
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while ($line =- /$Dna.Abox/ig) { 

} 

@region[$index] = $count; #store the array index of the first match in the region 
@begin[$count] = pos($Iine) +1 - length($&); #the beginning of the match 
@end[$count] = @begin[$count] +length($&) -1 ; #the end of the match 
$Dna.Amatch[$count] = $&; #store the match 
@beginRegion[$indexJ = @begin[$count}; #start coord of 2000 bp region 

$count++; 

#now search the 2000 bp region after the match for any other Dna.A boxes 
$nextpos = @begin[$count-1} + 1; #position to start 2000 bp region 
$offset = $nextpos; #store the start coordinate to figure out coords later 

$region substr($line, $nextpos, 500); #create a substring for the 
#next 2000nb (change this number 
#to change the length of the regions) 

while ($region =- /$Dna.Abox/ig) { 

} 

#while still in the same 2000bp region, find more matches 
#record info in arrays 

@begin[$count] = $offset + pos($region) + 1 - length($&); #the beginning of the match 
@end[$count] = $begin[$count] + length($&) - 1; #the end of the match 
$DnaAmatch[$count] = $&;#store the match 
#print ("count $count begin $begin[$count]\n"); 
$count++; 

#once finished parcing the 2000 hp region 
if (($count-$region[$indexD<3) { #if region has less than n dna.A boxes 

#then forget it 
$count = @region[$index]; #reset count back to the index of the first match in the region 

} else { 
#if 3 or more Ona.A boxes in the region, then consider region valid 
@endRegion[$index] = $end[$count-1]; #end coord of the region 
#use count-1 b/c count has 
#already been advanced 

@damlndex[$index] = $damCount; #store the index to first dam site in the region 
while ($region=- /$damBox/ig) { 

#find dam methylase sites 
@begioDam[$damCount] = $offset + pos($region) + 1 - length($&); #the beginning of the 

match 
@endDam[$damCount] = $offset + pos($region); #the end of the match 
#print ('dam match $damCount at $beginDam[$damCount]\n"); 
$DamMatch[$damCount] = $&; #store the match 
$dam Count++; 

$index++; 
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#printing results 
$region[$indexJ = $count; 
$damlndex[$index] = $damCount; 

for ($i = O; $i <= ($index-1); $i++) { 

print ("\n\n****region $i from @beginRegion[$i] to @endRegion[$i]****\n"); 
$c = $region[$iJ;· #index of the first match 

for (; $c < $region[$i+1]; $c++) {#print all the matches within the region 
print C'DnaA match $begin[$c] to $end($c] $DnaAmatch[$c]\n''); 

} 

$lcv $damlndex[$iJ; #index of the first dam match 
$numberDamMatches = O; #count number of Dam matches in the region 
for (; $1cv < $damlndex[$i+1]; $1cv++) { #print all the matches within the region 

print ("Dam match $beginDam[$1cv] to $endDam[$1cv] $DamMatch[$lcv]\n"); 
$numberDamMatches++; 

} 
print C'$numberDamMatches Dam binding sites found\n''); 

} 
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Appendix II 
#!/usr/bin/perl 

############################################################## 
#Author: Olga Troyanskaya 
#File: origins_IHF.pl 
#Description: program searches for DnaA binding sites, and finds 
# IHF binding sites in the region 
#Date last modified: 9/15/98 
############################################################### 
#To run the program: origins_IHF.pl <input_file> <output_file> 
# where <input_file> has genename on first line 
# and sequence with no returns on next line 
# (fasta2seq.pl can be used for seq. conversion). 
# 
# if no output file is specified, output will appear in the ter-
# minal window (standard output will be used) 
############################################################### 

#open necessary files 
$infile = $ARGV[O]; #name of input file is the first parameter 
print (''Hello \n''); 

if (@ARGY eq 2) { #open output file 
$outfile = $ARGV[1 ]; #output file is the second parameter 
unless (open(OUTFILE, ">$outfile")) { 

die (''Cannot open output file $outfile\n''); 
} 

select (OUTFILE); 
} 
else { 

select (SIDOU1); #if no output file specified, use SIDOUT 
} 

$IHFBinSite = "([Tq[Tc][TAc]T[CAG1]C[AgJ[CAt][Ac]) I ([TgJ[TGaJ[TcJG[TGAqAfgTA][AgJ(AG])"; 

$DnaAbox = "(AGATCT[ATGqTTI' ATT I AGATCTGTT[ATGqTAT I TGATCTCTTA TT AGG)"; #from 
Salzberg et al. 

#initialize count vars 
$1HFcount = O; #keeps track of number of IHF binding sites found 
$count = O; #var for array index 
$index = O; #count of the number of 2000bp regions with high frequency of DnaA boxes 

unless (open(INFILE, $infile)) { #open input file 
die (''Cannot open input file $infile\n"); 

} 

$genename = <INFILE>; #in fasta format, the first line is info 
#on the gene 

print (''hi''); 
$line = <INFILE>; 
print (''got line''); 
#find all occurences of pattern in $line. index will find next position of 
#its second argument in its first argument (if third argument is given, the 
#number of chars given in the third argument is skipped) 
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s tudy($1ine ); 

while ($line =- /$DnaAbox/ig) { 

$region[$index] = $count; #store the array index of the first match in the region 
$begin[$count] = pos($1ine) +1 - length($&); #the beginning of the match 
$end[$count] = $begin[$count] + length($&) -1 ; #the end of the match 
$DnaAmatch[$count] =$&;#store the match 
$beginRegion[$index] = $begin[$count]; #start coord of 2000 bp region 
$count++; 

#now search the 2000 bp region after the match for any other DnaA boxes 
$nextpos = $begin[$count-1] + 1; #position to start 2000 bp region 
$offset = $nextpos; #store the start coordinate to figure out coords later 

$region = substr($line, $nextpos, 500); #create a substring for the 
#next 2000nb (change this number 
#to change the length of the regions) 

while ($region=- /$DnaAbox/ig) { 
#while still in the same 2000bp region, find more matches 

#record info in arrays 
$begin[$count] = $offset + pos($region) + 1 - length($&); #the beginning of the match 
$end[$count] = $begin[$count] + length($&) - 1; #the end of the match 
$DnaAmatch[$count] = $&; #store the match 
#print (''count $count begin $begin[$count]\n''); 
$count++; 

#once finished parcing the 2000 bp region 
if (($count-$region[$index])<2) { #if region has less than n dnaA boxes 

#then forget it 
$count = $region[$index]; #reset count back to the index of the first match in the region 

} else { 
#if 3 or more DnaA boxes in the region, then consider region valid 
$endRegion[$index] = $end[$count-1]; #end coord of the region 
#use count-1 b/c count has 
#already been advanced 

$1HFindex[$index] = $IHFcount; #store the index to first IHF site in the region 
while ($region =- /$1HFBinSite/ig) { 

#find IHF sites 
$beginIHF[$IHFcount] = $offset + pos($region) + 1 - length($&); #the beginning of the match 
$endIHF[$IHFcount] = $offset + pos($region); #the end of the match 
#print ("IHF match $1HFcount at $beginIHF[$IHFcount]\n"); 
$1HFMatch[$IHFcount] = $&; #store the match 
$1HFcount++; 

$index++; 
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} 

for ($i = O; $i <= ($index-1); $i++) { 

} 

print OUTFILE ('\n\n****region $i from $beginRegion[$i] to $endRegion[$i]****\n''); 
$c = $region[$i]; #index of the first match 

for (; $c < $region[$i+1]; $c++) { #print all the matches within the region 
print OUTFILE ('DnaA match $begin[$c] to $end[$c] $DnaAmatch[$c]\n''); 

$lcv = $1HFindex[$i]; #index of the first IHF match 
$numberlHFMatches = O; #count number of IHF matches in the region 
for (; $lcv < $1HFindex[$i+1]; $lcv++) { #print all the matches within the region 

} 

print OUTFILE ('IHF match $beginIHF[$lcv] to $endIHF[$lcv] $IHFMatch[$lcv]\n''); 
$numberIHFMatches + +; 

print OUTFILE ('$numberIHFMatches IHF binding sites found\n''); 
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Appendix III 
#!/ usr /bin/ perl 

############################################################## 
#Author: Olga Troyanskaya 
#File: AT_top.pl 
#Description: Relative likelihood should do: compute P(A1) for 
# the whole genome, and then measure P(A) and P(I) 
# within the region of interest (call this P(ATr)). 
# Then compute P(ATr)/P(A1) which should be> 1 
# if the region is AT-rich. 
# 
#Date last modified: 
############################################################### 
#To run the program: AT.pl <input_file> <output_file> cutoff 
# where <input_file> has genename on first line 
# and sequence with no returns on next line 
# (fasta2seq.pl can be used for seq. conversion). 
# 
############################################################### 

#open necessary files 
$infile = $ARGV[O]; #name of input file is the first parameter 
$outfile $ARGV[l]; #output file is the second parameter 
$cutoff= $ARGV[2]; #cutoff for which regions AT content to print out 

unless (open(INFILE, $infile)) { #open input file 
die C'Cannot open input file $infile\n''); 

} 
unless (open(OUTFILE, ">$outfile")) { #open output file 

die ('Cannot open output file $outfile \n "); 
} 

$genename = <INFILE>; #in fasta format, the first line is info 
#on the gene 

$line = <INFILE>; 
$targetString "[Al]"; 
$regionLength = 100; 
$startRegion 0; 
#size of E. coli genome is 4639221 
#size of Synechocystis PCC 6803 genome is 3573470 
$genomeSize = 3573470; 
study($1ine); 

#calculate P(A1) for the genome 
$ATcounter 0; 
while ($line =- /$targetString/ig) { 

$ATcounter++; 
} 

chop($line); 
$PatGenome = $ATcounter/lcngth($line); 
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while ($startRegion < $genomeSize) { 
$region = substr($line, $startRegion, $regionLength); 

$ATcounter = 0; 
while ($region =- /$targetString/ig) { 

$ATcounter++; 

$PatRegion = $ATcounter/$regionLength; #proportion of AT in region 

$ratio = $PatRegion/$PatGenome; 
if ($ratio > $cutoff) { 

} 

$endRegion = $startRegion + $regionLength; 
print OUTFILE ('***Region from $startRegion to $endRegion\n"); 
print OUTFILE ('Genome P(AT) is $PatGenome, region P(AT) is $PatRegion\n"); 
print OUTFILE ('Ratio is $ratio\n\n"); 

$startRegion = $startRegion + 10; 
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Appendix IV 
#1/usr/bin/perl 

############################################################## 
#Author: Olga Troyanskaya 
#File: AT.pl 
#Description: Relative likelihood should do: compute P(A1) for 
# the whole genome, and then measure P(A) and P(I) 
# within the.region of interest (call this P(ATr)). 
# Then compute P(ATr)/P(A1) which should be> 1 
# if the region is AT-rich. 
# 
#Date last modified: 
############################################################### 
#To run the program: AT.pl <input_file> <output_file> <regionst> <regionend> 
# where <input_file> has genename on first line 
# and sequence with no returns on next line 
# (fasta2seq.pl can be used for seq. conversion). 
# 
############################################################### 

#open necessary files 
$infile = $ARGV[O]; #name of input file is the first parameter 
$outfile = $ARGV[1]; #output file is the second parameter 
$startRegion = $ARGV[2]; 
$endRegion = $ARGV[3]; 

unless (open(INFILE, $infile)) { #open input file 
die ("Cannot open input file $infile \n''); 

} 
unless (open(OUTFILE, ">$outfile'')) { #open output file 

die ("Cannot open output file $outfile\n"); 
} 

$genename = <INFILE>; #in fasta format, the first line is info 
#on the gene 

$line= <INFILE>; 
$targetString ="[AT]"; 
$regionLength = $endRegion - $startRegion + 1; 

$region substr($1ine, $startRegion, $regionLength); 

while ($region =- /$targetString/ig) { 
$AT counter++; 

} 

$PatRegion $ATcounter/$regionLength; #proportion of AT in region 

$ATcounter = 0; 

while ($line =- /$targetString/ig) { 
$AT counter++; 
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} 

chop($line); 
$PatGenome = $ATcounter/length($line); 

$ratio = $PatRegion/$PatGenome; 
print OUTFILE ("Genome P(A1) is $PatGenome, region P(A1) is $PatRegion\n"); 
print OUTFILE f'Ratio is $ratio\n"); 
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Appendix V 

#1/usr/bin/perl 

############################################################## 
#Author: Olga Troyanskaya 
#File: DnaA_prot.pl 
#Description: program searches for DnaA binding sites, then 
# looks for orfs within specified distance downstream 
# of DnaA boxes 
#Date last modified: 
############################################################### 
#To run the program: DnaA_prot.pl <input_file> <output_file> 
# where <input_file> has genename on first line 
# and sequence with no returns on next line 
# (fasta2seq.pl can be used for seq. conversion). 
# 
# if no output file is specified, output will appear in the ter-
# minal window (standard output will be used) 
############################################################### 

#some constants 
$minOrfLength = 240; 
$maxRegionLength = 500; #max length of region b/w DnaA boxes and ATG 

#open necessary files 
$infile = $ARGV[O]; #name of input file is the first parameter 

if (@ARGV eq 2) { #open output file 

} 

$outfile = $ARGV[1]; #output file is the second parameter 
unless (open(OUTFILE, ">$outfile")) { 

die ("Cannot open output file $outfile\n"); 
} 
select (OUTFILE); 

else { 
select (S1DOU1); #if no output file specified, use SlDOUT 

$DnaAbox = "(IT[f A]T[CAG'I]CACA) I (fGTGIACTG]Aff A)AA) "; # E. coli consensus from 
determination of binding constants (Schaper and l\1esser) 

#initialize some vars 
$count= 0; #var for array index 
$index = 0; #count of the number of 2000bp regions with high frequency of DnaA boxes 
$foundATG O; 
$stopinFrame :::: 0; 
$orfFound = O; 

unless (open(INFILE, $infile)) { #open input file 
die ('Cannot open input file $infile\n"); 

} 

$genename = <INFILE>; #in fasta format. the first line is info 
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#on the gene 

$line = <INFILE>; 

#find all occurences of pattern in $line. index will find next position of 
#its second argument in its first argument (if third argument is given, the 
#number of chars given in the third argument is skipped) 

while ($line=- /$DnaAbox/ig) { 

$region[$index] = $count; #store the array index of the first match in the region 
$begin[$count] = pos($line) +1 - length($&); #the beginning of the match 
$end[$count) = $begin[$count) + length($&) -1 ; #the end of the match 
$DnaAmatch[$count] = $&; #store the match 
$beginRegion[$index] = $begin[$count]; #start coord of 2000 bp region 

#now search the region after the match for orfs 
$nextpos = $end[$count]; 
$offset = $nextpos; #store the start coordinate to figure out coords later 

$region = substr($line, $nextpos, $maxRegionLength); #create a substring for the 
#next 200nb (change this number 
#to change the length of the regions) 

#scan region for ATG or GTG (start) codon 
while (($region =- I ATG I GTG/ig) && Q$orfFound)) { 

$startPosition = $offset + pos($region) +1 - length($&); 
$npos = pos($region) + 1; #position to start next pattern search for ATG from 
$foundATG = 1; 
#print ('start found at $startPosition\n''); 

if ($foundATG == 1) { 
$orfRegion = substr($line, $startPosition); 

while (($orfRegion =- / (f AG) I (fGA) I (f AA)/ig)&&Q$stoplnFrame)) { 
#scan for stop codons 

$lengthOrfRegion = (pos($orfRegion) + 1); #since start position is 
#the start of orfRegion 

if Q($lengthOrfRegion%3)) { #iflength of region divisible by 3 
#then the stop codon is in frame 

} 

#x%y == 0 iff x is divisible by y 
$stoplnFrame = 1; #stop codon in frame found 
if ($lengthOrfRegion > $minOrfLength) { 

} 

$orfFound = 1; 
$begin0rf[$count] = $startPosition; 
$end0rf[$count] = $startPosition + pos($orfRegion); #the end of the match 
$orf.Match[$count] =$&;#store the match 

pos($region) = $npos; #examine next plausible start 
$stoplnFrame = 0; 
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} 

$orfFound = 1; #take this out later 

} 

if ($or£Found) { 
#consider region valid 

} 

$endRegion[$index] = $end[$count-1J; #end coord of the region 
#use count-1 b/c count has 
#already been advanced 
pos($1ine) = $nextpos + 1; #have to tell pattern matching where to start 
$posit= pos($line); 
#print ('new position $posit\n''); 
$index++; 
$count++; 
$or£Found = O; 
$foundA TG = O; 

#printing results 
$region[$index] = $count; 

for ($i = O; $i <= ($index-1); $i++) { 

#print ('\n\n****region $i from $beginRegion[$i] to $endRegion[$iJ****\n''); 
$c = $region[$i]; #index of the first match 

for (; $c < $region[$i+1J; $c++) { #print all the matches within the region 
print (''match $c\n''); 
print (''DnaA match $begin[$c] to $end[$c] $DnaAmatch[$cJ\n''); 
$dist = $begin0rf[$c] - $begin[$c]; 
print (''orf from $begin0rf[$c] to $end0rf[$c] distance = $dist\n''); 

#print (''$orf.Matchp[$c]\n"); 
print ("\n''); 
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Appendix VI 
#1/usr/bin/ped 

################################################################ 
########## 
#Author: Olga Troyanskaya 
#File: promoters.pl 
#Description: extracts promoter information from the file from Wis_Mad with 
# annotated E. coli data 
#To run: promoters.pl <input file> <word to look for> 
################################################################ 
########## 

$infile ::: $ARGV[O]; 
$query "$ARGV[1]"; #word to look for in a file 

unless (open(INFILE, "$infile")) { 
die ("Cannot open input file $infile"); 

$done== O; 
$line <INFILE>; 
while Qeot) { 

if Q($line eq "\o'')) { #skip empty lines 
chop($line); #removes the eol character 
@arr::: split(/[\t ]+ /, $line); #split line into words 
$seqType @arr[1]; 
if ($seqType =- /$query/) { #if found the word we are looking for (case sensitive search, to ignore 

case add i before the closing bracket (/$query/i)) 

} 

} 
} 

print ('$line \n"); 
while Q$done) { 

$line= <INFILE>; 
chop($line); 
@arr= split(/[\=\t )+/,$line); #split line into words 
if ($arr[1] =-/\/note/) { #$arr[O] is for some reason a space 

$note= 1; 
} 
if ($note== 1) { #note can be more than 1 line long 

@arr= split(/[\t ]*/,$line); #split line into chars 
$1 = @arr; #length of array 

} 

if ($arr[$l-1] =- /\" /) { #once got to the second" 
$done= 1; 

} 

print ("$line \n''); 
if ($done) { 

print ('*\n''); #just a separator character 
$note= O; 

$done= O; 
$line = <INFILE>; 
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Appendix VII 

#!/usr/bin/perl 

##llilll###############llflff#fflll!ffll/ffl#lt######################################### 
#Author: Olga Troyanskaya 
#File: DnaA _promoterOrfs.pl 
#Description: this works on ecoli_promoters.data (file from Wis_Mad with 
# annotated E. coli data 
#To run: promoters.pl <input file> <word to look for> 
##################################################################### 

$strand =I; #template strand by default 

$DnaAfile = $ARGV[O]; 
$promoterFile = $ARGV[l]; 
$strand "$ARGV[2]"; #1 for template, 2 for complementary 

#with c strand matches 
unless (open(INFILE, "$DnaAfile")) { 

die ("Cannot open input file $DnaAfile"); 
} 

unless (open(PFILE, "$promoterFile")) { 
die ("Cannot open input file $promoterFile"); 

} 

$counter = O; 
$done= O; 
$line = <INFILE>; 
while (!eof) { 

if (!($line eq "\n")) { #skip empty lines 
chop($line); #removes the eel character 
@arr= split(/[\t ]+/,$line); #split line into words 

if (@arr[O] =- /DnaA/) { #this line contains DnaA box coords 
seek(PFILE, 0, O); #skip back to the beginning of the promoter file 

coordinates 

$endDnaA = @arr[4]; #end coord for DnaA 

while (!$done && ($pline = <PFILE>)) { 
#start going through the promoter file 
@arr= split(/[\.\(\)\t ]+/, $pline); #split line into words (this line contains promoter 

if (@arr[l] =-/promoter/) { 

if ($arr[2] =-/complement/) { #promoter on the complement strand 

if ($strand== 1) { #template 
while (!($pline eq "*\n")) { 

$pline = <PFILE>; #skip to the next promoter site 
} 
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} 
} 

} else { #looking at complementary strand 

$pstart = @arr[3]; 

if (($endDnaA < ($pstart-5)) && ($endDnaA >= ($pstart - 100))) { 
print ("$1ine\n"); 
#print ("$pline"); 
$d = $pstart - $endDnaA; 
print ("\t\t promoter is $d from DnaA box\n"); 
$done= I; 
$counter++; #count the number of hits 

} 
do { 

} 

if($done) { 
print ("$pline"); 

} 
$pline = <PFILE>; #skip to the next promoter site 

} until {$pline eq "*\n"); 

if($done){ 
print ("\n"); 

} 

} else { #promoter on template strand 
if ($strand == 2) { 

} 

while (!($pline eq "*\n")) { 
$pline = <PFILE>; #skip to the next promoter site 

} 
} else { #looking at template strand 

$pstart = @arr[2]; 

} 

if (($endDnaA < ($pstart-10)) && ($endDnaA >= ($pstart - 200))) { 
print ("$line\n"); 

} 
do { 

$1 = $pstart - $endDnaA; 
print ("\t promoter is $1 from DnaA box\n"); 
$done= 1; 
$counter++; #count the number of hits 

if ($done) { 
print ("$pline"); 

} 
$pline = <PFILE>; #skip to the next promoter site 

} until ($pline eq "*\n"); 

if ($done){ 
print ("\n"); 

} 

$done= O; 
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} 
} 
$line = <INFILE>; #read in next line from DnaA file 

} 

print ("Total number of hits is $counter\n"); 
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