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Abstract

This thesis explores the use of difference sets to partition algebraic groups. Difference sets are a

tool belonging to both group theory and combinatorics that provide symmetric properties that can be

map into over mathematical fields such as design theory or coding theory. In my work, I will be taking

algebraic groups and partitioning them into a subgroup and multiple McFarland difference sets. This

partitioning can then be mapped to an association scheme. This bridge between difference sets and

association schemes have important contributions to coding theory.
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0 Preliminaries

Throughout this thesis we will discuss and use an algebraic construction referred to as a difference set. As

stated by Moore and Pollatsek, “difference sets... belong both to group theory and to combinatorics and...

use tools from these areas as well as from geometry, number theory, and representation theory” [1]. In

my work, I consider a special family of difference sets known as McFarland difference sets. Specifically, I

connect the study of difference sets to the study of association schemes which are used in coding theory. By

creating this bridge between difference sets and association schemes, I will provide a method for constructing

association schemes.

1 Introduction

A (v, k, λ) difference set is a k-element subset of a group G of order v such that the multiset {dd−1 : d ∈ D}

contains each non-identity element of G, λ times. The following example below has been called the “Design

Theorists Coat of Arms”.

Example 1. let G = Z7 = {0, 1, 2, 3, 4, 5, 6}. Consider the set D = {1, 2, 4}. If you take every difference of

the terms in D then each nonidentity element of G appears exactly once. Specifically, 1−2 = −1 = 6, 1−4 =

−3 = 4, 2 − 1 = 1, 2 − 4 = −2 = 5, 4 − 1 = 3, and 4 − 2 = 2. Thus, D is a (7, 3, 1) difference set because

the group size is 7, the difference set size is 3, and each nonidentity element appears exactly once in the six

differences taken.

The above example is referred to as the “Design Theorists Coat of Arms” because you can use this

difference set to create the Fano Plane which is arguably one of the most recognizable images that comes

from design theory. Below is the image of the Fano Plane with a description of the image’s connection to

(7, 3, 1) difference sets.
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Figure 1: Fano Plane

Example 2. Figure 1 is an image of the Fano Plane. Each line in the Fano passes through three different

vertices and each vertex has three lines that pass through it. Note that the circle in the middle is considered

to be a line. The three vertices on a line form a difference set over Z7. For instance, the bottom line passes

through 1, 2, and 4 thus {1, 2, 4} is a difference set in Z7 which is shown to be true in Example 1. There are

seven lines, thus there are at least seven distinct difference sets within the Fano Plane. Note that once you

find one difference set, you can find the others by continually adding one to each element in the difference

set. Therefore, since {1, 2, 4} is a difference set, so are {2, 3, 5}, {3, 4, 6}, and so on.

Let’s consider another example of a difference set, specifically a (16, 6, 2) difference set.

Example 3. Let G = Z4
2 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),

(0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

Consider the set D = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}. If you take all

the differences of the terms in D then each nonidentity element of G appears exactly twice. For instance,

(0, 0, 1, 1)− (1, 1, 0, 0) = (1, 1, 1, 1) and (1, 1, 0, 0)− (0, 0, 1, 1) = (1, 1, 1, 1), but no other difference will result

in (1, 1, 1, 1). Therefore, D is a (16, 6, 2) difference set

A Boolean function is a function with multiple binary inputs (inputs are 0’s or 1’s) and one binary

output. Consider a Boolean function with four input variables. The elements in G represent the 16 possible

inputs for the Boolean function. Suppose that for the input sequences in the set D the Boolean function

outputs 1 and for the other input sequences the Boolean function outputs 0. If we passed each input sequence

2



into the Boolean function starting at (0,0,0,0) and counting up to (1,1,1,1), the output sequence would be

0001000100011110. This output sequence is famous in coding theory and is referred to as a bent function.

They are referred to as “bent” because the output sequences of these functions are as different as possible from

all linear and affine functions which are “straight” functions. This makes bent functions hard to approximate,

making bent functions an important tool in coding theory. It has been proven that all bent functions can be

found using difference sets in a similar approach to the one used above [4].

1.1 Applications to design theory

As shown in Figure 1, difference sets are used in many branches of mathematics such as design theory. A

symmetric (v, k, λ) design is an incidence structure that contains v points and v blocks where each block

has size k and any two distinct points appear together in precisely λ common blocks. In design theory, a

symmetric (v, k, λ) design with a regular automorphism group G is equivalent to a (v, k, λ) different set in

G. Examples of symmetric designs can be found in projective planes.

Definition 1.1. A projective plane is a nonempty set of points and a nonempty set of lines such that:

1. Each pair of points are on a unique line

2. Each pair of lines intersects

3. Each line contains at least thee points and the plane contains at least two lines

A projective plane of order n contains n2 + n + 1 points. The smallest example of a projective plane is

the projective plane of order 2 also referred to as the Fano plane. As shown in figure one, the Fano plane

can be constructed by (7, 3, 1) difference sets.

1.2 Applications to coding theory

Applications of difference sets are also seen in coding theory. The goal of coding theory is to encode a

message so that the receiver has a high likelihood of decoding the intended message. This goal can be met

by repeating the data in the initial message, but often we look for more sophisticated methods. One good

example of a more sophisticated error correcting code is the row span (over Z2) of the incidence matrix of a

symmetric design. An incidence matrix of a symmetric design has a row for each point v in the design and

a column for each block e in the design and (v, e) = 1 if and only if the v is within the block e, otherwise

(v, e) = 0. Note that any finite incidence structure corresponds to an incidence matrix.

3



Moving forward, it will be shown how to use difference sets to construct association schemes which are

also used to create error correcting codes in coding theory. Previous research conducted by Davis and Polhill

show a connection between Hadamard difference sets and association schemes [2]. A Hadamard difference set

is a difference set that has parameters of the form (v, k, λ) = (4n2, 2n2, n2−n) where n is a positive integer.

They use an algebraic construction called a Galois ring to partition groups into two disjoint Hadamard

difference sets and a subgroup. This partition can then be used to form a three class association scheme

which is defined below [2].

Definition 1.2. An n-class association scheme contains a set X and a partition S of the ordered pairs of

X such that:

1. there are n+ 1 subsets of X ×X that partition X ×X. The subsets are denoted R0, .., Rn.

2. R0 = {(x, x)|x ∈ X}.

3. R∗i = {(y, x)|(x, y) ∈ Ri} = Rj for some 1 ≤ j ≤ n

4. If (x, y) ∈ Rk, then the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is a constant value pkik

that is not dependent on a particular choice of x and y but is dependent on i, j, and k.

The theorem proven by Davis and Polhill connecting Hadamard difference sets and association schemes

is listed below.

Theorem 1.3. Let G be an abelian group containing a (4N2, 2N2 − N,N2 − N)-Hadamard difference set

D such that D ∩D(−1) = ∅ and H = G−D −D(−1) is a subgroup of order 2N . Then the following classes

form a nonsymmetric 3-class imprimitive association scheme on G:

• R0 = {(x, x)|x ∈ G}

• R1 = {(x, y)|x− y ∈ D}

• R2 = {(x, y)|x− y ∈ D(−1)}

• R3 = {(x, y)|x− y ∈ H∗}

Using Theorem 1.3, we construct an association scheme using Hadamard difference sets.

Example 4. Consider the the set X that contains the elements of Z4×Z4. The elements of Z4×Z4 can be

displayed in a four by four grid as shown below.
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(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

Partition the elements into the table into three sets:

• D1 = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

• D2 = {(0, 1), (0, 3), (1, 0), (1, 1), (3, 0), (3, 3)}

• H = {(0, 0), (0, 2), (2, 0), (2, 2)}

I claim that both D1 and D2 form a Hadamard difference set. This can be verified by taking the differences

of all the elements in each set and showing that each element of the group is created twice. The remaining

four elements form the last set H which is isomorphic to Z2
2. Thus, Z4×Z4 is partitioned into two Hadamard

difference sets and a subgroup. This partition can be mapped into a three class association scheme. Let

R0 = {((a, b), (a, b)|(a, b) ∈ Z4 × Z4}

R1 = {((a, b), (c, d))|(c, d)− (a, b) ∈ D1}

R2 = {((a, b), (c, d))|(c, d)− (a, b) ∈ D2}

R3 = {((a, b), (c, d))|(c, d)− (a, b) ∈ H}.

It is evident that the first and second conditions of an association scheme are met. We can also check

that D1, D2, and H are closed under inversion which implies that the third property of an association scheme

holds. The last property, though tedious, can also be checked. Thus, we have formed a three class association

scheme.

The last condition of an association scheme is hard to verify thus it is generally harder to identify

association schemes than difference sets. The goal of my work is to explore another family of difference sets,

McFarland difference sets, in the hopes of proving that groups that contain McFarland difference sets can

be partitioned to form an association scheme.
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1.3 Hyperplane Construction

When looking at a group it is not always obvious what subset of the elements will form a difference set.

Various construction methods are used to find the difference sets within the group. One of the most common

construction methods is the hyperplane construction. A hyperplane is a subspace of one dimension less than

its surrounding space.

Example 5. Consider the group G = Z8 × Z2 and the subgroup H =< (4, 0), (0, 1) >= {(0, 0), (4, 0), (0, 1),

(4, 1)} ∼= Z2 × Z2. Because H is isomorphic to a 2 dimensional vector space over Z2, the “hyperplanes” of

H correspond to dimension one subspaces over Z2. Thus, the hyperplanes of H are < (4, 0) >,< (0, 1) >,

and < (4, 1) >. The distinct coset representatives of H in G are (0, 0), (1, 0), (2, 0), and (3, 0). Arbitrarily,

three out of the four coset representatives are attached to the hyperplanes, and the resulting set forms a

difference set in G. By “attaching” the coset representative you are ensuring that we get six distinct elements.

For instance, if I attach (1, 0) to the hyperplane < (4, 0) >= {(0, 0), (4, 0)}, then (1, 0)+ < (4, 0) >=

{(1, 0), (5, 0)}. I claim that D = ((1, 0)+ < (4, 0) >) ∪ ((2, 0)+ < (0, 1) >) ∪ ((3, 0)+ < (4, 1) >) =

{(1, 0), (5, 0), (2, 0), (2, 1), (3, 0), (7, 1)} is a difference set of the group Z8 × Z2.

Consider a more general case of the above example. Let G be an abelian group of order 22n and suppose

H is an elementary abelian subgroup of order 2n (note that not all groups G of order 22n will have such

a subgroup). H can be thought of as an n-dimensional subspace over Z2. Below are the steps to using

hyperplanes of H to form a difference set:

1. Find 2n − 1 hyperplanes of H. Because H is a n-dimensional subspace over Z2, each hyperplane is an

(n− 1)-dimensional subspace of H. We know there exist exactly 2n − 1 hyperplanes in H because for

each one dimensional space < v > where v ∈ H the perp < v >⊥ is an (n− 1)-dimensional subspace of

H. The number of one dimensional spaces is 2n−1 because all 2n elements can form a one dimensional

space besides the identity element. Thus, there are also 2n − 1 hyperplanes from H.

2. Choose g1, ..., g2n ∈ G as elements from the distinct cosets of H in G. These are referred to as coset

representatives. Note that the number of cosets is equal to |G||H| = 22n

2n = 2n by Lagrange’s Theorem.

3. Using the hyperplanes and coset representatives generate the set D such that D = ∪2
n−1
i=1 giHi. Note

that here we are using the multiplicative group operation where as in past examples we have used an

additive group operation. Note that you are leaving one of the coset representatives unused.

This hyperplane construction will also work for a vector space over any finite field GF (q).
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Example 6. The subgroup does not always have to be viewed as a vector space over Z2. Consider the group

G = (GF (4)+)2 × Z6. Note that GF stands for a Galois field or finite field and GF (4) = {0, 1, α, α + 1}

is the finite field with four elements with α2 = α + 1. Thus, the group G has 96 elements. Let H ∼=

(GF (4))2 meaning the subgroup can be viewed as a two dimensional subspace over GF (4). The hyperplanes

of H have dimension one over GF (4). Note that there are 15 nonidentity elements in GF (4)2 and each

hyperplane will have 3 nonzero elements so there are 15
3 = 5 hyperplanes since you can pick any of the three

elements of the fifteen to form a hyperplane. The hyperplanes are < (0, 1, 0) >,< (1, 0, 0) >,< (1, 1, 0) >

,< (1, α, 0) >, and < (1, α + 1, 0) > where the last generator 0 comes from Z6. Each hyperplane includes

four elements (the identity and the generator multiplied by 1, α, and α + 1). For instance, < (1, α, 0) >=

{(0, 0, 0), (1, α, 0), (α, α+1, 0), (α+1, 1, 0)}. The unique coset representatives are 0,1,2,3,4, or 5 coming from

Z6. Arbitrarily, five out of the six coset representatives will be used to form a difference set. For instance,

((0, 0, 0)+ < (0, 1, 0) >) ∪ ((0, 0, 1)+ < (1, 0, 0) >) ∪ ((0, 0, 2)+ < (1, 1, 0) >) ∪

((0, 0, 3)+ < (1, α, 0) >) ∪ ((0, 0, 4)+ < (1, α+ 1, 0) >) forms a (96, 20, 4) difference set.

Moving forward, we will show that some groups of order 96 can be partitioned into 4 (96, 20, 4) difference

sets and the rest of the elements will form an elementary subgroup. This is always possible for groups

that contain difference sets. Not only do we want this partition, we also want the property that D
(−1)
1 =

D1, D
(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3 will allow us to form an association scheme. This second

property is harder to find.

1.4 Character Theory

Proving that the hyperplane construction yields a difference set requires some background in character theory.

A character χ on the abelian group G is a homomorphism from G to C under multiplication χ : G→< e
2πi
n >.

The principal character χ0 denotes when each element of G is mapped to 1 in the complex plane. By Euler’s

Formula we know that e2πi − 1 = 0, and that the power series of ex is ex = 1 + x+ x2

2! + x3

3! + .... Evaluating

at 2πi, we get:
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e2πi = 1 + 2πi+
(2πi)2

2!
+

(2πi)3

3!
...

e2πi = 1 + 2πi− (2π)2

2!
− (2πi)3

3!
i+

(2π)4

4!
+ ...

= (1− (2π)2

2!
+

(2π)4

4!
+ ...) + i(2π − (2πi)3

3!
+

(2πi)5

5!
+ ...)

= cos(2π) + i sin(2π)

= 1

This result means that you can map the elements of G to complex numbers whose modulus (or length) is

one. When finding difference sets, we are interested in calculating the character sum. The character sum of

a subset S of a group G for a particular character χ, denoted χ(S), is the sum of the image of each element

in S under χ. More compactly, χ(S) =
∑
s∈S χ(s). Below is a lemma relating to character sums.

Lemma 1.4. If χ is a character on an abelian group G then

χ(G) =
∑
g∈G

χ(g) =


|G|, if χ = χ0.

0, otherwise.

(1)

Proof. If χ = χ0 then χ(G) = |G| because you are adding a string of ones.

Suppose χ 6= χ0. By definition,there exists g′ such that χ(g′) 6= 1. This implies that χ(g′)χ(G) =

χ(g′)
∑
g∈G χ(g) =

∑
χ(g′)χ(g) =

∑
χ(g′g) = χ(G). Note in the last step, multiplying each g by g′ is

simply reordering the element in G before performing the mapping χ. Because χ(g′)χ(G) = χ(G) we know

(χ(g′)− 1)χ(G) = 0, so (χ(g′)− 1) = 0 or χ(G) = 0. Because χ(g′) 6= 1, it is impossible for (χ(g′)− 1) = 0,

so it must be true that χ(G) = 0.

Later, when dealing with nonabelian groups we will utilize lemma 1.4 as well as the lemma below.

Lemma 1.5. Let A be a set of elements from the group G. If the character sum of A is zero then A is some

multiple of the group G.

Moving forward, our goal is to prove that we can use character sums to show that the hyperplane

construction will always yield a difference set in an abelian group. Before proving the correctness of the

hyperplane construction, we introduce group ring notation and contraction mappings.
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1.5 Group Ring Notation

Difference sets are often studied in the context of the group ring which is the set of all formal sums of

elements in the group G usually with coefficients from Z. More specifically, the group ring is defined as

Z[G] = {
∑
g∈G agg : ag ∈ Z}. If we allow the standard abuse of notation, we have D =

∑
d∈D d, and we

have D(−1) =
∑
d∈D d

−1. D forms a difference set in G if and only if DD(−1) = n1G + λG where n = k − λ

and 1G is the identity of the group.

Consider the group G = {xi : 0 ≤ i ≤ 6, x7 = 1}. If the difference set includes the elements x,x2,

and x4 then D = x + x2 + x4 and D(−1) = x6 + x5 + x3 thus DD(−1) = (x + x2 + x4)(x6 + x5 + x3) =

1 + x6 + x4 + x+ 1 + x5 + x3 + x2 + 1. Note that each non-identity element of G appears exactly once while

the identity appears three times.

Working with the group ring notation allows for a more compact notation that is used for counting.

Another tool that assists with these ideas is the contraction mapping.

1.6 Contraction Mapping

Given K E G define the projection φK : G → G/K by φ(g) = gK. This endomorphism will extend

to an endomorphism from the group ring Z[G] to Z[G/K], by defining φK(
∑
g∈G agg) =

∑
g∈G agφK(g).

Essentially we are contracting each element into the coset it lies in with respect to K and then counting how

many elements are in each coset.

Example 7. Let G =< x, y, z, w, u, v|x2 = y2 = ... = v2 = 1, abelian > and Let K =< x, y, z, w >. Let

A ∈ Z[G] such that A = 4(1G) + 13xyuv − 63zuv + 8xu − 4zwu. Apply the contraction mapping so that

φK(A) = 4K + 13uvK − 63uvK + 8uK − 4uK = 4K − 50uvK + 4uK + 0vK.

When we apply the contraction mapping to a difference set in the group, we get:

φK(DD(−1)) = φK(n(1G) + λ(G))

= nφK(1G) + λ(φK(G))

= nK + λ(|K|G/K)

= (k − λ)K + λ|K|G/K

Thus applying the contraction mapping onto a potential difference set is yet another tool to help verify
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that D is in fact a difference set. When applying character theory on G/K, each coset must be mapped

to a complex number. Note that because K is the identity coset, χ(K) = 1 because K must map to

the identity of the complex plane where χ is a character on the group G/K. Thus χ(φK(DD(−1))) =

χ(φK(D))χ(φK(D(−1))) = kχ(K)− λχ(K) = k − λ as long as χ is a non principal character on G/K.

1.7 Proof of Hyperplane Construction

Using both character theory and the group ring theory, we can now prove a theorem about the validity of

the hyperplane construction.

Theorem 1.6. A subset D of an abelian group G is a (v, k, λ) difference set in G if and only if the character

sum over D has modulus
√
k − λ for all non-principal characters χ of G.

Proof. Suppose that D is a (v, k, λ) difference set in G and let χ be a non-principal character of G. Consider

χ(DD(−1)) = χ(D)χ(D(−1)). It can be shown that D(−1) = χ(D) where χ(D) = {d−1|d ∈ D} is the

complex conjugate of χ(D). With this, we know that χ(DD(−1)) = χ(D)χ(D) = |χ(D)|2. From the ring

notation of a difference set, we know that DD(−1) = n1G + λG. Combining this together we get that

|χ(D)|2 = χ(D)χ(D) = χ(D)χ(D)(−1) = χ(DD(−1)) = χ((k − λ)1G + λG) = χ((k − λ)1G) + χ(λG) =

(k − λ)χ(1G) + 0 = k − λ. Thus |χ(D)|2 = k − λ, therefore |χ(D)| =
√
k − λ.

Suppose that D is a subset of G such that |χ(D)| =
√
k − λ. Through orthogonality relations it can be

shown that D will in fact be a (v, k, λ) difference set.

1.8 Dealing with Nonabelian Groups

So far, all the above examples and proofs have relied on G being abelian. Moving forward, almost all the

groups we will work with will be nonabelian. When working with subgroups, we prefer to work only with

normal subgroups, so we do not have to worry about left and right cosets. The hyperplane construction still

works for nonabelian groups, but you have to be more careful picking coset representives. This is best shown

through an example.

Example 8. Consider the nonabelian group G = {< a, b > |a8 = 1, b2 = a2, ba = a5b}. Let H =< a4, ab >=

{1, a4, ab, a5b} ∼= Z2
2 which is a normal subgroup of G. The hyperplanes of H will be H1 =< a4 >,

H2 =< ab >, and H3 =< a5b >. The cosets of H in G are H = {1, a4, ab, a5b}, aH = {a, a5, a2b, a6b},

a2H = {a2, a6, a3b, a7b}, and a3H = {a3, a7, a4b, b}.
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Suppose I choose 1, a, a2, and a3 to be the coset representatives for the four unique cosets of H in G.

According to the hyperplane construction, I attach three out of the four coset representative to the three

hyperplanes. Let D = aH1 ∪ a2H2 ∪ a3H3. I will verify that D is a difference set using the group ring

notation by showing that DD(−1) = n1G + λG where n = k − λ. We know that DD(−1) = (aH1 + a2H2 +

a3H3)(H1a
7 +H2a

6 +H3a
5) = aH1H1a

7 + aH1H2a
6 + aH1H3a

5 + a2H2H1a
7 + a2H2H2a

6 + a2H2H3a
5 +

a3H3H1a
7 + a3H3H2a

6 + a3H3H3a
6 = 6 × 1G + 2G. Each multiplication needed for the distribution for

DD(−1) is organized in the table below.

Table 1: Distribution of terms in DD(−1)

term from D term from D(−1) multiplication of terms result

aH1 H1a
7 aH1H1a

7 2(1 + a4) = 2H1

aH1 H2a
6 aH1H2a

6 a3H

aH1 H3a
5 aH1H3a

5 a2H

a2H2 H1a
7 a2H2H1a

7 aH

a2H2 H2a
6 a2H2H2a

6 2(1 + ab) = 2H2

a2H2 H3a
5 a2H2H3a

5 a3H

a3H3 H1a
7 a3H3H1a

7 a2H

a3H3 H2a
6 a3H3H2a

6 aH

a3H3 H3a
5 a3H3H3a

5 2(1 + a5b) = 2H3

Table 1 shows that the cosets aH, a2H and a3H are all formed exactly twice. The non-identity terms

from H each appear twice and the the identity appears 6 times. Thus each nonidentity element of G appears

exactly twice, therefore D is a (16, 6, 2) difference set.

However, because G is nonabelian we cannot always arbitrarily choose the coset reps being attached to

the hyperplanes. Next is an example where we use the same group but choose coset representatives that do

not form a difference set.

Example 9. Let G = {< a, b > |a8 = 1, b2 = a2, ba = a5b}, and let H =< a4, ab >= {1, a4, ab, a5b} ∼= Z2
2.

Suppose we arbitrarily decide that instead of using a, a2, and a3 as coset reps, we use 1, a, and a2. Let

D = 1GH1 ∪ aH2 ∪ a2H3. Consider DD(−1) = (1GH1 + aH2 + a2H3)(H11G + H2a
7 + H3a

6). Note that

aH2H2a
7 = 2(1+a5b) and a2H3H3a

6 = 2(1+a5b) meaning the element a5b is produced 4 times. We can also

show that there exist no difference of elements in D such that the difference is the element ab. Therefore, D
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is not a difference set! This example shows that because G is nonabelian, we have to be more careful about

our selection of coset reps.

Lets consider why coset reps can be arbitrarily assigned when G is abelian, but cannot be done like this

for nonabelian groups. This explanation will rely on the fellowing lemma.

Lemma 1.7. Let Hi and Hj be distinct hyperplanes of the subgroup H ∼= (GF (q))n in G where q is a prime

or a power of a prime. Then:

HiHi = qn−1Hi

HiHj = qn−2H

Proof. Consider HiHi. Let h ∈ Hi. Because Hi is a subspace it is closed under multiplication, so hHi = Hi.

There are qn−1 elements in the hyperplane, therefore HiHi = qn−1Hi.

Consider HiHj where i 6= j. Let χ be non-principal character on H. At most one of the two hyperplanes

has the potential of having χ being principal on it. If χ was principal on Hi and Hj then χ would be

principal on H because both Hi and Hj are one dimension less than their surrounding space of H, so when

the hyperplanes are multiplied it creates H. This would contradict χ being non-principal. Without loss

of generality, suppose χ(Hj) is non-principle. By lemma 1.4, χ(Hj) = 0. Thus χ(HiHj) = χ(Hi)χ(Hj) =

χ(Hi)0 = 0. By lemma 1.5, because χ(HiHj) = 0 HiHj is a multiple of H. Specifically, HiHj = qn−2H.

This lemma can be used to show why coset reps can be chosen arbitrarily for abelian groups but not

for nonabelian groups. If G is abelian then giHiHig
−1
i = gig

−1
i HiHi = HiHi = qn−1Hi. So we know that

each hyperplane will be generated qn−1 times in the product DD(−1), thus we know that each nonidentity

element in H is created exactly qn−1 times.

But how do we know the rest of the elements of G will be generated exactly qn−1 times in DD(−1)?

Consider G/H which is the quotient group of H in G or simply the group of cosets of H in G. When

working with a (v, k, λ) difference set, the group G is partitioned into k cosets which are the elements in

G/H. We use coset representatives from k − 1 of these cosets. It can be shown that the set of coset

representatives form a (k, k− 1, k− 2) difference set. So essentially finding the sum
∑k−1
i=1

∑k−1
j=1 giHiHjg

−1
j

when i 6= j in DD(−1) is the same as finding all the differences of the k − 1 elements in the (k, k − 1, k − 2)

difference set. By lemma 1.7, we know HiHj = H so each coset will appear exactly k − 2 times. This will
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hold true for G being abelian or nonabelian.

However, if G is nonabelian then giHiHig
−1
i does not necessarily generate qn−1 copies of the same

hyperplane Hi. By lemma 1.7, we know giHiHig
−1
i will be a copy of some hyperplane but not necessarily

the same hyperplane. In Example 8, it so happened that we picked coset reps so that giHiHig
−1
i = 2Hi

for each i = 1, 2, 3. This happened because the gi and g−1i commuted with the elements in Hi. In the next

example we pick some coset representatives that do not commute with the elements of the hyperplane that

the coset rep is attached to and show we are still able to construct a difference set.

Example 10. Let G = {< a, b > |a8 = 1, b2 = a2, ba = a5b}, and let H =< a4, ab >= {1, a4, ab, a5b} ∼= Z2
2.

The hyperplanes of H will be H1 =< a4 >,H2 =< ab >, and H3 =< a5b >. Let D = a4H1 ∪a6bH2 ∪a4bH3.

Consider DD(−1) = (a4H1 + a6bH2 + a4bH3) × (H1a
4 + H2b + H3a

2b). The distribution table for DD(−1)

is below.

Table 2: Distribution of terms in DD(−1)

term from D term from D(−1) multiplication of terms result

a4H1 H1a
4 a4H1H1a

4 2(1 + a4) = 2H1

a4H1 H2b a4H1H2b a3H

a4H1 H3a
2b a4H1H3a

2b aH

a6bH2 H1a
4 a6bH2H1a

4 aH

a6bH2 H2b a6bH2H2b 2(1 + a5b) = 2H3

a6bH2 H3a
2b a6bH2H3a

2b a2H

a4bH3 H1a
4 a4bH3H1a

4 a3H

a4bH3 H2b a4bH3H2b a2H

a4bH3 H3a
2b a4bH3H3a

2b 2(1 + ab) = 2H2

In Table 2, we see that H3 and H2 are respectively generated twice by a6bH2H2b and a4bH3H3a
2b. Table 2

also shows that D creates all the nonidentity elements of G exactly twice, therefore D is a (16, 6, 2) difference

set.

In summary, when working with nonabelian groups, we can still use the hyperplane construction as long

as we use care when choosing the coset representatives that are attached to the hyperplanes. Specifically, we

must pick coset reps so that each hyperplane Hj is generated exactly once by some giHiHig
−1
i in the group

ring equation DD(−1) where j and i can be the same or different.
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2 McFarland Difference Sets

We will now consider McFarland difference sets.

Definition 2.1. A McFarland difference set is a difference set with the parameters

(qd+1( q
d+1−1
q−1 + 1), qd q

d+1−1
q−1 , qd q

d−1
q−1 ) where q = pf for p a prime and d a positive integer.

We will focus our attention on McFarland difference sets with the parameters q = 4 and d = 1, thus

forming (96, 20, 4) McFarland difference sets. Example 6 provided our first instance of McFarland difference

set with these parameters. Another example is given below.

Example 11. Let G =< x, y, z, w, u, v|x2 = y2 = z2 = w2 = u2 = v3 = 1, yx = xyw, zx = xzu,wx =

xw, xv = vx, xu = ux, vz = yv, vy = zvz, vu = wv, vw = uvu, zy = yz, yw = wy, uy = yu, zw = wz, zu =

uz,wu = uw >. More simply, G is a semidirect product of Z6 and Z4
2. Let H =< y, z, w, u >∼= Z4

2. Note

that H is a normal subgroup of G. The cosets of H in G are H,xv2H, vH, xH, xvH, and v2H.

We will need five hyperplanes to construct a (96,20,4) difference set. In order to determine the five

hyperplanes we should use the mapping θ from H into (GF (4))2 where θ(y) = (1, 0), θ(z) = (α, 0), θ(u) =

(0, 1), and θ(zw) = (0, α). Note that you could have chosen any four generators of H at this step not just

< y, z, u, zw >. From this embedding we find that the five hyperplanes of (GF (4))2, which are < (1, 0) >,

< (0, 1) >,< (1, 1) >,< (1, α) >, and < (1, α2) >, are mapped to H1 =< y, z >,H2 =< u, zw >,

H3 =< w, yu >,H4 =< wu, yzw >, and H5 =< yw, zu > respectively. Suppose D = xv2wH1 ∪ vzH3 ∪

xzH2∪xvzH5∪v2yH4. It can be shown that DD(−1) = 161G+ 4G, therefore G is a (96,20,4) difference set.

There are 231 groups of order 96. Of these 231 groups, 94 of these groups have a (96, 20, 4) McFarland

difference set. AbuGhneim showed that three groups of order 96 could be partitioned into four (96, 20, 4)

McFarland difference sets and a subgroup isomorphic to Z4
2 with the property that D

(−1)
1 = D1, D

(−1)
2 =

D2, D
(−1)
3 = D4, and D

(−1)
4 = D3. This last property must hold true in order to fulfill the third property of

association schemes [3]. My goal is to show that groups of other orders that fit the McFarland constraints

can also be partitioned into association schemes. In order to accomplish this goal, I first must thoroughly

study the order 96 case.

2.1 Order 96 Case

There are three groups of order 96 that can be partitioned into four (96, 20, 4) McFarland difference sets and

a subgroup isomorphic to Z4
2 with the property that D

(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3.
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The three groups will be referred to as groups [96,70], [96,196], and [96,227] because these are the names

given to them by a programming language called GAP (more information on GAP can be found in Chapter 4

and in the appendix). For each group we will outline how to partition the group in order to create a structure

isomorphic to an association scheme. First, we will start by defining each group and their relations.

Index 70

Group [96,70] was introduced in example 11. It is defined as G =< x, y, z, w, u, v|x2 = y2 = z2 = w2 =

u2 = v3 = 1, yx = xyw, zx = xzu,wx = xw, xv = vx, xu = ux, vz = yv, vy = zvz, vu = wv, vw = uvu, zy =

yz, yw = wy, uy = yu, zw = wz, zu = uz,wu = uw > or more simply G is a semidirect product of Z6 and

Z6
2. The center of G is the identity element.

Index 196

Group [96,196] is defined as < x, y, z, w, u, v|x2 = y3 = z2 = w2 = u2 = v2 = 1, wx = xwz, zx = xz, yx =

xy2, xv = ux, xu = vx,wz = zw,wy = yw,wu = uw, vw = wv, zy = yz, zu = uz, zv = vz, uy = yv, vy =

yuv, vu = uv > or more simply the group is a semidirect product of D3 and Z4
2. The center of G is < z >.

Index 227

Group [96,227] is defined as < x, y, z, w, u, v|x2 = y3 = z2 = w2 = u2 = v2 = 1, yx = xy2, zx = xw,wx =

xz, xv = ux, xu = vx, yw = zy, yzw = wy, yuv = uy, vy = yu, zw = wz, zu = uz, zv = vz, uw = wu, vw =

wv, vu = uv > or more simply the group is a semidirect product of D3 and Z4
2. The center of G is the

identity.

2.1.1 Picking the Hyperplanes

The first thing to consider is what hyperplanes we should use to construct a difference set. When working

with order 96 groups and a subgroup H isomorphic to Z4
2 then there will be 35 hyperplanes. We only need

five hyperplanes to form a (96, 20, 4) difference set. If we create a mapping from H ∼= Z4
2 to (GF (4))2 then

we will have five hyperplanes. For each group there are two sets of hyperplanes that are used to construct

difference sets for the partitioning of the groups. Note other hyperplanes can be used to make difference

sets for the group, but only these hyperplanes can be used to partition the group into 4 difference sets and

a subgroup with the property that D
(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3.

Index 70

For group [96,70] there are two sets of hyperplanes we will use to construct difference sets.

1. < y, z >,< w, yu >,< u, zw >,< yw, zu >, and < wu, yzw >
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2. < y,w >,< z, u >,< yz,wu >,< yu, yzw >, and < zw, yzu >

When looking at a group of four difference sets they always use the same hyperplanes. 192 quadruples

use each set of hyperplanes for a total of 384 unique quadruples of difference sets where the above properties

hold.

Index 195

In this group there are two different ways of constructing quadruple sets of difference sets. The first case

is like above where you use the same hyperplanes for each of the four, and the second uses one set for D1

and D2 and a different set for D3 and D4. The hyperplanes used are:

1. < z,w >,< u, v >,< zu, zwv >,< zv, wu >, and < wv, zwu >

2. < z,w >,< u, v >,< zu,wv >,< zv, zwu >, and < wu, zwv >

3. Use 1. for D1 and D2 and then use 2. for D3 and D4

4. Use 2. for D1 and D2 and then use 1. for D3 and D4

Similar to the index 70 case, 192 quadruples use each set of hyperplanes for a total of 768 unique

quadruples of difference sets meaning there are 768 ways to partition the group [96, 195] into four difference

sets and a subgroup isomorphic to Z4
2.

Index 227

There are three sets of hyperplanes that can be used.

1. < z,w >,< u, v >,< zu,wv >,< zv, zwu >, and < wu, zwv >

2. < z,w >,< u,wv >,< v, zu >,< zv, wu >, and < uv, zwu >

3. < z,wv >,< w, zu >,< u, v >,< zw, zuv >, and < zv,wu >

Similar to both the index 70 and 195 case, 192 quadruples use each set of hyperplanes for a total of 576

unique quadurples of difference sets meaning there are 576 ways to partition the group [96, 227] into four

difference sets and a subgroup isomorphic to Z4
2.

Now that we know what hyperplanes we can use for the difference sets, we must also consider the coset

representatives being used. Because all three of these groups are nonabelian we cannot just randomly attach

coset representatives.
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2.1.2 Picking the Coset Representatives

Our goal in this section is to find patterns occurring with the coset representatives for the four difference

sets in a quadruple. Lets start with an example of four (96,20,4) difference sets from the group [96,70] that

partition the group into four difference sets and H.

Example 12. Let G = [96, 70], and H =< y, z, w, u > where H is isomorphic to Z4
2. The following Di are

all difference sets, that satisfy D
(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3.

D1 = xv2w < y, z > +vz < w, yu > +xz < u, zw > +xvz < yw, zu > +v2y < wu, yzw >

D2 = xv2 < y, z > +v < w, yu > +x < u, zw > +xv < yw, zu > +v2 < wu, yzw >

D3 = xv2wu < y, z > +vyz < w, yu > +xyz < u, zw > +xvyz < yw, zu > +v2w < wu, yzw >

D4 = xv2u < y, z > +vy < w, yu > +xy < u, zw > +xvy < yw, zu > +v2z < wu, yzw >

H =< y, z, w, u >

There are several observations that can be made in this example that remain true for all quadruple sets

of difference sets for the three Mcfarland groups of order 96 we are examining:

1. The elements that are not in any of the difference sets will always form H which is isomorphic to Z4
2.

In order for this to be true the coset representative attached to each hyperplane for each difference

set cannot be from the coset H because then some elements of H would be present in the difference

sets, thus preventing all of the elements of H to be left to form the subgroup. Therefore, the coset

representatives must comes from the cosets xv2H, vH, xH, xvH, and v2H.

2. Observation 1 leads me to view each coset rep in two parts:

(a) The pre-coset rep attached to a hyperplane is either x, v, xv, v2, or xv2 and each difference set

will have exactly one of each appear as a post-coset. From observation one, we know the coset

reps must come from xv2H, vH, xH, xvH, and v2H so each coset rep must have x, v, xv, v2, or

xv2 in order to be a coset representative for one of these cosets. Looking at Example 12, we can

see this property holds.

(b) the post-coset rep is the rest of the coset rep that comes from H. If you look at the same

hyperplane in all four difference sets you will notice that the post-coset reps either forms a 2-
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dimensional subgroup of H or are three out of four generators for H which are x, y, z and w.

For instance in example 12, the first hyperplane listed in the four difference sets is < y, z > and

respectively xv2w, xv2, xv2wu, and xv2u are the coset representatives attached. Note that all the

coset representatives are from the coset xv2H and the post-cosets are w, 1, wu, and u respectively.

These post-cosets form the 2-d space < w, u >.

2.1.3 Unique Properties

We now must consider what makes these three groups unique from the other 228 groups of order 96. The

better we can understand what properties are contributing to the success of this partition, the more likely

we can take this idea and generalize it further to groups of other orders.

First, all three groups are nonabelian. Suppose an order 96 abelian group G can be partitioned in the

way we hope. Let D = S1∪vS2∪v2S3 where each Si is a set such that Si ⊆< x, y, z, w, u > and v is an order

three element. We know D(−1) = S−11 ∪ S−12 w−1 ∪ S−13 w−2. If G is abelian then D(−1) = S1 ∪ w2S2 ∪ wS3.

In order for D = D(−1), we know S2 = S3. This means each of these sets can have at most four elements

which is impossible. Therefore, we cannot have the partition we are looking for if G is abelian.

All three groups also have similar relations. First, all the groups have four generators of order two such

that the subgroup H generated by those four generators is isomorphic to Z4
2. These groups also have two

other generators (one of order 2 x and one of order 3 v) that do not commute with the other elements. In

all the groups, we choose H to be the subgroup that the hyperplanes will live. Thus, the cosets of H in G

become H, xH,vH, xvH, v2H, and xv2H. As discussed in the previous section, a coset rep will never be

chosen from H, so our coset reps must be x, v, xv, v2, and xv2 multiplied by some element in H. As shown

in Examples 9 and 10, we cannot arbitrarily pick and attach coset reps to hyperplanes because the groups

we are working with are nonabelian. We must check if D is a difference set by calculating DD(−1) and

checking that DD(−1) = n1G + λG where n = k − λ. When working with nonabelian groups, we run into

problems when calculating giHiHig
−1
i because, unlike abelian groups, giHiHig

−1
i does not necessarily equal

Hi. Thus, it is possible that some hyperplanes will not be produced in the product DD(−1) meaning that

there exists some element that is not the result of any difference of two elements in D meaning D cannot be

a difference set. My goal is to determine for each hyperplane Hi, what hyperplane is produced by giHiHig
−1
i

for each coset where gi is the coset rep. For instance, I know < y, z > is a hyperplane of H =< y,w, z, u >

from the group G = [96, 70]. I want to calculate x < y, z >< y, z > x, xv < y, z >< y, z > xv2, v < y, z ><

y, z > v2, v2 < y, z >< y, z > v, and xv2 < y, z >< y, z > xv and see what hyperplanes are produced.
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Note that I just need to pick one coset rep for each coset because giHiHig
−1
i = gjHiHig

−1
j where gi 6= gj ,

but gi and gj are from the same coset. The reason I want to do this calculation is so that I know what

hyperplanes must appear together in a difference set. For instance, x < y, z >< y, z > x =< zu, yw >.

So if I use < y, z > as a hyperplane and I attach a coset rep from xH to < y, z > then I must also use

< zu, yw > as a hyperplane, so that DD(−1) = n1G + λG. There are 35 hyperplanes and five coset reps for

each hyperplane, so there are a total of 175 combinations of hyperplanes and coset reps. Example 13 shows

the 175 combinations of hyperplanes and coset reps for G = [96, 70]. Also in Example 13, we will begin to

observe that “self contained” sets of hyperplanes.

Definition 2.2. Let G be a group and H a subgroup of G. Let S be a set of hyperplanes. The set S is called

self contained if for each Hi in the set, gHiHig
−1 is also in the set where g is a coset rep from each coset

of H in G.

Example 13 will show all the self contained sets of hyperplanes for the group [96, 70].

Example 13. Let G be the group [96, 70], and H =< y, z, w, u > be a subgroup of G such that H ∼= Z4
2. The

hyperplanes of H are all the subgroups of H isomorphic to Z2
2. Thus, there are 35 hyperplanes that can be

used to construct a difference set. I label the hyperplanes as follows:

H1 =< y, z > H2 =< z, u > H3 =< z,w > H4 =< z, yu > H5 =< z, yw >

H6 =< z,wu > H7 =< z, ywu > H8 =< y, u > H9 =< y,w > H10 =< y, zu >

H11 =< y, zw > H12 =< y,wu > H13 =< y, zwu > H14 =< u,w > H15 =< u, yz >

H16 =< u, zw > H17 =< u, yw > H18 =< u, yzw > H19 =< w, yz > H20 =< w, zu >

H21 =< w, yu > H22 =< w, yzu > H23 =< yz, zu > H24 =< yz, zw > H25 =< yz, zwu >

H26 =< yz, zwu > H27 =< zu, zw > H28 =< zu, yw > H29 =< zu, zyw > H30 =< zw, yu >

H31 =< zw, yzu > H32 =< yu, yw > H33 =< yu, yzw > H34 =< yw, zyu > H35 =< wu, yzw >

Using a computer program, I first find all the hyperplanes which are labeled H1 through H35. The pro-

gram then takes each hyperplane and calculates xHiHix
−1, vHiHiv

−1, xvHiHixv
−1, v2HiHi(v

2)−1, and

xv2HiHi(xv
2)−1. By lemma 1.7, each of these calculations will form one of the 35 hyperplanes. Note that

each coset representative comes from a unique coset and that we are not attaching a coset representative from

the coset H, because as discussed earlier, we will never attach a coset representative from H to a hyperplane.

Table 3, organizes this information by labeling the vertical columns by the hyperplanes, and the rows by the

coset rep you are attaching to the hyperplane. For instance, the hyperplane stored in the cell under the
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column H2 and row v represents the hyperplane generated by vH2H2v
2.

Table 3: Finding giHiHig
−1
i for each hyperplane

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 ... H35

x H28 H2 H20 H29 H10 H27 H23 H17 H9 H5 H34 H32 H24 ... H35

v H1 H25 H12 H11 H13 H8 H10 H19 H25 H24 H26 H15 H23 ... H16

xv H28 H25 H32 H34 H24 H17 H5 H22 H25 H13 H30 H18 H7 ... H16

v2 H1 H9 H15 H26 H23 H19 H24 H6 H2 H7 H4 H3 H5 ... H21

xv2 H28 H9 H18 H30 H7 H22 H13 H27 H2 H23 H29 H20 H10 ... H21

Table 3 holds some interesting properties. First, note if a hyperplane Hi generates Hj then Hj will also

generate Hi. From the table, we can find nine “self contained” sets of hyperplanes which are listed below:

• H1, H28

• H2, H25, H9

• H3, H20, H15, H18, H12, H32

• H4, H29, H26, H30, H11, H34

• H5, H7, H10, H24, H13, H23

• H6, H27, H19, H22, H8, H17

• H14

• H16, H35, H21

• H31, H33

For the self contained sets of 6 hyperplanes we know we cannot pick any of these hyperplanes to be in a

difference set because then DD(−1) cannot have one of each hyperplane.

Therefore, we can only use self contained sets of 1,2 or 3. The two sets of hyperplanes we use for our

construction are H1, H28, H16, H35, H21 and H2, H25, H9, H31, H33. In each case it is a combination of a two

element self contained set and a three element self contained set.
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If you repeat this algorithm on both [96,195] and [96,227] then you will find that the hyperplanes we

use in our construction all contain a three element self contained set. Note that if we were working with

an abelian group everything would be one element self contained sets and we could pick 5 one element self

contained sets to construct a difference set. If we did this though, we would not be able to have the property

that D
(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3. So even though you can use any combination

of one,two, or three element self contained sets to create a difference set, we hypothesize that we must have

a three element self contained set for the property D
(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3

to hold.

We next look through all groups of order 96 with a normal subgroup isomorphic to Z4
2 to see if they

have three element self contained sets of hyperplanes. We found that six other order 96 groups have these

sets of hyperplanes (specifically Gap groups [96,194], [96,196], [96,197], [96,226], [96,228], and [96,229]);

however, in these six groups the hyperplanes in the three element self contained sets overlap in more than

just the origin so they cannot be used together to form a difference set. Therefore, only index 70,195,

and 227 have self contained sets of three elements that can be used in the hyperplane construction. This

leads us to hypothesize that these three element self contained sets are what are allowing for the property

D
(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D4, and D

(−1)
4 = D3 to hold. Moving forward, we want to generalize this

property.

2.2 Groups of order larger than 96

The first thing to consider is if only nonabelian groups are able to be partitioned into some set of McFarland

difference sets and a subgroup such that this partition can be mapped to an association scheme. Consider

the example below.

Example 14. Let G = Z5
2×Z3

5. Let the hyperplanes come from Z5
3 meaning there are 125−1

5−1 = 31 hyperplanes

defined as H1 through H31. Let the coset reps come from Z5
2 and define them as g0, ..., g31 where g0 is the

identity. Define D0 = ∪31i=1giHi. We can show that D0 is a (4000, 775, 150) reversible McFarland difference

set meaning the inverse of D0 is itself. For each Hi, let xi ∈ Z3
5\Hi and define Dj = ∪3i=11gix

j
iHi for

1 ≤ j ≤ 4. Note that ∪4j=0Dj ∪ {(0, x)|x ∈ Z3
5} = G. Therefore G can be partitioned and this partitioning

can be mapped to an association scheme.

Example 14 shows an abelian group that can be partitioned in such a way that D1 = D
(−1)
1 , D

(−1)
2 =

D2, D
(−1)
3 = D4, and D

(−1)
4 = D3; however, this is believed to be a sporadic example meaning it is the only
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example of this kind. This example relies on the number of hyperplanes being one less than a power of two.

There are no other known McFarland groups that hold this property.

Therefore, moving forward we focused on nonabelian groups. We also wanted to look for groups that

can have groups of hyperplanes that work like the three element self contained sets in order 96. This led us

to explore groups of order 640. Because 640 = 27 × 5, we will be looking for groups of order 640 that have

a normal subgroup H that is isomorphic to Z6
2 and groups that have five element self contained sets that

operate similar to three element self contained sets. The hyperplanes of H are all the normal subgroups of

H isomorphic to Z3
2. There will be 1395 hyperplanes of H, but only 9 will be used in a difference set. The

algorithm used in Example 13, can also be used for this group to show that there exist groups of order 640 that

contain five element self contained sets of hyperplanes. Now that we know there exist groups of order 640 that

contain five element self contained sets of hyperplanes, we must consider how to arrange the hyperplanes and

coset reps so that we can partition the group into eight (640, 72, 8) difference sets and a subgroup isomorphic

to Z6
2 so that D

(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 = D3, D

(−1)
4 = D4, D

(−1)
5 = D6, D

(−1)
7 = D8, and D

(−1)
8 = D7.

We do this by first finding a difference set D in a group with a five element self contained cycle such that

D = D(−1). The algorithm used to find such a partition is computationally intensive, thus a computer

program must be used in order to complete the process.

3 GAP

As we work with larger groups, it becomes harder to find difference sets by hand. This leads us to auto-

mate this process. We do this by generating programs in a computational discrete algebra programming

language called GAP, which is short for Groups Algorithm Programming. We use GAP because the GAP

library already contains implementations of many algebraic algorithms as well as an extensive data library

of algebraic objects, including all the groups of order less than 2000.

Specifically, we will be using GAP to find groups with a difference set D such that D(−1) = D. I will

outline the logic used to write this code using pseudocode. Specifics for how to use and write code in GAP

are provided in the appendix.

Example 15. In this example, we will provide pseudocode to find a difference set in group [96, 70] such that

D = D(−1).

G := the group [96,70];

For each normal subgroup in G
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if the normal subgroup is isomorphic to Z_2^4 then

H := normal subgroup

break out of loop

If H has a value then (the next statements execute if G has a normal subgroup isomorphic to Z_2^4)

find some generators for H call them [x,y,z,w]

g := an element of order 3 from G

cosetreps := coset reps from each coset of H in G

hyperplanes := find all the hyperplanes of H (should be 35 of these)

for each hyperplane in hyperplanes

set1 := hyperplane;

set2 := g*hyperplane*g^(-1);

set3 := g2*hyperplane*g2^(-1);

sets := [set1,set2,set3];

if the three sets are disjoint everywhere except the identity element then

use elements in sets to create embedding from H to GF(4)^2

if the embedding works then

the five hyperplanes are picked and now look at all permutations

of hyperplanes and coset reps --> apply the hyperplane construction

for each construction check if D=D^(-1)

if D=D^(-1) then check if D is a difference set

if you make it here you found a difference set so that D=D^(-1)

Example 15 gives the general logic that needs to happen in order to iterate through all possible difference

sets in G and find a difference set such that D = D(−1). Through our work, we believe that McFarland

groups that have difference sets such that D = D(−1) can be partitioned in a way that there will be four

difference sets and a subgroup of Z4
2. This code can be easily modified for working with groups of order 640,

the next size group we are working with. Instead, we will look for normal subgroups isomorphic to Z6
2, g

will be an element of order 5, there will be 5 sets being made for each hyperplane, and H will be embedded
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into (GF (8))2.

4 Appendix

Creating programs in GAP played a fundamental part in my research. In this appendix, I dive into the

specifics of the syntax and functionality of GAP that I used in my work.

In Gap, the most common data structure used is a list. A list stores a collection of objects in a particular

order where each item can be located in the list by an index value. The structure for a list is:

lists := [item1,item2,...,itemn];

Note that the indexing of a list begins at 1 and to add another item to a list you simply write:

add(lists,newItem);

For-loops are control statements that allow for a designated chunk of code to execute repeatedly. The idea

is that the loop will stop when some control statement is met. For instance, you could say for each item in

a list do this chunk of code and when the code has been run for each item in the list then the execution of

the for loop is complete and the program moves to the next line of code past the for loop. The structure for

a for loop is:

for i in list do

# repeated code

od;

Note that beginning a line with # indicates a comment.

Another important element of a programming language is conditional statements specifically an if-

statement where some conditional is given and the code associated with the if statement only excecutes

if the conditional is true. The syntax of the if-statement is:

if conditional then

#conditional code

fi;

Data structures such as lists and logical flow operations such as an if-statement or a for-loop are common

in all programming languages, but what makes GAP unique is its built in functionality. For instance GAP

has numerous methods dealing with groups such as: NormalSubgroups(Group), StructureDescription(G),

Size(G), Elements(G), GroupsWithGenerators(lists), etc . More details about these methods and others are

in the GAP documentation.
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The most useful tool of GAP is the rds library where rds means relative difference sets. This package

was created in 2008 by Leonard Soicher. He created this package in order to help complete searches for

relative difference sets in non-abelian groups. The package still contains abelian groups, but some of the

functionality of the package is reserved for nonabelian groups. A full manual of the functionality of the

rds package can be found online, but we mainly used rds because the package contains the definition and

structure of all the groups of order 2000 and less. Thus, when we are looking for difference sets in a specific

order, we can iterate through all the groups of the order and run some search on each group. Through an

exhaustive search we can find all the groups of a specific order that have the property we are looking for. In

order to use this package, the program must start with:

LoadPackage("rds");

For each group of order up to 2000, the rds library has a list of all the groups with that order. To access

one group of a specific size you would right SmallGroup(i,j) where i is the order of the group and j is the

index of the specific group in the list.

Now that we have some background of the syntax and functionality of GAP, I will give the GAP code

used when working with groups of order 96. Much of this code was initially presented as pseudocode in the

GAP section.

One way to use the above ideas is to take a group and determine if this group has some specific subgroup.

Below is an example of iterating through all the groups of order 96 and printing out the group indices that

have a normal subgroup isomorphic to Z4
2.

Example 16. Example of finding groups with a specific subgroup.

LoadPackage("rds"); #allows us to use built in groups

ListOfIndices := [];

for i in [1..231] do #there are 231 groups of order 96

G := SmallGroup(96,i); #G stores the ith group of order 96

NS := NormalSubgroups(G); #NS stores the normal subgroups of G

for sub in NS do # iterate through all elements in NS

if (Size(sub) = 16) then #entered if sub has 16 elements

if (StructureDescription(sub) = "C2 x C2 x C2 x C2") then

Add(ListsOfIndices,i);

break;

fi;

fi;

od;

od;

When this code is executed, the list called ListsOfIndices will store the Gap indices for all the groups

that have a normal subgroup isomorphic to Z4
2. ListsOfIndices = [ 70, 159, 160, 162, 167, 194, 195, 196,
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197, 197, 218, 219, 220, 221, 221, 226, 227, 228, 228, 228, 228, 228, 228, 228, 229, 230, 231, 231, 231,

231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231, 231,

231, 231, 231, 231, 231, 231, 231 ]

For each group G that has a normal subgroup H which is isomorphic to Z4
2, we can also find an embedding

for the subgroupH by picking four nonidentity elements in H such that they are all order 2 elements (meaning

e2 = 1, 21 6= 1), and that there exist no linear combination of a subset of 2 or 3 of the elements that forms

one of the four elements. An example of how this would be coded in GAP is provided below.

Example 17. In this example, we are taking a subgroup H of the group G where H is isomorphic to Z4
2 and

finding a set of generators for the subgroup H.

x := 0;

y := 0;

z := 0;

w := 0;

Els := Elements(H);

spaceFound := false;

for i in Elements(H) do

if Order(i)=2 and spaceFound=false then

for j in Elements(H) do

if Order(j)=2 and (not j=i) and (spaceFound=false) then

for k in Elements(H) do

if ( (not k=j) and (not k=i) and (not k=i*j)) and (spaceFound=false) then

for l in Elements(H) do

if (not l=k) and (not l=j) and (not l=i) and

(spaceFound=false) and (not l=k*j) and

(not l=k*i) and (not l=i*j) and (not l=i*j*k) then

if (GroupWithGenerators([i,j,k,l]) = H) then

x := i;

y := j;

z := k;

w := l;

fi;

fi;

od;

fi;

od;

fi;

od;

fi;

od;

Once we have a subgroup and a generator for the subgroup, we can now form hyperplanes of the subgroup.

Remember when dealing with order 96 McFarland difference sets, we embed the subgroup into GF (4)2.

Thus the hyperplanes of H have dimension one over GF (4). Note that there are 15 nonidentity elements

in GF (4)2 and each hyperplane will have 3 nonzero elements so there are 15
3 = 5 hyperplanes since you
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can pick any of the three elements of the fifteen to form a hyperplane. The hyperplanes of GF (4)2 are

< (0, 1) >,< (1, 0) >,< (1, 1) >,< (1, α) >, and < (1, α + 1) >. I am going to use the mapping θ from

H into (GF (4))2 where θ(y) = (1, 0), θ(z) = (α, 0), θ(u) = (0, 1), and θ(zw) = (0, α). Note that you could

have chosen any embedding at this step not just < y, z, u, zw >. From this embedding we find that the

five hyperplanes of (GF (4))2 < (1, 0) >,< (0, 1) >,< (1, 1) >,< (1, α) >, and < (1, α2) > are mapped to

H1 =< y, z >,H2 =< u, zw >,H3 =< w, yu >,H4 =< wu, yzw >, and H5 =< yw, zu > respectively.

In this example, I first manually enter the hyperplanes with the mapping θ applied, but I could automate

this process by iterating through the elements of H and finding appropriate mappings from H to GF (4)

and then applying the mapping to the 5 hyperplanes < (0, 1) >,< (1, 0) >,< (1, 1) >,< (1, α) >, and

< (1, α+ 1) >.

Example 18. This example builds off example 17 where we pick the four generators-x, y, z, and w-for the
subgroup H in G. In this example we first manually enter the hyperplanes with a mapping from H to GF (4)2.

H := GroupByGenerators([y,z,w,u]);

e := Elements(H)[1];

cosets := CosetDecomposition(G, H);

H1 := Elements(GroupByGenerators([y,z]));

H2 := Elements(GroupByGenerators([w,y*u]));

H3 := Elements(GroupByGenerators([u,z*w]));

H4 := Elements(GroupByGenerators([y*w,z*u]));

H5 := Elements(GroupByGenerators([w*u,y*z*w]));

Planes := [H1,H2,H3,H4,H5];

cosetReps := [cosets[1][1], cosets[2][1], cosets[3][1], cosets[4][1], cosets[5][1]];

After example 18, we have five hyperplanes, and the coset reps. Now we want to apply the hyperplane

construction to form (96,20,4) difference sets. Because G is nonabelian, not every combination of cosets

and hyperplanes will form a difference set. When programming, it is best to try all the permutations of

hyerplanes and coset reps and then just check to see if a difference set is formed. The code to do this is

provided in example 19.

Example 19. This example relies on the above examples in this section. The code finds a difference set in
the group [96, 70].

differenceSets := []; #will store the valid difference sets in G

count := 0; #count permutations

diffset := []; #stores a potential difference set

ds := []; #stores potential ds without the identity element

complete := false; #true when permutations are complete

maxPerms := 719; #maximum permutations considered.
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while (complete = false) do

#apply the hyperplane construction

#diffset will store 20 elements that could be a ds

for planeNumber in [1..Length(Planes)] do

for elementInPlane in Planes[planeNumber] do

Add(diffset, cosetReps[p[planeNumber]]*elementInPlane);

od;

od;

#iterates through potential ds and removes the identity element

#we must remove this element in order to use the IsDiffSet method on the set

for diffElement in [2..Length(diffset)] do

x := diffset[diffElement]*(diffset[1]^(-1));

if not( x = Elements(G)[1]) then

Add(ds,x);

fi;

od;

#check to see that the identity element is removed

if Length(ds) = 19 then

#use GAP function that checks if ds is a difference set

if IsDiffset(ds,G,4) then

# if ds is a difference then add ds to the total collection of difference sets

Add(differenceSets, ds);

fi;

fi;

#increase permutation count up by one

count := count + 1;

# if you have done max permutations then the loop is complete

if count > maxPerms then

complete := true;

break;

fi;

#if not complete, we compute the next permutation of the order of the hyperplanes.

if complete=false then

a:= 7;

b:= a-2;

while p[b]>p[b+1] do

b:=b-1;

od;

c:= a-1;

while p[b]>p[c] do

c:=c-1;

od;

temp:= p[b];
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p[b]:=p[c];

p[c]:=temp;

d:= a-1;

e:= b+1;

while d>e do

temp:= p[d];

p[d]:=p[e];

p[e]:=temp;

d:=d-1;

e:=e+1;

od;

fi;

od;

One property we are looking for specifically in our difference sets is if D = D(−1). Now that we have a

set of the differences sets of G with the specific hyperplanes given, we can check if any of the difference sets

have the property that D = D(−1). If a difference set does have this property, we can continue to explore if

these hyperplanes allow for a partition of a group that can be viewed as an association scheme. This code

can then be modified for groups of other orders that fit the Mcfarland constrains such as order 640 which is

the current ordered group we exploring.

5 Conclusion

The goal of our work was to explore if McFarland groups could be partitioned into some number of McFarland

difference sets and a subgroup such that this partition can map over to an association scheme. We began our

search with the order 96 case. We found three groups of order 96 that can be partitioned into four difference

sets and a subgroup isomorphic to Z4
2 with the additional property that D

(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 =

D4, and D
(−1)
4 = D3. This partition with this final property can be mapped into an association scheme. We

then tried to find patterns in these three groups of order 96 that could be generalized to other groups. We

began to see the importance of three element self contained sets of hyperplanes.

Moving forward, we focused our attention on nonabelian groups. Though there does exist an abelian

group that can be partitioned in the way we want, this seems to be a sporadic example. Specifically, we

focus our attention on groups of order 640. With these groups, we hope to partition the group into eight

(640, 72, 8) difference sets and a subgroup isomorphic to Z6
2 so that D

(−1)
1 = D1, D

(−1)
2 = D2, D

(−1)
3 =

D3, D
(−1)
4 = D4, D

(−1)
5 = D6, D

(−1)
7 = D8, and D

(−1)
8 = D7. Because 640 has a prime factor of 5 rather

than 3, we will be looking for five element self contained sets of hyperplanes rather than three element sets.
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We have already shown the existence of such groups. We also know of groups of order 640 that have a

difference set such that D = D(−1). We are still working on finding the exact partition that corresponds to

an association scheme.

Moving forward, we hope to generalize these results beyond just order 96 and order 640 groups and prove

why these self contained cycles are so important to our construction.
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