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Introduction 

Porifera, an ancient animal phylum, diverged from its sister protistan group 

Choanoflagellata to form one of the first branches in the metazoan phylogeny (Nosenko et al., 

2013). As the earliest diverging metazoans, the sponges have maintained the same basic 

physiologies and gene families as found in their metazoan relatives (Leys et al., 2012; Srivastava 

et al., 2010). With similar structure and function to the earliest metazoans as shown by 

Precambrian fossil records, extant sponges can shed light on the development of animals and 

animal-specific gene networks (Zongjun et al., 2015). The genomes of sponges are extraordinary 

because they possess an extensive set of animal-specific genes despite the lack of major animal 

traits (e.g., organ systems, tissue) (Rivera et al., 2013). In later animals, these genes expanded 

and diversified as increasing levels of complexity emerged (Holstein et al., 201 O; Funayama et 

al., 2010). Sponges possess genes that are crucial for setting up important developmental 

pathways for growth, body plan formation, stem cell maintenance, differentiation, cell 

specification, adhesion and innate immunity (Hill et al., 2010; Riesgo et al., 2014). Given 

sponges' evolutionary importance, we can study how these fundamental elements interact and 

function in sponges and begin to deduce how they were modified, leading to more complex 

animals. 

The freshwater sponge, Ephydatia muelleri, is an emerging basal animal model system to 

study the genetic and developmental regulatory networks that played fundamental roles in the 

evolution of animals. Ephydatia are prevalent throughout all major land masses allowing for 

worldwide access to the sponges' preserved early metazoan gene interactions (Rivera et al., 

2013). Defined methods for typical growth and development in a laboratory setting make 

Ephydatia an appealing organism for functional genetic studies. Totipotent stem cell containing 
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gemmules are easily harvested from lakes, rivers, and streams. Gemmules can be stored long 

term at 4°C (and even frozen at -80°C stored in DMSO like other animal cell types), hatched, and 

grown into healthy, fully functional adult sponges in small volumes of specialized media (Rivera 

et al., 2011 ). Ephydatia muelleri tissue is transparent allowing for easy visualization for whole 

organism and cellular expression studies. The ability to perform targeted gene expression studies 

in Ephydatia will allow us and others to study both basic developmental processes fundamental 

to all animals, and to employ a model system that will inform studies on disease-related 

processes associated with multicellularity. 

With a recently sequenced Ephydatia genome and transcriptome, as well as 

methodologies for knocking down gene expression (Rivera et al., 2011 ), a necessity for future 

genetic studies is to be able to induce targeted gene expression in cells of this organism. Previous 

RNAi studies in sponges have shown an ability of cells to take up nucleic acids from their 

growth media resulting in phenotypes due to decreasing expression levels of developmental 

transcription factors (Rivera et al., 2013). Complimenting this work with over-expression of 

developmental transcription factors and analysis of the resulting phenotypic changes would give 

us insight to how these key animal conserved genes function. Over-expression systems produce 

essential data to compliment RNAi studies investigating gene functions at the base of the 

metazoan phylogeny. 

The aim of this work is to develop an over-expression system for Ephydatia muelleri. 

Preliminary work by Klaske Schippers (Schippers, 2013) showed sponges were induced to 

transcribe reporter genes driven by the widely used cytomegalovirus promoter (CMV). Building 

off Schippers work, newly identified native Ephydatia promoters were identified from the 

genome and verified to drive expression ofreporter genes. Validated over-expression vectors and 
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transfection technology will allow researchers around the world who are working with this 

organism to ask questions about cell specification, gene regulation and animal development. 

Methods 

Identification of putative promoter regions 

4 

Genes in the Ephydatia muelleri genome were annotated in collaboration with the S-Four 

consortium using beta versions of the Apollo annotation tool and the GBrowse genome browser. 

Gene annotations were conducted using the search function in the GBrowse genome browser, the 

annotation function of Apollo as well as BLASTN, BLASTX, and TBLASTX in NCBI's non­

redundant database. Results for each scaffold were saved in Apollo and immediately available 

for search in GBrowse software. There is not a function in this software to BLAST against the 

Ephydatia muelleri genome. All annotations were conducted for a scaffold and therefore options 

for which genes were available were limited. The Ephydatia muelleri genome was searched for 

genes with promoters of interest using the GBrowse genome browser. The genome was in draft 

form, so it contained many unassigned regions. If gene models/predictions were found they were 

searched in a local genome file using the CLC main workbench software (Qiagen). Target genes 

were evaluated for sufficient base pairs (-lkb) upstream of the gene. The promoter regions were 

saved in another file and primers were designed to amplify putative promoter regions (For EFla 

F:ACCGGTCATTAATCGAA TTCTGCAGGGGAAACTAGAACATCATGTAACAA and 

R:GACCGGTGGA TCCCGGGCCCGGCGCATGCGATTTTTCTAAGC, For Piwi 

F:T AGTCCA TTCGAA TTCTGCAGCCTCGCGCAA TGTAATCTTT and 

R:GACCGGTGGATCCCGGGCCCGGAAGCCTGGAGGGAGGTAAC,ForDAD 

F:ATGAGCTCATATGATTAATAGATCTGA and 

R:GCGCGGCCGCGGATCCCGGGCTGCA). 
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Genomic DNA isolation 

DNA was isolated using a modified protocol from the Wizard® SV Genomic DNA 

Purification System (Promega). Stage 5 sponges were harvested by cutting a p 1000 pipette tip 

about Imm and scraping the sponge tissue of 1 O+ sponges off about a 12 well plate. Sponge 

tissue was digested overnight (16 - 18 hours) at 55°C, lysed, and genomic DNA was isolated 

according to the Purification of Genomic DNA from Mouse Tail Clippings or Animal Tissues 

using a microcentrifuge. Alternatively, genomic DNA was also isolated using a modified CTAB 

Genomic DNA purification. Scrapped sponge tissue was scraped as described above and put in 

350µL of2x CTAB buffer (Hill et al., 2010). Sponge tissue was homogenized with a pestle and 

an additional 350µL of 2x CTAB buffer was added. Proteinase K was added to a concentration 

of 280mg/mL and the solution was digested for an hour at 65°C vortexing frequently. After 

digestion 500µL of 24:1 chloroform to isoamyl alcohol solution was added for 5 minutes. The 

contents were centrifuged at 13,000 rpm for 2 minutes. The top layer of the liquid was 

transferred to a new tube with 600µL of isopropanol. The tube was placed in the -20°C freezer 

overnight. The tube was centrifuged for 15 minutes at 13,000 rpm and the supernatant was 

poured off. The pellet was washed twice with 450µL of 70% ethanol. The washes were poured 

off and the sample was air dried for 20 minutes. Elution buffer (Qiagen) was added to the tube 

and incubated for 2 hours at room temperature. DNA quantities were measured using a 

Nanodrop. 

Promoter amplification 

5 

Promoters were amplified from 100 - 200ng of Ephydatia muelleri genomic DNA using primers 

described above. Piwi and Efla were amplified using an adjusted protocol from GoTaq® Green 
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Master Mix (Promega) for 25µL using the following protocol: 1) 94°C for 5 minutes; 2) 94°C for 

30 seconds; 3) 56°C for 30 seconds; 4) 72°C for 70 seconds; 5) Repeat steps 2-4 thirty-four more 

times; 6) 72°C for 5 minutes; 7) The samples were cooled to 4°C for storage. DAD was also 

amplified using an adjusted protocol from GoTaq® Green Master Mix (Promega) for 25µL using 

the following protocol: 1) 94°C for 3 minutes; 2) 94°C for 45 seconds; 3) 58°C for 30 seconds; 

4) 72°C for 2 minutes and 45 seconds; 5) Repeat steps 2-4 thirty-two more times; 6) 72°C for 5 

minutes; 7) The samples were cooled to 4 °C for storage. 

Constructing over-expression vectors 

The DAD promoter in our constructed plasmid drives the expression of an intron 

containing GFP from the pPD187.49 plasmid courtesy of Dr. Andrew Fire. The GFP was 

amplified (with promoters 

F:TATTAATAGATCTGAGCTCGGATCCCGGGAGACCCAAGCTTGGTA and 

R:AGCGGCCGCGCTAGCGCTACTGCAGTCGACTAGGGCCCTCTAGCGAAT) under the 

adjusted protocol from GoTaq® Green Master Mix (Promega) for 25µL as follows: 1) 94°C for 3 

minutes; 2) 94°C for 45 seconds; 3) 54°C for 30 seconds; 4) 72°C for 1 minute and 15 seconds; 

5) Repeat steps 2-4 thirty-five more times; 6) 72°C for 5 minutes; 7) The samples were cooled to 

4°C for storage. The pEGFP-Nl vector and GFP PCR product were digested with Bglll and NotI 

at 37°C for one hour following the NEB restriction enzyme protocol using buffer 3 and BSA in a 

double digest. The digests were run on a gel and the band of appropriate size was extracted 

following the MinElute™ gel extraction kit (Qiagen). The GFP and plasmid backbone were 

ligated together in a 3:1 insert to vector ratio using the T4 DNA ligase protocol. The 20µL 

reaction was run at room temperature for 3 hours. The ligation was transformed into DH5a 
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competent cells, plasmid prepped using the QIAprep® Spin Miniprep Kit (Qiagen), and digested 

with Bglll and Asel restriction enzymes and run on an agarose gel to confirm size. This new 

plasmid pIGFP was sequenced (with the primer: GGCGTGGATAGCGGTTTGACTCAC) and 

confirmed to contain the correct GFP insert. 

To insert the DAD promoter into this new plasmid, plGFP, the frozen stock was grown 

overnight in LB broth with ampicillin and plasmid prepped using the QTAprep® Spin Miniprep 

Kit (Qiagen). The plasmid and promoter were cut with Asel and XmaI in a NEB double digest in 

buffer 2 at 37°C for 5 hours. The promoter was purified using the QIAquick® PCR Purification 

Kit (Qiagen) and the backbone was run on an agarose gel, cut out and purified using the 

QIAquick® Gel Extraction Kit (Qiagen). The DAD promoter was ligated to the pIGFP backbone 

in a 3:1 insert to vector ratio using the T4 DNA ligase protocol. The 20µL reaction was run at 

room temperature for 3 hours. The ligation was transformed into DH5a competent cells, plasmid 

prepped using the QIAprep® Spin Miniprep Kit (Qiagen), and digested with the single cutter 

Stul and run on an agarose gel to confirm size. This new plasmid pTGFP was sequenced (with the 

primer: GTGACATGGGACGCTTCCACAAAG) and confirmed to contain the correct DAD 

promoter insert. 

The promoters for EFla and Piwi as well as pEGFP-Nl were cut with Asel using NEB 

buffer 3 at 37°C for 2 hours in a 50µL reaction. The products were purified using the QIAquick® 

PCR Purification Kit (Qiagen). The products were digested with Xmal using NEB CutSmart® 

buffer at 37°C for 2 hours in a 50µL reaction. The promoters were purified using the QIAquick® 

PCR Purification Kit (Qiagen) and the backbone was run on an agarose gel, cut out and purified 

using the QIAquick® Gel Extraction Kit (Qiagen). The EFla and Piwi promoters were ligated to 
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the pEGFP backbone in a 3:1 insert to vector ratio using the T4 DNA ligase protocol. The 20µL 

reaction was run at room temperature for 3 hours. The ligation was transformed into DH5a 

competent cells, plasmid prepped using the QIAprep® Spin Miniprep Kit (Qiagen), and part of 

the original colony was used in a colony PCR that confirmed our insert in each vector. The 20µL 

reactions were adjusted from the protocol of GoTaq® Green Master Mix (Promega) using the 

following protocol: 1) 94°C for 5 minutes; 2) 94°C for 30 seconds; 3) 56°C for 30 seconds; 4) 

72°C for 70 seconds; 5) Repeat steps 2-4 thirty-four more times; 6) 72°C for 5 minutes; 7) The 

samples were cooled to 4°C for storage. These new plasmids, pEGFP-EFla and pEGFP-Piwi, 

were sequenced (with the primer: CGAACGACCT ACACCGAACT) and confirmed to contain 

the correct EF 1 a and Piwi promoters. 

ptdTomato-CMV was constructed from removal of the ttC7B gene from a CMV and 

tandem tomato fluorescent protein containing plasmid (ttC7B-tdTomato) provided by Dr. Omar 

Quintero. The restriction enzyme Xhol, a double cutter, cut out the gene ttC7B. The results were 

visualized and the desired band was purified using the QIAquick® Gel Extraction Kit (Qiagen). 

The plasmid was ligated back together with T4 DNA ligase protocol for 3 hours at room 

temperature. The ligation was transformed into DH5a competent cells, plasmid prepped using 

the QIAprep® Spin Miniprep Kit (Qiagen), and digested with Stul and run on an agarose gel to 

confirm size. The new plasmid ptdTomato-CMV was sequenced (with the primer: 

GGCGTGGA T AGCGGTTTGACTCAC) and confirmed to contain the correct juncture. 

Collection and culturing of sponges 

Protocols are described in (Schenkelaars et al., 2014). Sponges were collected during late 

winter from Prince William Forest National Park, VA. Samples were stored at 4°C in foil for 
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several months before use. Gemmules were picked from sponge tissue and washed with a 1.5% 

hydrogen peroxide solution diluted with Strekal's freshwater medium (Strekal et al., 1974) for 5 

minutes. The solution was removed and the gemmules were washed 8 times with Strekal's 

medium and stored before use at 4 °C wrapped in foil. Three to five gemmules were spaced apart 

from each other in a 12 well plate on a glass 22mm cover slip with each well containing 2 mL of 

Strekal's medium. Sponges were cultured in the dark and newly developed juveniles hatched 

from gemmules for two to three days before their Strekal's medium were changed (after 

attachment to plate was confirmed) on a daily basis until further use. 

Transfection of tissue 

Methods adopted from Lipofectamine™ 2000 (Life Technologies) plasmid DNA 

transfection and prior work from Schippers (2013). Sponges were hatched for 2 - 3 days until 

stage three (Funayama et al., 2005). Media was changed to lmL M-med (Funayama et al., 2005). 

Vector (800 ng) was added to M-med (50µL) and 2µL ofLipofectamine™ 2000 was added to a 

separate 50µL ofM-med for 5 minutes. The two tubes were combined and lipid/DNA complexes 

were formed for 30 minutes at room temperature. Complex solution was added (lOOµL) to each 

well. Sponges were treated for three days in the dark at room temperature. 

For transfection of Cascade Blue® hydrazide (Life Technologies), medium was changed 

to 0.5mL of Strekal's medium per well and 2µL ofLipofectamine was incubated with 40µL in 

purified water before being combined with 60µLof lOmM Cascade Blue® hydrazide. The 

remaining protocol was held constant. 
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RNA isolation and qPCR or RT PCR analysis 

RNA was isolated from sponge tissue using the RNeasy® Mini Kit (Qiagen). First all 

Strekal' s medium was removed. The sponges were washed with 1 mL of Strekal' s medium three 

times to remove free plasmid from the tissue. Sponges were harvested by cutting a p 1000 pipette 

tip about 1 mm and scraping the sponge tissue of 3+ sponges off about a 12 well plate. The tissue 

was introduced into RL T buffer with 2-Mercaptoethanol. The isolation continued to follow the 

RN easy® Mini Kit (Qiagen) protocol with the use of RnaseA WAY® (Molecular BioProducts) 

and the addition of the DNase I on column digestion for 40 minutes. RNA was quantified using a 

Nanodrop in preparation for cDNA synthesis. 

For RT-PCR experiments cDNA was synthesized with SuperScript® III reverse 

transcriptase (Life Technologies). The cDNA was synthesized using 125ng of RNA per reaction 

and oligodT primers. The RT-PCR experiments were performed using 1 µL of cDNA reactions 

were adjusted from the protocol of GoTaq® Green Master Mix (Promega) using the following 

protocol: 1. 94°C for 2 minutes and 30 seconds. 2. 94°C for 30 seconds. 3. 60°C for 30 seconds. 

4. 72°C for 30 seconds. 5. Repeat steps 2-4 twenty-nine more times. 6. 72°C for 5 minutes. 7. 

The samples were cooled to 4°C for storage. For RT PCR of EGFP: 

F :CGTAAACGGCCACAAGTTCAG and R:TGCTCAGGTAGTGGTTGTCG or 

F:ACGTAAACGGCCACAAGTTC and R:AAGCACTGCACGCCGTAG. For RT PCR of the 

intron containing GFP: F:AAAATGTCAAAAGGAGAGGAATTG and 

R:TGTGGTGCAAATGAATTTAAGG. For RT PCR ofEFla: 

F:GCGGAGGTA TCGACAAGCGT and R:AGCGCAA TCGGCCTGTGAG. The samples were 

visualized in even volumes on an agarose gel. 
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For qRT-PCR analysis cDNA was synthesized using the Superscript® VILOTM 

MasterMix (Life Technologies) with consistent amounts of RNA. SYBR® GreenER™ qPCR 

SuperMix (Invitrogen) was used with the Chromo4 thermocycler (BioRad). The reaction 

proceeded as follows: 1) 94°C for 3 minutes; 2) 94°C for 30 seconds; 3) 60°C for 30 seconds; 4) 

72°C for 30 seconds; 5) Repeat steps 2-4 thirty-four more times. For qRT-PCR of DAD: 

F:GCTAAAGCTGGTGGATGCCT and R:ACACGAGATGAAGCCCGAAA. For qRT-PCR of 

Piwi F:ATCGCTCCATCCTAACGACC and R:ACCTTGATAGCCAGTGCAGG. For qRT­

PCR ofEFla: F:GCGGAGGTATCGACAAGCGT and R:AGCGCAATCGGCCTGTGAG. The 

fluorescence threshold for calculations was selected while the samples were in the exponential 

growth phase of the reaction. These reactions were compared to serial dilutions of plasmid using 

the Opticon software to calculate relative initial concentrations. The qRT-PCR was run in 

duplicate and the values were averaged. 

Fluorescent imaging 

Images were taken with the Olympus BX61 microscope with a DG4 lamp and ProgRes® 

camera. Fluorescent images were taken under the TXRed, FITC or DAPI filters under the 1 Ox 

objective. 

Results 

Testing transfection of Ephydatia muelleri 

Ephydatia muelleri was transfected with Cascade Blue® (Fig. 1) using Lipofectamine TM 

2000 to determine the efficacy of this transfection reagent. The control sponge shows no 

evidence of the fluorescent macromolecule Cascade Blue®. There is some autofluorescence 
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localized to the gemmule, however it is significantly lower than the Cascade Blue® present in the 

treated sponge tissue. Sponges treated with Lipofectamine™ 2000 reagent had fluorescence 

throughout the sponge tissue and from microscopic observation, appeared to be present in all cell 

types. FuGene® HD (Roche), FuGene® HD (Promega), Lipofectamine ™ LTX (Life 

Technologies), X-tremeGENE HP (Roche) and Lipofectamineni 3000 (Life Technologies) were 

also tested as transfection reagents. Efficiency of the reactions varied and Lipofectamine™ 2000 

was selected due to its consistency. 

Ephydatia muelleri promoter driven expression 

Promoters for EFla, DAD, and Piwi were successfully identified from the Ephydatia 

muelleri genome (Fig. 2). These new promoter regions were amplified, ligated into new 

expression vectors (Fig. 3) and partially sequenced to confirm the correct sequence and 

orientation. 

For each gene whose promoter was cloned into expression vectors, we identified the 

overall gene expression levels over the life stages of Ephydatia muelleri by using qRT-PCR (Fig. 

4). The results show that each identified gene is expressed throughout each of the developmental 

life stages, confirming that the promoters for these genes must drive gene expression across 

many developmental stages. 

Over-expression vector driven expression in Ephydatia muelleri 

Our newly constructed expression vectors were transfected into stage 3-5 Ephydatia 

muelleri (Fig. 5). RNA was isolated from the tissue and analyzed through RT-PCR (Fig. 6). Our 

vectors drove expression in the presence ofLipofectamine™ 2000 for the promoters CMV, EFla, 
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DAD, and Piwi. The vectors didn't drive expression without the Lipofectamine™ 2000 reagent 

suggesting that a transfection reagent is necessary for DNA plasmids to enter sponge cells. 

13 

Ephydatia muelleri transfected with the expression vectors pEGFP-Nl and ptdTomato­

CMV were visualized under a fluorescent microscope (Fig. 7). Live Ephydatia sponges have 

high levels of autofluorescence in their tissues regardless of whether or not they are transfected 

with GFP (Fig. 8) or tdTomato (data not shown). We see the highest levels of autofluorescence 

in the gemmule. Exposure was adjusted to account for the autofluorescence in control treated 

sponges, which made evaluation of the promoter driven expression constructs difficult as the 

images were relatively dark after subtracting background (Fig. 7). Close examination of images 

(Fig. 7) indicate some evidence that tdTomato expression is driven in the tissue of 7F compared 

to 7E and that GFP expression is driven in 7H compared to 7G. Nonetheless, technical 

limitations made the statistical and complete evaluation of the results nearly impossible. We 

were unable, due to high levels of tissue and gemmule autofluorescence to confidently use this 

methodology (i.e., fluorescent microscopy) to assess expression of the constructs. 

Discussion 

The earliest group to branch from the metazoan lineage was the sponge (Porifera). For 

this reason, sponges are an important system to study the development of early animal gene 

networks. Their genetic networks may provide insights into early animal evolution. To study 

these potentially homologous genes in ancient animals, knocking down expression of key genes 

and overexpressing key genes are essential methods of study. The freshwater sponge, Ephydatia 

muelleri, is a readily available organism to study genes in Porifera. RNAi methods of gene 

knockdown have been developed for Ephydatia muelleri (Rivera et al., 2013) but, over­

expression methodology is a necessary, but yet to be developed, tool to infer gene function. By 
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adapting over-expression methodologies from other animal systems, I attempted to develop the 

first overexpression system for the freshwater sponge Ephydatia muelleri. 

14 

The native Ephydatia muelleri promoters EFla, DAD, and Piwi were identified and 

isolated from a draft genome. EFla or Elongation factor 1 alpha is a commonly used 

housekeeping gene involved in translation that has been used in sponges to normalize data due to 

its constitutive expression across all developmental stages (Rivera et al., 2013). Using the EFla 

promoter for expression of other genes allows for high levels of expression to evaluate 

phenotypic change and deduce functions of genes. DAD, DADI or defender against death 1 is an 

inhibitory protein for apoptosis and is a constitutively expressed housekeeping gene (Nakashima 

et al., 1993). DAD was cited for being expressed at high levels throughout all tissues in humans 

and the gene is highly conserved with homologues present in 0. Sativa, C. elegans and many 

other organisms (Tanaka et al., 1997). The start codon and transcript of DAD are not known in 

Ephydatia muelleri as this gene was annotated by members of the Four-S consortium. The 

isolated promoter for DAD does drive expression in sponges, indicating it does contain key 

elements of the promoter region. Further work needs to be done to evaluate the coding portion of 

DAD in relation to the isolated promoter. Piwi is known to be expressed exclusively in sponge 

stem cells (Funayama et al., 2010). By driving expression with a stem cell specific promoter, 

future experiments will be able to express target genes only in stem cells. This method could be 

instrumental in studying cell differentiation in Ephydatia muelleri. The Piwi promoter has most 

of Piwi's 5' UTR which may cause unexpected protein localization. There needs to be further 

work as to the function of Piwi in sponge genetic networks and where the protein is localized in 

cells. Nearly all of the upstream region to Piwi that was available was included in the promoter. 

EFla, DAD, and Piwi are expressed in each development stage in Ephydatia muelleri. The 
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identified promoters should drive the target gene of interest's expression throughout 

development of Ephydatia muelleri. The ability to drive expression of a gene of interest in each 

stage is essential to study the development of sponges and the genes involved. 

The CMV promoter is a widely used promoter and was suggested to drive expression in 

sponges (Schippers, 2013). CMV, EFla, DAD, and Piwi drove mRNA expression in fully grown 

juvenile Ephydatia. The DAD promoter and the CMV promoter drove mRNA expression of the 

intron containing GFP from the pPD 187.49 plasmid. The pPD 187.49 GFP wasn't spliced in the 

sponge tissue as agarose gel analysis showed GFP at its full length of 700 bp instead of the 

spliced GFP at 500 bp. Any protein resulting from this transcript wouldn't be functional. So even 

though expression was possible, processing of GFP did not take place. The CMV promoter 

already exists in a non-splicable form of GFP but, the DAD promoter would need to be moved to 

a different vector or the GFP would have to be exchanged for DAD to drive expression of a 

functional GFP. 

It was confirmed by RT-PCR analysis that the CMV, EFla, DAD, and Piwi promoters 

drive expression of GFP. Further, the plasmid ptdTomato-CMV was transfected into a human 

cell line and results were visualized (results not shown) by fluorescent microscopy. Results 

confirmed that our plasmid induced detectable expression of tdTomato. These results confirm 

that our expression constructs are able to drive gene expression in transfected cells. After 

expression of a gene of interest is confirmed it is important to know what cell types are 

expressing the gene of interest and how efficient expression is in the tissue. When visualized for 

protein expression, our fluorescent protein didn't reach high levels above background 

fluorescence that would allow us to consistently evaluate cell type expression patterns. 

Preliminary work from Schippers (2013) suggested that detectable fluorescence was transient 
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and difficult to replicate. In the experiments conducted here, there was some evidence of 

different levels of fluorescence from replicate to replicate. Fluorescence in the sponge tissue 

furthest from the gemmule (in the growing pinacoderm) of the treated sponges was observed to 

be higher in several samples compared to control sponges. This indicates that some cells may 

have been expressing GFP at higher levels and the brightness could have been due to GFP 

expression and not only due to tissue density (given that the cell density is low in the growing 

pinacoderm). However, due to native autofluorescence in all live Ephydatia tissue, this result 

wasn't consistent or replicable enough to conclude that GFP was expressed at high levels. When 

we tested the sponge for autofluorescence we found high levels of autofluorescence across the 

visible spectrum. In the far-red there was considerably less autofluorescence while the red had 

the highest level of autofluorescence followed by green then blue with significantly high levels. 

The far-red fluorescent proteins were not used because they are substantially less bright than 

GFP or tdTomato. Due to issues visualizing GFP and tdTomato, far-red fluorescent proteins 

(mPlum) were not studied further with the concern that their expression wouldn't be above 

autofluorescence either. Thus, while we could demonstrate that our vectors drive over-expression 

of target genes (i.e., GFP, tdTomato), technical limitations prevented evaluation of cell and/or 

tissue type expression of the target gene. 

To assay for protein expression western blots were conducted for GFP according to 

existing methods for sponge tissue. After repeated trials GFP protein was not detected from the 

sponge samples. This indicates that the production of GFP protein production was either not 

efficient enough to detect above background or that in spite of the fact that GFP mRNA was 

made, the protein was not translated. Furthermore, ~-gal expression experiments were 
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inconclusive; further optimization is needed to evaluate reporter gene expression by cell type in 

the sponge tissue, where overexpression is driven. 

With proven transfection technology and validated promoters, increasing efficiency is the 

next step to develop an overexpression system. Recently the CRISPR methods have come to the 

forefront of molecular biology for their potential efficiency (Gilbert et al., 2013). This system 

requires transfection technology for the model organism as well as knowledge of promoters to 

enhance protein expression (Perez-Pinera et al., 2013). This project has developed the 

background knowledge to develop the CRISPR overexpression and CRISPRi systems. Future 

work in developing an overexpression system in Ephydatia muelleri should focus on the 

CRISPR system. 
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Appendix 

A 

Figure 1. Transfection of Ephydatia muelleri with Cascade Blue®. 

Control (A, B) and treated sponges (C, D) with Lipofectamine TM 2000 and Cascade Blue®. Bright 

field images (A, C) show the whole sponge. The fluorescent images (B, D) are visualized under a 
DAPI filter. 

EFla Promoter: 
AATGCTGCTANNNNNNNNNNNNNNNNNNGGGAAACTAGAACATCATGTAACAAGTTACTTAACATTCTAC 
CTCTTTGCTGGTGTATACAATTCAAGCTTTTCAGTTATGGTCTCGAGAACCATCTCCCATTGATTCATGA 
TGATTCGAGGCAGGAGTACCCTTGCTCCTCGAAATCGCTCATCTCCATTTCGAAAGACACTGATAAGTAA 
ATGCATAAGAGAAGGGACAAGGTTGTGTTTTTCTTACTTACTGTATAACTAGAGGCTTTTCAACAGGTTT 
TTTGTATCTTGCAGATGCAGCAACTGCCCGCTGGAACTTCGTAGCGGGAGTTCCAAGCTAGGATGACTGA 
ATACATTTAACTTTAGTGTATGTGAGCTAAACATTATTACCTCATTAGCTGGTCTTCTTGGCAGTAGTCT 
TCGTTGGTATTGATAGCTATGTGCATAGTGAGCGGTAAATATTGCTATAAGACATGTGCGCTGAAGTTAC 
TATATTGTACCGCCAATAATTTGGATACCTTATTTTCTTAAACTGCTCCCCTCCACTTGCAACATAGTAG 
GATCCGGTCTTTAGGTCACCAATGTTCTGGATTCGCTGCCCACCATTAGGTGTATATATAGTTCTAACGG 
CGACAGGGGCTTTTATGCTGCTCGTCACGCGTCCAAGGAAAGTAGCAAAGTCACGAACTTGACGGTCGTT 
GACAACAAGAAGCTTTGGTTCAGCATTTACATCGCCATTGCGGTAAATATATATCTTCTTTGCAGGCTTA 
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GGTTCGTACTGGGTCATTACTGTGTTATCCATACACAATTCGCTTCACCATCCATTTGTGTTTACATGCG 

TTTCCATGGTACCGAGGTCTTACTTATTTTTAGAATGTACCCTCTCAGGCCCATATAAATTTTTTTAAAA 
TTAAGACGGTCAGAAGTGCATCATCCACGTGTTCAAGTGCTTAGAAAATTCGCATGCGCAAAAGAACATT 
CCTTTCAGAGCGCGTGTACGGTTGACTTAAGTTGGTCGGACTTTTGATCTGAAAACATCGGAACGTCTCT 
GCTACTTTTTGGTGAGTGGTAGCTGCGGTATGACACAATTCTGCTGTCCTGTGTATAATGTCACTGTGAT 
TTTACAATGCTTCGACTTATCCTTTTAGCGCAAAAAATCAAACATGGGAAAGGAAAAGACACACATTAAC 
ATCGTCGTCGTTGGCCATGTCGACTCTGG 

DAD Promoter: 
AGAGAGGGTACTCCTTGTTGATTCTGAGTGGTTTGGTTATGGTCTGCTTGGAGCTTCTTTCTGAGTGCAG 
GAACAGGTGGGGAAGGGGCTCTTTGGACTGGTGGTGCAGCCTGGTATGGTTGTGGTCGAGGGGGAACCTG 
TTGCAGTGGTGGGGATGGTGGCAGCNTGAGNANNNNNNTTNTNNNGGTGCAACNGNTGCTTCAGAGCTGG 
CACAGGAGGTGACGAAGCCCTGTACTGCTGCCCACCACCAATCGAACTATCCAGGGCAGACATTTGGTCA 
AGATTTTGGTGCACCCTAGCCCCACTTGCTTCCTCCTGCTTCTTCGATGTTTCCATTGCACGTTTTCCCT 
CTGCCTCCTTCTTTAGTNGNNCATNCCTNNNANGTNCNTNCNCTTCCCTCTTCCTTGCCATCTCCTGCTC 
CCTCTTGTAGTTCTCAGCTATCCTGTCCTGCTCGCTCTTGATCCTCTCCAGTTCCTTTATGTCCTCCAGC 
TTCTTCGCTTCCTTCTCCTTCTTCTTAATAGCTTCCCTCTCCTCCATCTGCTTCCTCAGGGACTCGCGAT 
AGTCCTCAAGGCCTTCCTGCTGATTGTTTTCTTCAAGGACCAGTGTTGCAACGACGGGACCATTCTCCTT 
GTTGGGGCTTGCTTCAGTGTTAGGCAATGGCTTGTCAGAAGGGGCTGTGTTCTCACCACGAGGGGACGTC 
AGACTGCTCTTGAGGAGCTTCTCATTGTTGACCAACCTCATCTTCCTCAGGTCCGCTACAAGCCGCCCAC 
GCTCATCTCTCATTGGTGCCCCACCCCCTCCTTTCCCCCAGGGATTGTACTCCTGGACTTCGTCGACCGC 
CTTTGTCTTTCTGTGCTCCTCCTTCTCTTTCTTCTCCTCCATTTGCTGCTTCAACTGCAATCTGTAGGCA 
CTTTTATCCTTCTTTGGGTCTTTGCCATTGGCAGCAGGGACCCCAGGTTGCTGTCGCCCGTTTCCCTGTC 
TCCCGTCTCTCTCCCCCTCCCCCCTCTGGCTGTCCTGCACTTGACCCCCCTCATTTTCTGACTGTTGCCT 
GTGTGGTGGGGCATAGCTGTCCCGTGGAAAAGATGGCGGATAGTAGGGATTTGGACCGTAGGTGTGAGGG 
GGGTGGAGGGCAGGCGGGTAGAAGGGAGATGGCCACTGGGGCGGAGCAAATGCGCCGTACTCGGGCCTAT 
ACATATAGGGAGGGTACTGAGGGGGATAGGGGTAGTGTGGGTCCAAAGGGGCAGTGGGATAATGATAGCT 
AGGTCCTGGGTACTGGTGGTCACCAGGGCGTGCGTGATGAGGACCAGGCGGATTGTAAGGGTCAGGTGGT 
GAATAAGGGCNNTGGCNNNAGGNTNTGNNTGGNNNTCATGTGGTGACCATCTCCTGTGAGGTGGTTCTTG 
CGCCATCCTCCCTTCCGCTTTCCGTTGAGACTCCCTGTTTTCACGCAGTGGGGGTGGGGGTGAAGTGTCG 
CTTCTCTGTGGCCTAGCCCTCGTCTGGACATTCTCATCTCCAGACACCTCTAAGGGTACTCCCTTTTCTC 
TTTGCCTGGCCAANGTTTTGCTTCTTATCTGAGCCTTGAGCTCTTCAGCGTACTGCTTCTGCTTGTTCCG 
CTTTTCCACGTCACTTTCTTTAACCCCTATAGCTGCCATCCCCATTAAAACAGGAGCGGATATTGACCTT 
GTCCCCTTGGACACTTCCTGCTTCCCTGGAGAGAGGTGTGATGGTGGAGTTTTAAGGTTATCACGATTGC 
CATTTTGTGCCATCTGAGAGTAGGCTCTTCCCTTCGCCCACTGCATCAAATGCACCTCATCATCTTCCCA 
CCTCTGCGCAGCAAATGGTGGTCCAGGAGCGGGACCGATTGGAGGCCGTCCCGGACCATTTGGTGGTGGT 
CTTGCATCATCATNGTCCCCCCAGCGCTTCCTTCGCTTGTAAAAGTCTTGATCCGCCGGGAGTTGATGGT 
AGCGCCTTTCCTCTGCCAGCCTCCGTTCCTTGATCTCTAAATAAGGGTCTCTAGCAGCCACTCCCGATGG 
AGGCCTGAAGCCAACATCTGCACCCGGTCCAACCTCGCCAATTTCTCTGTCTCTTTGCAGCGACATTTCT 
CTTCGTAACTCTGCAATTGATGGTTTTCCAGAAGCTAGAATTTTTTCGTTTTTAATTTCAACCGTTTTTC 
TTCCTTCCCTCAGACTGTCCGTTCTCGAACTACGAAAAACATTTATAGGACATGTGTGTGACATGGGACG 
CTTCCACAAAGCGCGTACCTATTTTGTTGTGCATCTGAATACAGTCTCCCTTTCTCCTCGTTCAACCTAT 
TCCTATGGGAAGCTATTAAGCTCTGCAGATCTACATTACTCATGTTTACCGATTTTTAAAAGTGGTAACC 
TTGGAGCGCTCGTGCCGCAAATCGGGTTCTAATAACTCGCAACAAGGGCACGTTCGAAGGAAGAAACAAA 
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AGAAGGGCTGCGAAGAATGAGCT CCGAGAATCTTATCGTGATAGCTAAGCAGTTCATCAATCAGTATAGC 
TACAACACGCCGCAGAAGCTAAAGCTGGTGGATGCCTACCT 

Piwi Promoter: 
TGATGGGGTCCGTACAGATTTTCTTGCCCCCCCCTCGCGCAATGTAATCTTTTTTCGTTTTGGCACGAAT 
TACATGCCATACCAATCTGCTCCAGCGCCTTTCAGTGGCTGTACAAAGGAGAAATGTGTAGGGTACATTT 

CCTTTCTTTGCTGACCTCTATGAAGTGTTCATTGGCAGATTATGGTTGTTATCGCATAGATAGTATCTAT 
GGTTATCGTAACTTTGATAATGATATTTGCAACTTGGAGTTTGTGGTAGTCCGTGCTTGTGCATTATAAT 
AATAATGTGTAGGTGTTCGTGTATTCTTTTAAAAAGTTTTGCCCACCGGCGCATGCGCGTATNCGNNNNN 
GTGGAACGTTCGATGTTAGGCATTGCAGCTGTGGTAGCTGTGGAAGCTGTGAACCAACCGTGAAATCCTC 
TACGGACGCTTAGTGGGAACTAACTGAAGCACGGAAGAGGTGACGAAAGTCCAGCGTAACACGTTAGTAG 
ATAAAATACGAAAACAGGCGTGTGATAACTGCAAGACATAGGAAGTGCAGGGAAAAGAAGGGTGATTTGT 
AAAAGGTTGGTCAAATCGTACCTTAGTTTACTCAGAACCCATTATTGTGCTCTGTGTAACGCTGTATATG 
CTGAACCGTCCTTAGTGATGTGTCTGTCCGTAAACTTTTAAAAAGATTATCATTGTGTGTCGAACAACCA 
GCTAACAGAAAAAATTTGGTTTTTATTTTTAACCCGTCTTCCATAAACTACGGCACCGTAGCTTTTTCCC 
CGCTGTGAGGTGGGAACGCTGTCAAATATTCGGTGTCTTTTGTTGCTCATTAGTGCTCTTTAAATAGAAA 
TAATCTTTTTTGCGCGCGTATTGTTAATTCTGCAATTTAGAACAGTTGAAGCCAATTAACCTCTTGTACG 
CCTATTGTCTAAATAAATACATCGTTACCTCCCTCCAGGCTTCTCTCATCAAAAGACACACAACAATGGC 
AGACAAGGTACCCATAGCTC 

Figure 2. Identified promoter regions from the Ephydatia muelleri genome. 
The promoters identified in the genome draft of Ephydatia muelleri are shown above. Some 
bases have not yet been identified and are denoted with "N". The green highlighted portion was 
amplified as the promoter. The red highlighted section is the start of the 5' UTR. The start codon 

is bold. 
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Figure 3. Vector maps of overexpression plasmids. 
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Visual representations of the vectors used to drive GFP expression in sponges. All plasmids have 

the same backbone as pEGFP-Nl (A) . The only significant difference is the promoter in each 

vector (B, C, D) is exchanged with the CMV promoter. 

A. 
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Figure 4. Graphs of promoter of interest expression over the life stages of Ephydatia 
muelleri. 
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EFla (A), DAD (B), and Piwi (C) relative expression levels across all developmental stages of 

the freshwater sponge. The stage with the lowest expression level was adjusted to one and other 

stages indicate relative expression to that stage. 



Over-expression for the Freshwater Sponge Ephydatia muelleri 

Promoter I 
I 
• 
EF1a, DAD, Piwi or CMV genes 

• 
Target Gene (e.g., GFP, gene of interest) 

Transfection 
Reagent 

Figure 5. Over-expression schematic. 

23 

~ 
/ 

) BacKbone 

~ 

Identified promoters are amplified and ligated into an expression vector backbone to drive 
expression of a target gene. The plasmid is complexed with a transfection reagent that allows for 
the plasmid to enter the sponge cells and drive expression of our target gene. 
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A ---- ----
B 

Figure 6. RT-PCR of EFla and GFP in transfected Ephydatia muelleri. 
The expression of GFP mRNA in Ephydatia muelleri driven by expression vectors. Row A is the 
EFla loading control and Row Bis GFP expression. Lanes 1 and 6 are negative controls. 
Significant expression is driven by the CMV promoter (Lane 4) compared to the plasmid control 
without Lipofectamine™ 2000 (Lane 2). As well as significant expression driven by the DAD 
promoter (Lane 5) compared the control (Lane 3), Piwi promoter (Lane 7) compared the control 
(Lane 8), and the EFla promoter (Lane 9) compared the control (Lane 10). 



Over-expression for the Freshwater Sponge Ephydatia muelleri 

Figure 7. Fluorescence images of GFP and tdTomato expression in Ephydatia mue/leri. 
Bright field images (A-D) and fluorescent images (E-H) of control sponges (A, E & C, G) and 
treated sponges (B, F & D, H) with ptdTomato-CMV (B, F) and pEGFP-Nl (D, H). Sponges 
were visualized under the TXRed filer (E, F) and the FITC filter (G, H). 
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Figure 8. Autofluorescence of Ephydatia muel/eri with the FITC filter. 
Adult control sponges were visualized under the FITC filter. 
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