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Abstract 

In this paper we explore the existence of exactly k-to-1 continuous functions 

between graphs, and more specifically 2-to-1 continuous function between 

graphs that are irreducibly 2-to-1, meaning that no restriction of the function 

to a subgraph is 2-to-l. We show how to construct such functions in some 

general cases, and then more specifically onto rectangular grids. We have in 

mind an application to distributed networks and signal verification. 
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Introduction 

By a k-to-1 map, we mean a map f: x~Y such that for each y E Y off, f 1(y) has 

cardinality k. A map is defined to be a continuous function. This paper will be concerned 

with k-to-1 maps between graphs, and specifically with which graphs can be the image of 

a k-to-1 map. Not all graphs can be the image ofk-to-1 maps; for example, O.G. Harrold 

showed in [ 1] that there does not exist a k-to-1 map onto an arc. In fact, the range must 

contain a simple closed curve. Furthermore, every 2-to-1 map onto a circle must be 

irreducibly 2-to-1 in the sense that no restriction of the map to a connected set is 2-to- l. 

So, one might ask what conditions are necessary to guarantee the existence of an 

irreducible 2-to-1 map onto a graph. This paper focuses on this question. 

The following examples illustrate a few irreducible 2-to-1 maps onto a circle. 



-- --- ----------------- -- ------- -------------------------------------, 

In the first example, the two nodes map onto one node in the range while the two 

edges map 2-to- l onto one edge in the range. The second example is a circle wrapped 

back into itself, thus, the apparent intersection is actually two points on the circle that map 

2-to- l onto one point in the range with the remainder of the graph collapsing down 2-to- l 

onto an edge in the range. Similarly, the other examples map 2-to- l onto a circle. 

Examples 

We shall call a finite subset C of a graph Ga k-to-1 cut set ifG\C has at least 

IC I ·k components. The only points of G that need to be considered as part of a k-to-1 

cut set are the branch points of G. Branch points are defined to be those points in a graph 

which have local order > 3. It is easy to see that if y E C is not a branch point then C \ 

{y} is still a k-to-1 cut set unless C has only one element which would have to be a cut 

point in which case either adjacent node to the cut point would be a k-to-1 cut set. 

Therefore, we can assume that all k-to-1 cut sets are contained in the node set of the 

graph. To understand how k-to-1 cut sets are related to irreducible k-to-1 maps, it is 

helpful to explore a few examples. In addition to the previous examples of irreducible 

2-to-l maps onto a circle, the following graph is the image of an irreducible 2-to-l map. 



r----

1 

If one begins with any Euler path in this graph and doubles the edges, then the domain of 

the map would be the following. An Euler path in a graph is a path which crosses each 

edge exactly once while beginning and ending at different vertices. 

X1 

0 
X2 

...__ / 

X3 

=-::r== 
-- --~---- --

where f(X1) = f(X3) and f(X2) = f(X4) 

X4 

The irreducibility can easily be seen because the inclusion of any one node in the map 

requires the inclusion of the rest of the nodes. In fact, we will show that whenever a 

graph has an Euler path and does not have a 2-to- l cut set then this same construction will 

always produce an irreducible 2-to-1 map onto the graph. 

There is no irreducible 2-to- l map onto the following graph because it contains a 

2-to-1 cut set, namely the two nodes. 



The addition of just one edge to this graph creates a graph that admits an irreducible 

2-to-1 map~ The graph no longer contains a 2-to-1 cut set. 

Note that this graph now has an Euler path as well. 

Irreducible k-to-1 maps 

A map f: X-1> Y where X and Y are continua is called an irreducible k-to-1 map if 

it is a k-to-1 map and for every proper subcontinuum A ofX, fl A is not a k-to-1 map. 

Continua are compact, connected sets. This paper will focus on the specific case of 

irreducible 2-to-l maps. O.G. Harrold did early work in this area when he proved that 

there is no 2-to- l map onto an arc. If there was a 2-to-1 map onto an arc, then, by Zorn's 

Lemma, there must be a minimal set in which the map is still 2-to-1. However, this can 



not be because every subcontinua of an arc is an arc. So Harrold actually showed that 

there was no irreducible 2-to-l map onto an arc. This was the original motivation for 

considering irreducible k-to-1 maps. 

The comparisons between the two following potential ranges sparked many ideas 

concerning the conditions which guarantee the existence of an irreducible 2-to-l map. 

An irreducible 2-to- l map can be quickly found onto the graph on the left. 

However, the graph on the right is a crucial example of a graph which does not admit an . 

irreducible 2-to-l map. The characteristics of these graphs lead to the idea ofk-to-1 cut 

sets. Dr. Nall has shown the following theorem. 

Theorem l. Jf f is an at most a k-to-1 map from a continuum X onto a continuum Y, and 

for no proper subcontinuum Y' of Y isf-1 {Y') a continuum and Bis a non-empty finite 

subset of Y, then the number of components of Y\B is less than /B / · k. 



In other words, Y has no k-to-1 cut set. We have conjectured that the converse is also 

true, although no complete characterization of the image of irreducible 2-to- l maps exists 

now. 

Even if the characterization was fully developed, the process of generating an 

irreducible 2-to- l map can be challenging. There are several different approaches 

examined in this paper to produce an irreducible 2-to-l map onto a graph. We will look at 

Euler paths, edge-disjoint spanning trees and open ear decompositions as methods of 

furnishing these irreducible maps. Ear decompositions and spanning trees are both used in 

graph theory to ensure network reliability and we intend to suggest an application of 

irreducible 2-to- l maps that is also related to reliability in distributed networks. 

Irreducible maps and Euler paths 

There are several methods of developing maps to ensure irreducibility. As 

mentioned earlier, Dr. Nall has shown the following theorem. 

Theorem 1. If f: X ~ Y is an irreducible k-to-1 map from a continuum X onto a 

continuum Y, then Y does not have a k-to-1 cut set. 



Although the converse has yet to be proven, we know that if a graph has an Euler 

path and no 2-to-l cut set, then the Euler path on the graph produces an irreducible map. 

This theorem is presented in the following section. 

Irreducible k-to-1 maps and spanning trees 

The following theorem generalizes the situation from graphs having an Euler path 

to graphs having a map from a tree which is 1-to-l on the edges and 2-to- I on the nodes. 

Theorem 2. Suppose G is a graph that does not have a 2-to-l cut set. Let T be a tree 

withf T--G such thatf(V'f} = Vof /V ris 2-to-J andf is 1-to-J 0111\V T Then there 

is no proper connected subtree T' of T such that f maps the nodes of T' onto the nodes of 

f(T'). 

Proof. Assume there is a proper connected subtree T' ofT such that fl VT, is 2-to-l onto 

the nodes off(T'). Let I VT I = 2n and I VT' I = 2m. The number of components of 

T'\ VT' must be 2m- l because T' is a tree having 2m vertices. T\ VT' must have at least 

2m-l components since T\T' * 0. So G\f( VT') must also have at least 2m components 

since f is 1-to-l on T\ VT Because f IV T' is 2-to-l, IV f(T') I = m. Therefore, f(V T') is 

a 2-to- l cut set of G • 



Theorem 3. If a graph G has an Euler Path and no 2-to-J cut set then there exists an 

irreducible 2-to-J map onto G. 

Proof In order to have an Euler Path, a graph must have two odd ordered vertices and 

the rest even. Moreover, as mentioned earlier, the only points that need to be considered 

as part of a cut set are the branch points. In a graph, IE I = (Lo(V))/2. Moreover, since 

there is no 2-to-l cut set IE I < 2 IV I or else the vertices would be a 2-to-1 cut set. We 

now have IE I = l:o(V)/2 < 2 IV I. So, l:o(V) < 4 IV I· If there exists v 3 o(v) > 5 then 

there must be at least three vertices of order 3. Furthermore, if there exists v 3 o(v) = 5 , 

then there must be at least two vertices of order 3. However, there can only be two odd 

ordered vertices in G. So, there does not exist v 3 o(v) ~ 5. The Euler path is the map of 

an arc onto the graph and since all the nodes are of order 3 or 4, the path passes through 

each node exactly twice. So, an arc that follows the Euler path would be 2-to-1 on the 

nodes of G and 1-to- l on the edges. By Theorem 2, doubling the sections of the arc that 

map onto edges of G yields an irreducible 2-to- l map. 

Building Ranges and Ear Decompositions 

An ear decomposition is a sequence of graphs {G1, G2, ... G0 } where G 1 is a 

simple loop with one node and Gn = G. Gi can be obtained by subdividing at most two 



edges of Gi-l and adding at most one new edge. An open ear decomposition is one in 

which none of the edges added form loops. An increasing open ear decomposition is one 

that is open and requires the addition of at least one new node at each stage. Dr. Nall has 

shown that a graph with an increasing open ear decomposition is the image of an 

irreducible 2-to-1 map. Sometimes it is easy to find the increasing open ear 

decomposition as shown in the following familiar graphs. The edges numbered 1 are those 

that make up the first stage, those numbered 2, the second stage, and so on. 

2 2 
1 

1 

Ifwe add to the increasing open ear decomposition the condition that exactly one 

new node is added at each stage, then the resulting graph will have two edge-disjoint 

spanning trees each having I VI - 1 edges. In addition to having two edge-disjoint 

spanning trees, it is also easy to see that a graph with this sort of ear decomposition has 

21 V I - I edges since at each stage the number of nodes increases by one and the number 

of edges increases by two. 



We will use this technique to build an irreducible 2-to-l map onto a n x m grid by 

starting with a loop composed of all of the outer edges and then adding the middle edges 

one by one, each time creating a new node. Since distributed networks are most often in 

the form of n x m grids, a potential application exists here. 

Irreducible maps onto grids 

It is an easy exercise to construct an increasing open ear decomposition on an n x 

m grid and there is a general construction of an irreducible 2-to- l map that coincides with 

each increasing open ear decomposition. However, the most obvious ear decompositions 

for an n x m grid do not produce very natural irreducible 2-to- l maps. On the other hand, 

there is a natural irreducible 2-to- l map onto a graph which is obtained by adding a few 

extra edges to a grid. The additional edges guarantee that the new graph has two 

edge-disjoint spanning trees with one edge leftover which is not covered by the trees. 

Now we may think of this augmented graph G as the image of a map which is 2-to- l onto 

the nodes of G and whose whole domain consists of two disjoint copies of the spanning 

trees joined together by an edge that maps onto the leftover edge of G. By Theorem 2, 

this will be irreducibly 2-to-1 with respect to nodes onto the augmented graph. These 

spanning trees along with the final edge can be created in a systematic manner by using 



increasing open ear decompositions which force the graph G to have no 2-to-1 cut set. 

Finally, collapsing the additional edges down on the augmented graph will not affect the 

irreducibility of the map. 

Generating Spanning Trees 

Odd by Odd grids 

Below, on the left, is the augmented graph for a 3 X 3 grid. Clearly, the 

numbering on the augmented graph gives an increasing open ear decomposition and 

produces a graph with 21 VI - 1 edges. So, there exist two edge-disjoint spanning trees, 

of which two natural ones are shown on the right. In fact, the addition of edges to the 3 X 

3 grid was done with these spanning trees in mind. The dotted line indicates the extra 

edge. 

2 

1 1 I\ 

1 1 
3 9 

7 8 

6 1 3 1 

1 1 
............. ____ .... _....._ ___ ...... 

5 4 

If the double edges in the range are collapsed into single edges and the edges in the 

trees which map l-to-1 into the range are doubled, then the spanning trees and the 



augmented graph form the domain and range, respectively, of an irreducible 2-to-1 map. 

Neither of these operations affect the irreducibility of the map. The domain for an 

irreducible 2-to-1 map onto the 3 X 3 grid is shown below. 

[\ n ,,.... :::i 

\ IC K ~ 
\ 

\1 
-··-- 1 --- v 

Even by Odd grids 

Irreducible 2-to-1 maps onto even by odd grids can be obtained by adding a row to 

the odd by odd map in a particular way. The general method for doing this is the same as 

adding a row to the 3 X 3 grid as shown below. 
2 

.::::::. 
1 1 I\ 

3 1 1 9 10 
11 

11 

8 1 3 1 

7 6 
I\ 

1 3 1 5 
1 1 u 

12 4 
-----



Even by Even grids 

Similarly, a row and a column may be added at the same time to create the general 

pattern for an even by even grid. 

2 6 

1 1 1 

1 3 5 1 7 

10 9 8 

11 1 3 5 1 
12 13 14 

1 3 5 1 15 
1 1 1 

16 4 
___ _,__ __ _. 

Therefore, there exists an irreducible map onto all grids. This result leads to 

another question. Can we find an irreducible 2-to- l map onto a 3 dimensional grid? The 

formula for the number of edges on an m x n x k grid is [(2 m n k) + (k- l)(m n) - k(m + 

n)] and the number of nodes m n k. Note that (m n);::;: (m + n). Since [(k - I)(m n) - k(m + 

n)] ;?: [(k - l)(m n) - (k - l)(m + n)] = [(k - l)((m n) - (m + n))] ~ 0, we have [(2 m n k) 

+ (k - l)(m n) - k(m + n)];::;: 2 m n k. So, a 3 dimensional cube has a 2-to-l cut set, namely 

the nodes, and therefore, there does not exist an irreducible 2-to- l map onto the cube. 

However, we can generate an irreducible 2-to-1 map which maps onto the nodes of a 

cube. Am x (n k) grid may be folded over back and forth to form an m x n x k cube. 



l 

Since there is an irreducible 2-to-1 map onto the grid, this map forms a nodally irreducible 

2-to- l map into the cube. 

Applications 

The reason we are concerned with irreducible 2-to- l maps onto grids is that for 

the most part, parallel computers are arranged by grids and the maps may be used to 

ensure network reliability. However, our technique for developing irreducible 2-to- l 

maps onto grids can be used in another similar case. The application we have in mind 

involves thinking of the trees that form the domain as information routes. Suppose that a 

commanding officer is at a root node in the domain tree and needs to send ready, aim, fire 

signals to all supporting nodes. The officer must ensure that no node fires until all nodes 

are ready and have aimed. First, the officer will send a ready signal down the tree. The 

signals are passed along the tree by each node as soon as they are in fact ready. The 

commanding officer will receive her own ready signal back as a sort of echo because the 

map is 2-to-1. After receiving the ready signal echo, she then sends on the aim signal. No 

one is allowed to send on the aim signal until they have received two ready signals. When 

the officer receives the aim echo, she passes on a fire signal which, similarly, can not be 

passed on by a node until it has received two aim signals. Because the map is irreducibly 



2-to-1, no one will receive a fire signal unless everyone has responded to a ready. The 

irreducible 2-to- l map acts as a fail safe mechanism to ensure a rough synchronization of 

the nodes. 
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