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Abstract. The work consists of three parts. The �rst is a study of Cameron-
Liebler line classes which receive much attention recently. We studied a new
construction of in�nite family of Cameron-Liebler line classes presented in the
paper by Tao Feng, Koji Momihara, and Qing Xiang (�rst introduced in 2014),
and summarized our attempts to generalize this construction to discover any
new Cameron-Liebler line classes or partial di�erence sets (PDSs) resulting
from the Cameron-Liebler line classes. The second is our approach to �nding
PDS in non-elementary abelian groups. Our attempt eventually led to the
same general construction of PDS presented in John Polhill's PhD Thesis. The
third presents a proof that any PDS in Z3

p for p ≡ 3 mod 4 must be trivial,

and any PDS in Z3
p for p ≡ 1 mod 4 must be a Paley-type PDS. We also

show that �nding all PDSs in Z3
p for p ≡ 1 mod 4 reduces to a computational

problem of solving a linear equation under some integer constraints. Up to the
writing and best of the author's knowledge, the result of the third part is new
to the Mathematics community.
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1. Cameron-Liebler Line Classes

1.1. Background. In this paper, Zp represents a group {0, 1, . . . , p − 1} under
addition (same as Z/pZ in some other papers), and Fq represents a �nite �eld of q
elements with q being a prime power. A �eld or a vector space over a �eld with a
star (∗) indicates a �eld or a vector space over a �eld without the additive identity.
For example, F ∗q = Fq\{0}.

1.1.1. Motivation. Cameron-Liebler line classes are objects in Projective Geometry
that relate to some objects in Combinatorics. Examples of those objects are Partial
Di�erence Sets (PDS) in coding theory, and Cayley Graphs in graph theory.

Coding theory is a study of codes that are used to transmit information in
telecommunication with an error-correcting capability. Examples of applications
are obvious, such as sending pictures from Mars and 3G internet data. Cameron-
Liebler line classes always have a corresponding PDS, and these PDS can be used
to generate two-weight projective codes.

Graph theory is a study of an abstract discrete incidence structure of vertices
and edges. This abstract structure can represent many real-world structure. For
example, in logistics, a vertex can represent a place, and an edge represents a
transportation between places, or in computer network, a vertex can represent
a machine (computer or server), and an edge represents a communication of data.
Cayley graphs are graphs with particular symmetric structure that can be obtained
from Cameron-Liebler line classes.

1.1.2. Partial Di�erence Sets (PDS).

De�nition 1. A partial di�erence set (PDS) is a subset D of a group G such
that the multiset {d1d−12 : d1, d2 ∈ D} contains each nonidentity element in D λ
times and each nonidentity element in G\D µ times. The parameters of the PDS
is (v, k, λ, µ), with |G| = v and |D| = k.

It is conventional to assume that λ 6= µ for D to be a PDS. If λ = µ, then D is
called di�erence set, another object of extensive study on its own.

Example 2. D = {(2, 1), (0, 2), (1, 2), (0, 1)} ⊂ Z3 × Z3 is a PDS. By trying all 12
pairs of d1d

−1
2 in lexicographic order, we have

{d1d−12 : d1, d2 ∈ D} = {(2, 2), (1, 2), (2, 0), (1, 1), (2, 0), (0, 1), (2, 1), (1, 0), (1, 1), (1, 0), (0, 2), (2, 2)}

which contains each element in D exactly once each, and each nonidentity element
in Z3 × Z3\D exactly twice each. Therefore, D is (9, 4, 1, 2) PDS.

Note that adding or removing the identity element from PDS D does not change
whether D is a PDS. By convention, we assume that D does not contain the identity
element.

De�nition 3. A character χ on an abelian group G is a homomorphism from G
to a group of complex numbers C under multiplication. χ is called principal if it is
a trivial homomorphism; that is χ(g) = 1 for all g ∈ G.

Example 4. For G = Z3 × Z3, we may take χ(1, 0) to be 1, e2πi/3, or e4πi/3,
but nothing else, since 1 = χ(0, 0) = (χ(1, 0))3. Similarly for χ(0, 1). Once we
determine χ(0, 1) and χ(1, 0), then we completely determine χ.
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For a �nite subset A ⊂ G, we de�ne χ(A) :=
∑
a∈A χ(a) a character sum of A.

We say χ is principal on A if χ(a) = 1 for all a ∈ A.

Example 5. Let G be an abelian group, and H be a �nite subgroup of G. Then,
χ(H) = 0 if χ is not principal on H, and χ(H) = |H| otherwise.

Proof. Let n be an exponent of the group G (the exponent n of G is the least non-
negative integer m such that am = 1 for all a ∈ G). Because χ is a homomorphism,
χ(g) must be an nth root of unity for all g ∈ G. Because H is a group and χ is
a homomorphism from H to C, (χ(h))h∈H takes the same number of values e2πi/n

for each i = 0, 1, 2, ..., n− 1, and so χ(H) = 0. �

Theorem 6. [1, Theorem 1.6] A subset D of abelian group G is a (v, k, λ, µ) PDS
if and only if, for all nonprincipal character χ,

χ(D) =
λ− µ±

√
(λ− µ)2 + 4(k − µ)

2

1.1.3. Projective Plane .

De�nition 7. A projective plane is a set L of lines together with a set P of points,
and a relation ∈ between points and lines called incidence, having the following
properties [5]:

(1) Given any two distinct points, there is exactly one line incident with both
of them.

(2) Given any two distinct lines, there is exactly one point incident with both
of them.

(3) There exists a set of four points, no three of which are on a same line.

Note that the �rst condition is as expected in the usual Euclidean plane, but the
second is not. The third condition is only to �prevent� the trivial cases to be
considered as a projective plane. The empty (P,L) (no lines or points), (P,L) with
only one line consisting of |P | points, and (P,L) with only one point with |L| lines
passing that point are example of trivial point-line incident structure that satisfy
axioms 1 and 2, but not 3.

One way to ��x� the Euclidean plane to satisfy the second condition is to, for
each parallel class of lines, add a point at in�nity where those parallel lines intersect,
and de�ne all those points at in�nity to form a line in this projective plane. This
is explained more in [5, Example 11]. There are also projective planes that have
�nite number of points and lines, which are called �nite projective planes.

Example 8. [5, Example 10] Let Π = (P,L) where P = {1, 2, 3, 4, 5, 6, 7} and
L = {l1, l2, l3, l4, l5, l6, l7}, where l1, l2, ..., l7 are {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4,
6}, {2, 5, 7}, {3, 4, 7} and {3, 5, 6} respective. Then Π is a projective plane. It
is easily seen to satisfy all three conditions in De�nition 7. This plane is called the
Fano plane. See Figure 1.1.

Another example with 13 points and 13 lines can be found in [5, Example 17].
Finite projective planes have a well-studied numeric structure. For any �nite pro-
jective plane Π = (P,L), there must exist a positive integer n, called the order of
the projective plane, such that:

• |P | = |L| = n2 + n+ 1
• Each line l ∈ L contains exactly n+ 1 points in P
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Figure 1.1. Fano Plane
By Watchduck (a.k.a. Tilman Piesk) - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=17240472

• Each point p ∈ P is on exactly n+ 1 lines in L

There is a well-known construction method to a get �nite projective plane of order q
using a three-dimensional vector space over a �nite �eld Fq, which will be described
as a special case in the next section.

1.1.4. Projective Geometry PG(n, q).

De�nition 9. (Whitehead's Axioms) A projective geometry is a set L of lines
together with a set P of points, and a relation ∈ between points and lines called
incidence, having the following properties:

(1) Given any two distinct points, there is exactly one line incident with both
of them.

(2) If lines AB and CD intersect, then so do lines AC and BD (where it is
assumed that A and D are distinct from B and C).

(3) Every line contains at least 3 points

The third condition is only to �prevent� some trivial cases, similar to axiom 3 in
De�nition 7 of projective plane. The �rst condition is the same as in Def 7 for
projective plane. The second condition is more relaxed than in projective plane:
we only require some pairs of lines to intersect, not all. We call projective geometry
�nite if P is �nite. The following method de�nes PG(n, q), which will be the space
that Cameron-Liebler line classes are in.

Let S = Fn+1
q be a vector space over Fq of dimension n+ 1. Let P and L be the

sets of all subspace of dimension one and two of S, respectively. For each element
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l ∈ L,we identify the subspace l by listing all one-dimensional subspace contained
in l. That is, we view L as

L = {{p ∈ P : p ⊂ l} : l is subspace of dimension two in S}
De�ne Π = (P,L), viewing P and L as a set of points and lines (lines are now sets
of points in P ), respectively.

Theorem 10. Π = (P,L) as de�ned above from S = Fn+1
q is a projective geometry.

The proof is not that hard by checking axioms. The resulted projective geometry
from S is called PG(n, q), and S is called the underlying (vector) space of
PG(n, q).

Example 11. Let S = F 3
2 . Write S = Z3

2. Then

P = {〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(1, 1, 0)〉, 〈(0, 1, 1)〉, 〈(1, 0, 1)〉, 〈(1, 1, 1)〉}
Consider a subspace of dimension two 〈(1, 0, 0), (0, 1, 0)〉, which contains three sub-
spaces 〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(1, 1, 0)〉. This means {〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(1, 1, 0)〉} ∈
L. If we consider 〈(0, 1, 0).(0, 0, 1)〉, then {〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(0, 1, 1)〉} ∈ L.
By considering all planes in S, we get all seven elements of L. If we identify
〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(1, 1, 0)〉, 〈(0, 1, 1)〉, 〈(1, 0, 1)〉, 〈(1, 1, 1)〉 as numbers 1, 2, 4, 3, 6, 5, 7
in that order and compare the result to Example 8, we see that S generates the
same example.

In fact, the construction using underlying vector space will give a projective
plane if the dimension of S is three. We can summarize the result from this as
follows:

Corollary 12. For each prime power q, there exists a projective plane of order q.

Proof. Construct PG(2, q) from S = F 3
q . �

We can �nd numeric properties of PG(n, q) from underlying subspace point of
view.

Lemma 13. In PG(n, q) = (P,L):

• |P | = qn+1−1
q−1 = qn + qn−1 + ...+ 1

• |L| = (qn+1−1)(qn+1−q)
(q2−1)(q2−q)

• Each line l ∈ L contains q + 1 points

A point in PG(n, q) corresponds to a one-dimensional subspace in the underlying
space S. A line in PG(n, q) corresponds to a two-dimensional subspace in the
underlying space. We de�ne a plane in PG(n, q) as all points and lines in PG(n, q)
whose underlying structure is contained in a same three-dimensional subspace.

Note that projective plane of order m (as in Subsection 1.1.3) is exactly the same
as PG(2,m).

1.1.5. Cameron-Liebler Line Classes.

De�nition 14. A Cameron-Liebler line class with parameter x, where x is a non-
negative integer, is a set of x(q2 + q + 1) lines L in PG(3, q) such that

• For all l ∈ L, |{m ∈ L : m ∩ l 6= ∅}| = (q + 1)x+ q2

• For all k /∈ L, |{m ∈ L : m ∩ k 6= ∅}| = (q + 1)x
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Some author (such as [12]) may de�ne a Cameron-Liebler line class with parameter
x to be a set of x(q2 + q+ 1) lines L in PG(3, q) such that every spread (a partition
of points into sets of lines) of PG(3, q) contains x lines in L. These two de�nitions
are equivalent [3, De�nition 1.1].

Example 15. Let Π = PG(n, q) with n ≥ 2. Let p be a point in Π, and de�ne
star(p) to be the set of all lines through p. Let π be a plane in Π, and de�ne line(π)
to be the set of all lines contained in the plane π. We have the following trivial
examples [12, Section 1]:

(1) The empty set is a Cameron-Liebler line class with parameter x = 0
(2) Both star(p) and line(π) are Cameron-Liebler line classes with parameter

with x = 1
(3) If p is not inside the plane π, then star(p)∪line(π) is a Cameron-Liebler line

class with x = 2

The complement of a Cameron-Liebler line class with parameterx in the set of all
lines of PG(3, q) is a Cameron-Liebler line class with parameter q2 + 1− x. Hence,
without loss of generality we may assume that x ≤ q2+1

2 .

1.1.6. Coordinate System in PG(3, q) and Klein Correspondence. A coordinate sys-
tem for PG(n, q) = (P,L) is de�ned by identifying each point p ∈ P with a non-
identity element pv in the underlying subspace structure. However, any scalar
multiple apv (a,∈ Fq) represents the same point p in PG(n, q), so we de�ne an
equivalence relation x ∼ y ⇐⇒ xy−1 ∈ Fq over all non-identity elements in the
underlying vector space S of PG(n, q) (that is, x, y ∈ S = Fn+1

q \{0}).
We, however, are interested in labeling projective lines, since the object of in-

terest (Cameron-Liebler line classes) are lines. Projective lines are planes in the
underlying space, which can be identi�ed by two lines that span the plane. Of
course this will require a more complicated equivalence relation. In this paper,
we focus an equivalence relation on PG(3, q), which is where Cameron-Liebler line
classes are.

Suppose we have a two-dimensional subspace P0 inside the underlying space
S = F 4

q , which is spanned by two nonzero vectors u = (u0, u1, u2, u3) and v =

(v0, v1, v2, v3). Form a matrix Mu,v =

[
u0 u1 u2 u3
v0 v1 v2 v3

]
. For each 0 ≤ i〈j ≤ 3,

de�ne rij(u, v) = det

[
ui uj
vi vj

]
. Form R(u, v) = (r01, r02, r03, r12, r13, r23). Note

that R(u, v) is an element in S′ = F 6
q . We de�ne (u, v) (which we use to identify a

plane in S) to be equivalent to (s, t) if R(u, v) = aR(s, t) for some a ∈ F ∗q . We have

mapped a line in PG(3, q) into an element in F 6
q , where this F

6
q has an equivalence

relation that elements are invariant under scalar multiples. This means a line in
PG(3, q) corresponds to a unique point in PG(5, q). This mapping from a line in
PG(3, q) to a point in PG(5, q) is called the Klein Correspondence.

To show that the Klein Correspondence is a valid map, suppose (u, v) and (s, t)
both span the same plane P0 in F 4

q . Then each of s, t is a linear combination of

u, v, so there exists 2× 2 matrix X such that

[
s
t

]
= XMu,v. X must be invertible,
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since (s, t) spans a plane. Therefore, rij(s, t) = det (X) det

[
ui uj
vi vj

]
. Hence,

R(s, t) = det(X)R(u, v), and so R(s, t) ∼ R(u, v).
The Klein correspondence is also one-to-one (we will not prove it here), but not

onto. It turns out, however, that the image of Klein correspondence is in a quadric,
which we will de�ne.

De�nition 16. A quadric of a quadratic form Q are points x on the space such
that Q(x) = 0.

The de�nition of quadratic form is in [2, De�nition 7.1]. For more background
on quadratic forms and the associated bilinear form, see [2, Chapter 1,2]. As
u0 u1 u2 u3
v0 v1 v2 v3
u0 u1 u2 u3
v0 v1 v2 v3

 has rank 2, we have

r01r23 + r02r13 + r03r12 = det


u0 u1 u2 u3
v0 v1 v2 v3
u0 u1 u2 u3
v0 v1 v2 v3

 = 0

This means any point R(u, v) = (r01, r02, r03, r12, r13, r23) from the Klein corre-
spondence must lie in a quadric Q(x1, x2, x3, x4, x5, x6) = x1x6 +x2x5 +x3x4. This
quadric is called the Klein Quadric. The notation Q+(5, q) refers to the set of
points in PG(5, q) whose underlying points lie in the Klein quadric. The Klein cor-
respondence is in fact a bijection between the set of lines in PG(3, q) and Q+(5, q)
[9, Chapter 12].

Example 17. We will �nd the Klein correspondence of a trivial Cameron-Liebler
line class in PG(3, 2) from S = F 4

2 = Z4
2. Let L = star(p), where p has an un-

derlying line 〈(1, 0, 0, 0)〉. One element l1 of L is a line represented by two lines
u =〈(1, 0, 0, 0)〉,v = 〈(0, 1, 0, 0)〉 in S, so we represent l1 by its basis - {(1, 0, 0, 0), (0, 1, 0, 0)}.

Then, Mu,v =

[
1 0 0 0
0 1 0 0

]
, and hence R(u, v) = (1, 0, 0, 0, 0, 0) ∈ Z6

2. If we

had used other basis, such as {(1, 0, 0, 0), (1, 1, 0, 0)}, we want get (1, 0, 0, 0, 0, 0)
as well. Pick a second element l2 with basis {(1, 0, 0, 0), (0, 1, 1, 1)}. Then M =[
1 0 0 0
0 1 1 1

]
, and R = (1, 1, 1, 0, 0, 0). In general, all elements in L will be

represented by s = 〈(1, 0, 0, 0)〉 and t = 〈w〉 with w 6= s a nonzero element in

S. As Ms,t =

[
1 0 0 0
w0 w1 w2 w3

]
, r12, r13,r23 = 0 regardless of choice of w. In

fact, it is not hard to check by hand that we will get all possible elements in the
form (a, b, c, 0, 0, 0) with a, b, c ∈ Z2 and (a, b, c) 6= (0, 0, 0) (zero is not a point in
PG(5, q)).

1.1.7. Relationship of Cameron Liebler Line Classes to PDSs. The following theo-
rem gives a derivation of PDS from Cameron-Liebler line classes.

Theorem 18. [12, Result 2.2] Let L be a set of x(q2 + q+1) lines in PG(3, q) with

0 < x ≤ q2+1
2 , and letM⊂ Q+(5, q) be the image of L under Klein correspondence.

Let D be the underlying structure ofM under addition; that is,

D = {av : a ∈ F ∗q , < v >∈M} ⊂ (F 6
q ,+)
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If L is a Cameron-Liebler line classes of parameter x, then |D| = x(q3 − 1) and D
is a PDS in (F 6

q ,+) with χ(D) ∈ {−x,−x+ q3} for nonprincipal character χ.

In [12, Result 2.2], the result also specify what character χ gives χ(D) = −x
and χ(D) = −x+ q3. Note that not all PDS from (F 6

q ,+) can be mapped back to
Cameron-Liebler line classes; one has to verify that PDS D is closed under scalar
multiples (so that D can be projected into PG(5, q)), and all points in D must lie
in some quadric as well.

Example 19. Let's take a Klein correspondence from a trivial Cameron-Liebler
line class described in Example 17. The image M is {〈(a, b, c, 0, 0, 0)〉 : (a, b, c) 6=
(0, 0, 0), a, b, c ∈ Z2}, and so D = {(a, b, c, 0, 0, 0) : (a, b, c) 6= (0, 0, 0), a, b, c ∈ Z2}.
But D is simply a subgroup with identity taken out, and the quotient of elements
in a group is in the same group, so D is a PDS (in a trivial way) with µ = 0.

1.2. Current work. The introduction of [12] has summarized the history, exis-
tence and nonexistence results. Nontrivial Cameron-Liebler line classes are rare
to �nd, so much so that there were once conjectured not to exist. There, how-
ever, have been existence results starting in the last two decades. Feng, Momihara,
and Xiang [12] recently found a new construction that gives an in�nite family of

Cameron-Liebler line classes with x = q2−1
2 for q ≡ 5, 9 mod 12. That result was

neatly simultaneous with Morgan Rodgers' PhD thesis [11] in which he found new
constructions. Rodger's work was a combination of projective geometry and com-
puter search, whereas Feng, Momihara, and Xiang's work involve more algebraic
construction and proof.

Cameron-Liebler line classes are objects in projective geometry Q+(5, q), but
have a connection to PDS. Our attempt is to work on PDSs using a di�erence set
perspective. There are two possible directions:

(1) Relate potentially new PDSs back to Cameron-Liebler line classes.
(2) Study the new class of PDSs obtained from new construction, and generalize

the new PDSs into other groups.

We focus speci�cally on the case q = 5, which is the smallest case that Feng,
Momihara, and Xiang's new construction applies. In this case, the second goal is
to �put� D ⊂ Z6

5 into other groups, such as non-elementary abelian groups Z3
25 or

Z2
125.

1.3. Attempts to generalize an example of q = 5: relating PDS to Cameron-
Liebler line classes. The obtained PDSs from new construction are very compli-
cated (it contains 1488 points inside Z6

5, scattered around the space) and is only
produced by computer computation. We then consider a simpler example of PDS,
and see whether that PDS can correspond to a Cameron-Liebler line class.

Theorem 20. (Partial Spread Construction) Let G = Z2k
p . View G as GF (q)2 with

q = pk a prime power. A line in GF (q)2 is 〈x〉 = {ax : a ∈ Fq} where x ∈ G\{0}.
Let D = (

⋃
x∈X〈x〉)\{0} be an arbitrary union of lines with additive identity taken

out. Then D is a PDS.

To achieve the �rst goal, the PDS must be in some quadric. Feng, Momihara,
and Xiang uses a quadratic form Q : E × E → F5, where E = F125, de�ned by

Q(x, y) = Tr(xy), (x, y) ∈ E × E
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Where a trace function from Fq = Fph to a base �eld Fp is de�ned by Tr(x) =

x+xp+xp
2

+ ...+xp
h−1

. They show that this quadric can be a model for Q+(5, q),
and it is convenient for us due to its simple algebraic formula, so it will be the
quadratic form we use as well.The partial spread construction (Theorem 20) requires
a line to be present in D, and we want to observe whether a line can be inside the
quadric. The next Lemma tells us that the answer is no.

Lemma 21. A subset D of Z6
p = GF (E)2 where E = Fp3 inside a quadric de�ned

by quadratic formula Q(x, y) = Tr(xy) cannot contain any punctured line in E×E
(a line with additive identity element taken out)

Proof. Suppose 〈x〉\{0} ∈ D. Write x = (x1, x2) ∈ E × E. Then 〈x〉\{0} con-
tains elements in the form (ax1, ax2) with a ∈ E∗. By de�nition, Q(ax1, ax2) =

Tr(a2x1x2). As a ranges over E∗, a2 takes p3−1
2 possible values in E∗, so a2x1x2

also takes p3−1
2 values. But Tr is a homomorphism from E = Fp3 to Fp = Zp, so

there are only p2 values in E which has trace zero. Since p3−1
2 〉p

2 for all primes p,

it is impossible that all a2x1x2 have trace zero. �

The proof of Lemma 21 shows that there are no more than roughly 2/p of any
line in E × E in the quadric Tr(xy). We think it is hard to �nd a way to delete
most of the line and still get a PDS, so we change direction in the following section.

1.4. Attempts to generalize an example of q = 5: generalize PDS from
Cameron-Liebler line classes to non-elementary abelian groups. In order
to put objects in Z6

5 into Z3
25 or Z2

125, we think that the multiplicative structure will
be very di�erent, but maybe not as much as the additive structure. As a result, we
�rst try to �nd other ways to explain the new PDS, not by trace and multiplicative
structure as the paper [12] has, but other new ways, especially any insight into
the PDS's additive structure. The actual construction in detail is lengthy and
complicated, so we do not repeat it here, but refer readers to [12, Section 3,4]
whenever we use borrow the notations from that paper.

1.4.1. An attempt to simplify the constructed example . The �rst idea is to look at
what the PDS from the new construction looks like in q = 5 case. Using the same
notation for IX from [12, Section 4], the PDS is

(1.1) D = {(xy, xy−1zwl : x ∈ F ∗5 =< ω31 >, y ∈< ω4 >, z = 1, l ∈ IX}
where ω is a generator of F ∗125. IX has size 2(q + 1) = 12. Let N = q2 + q + 1
(which is 26 for q = 5). The following are observations:

(1) The paper [12] writes X ⊂ Z2N de�ned in [12, Equation (3.5)] as

X = 2A ∪ (2B +N) mod 2N

for some sets A,B ⊂ Zn and

(1.2) IX = 4A ∪ (4A+N) ∪ (4B + 2N) ∪ (4B + 3N)

where aS = {as : s ∈ S} and S + a = {s + a : s ∈ S} for a set S and a
number a. Observe that 1.2 means IX = 2X ∪ (2X+N). This simpli�es ωl

(as l ∈ IX) to be ω8di(Tr(ω4(d0+di)))2 (same di as de�ned in [12, Equation
(3.3)]) or 4ω16 for the case l ∈ 2X, or 3 times of those for the case l ∈ 2X+N
(3 comes from ωN = ω31 = 3 ∈ F ∗5 ). Explicitly from computation, we know
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{ω8di : i = 1, ..., 5} = {122, 102, 423, 321, 112}, and {ω8di(Tr(ω4(d0+di)))2 :
i = 1, ..., 5} = {122, 403, 132, 321, 112}, and 4ω16 = 020, where the notation
abc represents ax2 + bx + c ∈ GF (5, 3) = F5[x]/〈x3 + 3x + 2〉. Hence,
ωl ∈ {122, 403, 132, 321, 112, 020, 311, 204, 341, 413, 331, 010}.

(2) The trace part (Tr(ω4(d0+di)))2 can be simpli�ed a little bit more to

(Tr(ω4(d0+di)))2 = Tr(ω4(d0+di)Tr(ω4(d0+di)))

= Tr(g(g + g5 + g25)) = Tr(g2 + g6 + g26) = Tr(g2) + 2Tr(g6)

where g = ω4(d0+di), and the last equation is by Tr(g26) = Tr(g130) =
Tr(g6).

(3) From 1.1, we may treat a = xy as an independent variable ranging in F ∗125
(the map f : F5×〈ω4〉 → F ∗125, f(x, y) = xy is bijective), then we can treat
xy−1 as a dependent variable of a. Write a = ω4i+j , i ∈ {0, 1, ..., 30}, j ∈
{0, 1, 2, 3}. ω4i+j = ω4(i+8j)+(4−j)31, so x = (ω31)4−j and y = (ω4)i+8j .
Then

b := xy−1 = (ω31)4−j/(ω4)i+8j = ω−4i−63j = a−1ω−62j = (−1)ja−1

The last equation comes from ω62 = −1. So we have biject the original
(x, y) into (x, y) 7→ (a, (−1)(logω a mod 4)a−1) where a can be treated as an
arbitrary element in F ∗125.

We have tried all these algebraic simpli�cations, but saw no insight into how these
can be helpful in understanding this PDS. We stopped and tried to prove that D
is PDS by other way, which is handled in the next subsection.

1.4.2. An attempt to prove D is PDS by character theory. Roughly speaking, there
are two main ways to see PDSs D. First, view D as a set with �di�erence set�
properties by observing {d1d−12 : d1, d2 ∈ D}, and second, view D as a set satisfying
the character sum equation (from Theorem 6). We have tried to look at an equation
a−b = c, with a, b ∈ D, and observe how many pairs of (a, b) can give a �xed element
c. This attempt gave us no insight.

We then tried to understand D from the character perspective by ourselves, with
the hope that we may come to �nd a di�erent proof from the one in the paper [12].

The �rst step is to understand that a character on E × E can be thought of as

(1.3) χa,b((x, y)) := χ1,E(ax+ by) = e2πiTr(ax+by)/5, (a, b) ∈ E × E

where χ1,E is a principal character on E, and the trace function is from F125 to F5

[12, Equation (2.1)]. This is because a character on E × E gives a value on (x, y)
equal to product of χa(x) and χb(y). Those two are e2πiTr(ax)/5 and e2πiTr(by)/5,
respectively. Multiplying them gives e2πiTr(ax+by)/5.

For each punctured line (a subspace of dimension 1 with additive identity taken
out) in F 6

5 , the character sum on that line is either -1 or 4. This is because, as
mentioned in Example 1.1.2, the whole line 〈c〉 has character sum 0 or 5. With
identity taken out, the character sum decreases by 1. As a result, to calculate
χa,b(D) =

∑
x∈F∗5 ,y∈〈ω4〉,k∈K χa,b(xy, xy

−1k), where K = {ωl : l ∈ IX}, which
is just a union of punctured lines, it is enough to count how many punctured
lines will give value 4, which happens if and only if one point on that line has
character value 1. So it is enough to count how many (y, k) ∈ 〈ω4〉 × K gives
χa,b(y, y

−1k) = 1, which by 1.3, happens if and only if Tr(ay+by−1k) = 0. Focusing
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on Tr(ay + by−1k) = 0 in order to �nd character value leads to a desired result for
a = 0 or b = 0.

Lemma 22. If a = 0 or b = 0 but not both, then there are exactly 72 pairs
(y, k) ∈ 〈ω4〉 ×K satisfying Tr(ay + by−1k) = 0.

Proof. Observe that if ωt is a solution to Tr(x) = 0 (x as a variable), so are
ωt+31, ωt+62, ωt+93. Those three solutions together with ωt gives 4 solutions, each
has di�erent remainder mod 4 in its exponent (or its discrete log value). There
are 24 non-zero solution to Tr(x) = 0 (as trace is an onto homomorphism Tr :
F125 → {e2πik/5 : k = 0, 1, 2, 3, 4}, the size of kernal of Tr is 125/5 = 25). These
24 solutions must then be partitioned into 6 sets, each of which is in the form
{ωt, ωt+31, ωt+62, ωt+93} for some t.

If a = 0, then Tr(ay+ by−1k) ≡ 0 if and only if Tr(by−1k) = 0. For each k ∈ K,
we can set bk = ω4i+j (0 ≤ j ≤ 3). Then the number of solutions is the same to
Tr(ωjy−1) = 0, which is 6 because there are 6 solutions to Tr(ωt) = 0 with the
exponent t ∈ {0, 1, 2, ..., 123}, t ≡ j (mod 4). Therefore, there are 6 solutions of y
to the equation for each k. As we range over all possible 12 values of k, we get the
number (y, k) pairs to be 12 ∗ 6 = 72. The case b = 0 is similar: Tr(ay) = 0 clearly
has 6 solutions for y for any �xed a 6= 0 by the same reasoning. �

Lemma 22 tells us that the character sum of D when a or b (but not both) is zero
will always be 4(72) + (−1)(372 − 72) = −12 (D is a union of 31 ∗ 12 = 372 lines,
so the rest 300 lines has character sum -1). Comparing to [12, Result 2.2], we get
character value of -12, which agrees with the parameter x = 12 of Cameron-Liebler
line class generating this PDS. The other possible character sum over D is 123,
which means there are 97 lines with character sum 4 with that particular character.

22 only explains when a = 0 or b = 0. But what if a, b 6= 0? The simplest case to
move forward is a = b = 1. But even with this case we cannot �nd any insight to
solve the problem by hand. As a result, we moved on to using computer to generate
some data, and hope that some may inspire a new direction.

1.4.3. Computer calculations related to the number of solutions to Tr(ay+by−1k) =
0 . For each k ∈ K, we can compute the number n(k) of y ∈ 〈ω4〉 that satis�es
Tr(ay + by−1k) = 0 by a computer by ranging all 31 values of y. For the actual
code, see Algorithms 2 in Appendix A.The following is an example when a = b = 1
of n(k) as k ∈ K:

7, 4, 4, 7, 7, 4, 5, 8, 8, 5, 5, 8

Other examples can give more seemingly �ugly� result. For example, for a = 1, b =
ω4, we get

7, 4, 8, 5, 3, 12, 5, 8, 4, 7, 4, 5

Note that K can be partitioned into 6 pairs, each of which has a form {k0, 3k0} for
some k0 ∈ F ∗125. We pair n(k) with n(3k). When a = b = 1, we have (n(k))k∈K =

7 4 4 7 7 4
5 8 8 5 5 8

where numbers of the same column are in the same pair of partitioning. If we
observe the sum n(k) + n(3k), and put the sum below that column, we get

12, 12, 12, 12, 12, 12
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which looks promising to lead to some pattern. For a = 1, b = ω4, we �rst write 12
numbers as

7 4 8 5 3 12
5 8 4 7 4 5

and then get the sum n(k) + n(3k) as

12, 12, 12, 12, 7, 17

We do the same for other examples of (a, b). Interestingly, the only numbers that
appear are 7,12,17, though the numbers of 7,12, and 17 that appears vary. The
other possible numbers of total solutions besides 72 is 97, which then can only come
from 17+17+17+17+17+12 (or in other order). We thought there may be some
structure leading to �7,12,17� pattern, but we were unable to �nd one.

Another computer calculation we did is, instead of counting the number of y
satisfying Tr(ay+by−1k) = 0 for each k, we count the number of k satisfying Tr(ay+
by−1k) = 0 for each y. For example, for a = b = 1 and as y = 1, ω4, ω8, ..., ω120, we
�nd the numbers of k to be

0, 1, 2, 4, 3, 1, 2, 3, 2, 2, 2, 1, 2, 4, 2, 4, 4, 3, 4, 2, 3, 2, 3, 3, 1, 1, 2, 1, 4, 2, 2

Varying a, b gives similarly �ugly� result - we cannot see any pattern in these
numbers.

1.4.4. Computer calculations on additive structure of D . Finally, we try to observe
the additive structure of D using computer computation. We �rst write a program
to check how many points (p1, p2, p3, p4, p5, p6) ∈ F 6

5 in D have the �rst few coordi-
nates as given, such as p1 = 1 and p2 = 2. That is, given numbers a1, . . . , at, what
is the number m(a1, . . . , at) of points in D such that pi = ai for all i = 1, ..., t? For
the actual code, see Algorithms 3 in Appendix A.

For t = 2, 3 we found a very symmetric result: for every (a1, a2) 6= (0, 0),
m(a1, a2) = 60, and for every (a1, a2, a3) 6= (0, 0, 0), m(a1, a2, a3) = 12. But
this is due to the observation 1 in 1.4.1 that the �rst three coordinates of D (not
all zeroes) will range over E exactly |K| = 12 times.

For t = 4, we see how 12 points within �xed a1, a2, a3 split into 5 cases of 5
values of a4. Most of the time the numbers are

1, 2, 3, 4, 2

in some order. Occasionally the value is 12, 0, 0, 0, 0. We observe no other pattern
besides these two.

An interesting observation from computer computation is that, for each (a1, a2, a3, a4)
such that m(a1, a2, a3, a4) = 4, four points in D with pi = ai are corners of a plane
(i.e. that D has four distinct points p, q, r, s such that p + q = r + s under Z6

5).
For the actual code, see Algorithms 4 in Appendix A.We were not sure what this
observation might lead, nor where we should go next. We, however, give more
thoughts on the �plane concepts� - anything related to a plane. We then observe
some additive structure on K itself.

1.4.5. Additive structure on K . Recall that we can �nd explicit points in K: K =
{122, 403, 132, 321, 112, 020, 311, 204, 341, 413, 331, 010} (see observation 1 in 1.4.1).
We also use computer to help observe the structure. For the actual code, see
Algorithms 5 and 6 in Appendix A.
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The �rst observation is that K in fact lie in a plane: embed K = Z3
5 with �rst,

second, and third coordinates being x, y, z, then every point in K lie on the plane
x+ 2z = 0.

Second, choose any subspace of dimension two (or plane passing through the
origin)P in Z3

5 not paralleled to x + 2z = 0. Let cosets of P be Pi, i = 1, 2, 3, 4, 5.
Then we observe that |K ∩ Pi|, i = 1, 2, 3, 4, 5 is always 1,2,3,4,2, the same pattern
found in 1.4.4. For example, choosing P : x = 0 and so Pi : x = i gives |K ∩ Pi| as
i = 1, 2, 3, 4, 5 to be

2, 3, 1, 4, 2

This pattern inspired us to try de�ning K in additive term instead of multiplicative
term as in the paper [12]. That is, instead of �nding X,A,B,X as outlined in the
paper, we may de�ne K as a subset of Z3

p such that for each plane passing through
the origin P , the intersection number |K ∩ Pi| of each coset Pi must obey certain
pattern. Unfortunately we did not see a way to use �additive� property to prove
that, given K obeys certain structure and D is constructed some way from K, then
D is a PDS. The main obstacle is that we have no insight (beyond the original,
complicated algebraic proof using trace and character theory in the paper) the proof
that D is a PDS using our own perspective or additive structure.

2. Finding PDS in Non Elementary Abelian Group

We failed to �nd new PDSs in non elementary abelian group Z3
25 or Z3

125, as
we did not see enough additive structure in D in previous section to understand
the structure making D a PDS. We then started to look at other non elementary
abelian groups. The simple one we want to start with is Z2

p2 with p = 3 because
the group behaves di�erently when p = 2, and the group on only one dimension
is not as interesting. The starting motivation comes from Davis' construction.
The construction uses a generalization of �punctured� line, in a sense that we may
�puncture� more points on a line than just the origin (but the way we puncture will
still be symmetric, not arbitrary). In this section we will use additive notation for
groups, so, for example, nx := x+ x+ . . .+ x (n times) and 〈a〉 = {na : n ∈ Z+}.

2.1. Background and a starting example.

De�nition 23. In an abelian group Znpt , for each x ∈ Znpt , let 〈x〉pr = {ax : a ∈
Zpt , ax has order strictly more than pr}.

Example 24. In G = Z2
9, 〈(1, 0)〉3 = {(1, 0), (2, 0), (4, 0), (5, 0), (7, 0), (8, 0)}. In

G = Z2
27, 〈(1, 0)〉3 = 〈(1, 0)〉\{(0, 0), (9, 0), (18, 0)} and 〈(1, 0)〉9 = 〈(1, 0)〉\{(0, 0), (3, 0), (6, 0), ..., (24, 0)}.

Another way to de�ne 〈a〉pr is to take 〈a〉 and then delete all pr elements in 〈a〉
which has order equal to or less than pr. In G = Znpt , we have 〈x〉pr = 〈x〉\〈pt−rx〉.

[1, Theorem 3.1-3.3] uses these �generalized� punctured lines to construct (p4, (t+
ep)(p2−1), p2+(t+ep)2−3(t+ep), (t+ep)2−(t+ep)) PDS in Z2

p2 for 3 ≤ t ≤ p+1
and 1 ≤ e ≤ p− 1. As we will start to generalize from small example �rst, we will
begin by giving a PDS from [1, Theorem 3.1-3.3] that applies to Z2

9.

Example 25. In G = Z2
9, let D = 〈(1, 1)〉3 ∪ 〈(1, 2)〉3 ∪ 〈(1, 3)〉3 ∪ 〈(3, 1)〉3. Then

D is a PDS.
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Proof. Let χ be a nonprincipal character. Then χ is of order either 3 or 9 (the
order n of homomorphism χ is the least positive integer m such that χm maps
every element to the identity). We look at the case when χ has order 9 �rst.

If χ has order 9, then K := kerχ has size 9 and is abelian, so K ∼= Z9 or Z2
3.

If K ∼= Z2
3, then K has 8 elements of order 3, but G has exactly 8 elements of

order 3, so K are exactly those elements of order 3 in G. But then it is easy to see
that χ will have order 3, a contradiction. Therefore, K ∼= Z9. That is, K is a line
〈(a1, a2)〉 for some a = (a1, a2) ∈ G of order 9.

Consider χ(〈(b1, b2)〉3), where b = (b1, b2) ∈ G of order 9. If (b1, b2) ∈ K (i.e.
〈(b1, b2)〉 = K), then χ is principal on 〈(b1, b2)〉, so χ(〈(b1, b2)〉3) = 6. If (b1, b2) /∈
〈(a1, a2)〉 but 3(b1, b2) ∈ 〈(a1, a2)〉, that is χ is principal on 〈3(b1, b2)〉 but not
〈(b1, b2)〉, then χ(〈(b1, b2)〉3) = χ(〈(b1, b2)〉)− χ(〈3(b1, b2)〉) = 0− 3 = −3. Finally,
if 3(b1, b2) /∈ 〈(a1, a2)〉, then χ(〈(b1, b2)〉3) = χ(〈(b1, b2)〉)−χ(〈3(b1, b2)〉) = 0−0 = 0.

If (a1, a2) = (1, 1), then χ(〈(1, 1)〉3) = 6, and because 3(1, 2), 3(1, 3), 3(3, 1) /∈
〈(1, 1)〉, we must have χ(〈(b1, b2)〉3) = 0 for (b1, b2) ∈ {(1, 2), (1, 3), (3, 1)}. As a
result χ(D) = 6 + 0 + 0 + 0 = 6. Similar argument will show that for (a1, a2) ∈
{(1, 1), (1, 2), (1, 3), (3, 1)}, χ(D) = 6.

If (a1, a2) = (1, 4), then 3(1, 1) ∈ 〈(a1, a2)〉 but 3(1, 2), 3(1, 3), 3(3, 1) /∈ 〈(1, 4)〉.
Therefore, χ(〈(1, 1)〉3) = −3 and χ(〈(b1, b2)〉3) = 0 for (b1, b2) ∈ {(1, 2), (1, 3), (3, 1)}.
As a result, χ(D) = −3 + 0 + 0 + 0 = −3. Similar argument will show that for all
(a1, a2) ∈ {(1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 0), (6, 1), (0, 1)}, χ(D) = −3.

If χ has order 3, then K = kerχ has size 27 and is abelian, and it must
be that K ∼= Z9 × Z3. One way to visualize K is to represent K with a line
〈(a1, a2)〉, (a1, a2) ∈ G of order 9, together with two other lines with �distance�
3 and 6 apart paralleled to it. For example, if (a1, a2) = (1, 1), then K =
〈(1, 1)〉 ∪ (〈(1, 1)〉 + (0, 3)〉) ∪ (〈(1, 1)〉 + (0, 6)). Note that the �direction� that we
move 〈(1, 1)〉 by (0, 3) and (0, 6) may be di�erent: if we have chosen (a1, a2) = (0, 1),
then we would have moved 〈(a1, a2)〉 by (3, 0) and (6, 0) instead, but we always add
elements of order 3.

Consider χ(〈(b1, b2)〉3), where (b1, b2) ∈ G of order 9. If (b1, b2) ∈ 〈(a1, a2)〉,
then χ(〈(b1, b2)〉3) = 6. If 3(b1, b2) ∈ 〈(a1, a2)〉, then 3(b1, b2) = k(a1, a2) for some
k ∈ Z divisible by 3 (since (a1, a2) has order 9 but 3(b1, b2) has order 3), so write
k = 3r, r ∈ Z. Then, 3(b1, b2) = 3r(a1, a2), so (b1, b2) − r(a1, a2) is an element of
order 3. Therefore, χ((b1, b2) − r(a1, a2)) = 1, and so χ((b1, b2)) = χ(r(a1, a2)) =
1 since r(a1, a2) ∈ 〈(a1, a2)〉. This means χ is principal on 〈(b1, b2)〉, and so
χ(〈(b1, b2)〉3) = 6. If 3(b1, b2) /∈ 〈(a1, a2)〉, then χ is not principal on 〈(b1, b2)〉,
but on 〈3(b1, b2)〉 (K includes all elements of order 3), and so χ(〈(b1, b2)〉3) =
χ(〈(b1, b2)〉)− χ(〈3(b1, b2)〉) = 0− 3 = −3.

ForK ∼= Z9×Z3, χ will be principal on exactly one of 〈(1, 1)〉, 〈(1, 2)〉, 〈(1, 3)〉, 〈(3, 1)〉,
and none on the rest. Therefore, χ(D) = 6− 3− 3− 3 = −3.

Since χ(D) is either 6 or -3 for all nonprincipal character, D is a PDS. �

It is important to note that idea of representing K = kerχ even with K ∼=
Z9×Z3 simply by a line 〈a〉. One advantage on considering χ as its representation
〈a〉 is that we can specify all nonprincipal χ by simply choose one direction a ∈ G
for a line to be a representative of kerχ (for both χ of order 3 and 9). We can
formalize this idea as followed.

De�nition 26. Let χ be a character in G = Z2
pm . A representation of χ is a line

〈a〉 ⊂ G such that 〈a〉 ⊂ kerχ.
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Table 1. The value of χ(L) on some sets L for χ of order 9.
Represent ker(χ) = 〈a〉

Sets If b ∈ 〈a〉 If b /∈ 〈a〉, 3b ∈ 〈a〉 If 3b /∈ 〈a〉
〈b〉 9 0 0
〈b〉3 6 -3 0
〈3b〉 3 3 0

Table 2. The value of χ(L) on some sets L for χ of order 3. ker(χ)
is represented by 〈a〉

Sets If b ∈ 〈a〉 If b /∈ 〈a〉, 3b ∈ 〈a〉 If 3b /∈ 〈a〉
〈b〉 9 9 0
〈b〉3 6 6 -3
〈3b〉 3 3 3

If χ is of order 3, then χ have more than one representation, but we can observe
if two representations are equivalent easily. For example, if χ is order 3 and χ is
represented by 〈(1, 1)〉, then it is the same if χ is represented by 〈(1, 4)〉 or 〈(1, 7)〉.
In general, if χ is a character of order pr in G = Z2

pm , and 〈a〉 represents χ, then
〈b〉 represents χ if there is nonzero element c ∈ 〈b〉 such that a− c has order pm−r.

2.2. Visualization of character values on generalized punctured lines. In
this section we let G = Z2

9. From the proof of Example 25, we can summarize how
nonprinciple character interacts with generalized punctured line in Tables 2 and 1.
We list the character values χ(L) on each set L.

Note that Table 2 can be obtained by shifting column of Table 1 to the right
by 1, and keep the leftmost column the same. Also, we can calculateχ(〈b〉3) by
realizing that χ(〈b〉3) = χ(〈b〉)− χ(〈3b〉).

One way to visualize how a, b interact in the tables is as followed. First, note
that we only focus on lines or generalized punctured lines, and they can all be
represented by 〈a〉pr for some elements a ∈ G of order 9. a is a direction of the
line, and we may list all possible directions in G to be

S = {(1, 0), (1, 1), . . . , (1, 8), (0, 1), (3, 1), (6, 1)}
It is not hard to check that any element must lie on a line generated by at least
one element in S (so that S actually includes all possible directions).

Second, we try to �nd a necessary and su�cient conditions on (a, b) that deter-
mines the case among three columns in Table 2 and 1. Let

R1 = {a, b ∈ S : b ∈< a >}
R2 = {a, b ∈ S : b /∈< a >, 3b ∈< a >}
R3 = {a, b ∈ S : 3b /∈< a >}

By restricting directions to only elements of S and going through simple arguments
to check, we can simplify Ri to be more useful to:

R1 = {a, b ∈ S : a− b = 0}
R2 = {a, b ∈ S : a− b 6= 0, 3(a− b) = 0}
R3 = {a, b ∈ S : 3(a− b) 6= 0}
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Table 3. Visualizing b ∈ S which determines l ∈ {1, 2, 3} that
(a, b) ∈ Rl where a = (1, 1)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8)
(0,0) 3
(1,0) 3 1 3 3 2 3 3 2 3
(2,0)
... 3

3

(8,0)
The element of G or cell (i, j) is represented at row i+ 1 and column j + 1,

counting from top to bottom, and left to right. If a number l is in the cell (i, j),
that means (a, (i, j)) ∈ Rl. If a number is not written at cell (i, j), that means

(i, j) /∈ S.

Let's see an example how this can be helpful.

Problem 27. Let χ have order 9 and kerχ = 〈(2, 2)〉. Let D = 〈(1, 1)〉3∪〈(1, 2)〉3∪
〈(1, 3)〉3 ∪ 〈(3, 1)〉3 ∪ 〈(1, 4)〉. What is the value of χ(D)?

kerχ = 〈(2, 2)〉 means χ is represented by 〈a〉 with a = (1, 1) ∈ S. We can
visualize values of b ∈ S that (a, b) is in each Ri as followed.

We use Table 1 and 3:

• Since 3 appears in (1, 2), (1, 3) in Table 3, using the third column of the
Table 1, χ(〈(1, 2)〉3) = χ(〈(1, 3)〉3) = 0

• Since 2 appears in (1, 4) in Table 3, using the second column of the Table
1, χ(〈(1, 4)〉) = 0

• Since 1 appears in (1, 1) in Table 3, using the �rst column of the Table 1,
χ(〈(1, 1)〉3) = 6

Therefore, χ(D) = 0 + 0 + 0 + 6 = 6.

Problem 28. Let χ have order 3 and 〈(1, 1)〉 ⊂ kerχ. Let D = 〈(1, 1)〉3∪〈(1, 2)〉3∪
〈(1, 3)〉3 ∪ 〈(3, 1)〉3 ∪ 〈(1, 4)〉. What is the value of χ(D)?

We progress exactly the same way as the previous problem, but we use Table
2 instead of Table 1 (or equivalently use the same Table 1 but read the number
on one column to the left from normal). We get χ(〈(1, 2)〉3) = χ(〈(1, 3)〉3) = −3,
χ(〈(1, 4)〉) = 9, and χ(〈(1, 1)〉3) = 6. Therefore, χ(D) = −3− 3 + 9 + 6 = 9.

Using table may seem to only represent trivial facts, but it helps to generalize
from Z9 to Z27.

2.3. Attempts to generalize from Z9 to Z27. When moving from �nding PDS
in Z2

9 to Z2
27, there are two things that will be changed: the tables of χ(L) for each

set L (Table 2 and 1), and the set Ri that helps us visualize and calculate χ(D)
(as we see in by using Table 3).

Again, it is not hard to see that:



20 UTHAIPON TANTIPONGPIPAT

Table 4. The value of χ(L) on some sets L for χ of order 27.
Represent ker(χ) = 〈a〉

Sets If b ∈ 〈a〉 If b /∈ 〈a〉, 3b ∈ 〈a〉 If 3b /∈ 〈a〉, 9b ∈ 〈a〉 If 9b /∈ 〈a〉
〈b〉 27 0 0 0
〈b〉3 18 -9 0 0
〈b〉9 24 -3 -3 0
〈3b〉 9 9 0 0
〈9b〉 3 3 3 0

Table 5. Visualizing b ∈ S which determines l ∈ {1, 2, 3, 4} that
(a, b) ∈ Rl where a = (1, 1)

(0,0) (0,1) (0,2) . . . (0,26)

(0,0) 4

(1,0) 4 1 4 4 3 4 4 3 4 4 2 4 4 3 4 4 3 4 4 2 4 4 3 4 4 3 4

(2,0)

(3,0) 4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(24,0)

(25,0) 4

(26,0)

The element of G or cell (i, j) is represented at row i+ 1 and column j + 1,
counting from top to bottom, and left to right. If a number l is in the cell (i, j),
that means (a, (i, j)) ∈ Rl. If a number is not written at cell (i, j), that means

(i, j) /∈ S.

• If χ has order 9 and is represented by 〈a〉, then the Table 4 can be used as
usual by shifting values one column to the right

• If χ has order 3 and is represented by 〈a〉, then the Table 4 can be used as
usual by shifting values two columns to the right

To use the table to �nd character value, we can de�ne Ri in a similar way as before:

R1 = {a, b ∈ S : a− b = 0}
R2 = {a, b ∈ S : a− b 6= 0, 3(a− b) = 0}
R3 = {a, b ∈ S : 3(a− b) 6= 0, 9(a− b) = 0}
R4 = {a, b ∈ S : 9(a− b) 6= 0}

Then, we can construct a similar table (shown in Table 3) as the Table 3.
Once we have tools to evaluate character values of order 3,9,27 on any union

of generalized lines pretty e�ciently, we start testing di�erent intuitive unions of
generalized lines. We tested by trial and error many unions. The following are
examples of what we tested if the set is a PDS:

(1) 〈(1, 1)〉3 ∪ 〈(1, 2)〉3 ∪ 〈(1, 3)〉3 ∪ 〈(3, 1)〉3
(2) 〈(1, 1)〉9 ∪ 〈(1, 2)〉9 ∪ 〈(1, 3)〉9 ∪ 〈(3, 1)〉9
(3) 〈(1, 1)〉9 ∪ 〈(1, 2)〉9 ∪ 〈(1, 3)〉9 ∪ 〈(1, 4)〉9 ∪ 〈(1, 5)〉9 ∪ 〈(1, 6)〉9 ∪ 〈(1, 7)〉9 ∪
〈(1, 8)〉9 ∪ 〈(1, 9)〉9 ∪ 〈(3, 1)〉9 ∪ 〈(6, 1)〉9 ∪ 〈(9, 1)〉9
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(4) 〈(1, 1)〉9 ∪ 〈(1, 2)〉9 ∪ 〈(1, 3)〉3 ∪ 〈(1, 4)〉9 ∪ 〈(1, 5)〉9 ∪ 〈(1, 6)〉3 ∪ 〈(1, 7)〉9 ∪
〈(1, 8)〉9 ∪ 〈(1, 9)〉3 ∪ 〈(3, 1)〉9 ∪ 〈(6, 1)〉9 ∪ 〈(9, 1)〉3

All of these are not PDS, but �nally, we are able to �nd one PDS in Z2
27.

Claim 29. Let D = 〈(1, 1)〉9 ∪ 〈(1, 2)〉9 ∪ . . . ∪ 〈(1, 9)〉9 ∪ 〈(1, 10)〉3 ∪ 〈(1, 11〉3 ∪
〈(1, 12)〉3 ∪ 〈(3, 1)〉9 ∪ 〈(6, 1)〉9 ∪ 〈(9, 1)〉9 ∪ 〈(12, 1)〉3 . Then D is a PDS.

Proof. The main idea is �nd all character values of D on all nonprincipal characters
(of order 3,9,27). Using Tables 4 and 5 can be helpful.

(1) Character χ of order 27
We know |kerχ| = 27, and it is not hard to see that kerχ ∼= Z27.

(a) IfK = 〈(1, 1)〉, then χ(〈(1, 1)〉9) = 18; χ(〈(1, i)〉9) = 0 for i = 2, 3, ..., 9;
χ(〈(1, 10)〉3) = −3; χ(〈(1, i)〉3) = 0 for i = 1, 2; χ(〈(i, 1)〉9) = 0 for
i = 3, 6, 9; χ(〈(12, 1)〉3) = 0. Therefore, χ(D) = 18 − 3 = 15. The
argument is similar and gives the same χ(D) if K = 〈(1, k)〉 for k =
2, 3, ..., 9.

(b) If K = 〈(1, 10)〉, χ(〈1, 1〉9) = −9; χ(〈(1, 10)〉3) = 24; and the other
generalized lines have character value 0. Therefore, χ(D) = 15. The
argument is similar and gives the same χ(D) if K = 〈(1, 11)〉, 〈(1, 12)〉.

(c) If K = 〈(1, 0)〉, then χ(〈(1, 9)〉9) = −9; and χ(〈(1, 12)〉3) = −3. There-
fore, χ(D) = −12. The argument is similar and gives the same χ(D)
if K = 〈(1, k)〉 for k = 13, 14, ..., 26.

Similar analysis can be made with K = 〈(i, 1)〉 for i = 0, 3, 6, ..., 24.
(2) Character χ of order 9

It is enough to consider when χ is represented by 〈(1, i)〉 for i = 0, 1, ..., 8
and 〈(i, 1)〉 for i = 0, 3, 6.
(a) If χ is represented by 〈(1, 1)〉, then χ(〈(1, 1)〉9) = 18; χ(〈(1, 4)〉9) =

χ(〈(1, 7)〉9) = −9; χ(〈(1, 10)〉3) = 24; χ(〈(1, 11)〉3) = χ(〈(1, 12)〉3) =
χ(〈(12, 1)〉3) = −3 and the rest has character value 0. Therefore,
χ(D) = 18− 9− 9 + 24− 3− 3− 3 = 15. The argument is similar and
gives the same χ(D) if χ is represented by 〈(1, 2)〉 or 〈(1, 3)〉.

(b) If χ is represented by 〈(1, 4)〉, then χ(〈(1, 4)〉9) = 18; χ(〈(1, 1)〉9) =
χ(〈(1, 7)〉9) = −9; χ(〈(1, 101)〉3) = χ(〈(1, 11)〉3) = χ(〈(1, 12)〉3) =
χ(〈(12, 1)〉3) = −3; and the rest has character 0. Therefore, χ(D) =
18− 9− 9− 3− 3− 3− 3 = 1− 12. The argument is similar and gives
the same χ(D) if χ is represented by 〈(1, i)〉 for i = 4, 5, ..., 0.

Similar analysis can be made with χ represented by 〈(i, 1)〉 for i = 0, 3, 6.
(3) Character χ of order 3

It is enough to consider when χ is represented by 〈(1, i)〉 for i = 0, 1, 2
and 〈(0, 1)〉. If χ is represented by 〈(1, 1)〉, then χ(〈(1, 1)〉9) = χ(〈(1, 4)〉9) =
χ(〈(1, 7)〉9) = 18; χ(〈(1, 10)〉3) = 24. All other 9 generalized lines in D in
the form 〈(a, b)〉9 has character value -9 and all other 3 generalized in D in
the form 〈(a, b)〉3 has character value 3. This gives χ(D) = −12. All four
cases gives χ(D) = −12 as well with similar argument.

�

We were able to generalize this result to all prime p ≥ 3 to get a PDS in Z2
p2 .

Furthermore, we were able to generalize this construction to get a PDS in Z2
pt for

all t ≥ 2. Dr. Davis, however, realized that the general construction obtained was
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familiar, and found that the result we got has already been discovered during the
work for PhD thesis of one of his PhD student, John Polhill, in 1999. Polhill has
this construction for Z2t

pr for all r ≥ 2, t ≥ 1 [4, Theorem 11]. He also �nds other
PDS that is disjoint from PDS in [4, Theorem 11] and union it with the original
PDS to get a new PDS. His work and the general construction can be found in [4,
Theorem 11-13].

At this point, we want to change a direction of the research again. Previously
we have used generalized lines as �building blocks� of a PDS, and ended up with
a result included in the theorem already found. We want to start from a di�erent
point. Instead of restricting a PDS to only unions of generalized lines, we want
to know all PDS in a group G. This, of course, seems like a much harder task.
If |G| = n, then there are 2n possible sets to check whether they are PDS. We,
however, still tried to exhaustively �nd PDS in a group whose size is not too big.

2.4. Computer result on the search of PDS on Z3
4. Which group should we

start the search? Non-elementary abelian group has an interesting structure, and
is harder to �nd PDS than elementary one. Also, Polhill construction applies to
spaces of even dimensions (Z2t

pr ). There are not many known constructions of PDS

on spaces of odd dimensions. The starting point for us is hence Z3
p2 . Since p behaves

di�erently when p is odd and even, we decide to start with Z2
9, the smallest case

with p odd, hoping that p = 3 example can generalize to other primes. We could
not �nd a way to search the space in a reasonable time, so we start even with Z3

4.
We will focus on the search of PDS on Z3

4 in this subsection. The following fact is
helpful to reduce the search space in �nding all PDS in abelian group G.

Lemma 30. Let D be a PDS in abelian G. Then a ∈ D if and only if −a ∈ D.

Proof. Suppose that D is a (v, k, λ, µ) PDS. Let a ∈ G. Let (xi, yi), i = 1, 2, ..., t be
all the solutions (x, y) ∈ D×D to x−y = a. Then, all the solutions (x, y) ∈ D×D
to x − y = −a are exactly (yi, xi), i = 1, 2, ..., t. If a ∈ D, then t = λ; otherwise,
t = µ. Similarly, if −a ∈ D, then t = λ; otherwise, t = µ. Since λ 6= µ (as a
convention for de�nition of PDS), a ∈ D if and only if −a ∈ D. �

Lemma 30 implies that, if we have selected a ∈ G to be either in D or not, then
we have �xed whether −a is in D as well. This reduces the number of variables to
iterate by at most half.

Consider a search on G = Z3
4. If a ∈ G has order 4, then we can pair (a,−a)

together so that the algorithms decides whether a ∈ D simultaneously with whether
−a ∈ D. There are 56 elements of order 4 in G, so there are 28 pairs to consider.
There are 7 elements of order 2 in G, and each can be selected to be in D or not.
The identity element of G can be assumed not to be in D. Hence, in total there are
35 variables (28 pairs and 7 elements of order 2) that determine all possible D that
can be a PDS. The search space is now 235 ≈ 33.6 × 109. An algorithms (written
in Java) to check if a given set D is a PDS empirically can check about one million
sets a second, so we approximated that the search would take about half a day. We
can reduce the search space a bit more using the following obvious fact.

Lemma 31. Let D be a PDS in G. Let φ be an automorphism of G. Then the
image φ(D) of the automorphism φ on D is also a PDS in G.
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This lemma allows us to assume without loss of generality something about D.
This reduces the search space by a factor of about 20. For the actual code, see
Algorithms 7 in Appendix A.

After the run of the algorithms, we get the following result:

Al l execut ion o f t h i s method takes : 2431.068312381 seconds .
The number o f s e t s checked whether i t i s PDS i s : 1453825484
The t o t a l number o f PDS found i s : 6464
Al l PDS are broken down in to d i f f e r e n c e c a t e g o r i e s :
31 PDS are found as type 1 − as subgroups
6432 PDS are found as type 2 − as (64 ,28 ,12) D i f f e r en c e Set
1 PDS are found as type 3 − as othe r s . They are : [ [ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ,

[ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ] , [ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 ,
0 , 0 , 0 ] ] , [ [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ] , [ [ 0 , 0 ,
0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 ] ] ]

Hadamard di�erence set is a di�erence set on Z3
4 that is already known. A

di�erence set with identity taken out will always be a PDS. In Z3
4, Hadamard

di�erence set is a (64,28,12) di�erence set (same de�nition as a (64,28,12,12) PDS
de�ned in this paper). Those 6432 type-2 PDSs in the result are from this di�erence
set.

Type-1 PDSs in the result indicates that PDS found is a subgroup with an
identity taken out, so that PDS is trivial.

Type-3 PDSs are other PDSs. The only one we found is the empty set (all 64
zeroes in the result indicates that D does not have any element on any of 64 points
of Z3

4), which is trivial as well.
We summarized the result as follows:

Fact 32. Let D be a PDS in G = Z3
4. Then D is either:

• A subgroup of G
• A translate of a Hadamard di�erence set with an identity taken out

If the result on an algorithms shows some PDS D that is not known, we could
have studied that PDS and generalized that set. The run does not show any new
PDS, so we do not proceed to �nd PDS in Z3

p2 .

3. Finding PDS in Z3
p

It is, however, interesting to think about possibility of �nding PDS in Z3
p instead

of Z3
p2 . Though Z3

p is elementary abelian, it has dimension three, and there has
been little known results about PDS on odd-dimensional spaces. In this section,
we summarize the approach to �nd all PDS in Z3

p, and state a partial success in

proving nonexistence result of PDS in Z3
p for p ≡ 3 mod 4.

3.1. Any nontrivial union of lines in Z3
p is not a PDS. Consider a union of

lines D = (
⋃j
i=1 Li)\{(0, 0, 0)} ⊂ Z3

p, where Li = 〈ai〉 for some element ai ∈ Z3
p

of order p. Let χ be a nonprincipal character on Z3
p. A line Li has character sum

χ(Li) = p if χ is principle on Li (i.e. Li ⊂ kerχ), otherwise χ(Li) = 0. Let lχ be the
number of lines Li such that Li ⊂ kerχ. Since χ(0, 0, 0) = 1 always, χ(D) = plχ−j.
If D is PDS, then χ(D) has two possible values, so lχ can have two possible values.
We can summarize this into the following:

Lemma 33. Let D = (
⋃j
i=1 Li)\{(0, 0, 0)}, where Li = 〈ai〉 for some element

ai ∈ Z3
p of order p, be a union of lines. Then D is a PDS if and only of lχ = |{i :

Li ⊂ kerχ}| has exactly two possible values over all nonprincipal character χ.
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In Z3
p, kerχ is a hyperplane and Li is a line. We can think of relationship

between kerχ,Li, and �Li ⊂ kerχ” as a line-plane incident structure. There already
exists such the incident structure in Z3

p we need: the Desaurgesian projective plane

PG(2, p). Each point in PG(2, p) corresponds to a line Li in Z3
p, and each line in

PG(2, p), which consists of points in PG(2, p), corresponds to a hyperplane in Z3
p.

A point mi in PG(2, p) is an element of a line Pj in PG(2, p) if and only if the line
in Z3

p represented by mi is contained in the plane in Z3
p represented by Pj . There

are p2 + p+ 1 points m1,m2, ...,mp2+p+1 and p
2 + p+ 1 lines P1, P2, ..., Pp2+p+1 in

PG(2, p).
The incident structure can be represented by (p2+p+1)-by-(p2+p+1) matrix A,

where aij =

{
1 if mj ∈ Pi
0 otherwise

If we have D = (
⋃j
i=1 Li)\{(0, 0, 0)}, we can represent

D by a (p2 +p+1)-by-1 column vector x where xj1 =

{
1 if Lj ⊂ D
0 otherwise

The ith entry

in column vector Ax is the number of Lj ⊂ D such that Lj ⊂ Pi. Since all possible
kerχ are exactly all Pi, the statement that lχ = |{i : Li ⊂ kerχ}| has exactly two
possible values over all nonprincipal characters χ is equivalent to saying that the
components of Ax have only two possible values. To show that this is impossible, we
�rst show a weaker claim: that Ax can't have only one value, unless x corresponds
to some trivial subset of Z3

p. De�ne ~0 to be a (p2 + p+ 1)-by-1 column vector with

entries 0, and ~1 to be a (p2 + p+ 1)-by-1 column vector with entries 1.

Claim 34. Let A be a (p2 + p + 1)-by-(p2 + p + 1) matrix representing point-line

incident structure in PG(2, p). If Ax = a~1 for some integer a and a column vector

x with components xi ∈ {−m,−m + 1, ..., n − 1, n}, then x = b~1 for some integer
b ∈ {−m,−m+ 1, ..., n− 1, n}.

Proof. Let t be the sum of components in x. Each value 1 in x will increase the sum
of components in Ax by p+1, since each point in PG(2, p) is in p+1 lines in PG(2, p).

Therefore, the sum of components in Ax is t(p+1). The sum of components in a~1 is
a(p2+p+1). As t(p+1) = a(p2+p+1), and gcd(p+1, p2+p+1) = gcd(p+1, 1) = 1,
we must have p2 + p + 1|t and p + 1|a. Let t = b(p2 + p + 1) for some integer

b, and hence a = b(p + 1). Multiply by AT on the left of Ax = a~1 and use
ATA = AAT = pI + J, where I is the (p2 + p + 1) × (p2 + p + 1) identity matrix
and J is the (p2 + p+ 1)× (p2 + p+ 1) matrix with all entries being one [5, Lemma
28] to get

ATAx = b(p+ 1)AT~1

(pI + J)x = b(p+ 1)(p+ 1)~1

px + Jx = b(p2 + 2p+ 1)~1

px + b(p2 + p+ 1)~1 = b(p2 + 2p+ 1)~1

px = bp~1

x = b~1

�
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Remark 35. Claim 34 is also true for PG(2, q) in general (with the base �eld being
GF(q) where q is a power of prime), not just in PG(2, p). The proof follows exactly
the same.

Now we show that Ax cannot have only two possible values either.

Lemma 36. Let A be a (p2 + p+ 1)-by-(p2 + p+ 1) matrix representing point-line

incident structure in PG(2, p). If Ax = a~1 + by for some integer a, b and b 6= 0,
and for some (p2 + p+ 1)-by-1 zero-one column vector y, then either

(1) x = ~1 or ~0
(2) xT is identical to one of the rows of A, or the complement of one of the

rows of A

Proof. Let t and s be the number of ′1′s in x and y, respectively. We multiply
Ax = a~1+by on the left with AT . We know that ATA = AAT = pI+J , where I is
the (p2 +p+ 1)× (p2 +p+ 1) identity matrix and J is the (p2 +p+ 1)× (p2 +p+ 1)
matrix with all entries being one [5, Lemma 28]. Therefore, we get

(pI + J)x = aAT~1 + bATy

Since each row of AThas sum p+ 1, AT~1 = (p+ 1)~1. Also, (pI+J)x = pIx+Jx =

px + t~1. Therefore,

px + t~1 = a(p+ 1)~1 + bATy

px− bATy = (a(p+ 1)− t)~1(3.1)

Equation 3.1 is over Z. Reduce every entry in 3.1 over mod p. We get

(3.2) bATy = (t− a)~1 mod p

Since the entries in Ax are in the range {0, 1, ..., p+ 1}, we have b ∈ {0, 1, ..., p+ 1}.
If b = 0, then we have Ax = a~1, which by Claim 34 implies x = ~1 or ~0. If b = p,
then the entries of Ax are either 1) p+ 1 and 1, or 2) p and 0.

In the �rst case, suppose m rows of Ax have values p+1, and the rest have value
1. If 2 ≤ m ≤ p2 + p, choose two distinct rows r1, r2 that have value p+ 1 and one
row r3 that has value 1. Label columns of A by {1, 2, ..., p2 + p+ 1}. Let Ci be the
set of all columns that the row i has '1' in. Because of projective plane structure,
|Ci| = p+ 1, |Ci ∩Cj | = 1, and |Ci ∩Cj ∩Ck| = 0 for distinct rows i, j, k. In order
for rows r1, r2 to have value p+ 1, x must be 1 at all rows in Cr1 and Cr2 . There
are two distinct columns c1 ∈ Cr1 ∩ Cr3 and c2 ∈ Cr2 ∩ Cr3 . Since x has value 1
at rows c1, c2, x must have value at least 2 at row r3. But this is a contradiction
to row r3 being chosen to have value 1. Hence, m = 0, 1, p2 + p + 1. If m = 0 or
p2 + p+ 1, all components of Ax have the same value. By Claim 34 ,x = ~1 or ~0. If
m = 1, then xT is identical to one of the rows of A.

In the second case, de�ne x′ = ~1 − x, a complement of x. Then Ax′ has the
property that its entries are either p+ 1 or 1, so by the �rst case, x′ must be ~1,~0,
or identical to one of the rows of A.

Finally, if b 6= 0, p, then gcd(b, p) = 1, and so equation 3.2 mod p is

ATy = ((t− a)/b)~1 mod p

where b−1 is multiplicative inverse in mod p. As components of ATy are in
{0, 1, ..., p+ 1}, they either



26 UTHAIPON TANTIPONGPIPAT

(1) have same values
(2) are 0 or p, or
(3) are 1 or p+ 1

The case 1) is dealt with the same way as in Claim 34. Cases 2) and 3) are exactly
the same as what we just did. �

Note what the result that x = ~1 or ~0 or xT is identical to one of the rows of A,
or complement of one of the rows of A means. x = ~1 or ~0 implies D = Z3

p or φ, the

trivial PDSs. xT being identical to one of the rows of A means that D has exactly
all lines contained in one particular plane, so D is a plane with the identity taken
out. We can summarize everything in the following theorem:

Theorem 37. Let D ⊂ Z3
p be a union of lines with no identity element. If D is a

PDS, then D is either a subgroup of Z3
p with identity taken out, or the complement

of a subgroup of Z3
p.

3.2. Nonexistence result of PDS on Z3
p for p ≡ 3 mod 4. If D is a PDS in

elementary abelian group G, there is a study on automorphisms of G that will �x
D. This can be found in [7, Section 4].

De�nition 38. Let σ be an automorphism of G = Ztp, and D be a PDS in G. σ is
called a multiplier of D if σ(D) = D.

For example, when D is a PDS, because x ∈ D if and only if −x ∈ D, σ : x 7→ −x
is always a multiplier of D (See Lemma 30).

Theorem 39. Let t ∈ Zp\{0}. Let σt be an automorphism σ : x 7→ tx of G = Znp .
Let D be a PDS in G. If t is a square modulo p, then σt is a multiplier of D. [7,
Theorem 4.1]

There are p−1
2 squares in Zp for odd prime p. If D is a PDS in G = Znp ,

consider each line 〈a〉 ⊂ G. If one element x ∈ 〈a〉 is in D, then for all non-zero
squares q in Zp, xq ∈ 〈a〉 is also in D. We may partition 〈a〉\{0} into two parts:
P1 = {aq : q is a non-zero square in Zp} and the rest P2 = 〈a〉\P1 ∪ {0}. D must
either contain every element in P1 or nothing in P1. Similarly D either contains
everything in P2 or nothing in P2, since any pair of two elements in P2 can be
mapped to one another by σt for some square t).

By Lemma 30, σ−1 is a multiplier of D. If p ≡ 1 mod 4, -1 is a square, so by
Theorem 39, σ−1 is a multiplier of D. This means Lemma 30 does not give us
anything new apart from Theorem 39.

However, if p ≡ 3 mod 4, Lemma 30 and Theorem 39 give di�erent tools that
can be combined to know the structure of D.

Lemma 40. Let D be a PDS in G = Znp . If p ≡ 3 mod 4, then D is a union of

punctured lines, i.e. D = (
⋃j
i=1 Li)\{0} ⊂ Znp where Li = 〈ai〉 for some element

ai ∈ G of order p and j ≥ 0.

Proof. From Theorem 39, σt is a multiplier of D for all t nonzero squares in Zp.
From Lemma 39, σ−1 is a multiplier of D. By de�nition, it is obvious to see that if
σa, σb are multipliers of D, then σa ◦σb = σab is also a multiplier of D. As we range
q over all non-zero squares of Zp, (−1)q will range over all nonzero non-squares of
Zp, so σt is a multiplier for t nonzero non-squares as well. Since σt is a multiplier for
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all t ∈ Zp\{0}, this means for each punctured line 〈a〉\{0} ⊂ G, D either contains
the whole punctured line or nothing in that line. �

For G = Znp with n = 3, combining this result with Theorem 37 gives the
nonexistence result.

Theorem 41. If D is a PDS in G = Z3
p for p ≡ 3 mod 4, then D is either a

subgroup of Z3
p with identity taken out, or the complement of a subgroup of Z3

p.

3.3. Attempts on the search of all PDS in Z3
p for p ≡ 1 mod 4. In the case

p ≡ 1 mod 4, Theorem 39 only tells us that a PDS D ∈ Z3
p is a union of �half

lines� - for each punctured line 〈a〉 which splits into two parts, D may contain all
or nothing of each part. We, in fact, do not expect any nonexistence result, since
there is a construction of PDS on Z3

p with p ≡ 1 mod 4: it is known that taking
D as nonzero squares in any �nite �eld Fq gives D a PDS in additive group in Fq
for q ≡ 1 mod 4 [8, Proposition 3.5].

There are some approaches we attempted that seem to be general to all primes
p ≡ 1 mod 4, but the problem reduces solving a {-1,1}-matrix equation with some
integer constraint. We were unable to solve the problem at the end. We tried an
exhaustive search on p = 5, which made us suspect that solutions may be harder
to categorize than we thought.

3.3.1. The matrix approach. For each punctured line La = 〈a〉\{0} ∈ G = Z3
p,

we split La into two parts: Qa = {aq : q is a non-zero square in Zp} and the rest
Ra = 〈a〉\Qa ∪ {0}. For each punctured line La, there are 4 possibilities of D ∩
La:La, Qa, Ra,or ∅. If we know which of these 4 possibilities is for all p2 + p + 1
lines in G, then we have completely determined D. This motivates us to �encode�
D into p2 + p+ 1 column vector, each row corresponding to a line in G.

Second, we try to represent nonprincipal χ byK = kerχ, and see howK interacts
with all p2 + p+ 1 lines in G. Even if we know K, which is a hyperplane in G, we
still have to specify what character value of each coset of K is. Formally, write K =
〈(a, b, c)〉⊥. We can de�ne cosets of K to be Ki = {(x, y, z) ∈ G : ax+ by+ cz = i}
for i = 0, 1, ..., p − 1. There are still p − 1 possible nonprincipal characters with
kerχ = K: χ can map elements in K1 to ωt where ω = e2πi/p for any choice of
t = 1, 2, ..., p− 1.

It turns out that, due to the structure of D being unions of half lines, we do not
need to consider all p− 1 nonprincipal characters after �xing K = 〈(a, b, c)〉⊥. Let
L = 〈(x, y, z)〉 be a line in G. Let S be a set of all nonzero squares in Zp. Consider
the following possibilities (all equations are under mod p):

(1) ax+ by + cz = 0
(2) ax+ by + cz ∈ S
(3) ax+ by + cz /∈ S and not zero

There are 4 possibilities for D∩La. Each combination of possibilities give di�erent
value of χ(D ∩La). See Table 6. First and last columns in Table 6 is obvious. The
�rst row means kerχ is principal on La.

By Table 6, we only have to care two possible values of t: t ∈ S or t /∈ S The
table shows that a character value on a half line can either be Q =

∑
i∈S ω

i or

R =
∑
i∈Zp\(S∪{0}) ω

i. Choosing a di�erent t (from t ∈ S to t /∈ S or the other

way around) will switch value Q to R, and vice versa. Before we move on to the
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Table 6. Values of χ(D ∩ La) for kerχ = 〈(a, b, c)〉⊥ and La = 〈(x, y, z)〉

Cases D ∩ La = Qa ∪Ra D ∩ La = Qa D ∩ La = Ra D ∩ La =∅
ax+ by + cz = 0 p− 1 p−1

2
p−1
2 0

ax+ by + cz ∈ S -1
∑
i∈S ω

ti
∑
i∈Zp\(S∪{0}) ω

ti 0

ax+ by + cz /∈ S and not zero -1
∑
i∈Zp\(S∪{0}) ω

ti
∑
i∈S ω

ti 0

Note: ωt is the root of unity that χ sends elements of K1 to.

construction of the matrix equation, we can actually compute exactly what Q,R
are. We state it here without the proof.

Lemma 42. Let p ≡ 1 mod 4, and S ⊂ Z∗p be a set of all nonzero squares modulo

p. Then, Q =
∑
i∈S ω

i =
−1+√p

2 and R =
∑
i∈Zp\(S∪{0}) ω

i =
−1−√p

2 .

Construct a (p2 + p+ 1)-by-(p2 + p+ 1) matrix B by labeling each column with
lines 〈(x, y, z)〉 and rows with plane 〈(a, b, c)〉⊥, and de�ne

b<(a,b,c)>⊥,<(x,y,z)> =


1 , ax+ by + cz ∈ S
−1 , ax+ by + cz 6= 0, ax+ by + cz /∈ S
0 , ax+ by + cz = 0

De�ne a (p2+p+1) column vector x = xD by labeling each row with lines 〈(x, y, z)〉,
and de�ne the component of each row i

xi =


1 , D ∩ La = Qa

−1 , D ∩ La = Ra

0 , otherwise

where a is the element generating line i. For simplicity we can de�ne so that row
i and column i are always orthogonal of each other, and that column i of B is the
same label (same line) as row i of x (if at row i of B it is 〈(a, b, c)〉⊥, then the
column i of B and row i of x are 〈(a, b, c)〉).

Consider each row of the column vector z = Bx. Fix row i. To compute row i

of z, and say row i of B represents 〈(a, b, c)〉⊥, we need to compute
∑p2+p+1
j=1 bijxj .

For each term bijxj , this is 1 for each column j = 〈(x, y, z)〉 of B such that

• ax+ by + cz ∈ S and D ∩ L(x,y,z) = Q(x,y,z), or
• ax+ by + cz 6= 0, ax+ by + cz /∈ S and D ∩ L(x,y,z) = R(x,y,z)

From Table 6, this corresponds to the case that character value of a half line eval-
uated to

∑
i∈S ω

ti. Similarly, bijxj is -1 for each column j if character value on a

half line is
∑
i∈Zp\(S∪{0}) ω

ti. If we add 0, this means we add an integral number
-1 or p− 1.

As we sum bijxj (which are -1,0,1) over all columns j of B to get component
at row i of z, we are �xing K = kerχ to be exactly what row i of B represents,
and �add� value of character on all p2 + p+ 1 half lines, lines, and empty sets that
D have. The component zi of z =Bx represents something about χ(D). It does
not represent exactly what χ(D) is, since we ignore the rational part of χ(D). It,
however, tells that the number of times

∑
i∈S ω

ti is produced in χ(D) subtracted

by number of times
∑
i∈Zp\(S∪{0}) ω

ti is produced is zi. That is,
∑
i∈S ω

ti term

is produced (p2+p+1+zi)
2 and

∑
i∈Zp\(S∪{0}) ω

ti is produced (p2+p+1−zi)
2 times. If
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t is chosen so that Q =
∑
i∈S ω

ti and R =
∑
i∈Zp\(S∪{0}) ω

ti, then the irrational

part of χ(D) is determined by (p2+p+1+zi)
2 Q + (p2+p+1−zi)

2 R = p2+p+1
2 (Q + R) +

zi
2 (Q−R) = p2+p+1

2 (−1) + zi
2

√
p, which means χ(D) = βi

2 + zi
2

√
p for some integer

βi. If t is chosen so that R =
∑
i∈S ω

ti and Q =
∑
i∈Zp\(S∪{0}) ω

ti, we would

have the irrational part of χ(D) be the same as (p2+p+1+zi)
2 R + (p2+p+1−zi)

2 Q =
p2+p+1

2 (−1)− zi
2

√
p instead., which means χ(D) = βi

2 −
zi
2

√
p for some integer βi.

At this point, since we know χ(D) may only take two possible values, there are
two cases:

(1) χ(D) takes two distinct rational values. This means zi in z is all zero (for
otherwise the term ± zi2

√
p we obtained earlier will make χ(D) irrational),

and βi takes two di�erent integers as we range over p2 + p + 1 possible
K = kerχ.

(2) χ(D) takes two distinct irrational values. This can only happen when zi 6= 0
for some i (

√
p is the only possible irrational term we found). Then, χ(D) =

βi

2 ±
zi
2

√
p are two possible values, and so every nonprincipal character must

have one of these two values.

Case 1: Since z is an all-zero column vector, we have an equation Bx = ~0. If B
is invertible, we would have a solution for x easily, and it is.

Lemma 43. Let B be a (p2 + p+ 1)-by-(p2 + p+ 1) matrix constructed by labeling
each column with lines 〈(x, y, z)〉 and rows with plane 〈(a, b, c)〉⊥, where row i and
column j are orthogonal to each other, and de�ne

b<(a,b,c)>⊥,<(x,y,z)> =


1 , ax+ by + cz ∈ S
−1 , ax+ by + cz 6= 0, ax+ by + cz /∈ S
0 , ax+ by + cz = 0

Where S is the set of all nonzero squares modulo p. Then B2 = p2I, where I is a
(p2 + p+ 1)-by-(p2 + p+ 1) identity matrix.

Proof. First, observe that B = BT , so the entries cij in C = B2 is a dot product
of two distinct rows i, j of B. If i = j, it is obvious that cij = p2. Now let i 6= j,
and denote i, j with 〈(a1, b1, c1)〉⊥ and 〈(a2, b2, c2)〉⊥, respectively. We know cij

is the sum of g((x, y, z)) =
(

(a1,b1,c1)·(x,y,z)
p

)
×
(

(a2,b2,c2)·(x,y,z)
p

)
over all columns

(x, y, z) of B (the · is a dot product of two vectors, and the parenthesis is a Lagrange
symbol). Note that g(s(x, y, z)) = g((x, y, z)) for all s ∈ F ∗p , so

∑
t∈〈(x,y,z)〉 g(t) =

(p − 1)g((x, y, z)). Therefore, summing g((x, y, z)) over all (x, y, z) ∈ F 3
p \{0} will

give the sum exactly p − 1 times of summing g((x, y, z)) over columns (x, y, z) of

B. Clearly g(0) = 0. Therefore, cij =

∑
t∈F3

p
g(t)

p−1 .

Clearly
∑
t∈F 3

p

(
(a1,b1,c1)·(x,y,z)

p

)
= 0: one hyperplaneH : (a1, b1, c1)·(x, y, z) = 0

gives the term 0, half of p− 1 cosets of that hyperplane give the term value 1, and
the other half gives the term value -1. Consider each coset of the hyperplane H ′ :
(a2, b2, c2) · (x, y, z) = 0. Each coset hH ′ intersects each all p cosets of H exactly at
p points. Among these p intersection, p−12 times is when it intersects a coset of H

which
(

(a1,b1,c1)·(x,y,z)
p

)
= 1, p−12 times on cosets of H which

(
(a1,b1,c1)·(x,y,z)

p

)
=
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−1, and 1 time with
(

(a1,b1,c1)·(x,y,z)
p

)
= 0 (i.e. on H itself). If the coset hH ′ has(

(a2,b2,c2)·(x,y,z)
p

)
= 1,

(
(a1,b1,c1)·(x,y,z)

p

)
and g((x, y, z)) are identical, so the sum

is the same over hH ′. If
(

(a2,b2,c2)·(x,y,z)
p

)
= −1,

(
(a1,b1,c1)·(x,y,z)

p

)
and g((x, y, z))

have opposite value. But the sum of
(

(a1,b1,c1)·(x,y,z)
p

)
over hH ′ is originally 0, so

the sum g((x, y, z)) over H ′ is also 0. If
(

(a2,b2,c2)·(x,y,z)
p

)
= 0, i.e. the coset hH ′

is H ′, then g((x, y, z)) is always 0 on hH ′. In all cases, g((x, y, z)) has sum 0 over
any coset hH ′. Therefore,

∑
t∈F 3

p
g(t), and so cij = 0. �

By Lemma 43, the �rst case implies x = ~0. This means for each line 〈(x, y, z)〉 ⊂
Z3
p, D either contains the whole punctured line or nothing in that line. That is, D

is a union of punctured lines. But by Theorem 37, D must be a trivial PDS, so we
are done in this case.
Case 2: Since χ(D) is irrational, we know ∆ = (λ − µ)2 + 4(k − µ) is not a

square (from Theorem 6). By [7, Corollary 6.3], D is a Paley type partial di�erence

set with parameter (v, k, λ, µ) = (p3, p
3−1
2 , p

3−5
4 , p

3−1
4 ) (see [6] and [10] about Paley

type partial di�erence sets).

Lemma 44. Let D be a nontrivial PDS in Z3
p, with p ≡ 1 mod 4. Then D is a

Paley type PDS.

As we know λ = p3−5
4 , µ = p3−1

4 , so we can calculate χ(D) =
−1±p√p

2 by

Theorem 6. Comparing this with our result χ(D) = βi

2 ±
zi
2

√
p, this means

(1) βi = −1 for all row i of z
(2) zi ∈ {−p, p} for all row i of z

βi = −1 across all i will give us some information about D, and we focus on zi later
on. We now focus on the rational part of χ(D), which should always be − 1

2 .

2.1 Using βi = − 1
2 : focus on the rational part of χ(D). Suppose that we

have �xed D, but we range over all nonprincipal χ. From Table 6 (�xing D is like
we already �xed a column that we look at), there is no di�erence of the rational
part whether ax + by + cz ∈ S or not if ax + by + cz = 0. The di�erence only
comes whether ax + by + cz = 0. If |D ∩ L(x,y,z)| = p−1

2 , then the di�erence is p
2 .

If |D ∩ L(x,y,z)| = p− 1, then the di�erence is p. This motivates us to use:

(1) Projective plane incident structure matrix A as de�ne earlier. This captures
the necessary and su�cient condition when ax+ by + cz = 0 happens.

(2) Construct p2 +p+ 1 column vector v =vD by labeling each row i of v with
all lines 〈(x, y, z)〉 in Z3

p, and de�ne

vi = |D ∩ L(x,y,z)|/(
p− 1

2
)

We know D∩L(x,y,z) has only four possibilities ∅, Q(x,y,z), R(x,y,z), L(x,y,z),
and so vi ∈ {0, 1, 2}. v captures the size of |D∩L(x,y,z)| which impacts the
rational parts of χ(D).

Consider the product w =Av. To get component wi of w, we look at row i =
〈(a, b, c)〉⊥ of A, and for each column j = 〈(x, y, z)〉 of A, we add the term aijvj .
By Table 6, the rational part of χ〈(a,b,c)〉⊥(D∩〈(x, y, z)〉), where χK is the character

with kerχ = K, is the same as
paijvj−vj

2 (can be checked easily). From the character
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perspective, χ(D) =
∑

lines 〈(x,y,z)〉 in Z3
p
(D ∩ 〈(x, y, z, )〉) which has rational part∑

j
paijvj−vj

2 =
∑
j
paijvj

2 −
∑
j
vj
2 . From the matrix equation, component wi =∑

j aijvj . Therefore, the rational part of χi=〈(a,b,c)〉⊥(D) is wi

2 −
∑
j
vj
2 = wi

2 −
|D|
p−1 .

Since |D| is �xed, and rational part of χi(D) is �xed across all i, wi is �xed across
all i. Since entries in A and v are integers, w must be integral, so we must have

Av = d~1

for some integer d. By Claim 34, v is either all-zero, all-one, or all-two column
vector. All-zero and all-two vectors represent trivial D. The all-one vector means
that D must be a union of half lines, with half line in each line of Z3

p. Note that

under vj = 1, we have the rational part of χi(D) to be
∑
j
paijvj

2 −
∑
j
vj
2 =

p
∑
j
aij
2 −

p2+p+1
2 = pp+1

2 −
p2+p+1

2 = − 1
2 , which is exactly what it should be.

Also, |D| = p3−1
2 . We state the result as follow (non-triviality means D is not a

subgroup with identity taken out or complement of a subgroup).

Theorem 45. Let D be a nontrivial PDS in Z3
p, with p ≡ 1 mod 4. Then D is a

union of half lines in each line of Z3
p. That is, for each line 〈(a, b, c)〉 ⊂ Z3

p, D ∩
〈(a, b, c)〉 ∈ {Q〈(a,b,c)〉, R〈a,b,c〉}, where Q〈(a,b,c)〉 = {q(a, b, c) : q is a nonzero square modulo p}
and R〈(a,b,c)〉 = {r(a, b, c) : r is a nonzero nonsquare modulo p}.

2.2 Using zi ∈ {−p, p}: focus on the irrational part of χ(D). Recall the
equation

Bx = z

By Theorem 45, x must be a {−1, 1}-column vector. Also, zi ∈ {−p, p} means
that z = py for some {−1, 1}-column vector y of length p2 + p + 1. The work
we show so far proves that if D is a nontrivial PDS in Z3

p, then x = xD satis�es
Bx = py for some {−1, 1}-column vector y. Since B captures all possible kerχ (by
looking all rows i, which represents all possible kerχ), Bx = py is su�cient that

the irrational part of χ(D) is in fact
±p√p

2 . Also, as we just noted earlier that χ(D)

will always have a correct − 1
2 rational part given x a {−1, 1}-column vector, the

equation Bx = py is necessary and su�cient for D to be a nontrivial PDS.

Theorem 46. Let G = Z3
p, and de�ne matrices B and x = xD as earlier. Then

there is a bijection between the set of all nontrivial PDS D and the set of solutions
(x,y) of pairs of {−1, 1} column vectors such that

Bx = py

Theorem 46 reduces �nding PDS in Z3
p to solving a matrix equation Bx = py

under some integer constraint.

3.4. Solving a matrix equation Bx = py . Unfortunately we are unable to �nd
a general categorization of solutions (x,y) to

(3.3) Bx = py

The following was the approach we did.
Motivated from Lemma 43, multiply B on the left of 3.3 to get

(3.4) px = By

Adding and subtracting between 3.3 and 3.4 gives, respectively,
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B(x + y) = p(x + y)(3.5)

(3.6) B(x− y) = −p(x− y)

Hence, (x,y) is the solution to 3.3 if and only if x + y and x− y are eigenvectors
of B with eigenvalues p,−p respectively. The task seems obvious: �nd eigenvalues
of B and all associated eigenspaces, and use those spaces of eigenvalues p,−p as
candidates for x + y and x − y. The problem we found with p = 5 is that B has
two eigenvalues 5,-5, and the eigenspaces has dimension 15,16 respectively. The
eigenspaces are too big to go through computationally. Furthermore, the constraint
that x,y are {1,-1} column vectors also gives an �integer programming� sense in
the problem we want to compute.

3.5. Computer search result . We tried to explicitly �nd all PDS in Z3
p for

p = 5, with the hope that we may see some structure that can generalize to other
p. We wrote a program to �nd all PDS in Z3

5 and �nd the size of stabilizers of
each PDS found. For the actual code, see Algorithms 8 and 9 in Appendix A. We
can get the number of equivalent PDS of a particular class to be the number of
automorphism of G divided by the size of the stabilizer.

We found 3 numbers of nontrivial equivalent PDS sets on a class: 62000 (stabi-
lizer size 24), 8000 (stabilizer size 186), and 12400 (stabilizer 120). The set of all
nonzero squares in F125 has stabilizer of size 186. The number of nontrivial PDS
found (ignoring equivalency) is 94800. This gives us high certainty that there is
one PDS class of 62000 equivalent sets, one class of 8000 equivalent sets, and two
classes of 12400 equivalent sets.

We later found a relevant literature. [13, Table 1] shows all Paley type set in
group of order 125, which is Z3

p. They found only three equivalence classes, and
each has automorphism group of size 15000 and 3000, which are di�erent from our
result. We are in the process of understanding Chen and Feng's paper, and checking
our computations.

4. Summary and Future Direction

Results that are new are Theorem 41, 45, and 46 in Section 3 on PDS in Z3
p.

There are many directions this research can move forward:

(1) The �7,12,17� and �1,2,3,4,2� patterns in 1.4.3,1.4.4, and 1.4.5 seem to point
to some additive structure that needs an explanation. It may have a po-
tential that leads to a new or a variant of construction of Cameron-Liebler
line classes.

(2) We see that the ideas of using matrices (A,B) in Section 3 to encapsulate
character equation in Z3

p is partially successful. We can generalize this idea
by looking at a similar structure of projective plane, but on a Galois Ring
instead on a �nite �eld. This may give us some insight about PDS in Z3

pr

for r ≥ 2.
(3) The search for all PDS in Z3

p for p ≡ 1 mod 4 is equivalent to solving
Bx = py in 3.4. There is still potential result by examining the structure
of B in order to �nd an e�cient algorithm to �nding (x,y). Algorithms
may count or give more example of solutions (x,y). If the algorithms seems
hard to �nd, one may also try to de�ne the problem precisely and put the



CAMERON-LIEBLER LINE CLASSES AND PARTIAL DIFFERENCE SETS 33

problem into some computational complexity class. One other potential
direction is to describe each set D in terms of xD instead of D. There is
a potential that a new �matrix� view of �nding PDS instead of from the
viewpoint of groups or vector spaces may lead to new insight of PDSs. For
example, one may examine how two equivalent PDSs D1, D2 in Z3

p relate
to one another in the matrix viewpoint (i.e. see how xD1 relates to xD2).
In general, what will the equivalence relations of set D that is de�ned from
automorphism on Z3

p be in the space of {−1, 1} column vector xD? Is there
any obvious transformation of solution xD to another solution of Bx = py,
and if so, what would that transformation in the space of {−1, 1} column
vector xD look like in the Z3

p space?
(4) The computer result in 3.5 still needs some more study to explain the

di�erence between our result and the paper [13, Table 1].
(5) Describe each equivalence class of D in Z3

5 found in 3.5 as its discrete log:
logD = {logω d : d ∈ D} where logω is the discrete log in �nite �eld F ∗125,
and try to �nd any pattern in logD for each speci�c class of PDS, hoping
that some will generalize to Z3

p for general p ≡ 1 mod 4.
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5. Appendix A: Codes Of Algorithms

This section contains all the actual relevant codes used in this work. The pro-
gramming languages used are Mathematica and Java. If a description of an algo-
rithms in this section does not specify the language, it is Mathematica.
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Algorithms 1: Mathematica functions
The following codes are Mathematica function. These should be run before any

other run of later Mathematica Algorithms in this paper.

(∗ ge t t i ng the s e t K in polynomial form ∗)
halfValueForK={x^2+2x+2,4x^2+3,x^2+3x+2,3x^2+2x+1,x^2+x+2,2x } ;
secondHalfOfK=PolynomialMod [3∗ halfValueForK , 5 ] ;
valueForK=Union [ halfValueForK , secondHalfOfK ] ;
(∗ temp2=PolynomialMod [4∗ valueForK , 5 ] ;
temp=Union [ valueForK , temp2 ] ;
valueForK=temp∗) (∗ only when what a l l mu l t i p l e s 1 ,2 ,3 ,4∗ )
(∗ Es s en t i a l Function used ∗)
Eva luate InFie ld [y_] :=PolynomialMod [ PolynomialMod [ y , x^3+3x+2 ] , 5 ] ;
Tra [y_] :=PolynomialMod [ PolynomialMod [ y+y^5+y^(25) , x^3+3x+2 ] , 5 ] ;
(∗More func t i on s he lp ing the program ∗)
l i s t [ a_,b_,K_]:= Table [ { n ,Mod[ Tra [ a∗x^n]+Tra [ b∗x^(124−n)∗K] , 5 ] } , { n , 0 , 1 23 , 4 } ]
countZero [ l i s t_ ] :=Module [ { zero=0},For [ i =1, i<=Length [ l i s t ] , i++,

I f [ l i s t [ [ i ] ] [ [ 2 ] ]==0 , zero++;, ]
] ; ze ro ]

sumResult [ l i s t_ ] :=Module [ { sum=0},For [ i =1, i<=Length [ l i s t ] , i++,
sum=l i s t [ [ i ] ] [ [ 2 ] ] + sum ;
] ; sum ]

(∗ cons t ruc t i ng d i f f e r e n c e s e t in polynomial form ∗)
t imeStart=AbsoluteTime [ ] ;
DSetPolyForm=Module [ { s e t ={}, f irstComponent , secondComponent , y} , For [ i =1, i <=4, i++,

For [ j =0, j<= 30 , j++,
For [ k=1,k<=Length [ valueForK ] , k++,
y=Evaluate InFie ld [ x^(4 j ) ] ;
f i rstComponent=Evaluate InFie ld [ i ∗y ] ;
secondComponent=Evaluate InFie ld [ i ∗x^(124−4 j )∗valueForK [ [ k ] ] ] ;
AppendTo [ set , f irstComponent∗x^3+secondComponent ]
]

]
] ; s e t ]

timeUsed=AbsoluteTime []− t imeStart (∗Display time used ∗)

(∗Turning DSetPolyForm into vector form and see i t in other f i e l d s ∗)
TurnToVector [A_]:={ Co e f f i c i e n t [A, x , 0 ] , C o e f f i c i e n t [A, x , 1 ] , C o e f f i c i e n t [A, x , 2 ] ,

C o e f f i c i e n t [A, x , 3 ] , C o e f f i c i e n t [A, x , 4 ] , C o e f f i c i e n t [A, x , 5 ] } ;
TurnToVector3 [A_]:={ Co e f f i c i e n t [A, x , 0 ] , C o e f f i c i e n t [A, x , 1 ] , C o e f f i c i e n t [A, x , 2 ] } ;
DSetVectorForm = Module [ { theVectors ={}} ,For [ i =1, i<=Length [ DSetPolyForm ] , i++,

AppendTo [ theVectors , TurnToVector [ DSetPolyForm [ [ i ] ] ] ] ] ; theVectors ]
TurnSetToVector3 [ theSet_ ] := Module [ { theVectors = {}} , For [ i = 1 , i <= Length [

theSet ] , i++,
AppendTo [ theVectors , TurnToVector3 [ theSet [ [ i ] ] ] ] ] ; theVectors ] ;

(∗breakdown in any coo rd ina t e s I choose ∗)
Breakdown3FixedCoor [ coor1_ ,a_, coor2_ ,b_, coor3_ , c_ , theSetToBreak_ ] :=

Module [ { theVectors ={}} ,For [ i =1, i<=Length [ theSetToBreak ] , i++,
I f [ theSetToBreak [ [ i ] ] [ [ coor1 ]]==a&&theSetToBreak [ [ i ] ] [ [ coor2 ]]==b&&

theSetToBreak [ [ i ] ] [ [ coor3 ]]==c , AppendTo [ theVectors , theSetToBreak [ [ i ] ] ] ]
] ; theVectors ] ;

GetListBreakdown3FixedCoor [ coor1_ ,a_, coor2_ ,b_, coor3_ , c_ , theSetToBreak_ ] :=Module
[ { theSet=Breakdown3FixedCoor [ coor1 , a , coor2 , b , coor3 , c , theSetToBreak ] } , For [ i =1,
i<= Length [ theSet ] , i++,

theSet [ [ i ] ]= Delete [ theSet [ [ i ] ] , { { coor1 } ,{ coor2 } ,{ coor3 } } ] ;
] ; theSet ]

Breakdown3FixedCoor [ 1 , 1 , 3 , 1 , 5 , 1 , DSetVectorForm ]
GetListBreakdown3FixedCoor [ 1 , 1 , 3 , 1 , 5 , 1 , DSetVectorForm ]
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Algorithms 2: Finding the number of solutions y ∈ 〈ω4〉 to Tr(ay + by−1k) = 0
given a, b ∈ F ∗125 and k ∈ K

The actual run is at the end. The �rst two methods are de�ning functions
needed.

(∗The counting s o l u t i on part . Fix ing k in K and or y in <w^4> and see how many
s o l u t i o n s there are , and a l s o try to see the 7 ,12 ,17 pattern ∗)

countSolInK [a_,b_,n_,K_]:=Module [ { numSol=0},For [ i =1, i<=Length [K] , i++,
I f [Mod[ Tra [ a x^n]+Tra [ b x^(124−n) K[ [ i ] ] ] , 5 ]==0 , numSol ++] ; ] ; numSol ]

Table [ countSolInK [2 , 2 , 4 i , valueForK ] , { i , 0 , 1 23 , 4 } ]

(∗matching where k and 3k i s . e . g . p o s i t i o n 1 with 2 , and 3 with 9 , and 4 with 7 ,
and so on , i n s i d e s e t K we created ∗)

sumInPairs [ l i s t_ ] :={ l i s t [ [ 1 ] ] [ [ 2 ] ] + l i s t [ [ 2 ] ] [ [ 2 ] ] , l i s t [ [ 3 ] ] [ [ 2 ] ] + l i s t [ [ 9 ] ] [ [ 2 ] ] ,
l i s t [ [ 4 ] ] [ [ 2 ] ] + l i s t [ [ 7 ] ] [ [ 2 ] ] , l i s t [ [ 5 ] ] [ [ 2 ] ] + l i s t [ [ 1 0 ] ] [ [ 2 ] ] , l i s t [ [ 6 ] ] [ [ 2 ] ] +
l i s t [ [ 1 1 ] ] [ [ 2 ] ] , l i s t [ [ 8 ] ] [ [ 2 ] ] + l i s t [ [ 1 2 ] ] [ [ 2 ] ] }

allNumSol [ a_,b_] :=Module [ { c } , c=Table [ { valueForK [ [ i ] ] , countZero [ l i s t [ a , b , valueForK
[ [ i ] ] ] ] } , { i , 1 , Length [ valueForK ] } ] ; f i r s t ={c [ [ 2 ] ] [ [ 2 ] ] , c [ [ 3 ] ] [ [ 2 ] ] , c [ [ 4 ] ] [ [ 2 ] ] ,
c [ [ 5 ] ] [ [ 2 ] ] , c [ [ 1 1 ] ] [ [ 2 ] ] , c [ [ 8 ] ] [ [ 2 ] ] } ;

second={c [ [ 1 ] ] [ [ 2 ] ] , c [ [ 9 ] ] [ [ 2 ] ] , c [ [ 7 ] ] [ [ 2 ] ] , c [ [ 1 0 ] ] [ [ 2 ] ] , c [ [ 6 ] ] [ [ 2 ] ] , c
[ [ 1 2 ] ] [ [ 2 ] ] } ; Pr int [ f i r s t ] ; Pr int [ second ] ; Pr int [ sumInPairs [ c ] ] ; c ]

numOfYKPairs [ a_,b_] := sumResult [ allNumSol [ a , b ] ]

For [ i =0, i <=123, i++,Pr int [ " a=x^0 b=x^" , i ] ; Pr int [ allNumSol [ 1 , x^ i ] ] ] ;
For [ i =0, i <=123, i++,Pr int [ " a=x^1 b=x^" , i ] ; Pr int [ allNumSol [ x , x^ i ] ] ] ;
For [ i =0, i <=123, i++,Pr int [ " a=x^2 b=x^" , i ] ; Pr int [ allNumSol [ x^2 ,x^ i ] ] ] ;
(∗We can keep on t h i s f o r other a as we l l . But t h i s takes long time , so we can

stop here ∗)



CAMERON-LIEBLER LINE CLASSES AND PARTIAL DIFFERENCE SETS 37

Algorithms 3: Breaking down a PDS D in Section 1 by �xing the �rst 2, 3, or 4
coordinates

Breaking into 2 coordinates:

(∗now s p l i t t i n g the DSetVectorForm based on the f i r s t two coo rd ina t e s ∗)
For [ i = 0 , i <= 4 , i++,
For [ j = 0 , j <= 4 , j++,
Pr int [ " Check f o r f i r s t two coo rd ina t e s being (" , i , " ," , j , ") : " ] ;
DSetVectorFormFixedTwoCoordinates [ i , j ] =
Module [ { theVectors = {}} ,
For [ k = 1 , k <= Length [ DSetVectorForm ] , k++,
I f [ DSetVectorForm [ [ k ] ] [ [ 1 ] ] == i &&

DSetVectorForm [ [ k ] ] [ [ 2 ] ] == j ,
AppendTo [ theVectors , DSetVectorForm [ [ k ] ] ] ] ;

] ; theVectors ] ;
Pr int [ " S i z e o f the l i s t i s : " ,
Length [ DSetVectorFormFixedTwoCoordinates [ i , j ] ] ] ;

Pr int [ DSetVectorFormFixedTwoCoordinates [ i , j ] ] ;
]

]
(∗Try to break down 2 more coo rd ina t e s . Choose one s e t and break down in to 25

s e t s ∗)
BreakFromMiddleTwoCoordinates [ l i s tOfVector s_ ] :=

For [ i = 0 , i <= 4 , i++,
For [ j = 0 , j <= 4 , j++,
Pr int [ " Check f o r th i rd and four th coo rd ina t e s being (" , i , " ," , j ,

") : " ] ;
DSetVectorFormFixedFourCoordinates [ i , j ] =
Module [ { theVectors = {}} ,
For [ k = 1 , k <= Length [ l i s tO fVe c t o r s ] , k++,
I f [

l i s tO fVe c t o r s [ [ k ] ] [ [ 3 ] ] == i && l i s tO fVe c t o r s [ [ k ] ] [ [ 4 ] ] == j ,
AppendTo [ theVectors , l i s tO fVe c t o r s [ [ k ] ] ] ] ;

] ; theVectors ] ;
Pr int [ " S i z e o f the l i s t i s : " ,
Length [ DSetVectorFormFixedFourCoordinates [ i , j ] ] ] ;

Pr int [ DSetVectorFormFixedFourCoordinates [ i , j ] ] ;
]
] ;

BreakFromMiddleTwoCoordinates [ DSetVectorFormFixedTwoCoordinates [ 0 , 0 ] ] ;
BreakFromMiddleTwoCoordinates [ DSetVectorFormFixedTwoCoordinates [ 0 , 1 ] ] ;
BreakFromMiddleTwoCoordinates [ DSetVectorFormFixedTwoCoordinates [ 1 , 1 ] ] ;
(∗Can try more than these three too ∗)

Breaking into 3 and 4 coordinates:

SetVectorFormFixedThreeCoordinates [ a_,b_, c_] :=
Module [ { theVectors ={}} ,For [ i =1, i<=Length [ DSetVectorForm ] , i++,

I f [ DSetVectorForm [ [ i ] ] [ [ 1 ] ] == a&&DSetVectorForm [ [ i ] ] [ [ 2 ] ] == b&&DSetVectorForm
[ [ i ] ] [ [ 3 ] ] == c , AppendTo [ theVectors , DSetVectorForm [ [ i ] ] ] ] ;

] ;
(∗ f o r t e s t i n g
Pr int [ " S i z e o f the l i s t s t a r t i n g (a , b , c ) i s : " , Length [ theVectors ] ] ;
Pr int [ "The l i s t i s : " , theVectors ] ;
∗)
theVectors ] ;

(∗now s p l i t t i n g the DSetVectorForm based on the f i r s t four coo rd ina t e s ∗)
SetVectorFormFixedFourCoordinates [ a_,b_, c_ ,d_] :=

Module [ { theVectors ={}} ,For [ i =1, i<=Length [ DSetVectorForm ] , i++,
I f [ DSetVectorForm [ [ i ] ] [ [ 1 ] ] == a&&DSetVectorForm [ [ i ] ] [ [ 2 ] ] == b&&DSetVectorForm

[ [ i ] ] [ [ 3 ] ] == c&&DSetVectorForm [ [ i ] ] [ [ 4 ] ] ==d , AppendTo [ theVectors ,
DSetVectorForm [ [ i ] ] ] ] ;

] ;
(∗ f o r t e s t i n g
Pr int [ " S i z e o f the l i s t s t a r t i n g (a , b , c ) i s : " , Length [ theVectors ] ] ;
Pr int [ "The l i s t i s : " , theVectors ] ;
∗)
theVectors ] ;

(∗Now I want to observe the 12342 pattern and 0000 '12 ' pattern ∗)
For [ a=0,a<=4,a++,
For [ b=0,b<=4,b++,
For [ c=0,c<=4,c++,
(∗ check the pattern ∗)
Pr int [ " Here f i x f i r s t 3 coo rd ina t e s to be (" , a , " , " , b , " , " , c , " ) : " ] ;
breakdown={};
For [ d=0,d<=4,d++,

AppendTo [ breakdown , Length [ SetVectorFormFixedFourCoordinates [ a , b , c , d ] ] ] ;
]

Pr int [ "The breakdown from 4th coord inate i s : " , Sort [ breakdown ] ] ;
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]
]

]
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Algorithms 4: Observe whether the 4 points in D with the same �rst four coor-
dinates is a plane

(∗Find a l l p lanes in ValueForK∗)
valueForKVectorForm=Module [ { theVectors ={}} ,For [ i =1, i<=Length [ valueForK ] , i++,

AppendTo [ theVectors , TurnToVector3 [ valueForK [ [ i ] ] ] ] ] ; theVectors ] ;
FindPlanes [ theSet_ ] :=Module [ { setOfPlanes ={}} ,For [ i =1, i<= Length [ theSet ] , i++,

For [ j=i +1, j<= Length [ theSet ] , j++, (∗ choose 2 a l ready ∗)
For [ k=i +1,k<= Length [ theSet ]&&k!= j , k++,
For [ l=k+1, l<=Length [ theSet ]&& l != j , l++,
I f [Mod[ theSet [ [ i ] ]+ theSet [ [ j ] ] ,5 ]==Mod[ theSet [ [ k ] ]+ theSet [ [ l ] ] , 5 ] , AppendTo [

setOfPlanes , { theSet [ [ i ] ] , theSet [ [ j ] ] , theSet [ [ k ] ] , theSet [ [ l ] ] } ]
]

]
]

]
] ; s e tOfPlanes ]

FindPlanesIndex [ theSet_ ] :=Module [ { setOfPlanes ={}} ,For [ i =1, i<= Length [ theSet ] , i++,
For [ j=i +1, j<= Length [ theSet ] , j++, (∗ choose 2 a l ready ∗)
For [ k=i +1,k<= Length [ theSet ]&&k!= j , k++,
For [ l=k+1, l<=Length [ theSet ]&& l != j , l++,
I f [Mod[ theSet [ [ i ] ]+ theSet [ [ j ] ] ,5 ]==Mod[ theSet [ [ k ] ]+ theSet [ [ l ] ] , 5 ] , AppendTo [

setOfPlanes , { i , j , k , l } ]
]

]
]

]
] ; s e tOfPlanes ]

(∗For t e s t i n g ∗)
valueForKVectorForm
FindPlanesIndex [ valueForKVectorForm ]
FindPlanes [ valueForKVectorForm ]
Length [ FindPlanes [ valueForKVectorForm ] ]

(∗ I want to observe in that 12342 pattern , what i s '4 ' l ook ing l i k e ? Plane ?∗)
For [ a=0,a<=4,a++,
For [ b=0,b<=4,b++,
For [ c=0,c<=4,c++,
(∗ check the pattern ∗)
Pr int [ " Here f i x f i r s t 3 coo rd ina t e s to be (" , a , " , " , b , " , " , c , " ) : " ] ;
For [ d=0,d<=4,d++,
l istToCheck=SetVectorFormFixedFourCoordinates [ a , b , c , d ] ;
I f [ Length [ l i stToCheck ]==4, Pr int [ "The f i x ed 4 coo rd ina t e s (" , a , " , " , b , " , " , c

, " , " , d , " ) g i v e s l i s t o f s i z e 4 : " , l i stToCheck ] ;
(∗ I want to check i f t h i s l i s t o f 4 e lements i s a plane . I f so , d=a+(b−a )+(c

−a ) , i . e . a+d = b+c , when a , d are oppos i t e s from each other ( d i agona l l y )
∗)

Pr int [Mod[ l i stToCheck [ [ 1 ] ] + l istToCheck [ [ 2 ] ] − l i s tToCheck [ [ 3 ] ] − l i s tToCheck
[ [ 4 ] ] , 5 ]=={0 ,0 , 0 , 0 , 0 , 0} | |Mod[ l i stToCheck [ [ 1 ] ] + l istToCheck [ [ 3 ] ] −
l i s tToCheck [ [ 2 ] ] − l i s tToCheck [ [ 4 ] ] , 5 ]=={0 ,0 , 0 , 0 , 0 , 0} | |Mod[ l i stToCheck
[ [ 1 ] ] + l istToCheck [ [ 4 ] ] − l i s tToCheck [ [ 3 ] ] − l i s tToCheck
[ [ 2 ] ] , 5 ]=={0 , 0 , 0 , 0 , 0 , 0 } ] ;

] ;
]

]
]

]
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Algorithms 5: Investigating the additive structure of K.
The way to investigate is to let Mathematica plot 3-D picture ofK. The checking

(whether 4 points is a plane) is at the end of the code, where we check if any sum
of two points equals the sum of other two.

valueForKVectorForm
ListPointPlot3D [ valueForKVectorForm , F i l l i n g−>Bottom ]
(∗These attempted to f i nd plane equat ion f a i l s − probably because Linear Solve

can ' t be done in mod 5∗)
Pr int [ " Bas i s f o r Nul l space ( equat ion f o r plane pass ing o r i g i n ) i s : " , NullSpace [

valueForKVectorForm ] ] ;
Pr int [ " Equation f o r plane not pass ing o r i g i n i s : " , L inearSo lve [

valueForKVectorForm , Table [ 1 , Length [ valueForKVectorForm ] ] ] ] ;
valueForK

mul t ip l y InF i e ld [ a_,b_] :=PolynomialMod [ PolynomialMod [ a b , x^3+3x+2 ] , 5 ] ;
(∗Try s h i f t i n g K to see any more v i s u a l i n s i g h t ∗)
TestXTimesK [a_] :=Module [ {} , Pr int [ TurnSetToVector3 [ mu l t ip l y InF i e ld [ a , valueForK ] ] ] ;

ListPointPlot3D [ TurnSetToVector3 [ mu l t ip l y InF i e ld [ a , valueForK ] ] , F i l l i n g−>
Bottom ] ]

TestXTimesK [ 1 ]
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Algorithms 6: Miscellaneous functions for K.
These functions are not directly related to the work in this paper, because they

do not lead to any signi�cant fruitful insights.

(∗ t e s t i n g ∗)
ListExpo = Table [ { i , Eva luate InFie ld [ x^ i ] } , { i , 0 , 1 24} ]
ListConcerned = {} ;
For [ i =1, i<=Length [ ListExpo ] , i++,
I f [ C o e f f i c i e n t [ ListExpo [ [ i ] ] [ [ 2 ] ] , x , 2 ] == 0 ,AppendTo [ ListConcerned , ListExpo [ [ i

] ] ] ]
]

(∗FieldExp [ t_] :=TurnToVector3 [ Eva luate InFie ld [ x^t ] ] ∗ )
FieldExp=Table [ TurnToVector3 [ Eva luate InFie ld [ x^t ] ] , { t , 1 , 1 3 5 } ] ;
(∗Find pa i r o f w^a−w^b so that i t g i v e s a s p e c i f i c d i f f e r e n c e . Wil l output a l l

such (a , b) ∗)
F i ndA l lPa i r sO fSpe c i f i cD i f f e r en c e [ theDi f f e rence_ ] :=Module [ { a l l P a i r s ={}, i =0, j =0},

For [ i =1, i<= 124 , i++
For [ j =1, j<= 124 , j++,
I f [Mod[ FieldExp [ [ i ]]−FieldExp [ [ j ] ] ,5 ]== theDi f f e r ence , AppendTo [ a l lPa i r s , { i , j ,

FieldExp [ [ i ] ] , FieldExp [ [ j ] ] } ] ]
]

] ; a l l P a i r s ]
OneIJPairs=Mod[ F indA l lPa i r sO fSpe c i f i cD i f f e r en c e [ { 1 , 0 , 0 } ] [ [ All , { 1 , 2 } ] ] , 1 2 4 ]
(∗Test ing ∗)
FieldExp [ [ 6 1 ] ]

Fl ippedValue [ t_] := I f [ EvenQ [ t ] ,124− t ,Mod[62− t , 1 2 4 ] ] (∗ turns out i s the same as
mult ip ly with 61 then mod 124∗)

F l ippedPai rSet [ theSet_ ] :=Module [ { newSet={}} ,For [ i =1, i<=Length [ theSet ] , i++,
AppendTo [ newSet , { FlippedValue [ theSet [ [ i , 1 ] ] ] , Fl ippedValue [ theSet [ [ i , 2 ] ] ] } ]

] ; newSet ]
F l ippedPai rSet [ OneIJPairs ]

(∗Def ine a func t i on ∗)
FindGroupSumDifference3Coor [ setOfVectors_ ] :=Module [ {} ,

dif ferenceSumFromVector [ a_,b_, c_] :=Module [ { l i s t I nVa r ={}} ,ConvertTo3Var [A_] := a^A
[ [ 1 ] ] b^A [ [ 2 ] ] c^A [ [ 3 ] ] ; For [ i =1, i<= Length [ setOfVectors ] , i++,AppendTo [
l i s t InVar , ConvertTo3Var [ setOfVectors [ [ i ] ] ] ] ] ; Total [ l i s t I nVa r ] ] ;

Clear [ a , b , c ] ; partOne=differenceSumFromVector [ a , b , c ] ;
partTwo=differenceSumFromVector [ a^−1,b^−1,c^−1];
t imeStart=AbsoluteTime [ ] ;
answer =PolynomialMod [ Expand [ a^5 b^5 c^5differenceSumFromVector [ a , b , c ]∗

differenceSumFromVector [ a^−1,b^−1,c ^−1]] ,{ a^5−1,b^5−1,c ^5−1}];
timeUsed=AbsoluteTime []− t imeStart ;
Pr int [ "Time Used : " , timeUsed ] ;
answer ]

(∗Test ing ∗)
FindGroupSumDifference3Coor [ valueForKVectorForm ]
FromGroupSumTo3DVectors [ a_,b_, c_ ,q_, theSum_]:=Module [ { theVectors ={}} ,
For [ i =0, i<q , i++,
For [ j =0, j<q , j++,
For [ k=0,k<q , k++,
I f [ i==0&&j==0&&k==0,
AppendTo [ theVectors , { i , j , k , C o e f f i c i e n t [ C o e f f i c i e n t [ C o e f f i c i e n t [ theSum , a , 0 ] ,

b , 0 ] , c , 0 ] } ] ,
I f [ C o e f f i c i e n t [ theSum , a^ i b^ j c^k ] != 0 ,
AppendTo [ theVectors , { i , j , k , C o e f f i c i e n t [ theSum , a^ i b^ j c^k ] } ] ]
]

]
]
] ;

theVectors ]

FromGroupSumTo3DVectors [ a , b , c , 5 , FindGroupSumDifference3Coor [ valueForKVectorForm ] ]
C o e f f i c i e n t L i s t [ FindGroupSumDifference3Coor [ valueForKVectorForm ] , { a , b , c } ]
valueForKVectorForm [ [ 1 2 ] ]={0 , 1 , 0 } ; (∗ some checking ∗)

valueForKVectorForm
Co e f f i c i e n t L i s t [ FindGroupSumDifference3Coor [ valueForKVectorForm ] , { a , b , c

} ] [ [ 1 , 2 , 1 ] ]
Map3DCoef f ic ientListToPoints [ coefList_ ,q_] :=Module [ { thePoints ={}, i =0, j =0,k=0},

For [ i =0, i<q , i++,
For [ j =0, j<q , j++,
For [ k=0,k<q , k++,
I f [ c o e f L i s t [ [ i +1, j +1,k+1] ] !=0 ,
AppendTo [ thePoints , { i , j , k , c o e f L i s t [ [ i +1, j +1,k+1 ] ] } ]
] ] ] ] ;

thePoints ]
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(∗This w i l l p l o t the p i c tu r e o f K−K in 3−D. Sp e c i f i c a l l y , i t s e e s how many times
each element t appears in K−K ∗)

dataToPlot=Map3DCoef f ic ientListToPoints [ C o e f f i c i e n t L i s t [
FindGroupSumDifference3Coor [ valueForKVectorForm ] , { a , b , c } ] , 5 ]

ListPointPlot3D [ L i s t /@dataToPlot [ [ All , { 1 , 2 , 3 } ] ] , P lotSty le−>({PointS i ze [ Large ] ,
Blend [{{4 , Darker [ Green ] } , {6 , Yellow } ,{8 ,Red}} ,#1]}&/@Flatten [ dataToPlot [ [ All
, { 4 } ] ] ] ) ]

(∗Do more random change to K v i s u a l l y f o r more i n s i g h t ∗)
valueForK

Fl ipElementsInSet [ SetOfElements_ ] :=Module [ { f l i pp edSe t ={}} ,For [ i =1, i<=Length [
SetOfElements ] , i++,

AppendTo [ f l i ppedSe t , Eva luate InFie ld [ ( SetOfElements [ [ i ] ] ) ^61 ] ]
] ; f l i pp edSe t ]

Fl ipElementsInSet [ valueForK ]
ListPointPlot3D [ TurnSetToVector3 [ Fl ipElementsInSet [ valueForK ] ] , F i l l i n g−>Bottom ,

PlotSty le−>PointS ize [ Large ] ]
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Algorithms 7: Finding all PDSs in Z3
4

This is a Java code.

import java . u t i l . ∗ ;
pub l i c c l a s s Main
{

pub l i c s t a t i c void check4x4x4 ( )
{

long startTime = System . nanoTime ( ) ;
long stepCount = 0 ;

ArrayList<Str ing> PDS1Subgroups = new ArrayList<Str ing >() ;
ArrayList<Str ing> PDS2DS = new ArrayList<Str ing >() ;
ArrayList<Str ing> PDS3Others = new ArrayList<Str ing >() ;

i n t [ ] [ ] [ ] D = new in t [ 4 ] [ 4 ] [ 4 ] ; // t h i s w i l l be determined 0 ,1 l a t e r . 1
means i t i s in D, 0 means i t i s not in D

//go through loops by hand . See which depends on which
f o r ( i n t a100=0; a100<=1; a100++)
{

D [ 1 ] [ 0 ] [ 0 ] = a100 ;
D [ 3 ] [ 0 ] [ 0 ] = a100 ;
f o r ( i n t a010=0; a010<=1; a010++)
{

D [ 0 ] [ 1 ] [ 0 ] = a010 ;
D [ 0 ] [ 3 ] [ 0 ] = a010 ;
f o r ( i n t a110=0; a110<=1; a110++)
{

D [ 1 ] [ 1 ] [ 0 ] = a110 ;
D [ 3 ] [ 3 ] [ 0 ] = a110 ;
f o r ( i n t a210=0; a210<=1; a210++)
{

D [ 2 ] [ 1 ] [ 0 ] = a210 ;
D [ 2 ] [ 3 ] [ 0 ] = a210 ;
f o r ( i n t a310=0; a310<=1; a310++)
{

D [ 3 ] [ 1 ] [ 0 ] = a310 ;
D [ 1 ] [ 3 ] [ 0 ] = a310 ;
f o r ( i n t a120=0; a120<=1; a120++)
{

D [ 1 ] [ 2 ] [ 0 ] = a120 ;
D [ 3 ] [ 2 ] [ 0 ] = a120 ;
//System . out . p r i n t l n ( Arrays . deepToString (D)+"\n") ; // f o r checking
//do same thing f o r l ay e r z=2
f o r ( i n t a102=0; a102<=1; a102++)
{

D [ 1 ] [ 0 ] [ 2 ] = a102 ;
D [ 3 ] [ 0 ] [ 2 ] = a102 ;
f o r ( i n t a012=0; a012<=1; a012++)
{

D [ 0 ] [ 1 ] [ 2 ] = a012 ;
D [ 0 ] [ 3 ] [ 2 ] = a012 ;
f o r ( i n t a112=0; a112<=1; a112++)
{

D [ 1 ] [ 1 ] [ 2 ] = a112 ;
D [ 3 ] [ 3 ] [ 2 ] = a112 ;
f o r ( i n t a212=0; a212<=1; a212++)
{

D [ 2 ] [ 1 ] [ 2 ] = a212 ;
D [ 2 ] [ 3 ] [ 2 ] = a212 ;
f o r ( i n t a312=0; a312<=1; a312++)
{

D [ 3 ] [ 1 ] [ 2 ] = a312 ;
D [ 1 ] [ 3 ] [ 2 ] = a312 ;
f o r ( i n t a122=0; a122<=1; a122++)
{

D [ 1 ] [ 2 ] [ 2 ] = a122 ;
D [ 3 ] [ 2 ] [ 2 ] = a122 ;
/∗ // f o r checking
stepCount++;
i f ( stepCount%10000 == 0)
{
System . out . p r i n t l n ("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Steps : " + stepCount

+ "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;
System . out . p r i n t l n ( Arrays . deepToString (D)+"\n") ; // t h i s takes

long to pr in t though
}∗/
// s e t t i n g up D[ a ] [ b ] [ 1 ] and D[ a ] [ b ] [ 3 ] i s more sys temat i c : choose

D[ a ] [ b ] [ 1 ] then we w i l l know D[3 a ] [ 3 b ] [ 1 ]
f o r ( i n t b00=0; b00<=1; b00++)
{

D [ 0 ] [ 0 ] [ 1 ] = b00 ;
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f o r ( i n t b01=0; b01<=1; b01++)
{

D [ 0 ] [ 1 ] [ 1 ] = b01 ;
f o r ( i n t b02=0; b02<=1; b02++)
{

D [ 0 ] [ 2 ] [ 1 ] = b02 ;
f o r ( i n t b03=0; b03<=1; b03++)
{

D [ 0 ] [ 3 ] [ 1 ] = b03 ;
f o r ( i n t b10=0; b10<=1; b10++)
{

D [ 1 ] [ 0 ] [ 1 ] = b10 ;
f o r ( i n t b11=0; b11<=1; b11++)
{

D [ 1 ] [ 1 ] [ 1 ] = b11 ;
f o r ( i n t b12=0; b12<=1; b12++)
{

D [ 1 ] [ 2 ] [ 1 ] = b12 ;
f o r ( i n t b13=0; b13<=1; b13++)
{

D [ 1 ] [ 3 ] [ 1 ] = b13 ;
f o r ( i n t b20=0; b20<=1; b20++)
{

D [ 2 ] [ 0 ] [ 1 ] = b20 ;
f o r ( i n t b21=0; b21<=1; b21++)
{

D [ 2 ] [ 1 ] [ 1 ] = b21 ;
f o r ( i n t b22=0; b22<=1; b22++)
{

D [ 2 ] [ 2 ] [ 1 ] = b22 ;
f o r ( i n t b23=0; b23<=1; b23++)
{

D [ 2 ] [ 3 ] [ 1 ] = b23 ;
f o r ( i n t b30=0; b30<=1; b30++)
{

D [ 3 ] [ 0 ] [ 1 ] = b30 ;
f o r ( i n t b31=0; b31<=1; b31++)
{

D [ 3 ] [ 1 ] [ 1 ] = b31 ;
f o r ( i n t b32=0; b32<=1; b32++)
{

D [ 3 ] [ 2 ] [ 1 ] = b32 ;
f o r ( i n t b33=0; b33<=1; b33++)
{

D [ 3 ] [ 3 ] [ 1 ] = b33 ;
// s e t t i n g D[ a ] [ b ] [ 3 ]
f o r ( i n t a=0; a<4; a++)
{

f o r ( i n t b=0; b<4; b++)
{

D[ a ] [ b ] [ 3 ] = D[ (3∗ a ) %4] [(3∗b) %4 ] [ 1 ] ;
}

}
// I can assume something upto automorphism z −> 3z
i f (D[ 0 ] [ 1 ] [ 1 ] +D[ 1 ] [ 0 ] [ 1 ] +D[ 1 ] [ 1 ] [ 1 ] +D[ 1 ] [ 2 ] [ 1 ] +D

[ 1 ] [ 3 ] [ 1 ] +D [ 2 ] [ 1 ] [ 1 ] < D[ 0 ] [ 1 ] [ 3 ] +D[ 1 ] [ 0 ] [ 3 ] +D
[ 1 ] [ 1 ] [ 3 ] +D[ 1 ] [ 2 ] [ 3 ] +D[ 1 ] [ 3 ] [ 3 ] +D [ 2 ] [ 1 ] [ 3 ] )

{
cont inue ; //don ' t need to do any element o f order

2 s t u f f . Skip to next s e t f o r e lements o f
order 4

}
// s t a r t dea l i ng with elements o f order 2 . Wil l do

automorphism so that (2 , 0 , 0 ) appears f i r s t , then
(0 , 2 , 0 ) , then (0 , 0 , 2 ) a l l everyth ing e l s e except
(2 , 2 , 0 )

f o r ( i n t a200=0; a200<=1; a200++)
{

D [ 2 ] [ 0 ] [ 0 ] = a200 ;
f o r ( i n t a020=0; a020<=a200 ; a020++) //<=a200 i s

from automorphism cond i t i on s
{

D [ 0 ] [ 2 ] [ 0 ] = a020 ;
f o r ( i n t a220=0; a220<=a020 ; a220++) //a020

i s second h ighe s t
{

D [ 2 ] [ 2 ] [ 0 ] = a220 ;
f o r ( i n t a002=0; a002<=a020 ; a002++) //

a020 i s second h ighe s t
{

D [ 0 ] [ 0 ] [ 2 ] = a002 ;
f o r ( i n t a202=0; a202<=a002 ; a202++)

// the r e s t are no more than a002
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{
D [ 2 ] [ 0 ] [ 2 ] = a202 ;
f o r ( i n t a022=0; a022<=a002 ; a022

++)
{

D [ 0 ] [ 2 ] [ 2 ] = a022 ;
f o r ( i n t a222=0; a222<=a002 ;

a222++)
{

D [ 2 ] [ 2 ] [ 2 ] = a222 ;
// check that there aren ' t too many po int s − no more than ha l f
i n t s izeD = 0 ;
f o r ( i n t a=0; a<4; a++)
{

f o r ( i n t b=0; b<4; b++)
{

f o r ( i n t c=0; c<4; c++)
{

i f (D[ a ] [ b ] [ c ] > 0)
{

s izeD++;
}

}
}

}
i f ( s izeD >= 32) // i f |D| i s >= 32 , complement has <=32

points , tak ing i d en t i t y out would have <=31 points , a
sma l l e r one than D

{
cont inue ;

}
stepCount++;
i f ( stepCount%100000000 == 0)
{

System . out . p r i n t l n ("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Steps : " +
stepCount + "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;

//System . out . p r i n t l n ( Arrays . deepToString (D)+"\n") ; // t h i s
takes long to p r in t though

}

in t checkResult = checkPDS(D, s izeD ) ;
i f ( checkResult > 0 ) // f o r checking
{

System . out . p r i n t l n ( checkResult + " " + sizeD + " PDS
Found : " + Arrays . deepToString (D)+"\n") ;

}

i f ( checkResult == 1 ) // found PDS
{

PDS1Subgroups . add ( Arrays . deepToString (D) ) ;
}
e l s e i f ( checkResult == 2)
{

PDS2DS. add ( Arrays . deepToString (D) ) ;
}
e l s e i f ( checkResult == 3)
{

PDS3Others . add ( Arrays . deepToString (D) ) ;
}

}
}

}
. . . . } . . . . [many '} ' here ]

}
long estimatedTime = System . nanoTime ( ) − startTime ;
System . out . p r i n t l n (" Al l execut ion o f t h i s method takes : " + estimatedTime

/1000000000.000 + " seconds . " ) ;
System . out . p r i n t l n ("The number o f s e t s checked whether i t i s PDS i s : " +

stepCount ) ;
System . out . p r i n t l n ("The t o t a l number o f PDS found i s : " + (PDS1Subgroups .

s i z e ( )+PDS2DS. s i z e ( )+PDS3Others . s i z e ( ) ) ) ;
System . out . p r i n t l n (" Al l PDS are broken down in to d i f f e r e n c e c a t e g o r i e s :

") ;
System . out . p r i n t l n (PDS1Subgroups . s i z e ( ) + " PDS are found as type 1 − as

subgroups ") ;
System . out . p r i n t l n (PDS2DS. s i z e ( ) + " PDS are found as type 2 − as

(64 ,28 ,12) D i f f e r en c e Set ") ;
System . out . p r i n t l n (PDS3Others . s i z e ( ) + " PDS are found as type 3 − as

othe r s . They are : " ) ;
f o r ( i n t i =0; i<PDS3Others . s i z e ( ) ; i++)
{

System . out . p r i n t l n (PDS3Others . get ( i ) ) ;
}
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}
/∗∗
∗ given a s e t ( as 0 ,1 matrix ) in Z_4^3 , determine i f i t i s PDS. I t w i l l a l s o

return true i f cha rac t e r sum has 1 value
∗ (That w i l l be DS actua l l y , but that ' s i n t e r e s t i n g too , though we won ' t be

g e t t i ng a l l p o s s i b l e DS in t h i s program search )
∗ re turn 0 i f i t g i v e s more than 3 charac t e r sums
∗ re turn 1 i f D i s a subgroup ( with i d en t i t y out )
∗ re turn 2 i f D i s a (64 ,28 ,12) hadamard d i f f e r e n c e s e t
∗ re turn 3 otherwi se ( t h i s i s what i s i n t e r e s t i n g )
∗/
pub l i c s t a t i c i n t checkPDS( in t [ ] [ ] [ ] set , i n t s izeD )
{

in t [ ] l i stOfSums = { In t ege r .MIN_VALUE, In t ege r .MIN_VALUE} ; //sum not
recorded yet . These are impos s ib l e va lues

//go through a l l cha ra c t e r s . Sending (1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) to ( sqrt −1)
^i , ^j , ^k , r e s p e c t i v e l y

f o r ( i n t i =0; i <4; i++)
{

f o r ( i n t j =0; j <4; j++)
{

f o r ( i n t k=0; k<4; k++)
{

i f ( ! ( i == 0 && j == 0 && k == 0) ) // only do th ings when ch i
i s not p r i n c i p l e

{
i n t chaSum = 0 ; // value o f ch i (D)
f o r ( i n t a=0; a<4; a++)
{

f o r ( i n t b=0; b<4; b++)
{

f o r ( i n t c=0; c<4; c++)
{

// look at (a , b , c ) in Z_4^3
i f ( s e t [ a ] [ b ] [ c ] > 0) //(a , b , c ) i s in the s e t
{

i n t expoOfI = ( a∗ i+b∗ j+c∗k )%4; // ch i ( a , b ,
c ) = ( sqrt −1)^( a i+bj+ck )

i f ( expoOfI == 0)
{

chaSum = chaSum + 1 ;
}
e l s e i f ( expoOfI == 2)
{

chaSum = chaSum − 1 ;
}

}
// then we get what ch i ( a , b , c ) i s with t h i s

charac t e r now .
}

}
}
// here we get what ch i (D) i s ( over a l l e lements in D)
i f ( l i stOfSums [ 0 ] == Int ege r .MIN_VALUE) //no sum has been

recorded
{

l i stOfSums [ 0 ] = chaSum ; // record t h i s sum . Done f o r
t h i s cha

}
e l s e i f ( l i s tOfSums [ 0 ] != chaSum) // l istOfSums [ 0 ] i s

recorded . I f i t i s same as chaSum , do nothing . But
d i f f e r e n t means we have to record i t

{
i f ( l i stOfSums [ 1 ] == Int ege r .MIN_VALUE) //no second

sum has been recorded
{

l i stOfSums [ 1 ] = chaSum ; // record t h i s sum . Done
f o r t h i s cha

}
e l s e i f ( l i s tOfSums [ 1 ] != chaSum) // l istOfSums [ 1 ] i s

recorded . I f i t i s same as chaSum , do nothing .
But d i f f e r e n t means we got the th r id sum

{
return 0 ;

}
}

}
}

}
}
//now i t i s not case 0 . Have to think whether to return 1 ,2 , or 3
i f ( l i stOfSums [ 0 ] > l istOfSums [ 1 ] )
{
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// so r t the sums in to i n c r e a s i n g order
i n t tmp = listOfSums [ 0 ] ;
l i stOfSums [ 0 ] = l istOfSums [ 1 ] ;
l i stOfSums [ 1 ] = tmp ;

}
// return 1 i f f cha (D) = −1 or s i z e o f D
i f ( l i stOfSums [ 0 ] == −1 && listOfSums [ 1 ] == sizeD )
{

return 1 ;
}
e l s e i f ( l i s tOfSums [ 0 ] == −4 && listOfSums [ 1 ] == 4 && sizeD == 28)
{

return 2 ;
}
e l s e i f ( l i s tOfSums [ 0 ] == −5 && listOfSums [ 1 ] == 3 && sizeD == 27)

//(64 ,28 ,12) DS to s s i n g the i nden t i t y out
{

return 2 ;
}
e l s e
{

return 3 ;
}

}
}
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Algorithms 8: Finding all PDSs in Z3
5

This is a Java code. We use Theorem 46: to �nd PDS is exactly the same
as solving the matrix equation. Note that matrix A is the same as matrix B
in Theorem 46 in Section 3. A can be computed separately (in actuality I used
Mathematica to compute A and copy the array form into the Java code).

import java . u t i l . ∗ ;
/∗∗
∗
∗ @author Tao
∗ @version ( a ve r s i on number or a date )
∗/
pub l i c c l a s s Main
{

pub l i c s t a t i c f i n a l i n t [ ] [ ] A = [ Please see matrix A above ] ;
/∗∗
∗ The idea i s to generate a l l p o s s i b l e x , which i s a +−1 vector o f l ength

31 , and check i f the
∗ product A. x has each row = +−5 or not .
∗/
pub l i c s t a t i c void check5x5x5 ( )
{

long startTime = System . nanoTime ( ) ;
long stepCount = 0 ;
ArrayList<Str ing> l i s tOfX = new ArrayList<Str ing >() ;

i n t [ ] x = new in t [ 3 1 ] ; // w i l l be determined +1, −1 l a t e r
//go through loops by hand . See which depends on which
f o r ( i n t x6=0; x6<=1; x6++)
{

x [ 6 ] = 1 − 2∗x6 ;
f o r ( i n t x7=0; x7<=1; x7++)
{

x [ 7 ] = 1 − 2∗x7 ;
f o r ( i n t x8=0; x8<=1; x8++)
{

x [ 8 ] = 1 − 2∗x8 ;
f o r ( i n t x9=0; x9<=1; x9++)
{

x [ 9 ] = 1 − 2∗x9 ;
f o r ( i n t x10=0; x10<=1; x10++)
{

x [ 1 0 ] = 1 − 2∗x10 ;
f o r ( i n t x11=0; x11<=1; x11++)
{

x [ 1 1 ] = 1 − 2∗x11 ;
f o r ( i n t x12=0; x12<=1; x12++)
{

x [ 1 2 ] = 1 − 2∗x12 ;
f o r ( i n t x13=0; x13<=1; x13++)
{

x [ 1 3 ] = 1 − 2∗x13 ;
f o r ( i n t x14=0; x14<=1; x14++)
{

x [ 1 4 ] = 1 − 2∗x14 ;
f o r ( i n t x15=0; x15<=1; x15++)
{

x [ 1 5 ] = 1 − 2∗x15 ;
f o r ( i n t x16=0; x16<=1; x16++)
{

x [ 1 6 ] = 1 − 2∗x16 ;
f o r ( i n t x17=0; x17<=1; x17++)
{

x [ 1 7 ] = 1 − 2∗x17 ;
f o r ( i n t x18=0; x18<=1; x18++)
{

x [ 1 8 ] = 1 − 2∗x18 ;
f o r ( i n t x19=0; x19<=1; x19++)
{

x [ 1 9 ] = 1 − 2∗x19 ;
f o r ( i n t x20=0; x20<=1; x20++)
{

x [ 2 0 ] = 1 − 2∗x20 ;
f o r ( i n t x21=0; x21<=1; x21++)
{

x [ 2 1 ] = 1 − 2∗x21 ;
f o r ( i n t x22=0; x22<=1; x22++)
{

x [ 2 2 ] = 1 − 2∗x22 ;
f o r ( i n t x23=0; x23<=1; x23++)
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{
x [ 2 3 ] = 1 − 2∗x23 ;
f o r ( i n t x24=0; x24<=1; x24++)
{

x [ 2 4 ] = 1 − 2∗x24 ;
f o r ( i n t x25=0; x25<=1; x25++)
{

x [ 2 5 ] = 1 − 2∗x25 ;
f o r ( i n t x26=0; x26<=1; x26++)
{

x [ 2 6 ] = 1 − 2∗x26 ;
f o r ( i n t x27=0; x27<=1; x27++)
{

x [ 2 7 ] = 1 − 2∗x27 ;
f o r ( i n t x28=0; x28<=1; x28++)
{

x [ 2 8 ] = 1 − 2∗x28 ;
f o r ( i n t x29=0; x29<=1; x29++)
{

x [ 2 9 ] = 1 − 2∗x29 ;
f o r ( i n t x30=0; x30<=1; x30++)
{

x [ 3 0 ] = 1 − 2∗x30 ;
i n t sumLast25 = x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16+x17+x18+x19+

x20+x21+x22+x23+x24+x25+x26+x27+x28+x29+x30 ;
i f ( sumLast25 != 10 && sumLast25 != 15) // t h i s i s the

00000011111 . . . 111 row cond i t i on
{

cont inue ;
}
/∗// f o r checking
stepCount++;
i f ( stepCount%10000 == 0)
{
System . out . p r i n t l n ("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Steps : " + stepCount +

"∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;
}∗/
f o r ( i n t x0=0; x0<=1; x0++)
{

x [ 0 ] = 1 − 2∗x0 ;
f o r ( i n t x1=0; x1<=1; x1++)
{

x [ 1 ] = 1 − 2∗x1 ;
f o r ( i n t x2=0; x2<=1; x2++)
{

x [ 2 ] = 1 − 2∗x2 ;
f o r ( i n t x3=0; x3<=1; x3++)
{

x [ 3 ] = 1 − 2∗x3 ;
f o r ( i n t x4=0; x4<=1; x4++)
{

x [ 4 ] = 1 − 2∗x4 ;
f o r ( i n t x5=0; x5<=1; x5++)
{

x [ 5 ] = 1 − 2∗x5 ;
//wanna de l e t e the compliment ?
stepCount++;
i f ( stepCount%10000000 == 0)
{

System . out . p r i n t l n ("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Steps : " + stepCount
+ "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;

//System . out . p r i n t l n ( Arrays . deepToString (D)+"\n") ; // t h i s takes
long to pr in t though

}
// s t a r t checking i f x i s va l i d
boolean checkResult = true ;
f o r ( i n t index=0; index < A. length ; index++)
{

in t sum=0;
f o r ( i n t j =0; j<A [ 0 ] . l ength ; j++)
{

sum = sum + A[ index ] [ j ]∗ x [ j ] ;
}
//sum i s e n t r i e s at row index now . Check i f i t ' s +−5 or not
i f (sum != 5 && sum != −5)
{

checkResult = f a l s e ;
break ;

}
}
i f ( checkResult )
{

//System . out . p r i n t l n ("PDS Found : " + Arrays . t oS t r ing (x )+"\n") ;
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/∗
i n t sumOfX = sumArray (x ) ;
i f (sumOfX != 4 && sumOfX != −4)
{
System . out . p r i n t l n (" I n t e r e s t i n g Sum: " + sumOfX + "\n") ;
}∗/
l i s tOfX . add ( Arrays . t oS t r ing (x ) ) ;

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}

}
}
long estimatedTime = System . nanoTime ( ) − startTime ;
System . out . p r i n t l n (" Al l execut ion o f t h i s method takes : " + estimatedTime

/1000000000.000 + " seconds . " ) ;
System . out . p r i n t l n ("The number o f s e t s checked whether i t i s PDS i s : " +

stepCount ) ;
System . out . p r i n t l n ("The t o t a l number o f PDS found i s : " + l i s tOfX . s i z e ( ) )

;
f o r ( i n t i =0; i <10; i++)
{

//System . out . p r i n t l n ("x" + ( i +1) + "=" + l i s tOfX . get ( i ) + " ; " ) ;
}
// i f want to p r in t f o r some sample o f PDSs
in t j =0;
f o r ( i n t i =0; i<l i s tOfX . s i z e ( ) ; i=i+j )
{

System . out . p r i n t l n ("x [ " + ( i +1) + "]=" + l i s tOfX . get ( i ) + " ; " ) ;
j++;

}
}
/∗∗
∗ Get the sum
∗/
pub l i c s t a t i c i n t sumArray ( i n t [ ] array )
{

i n t sum = 0 ;
f o r ( i n t i =0; i<array . l ength ; i++)
{

sum = sum + array [ i ] ;
}
re turn sum ;

}
}

The result of the run (not including the printing of sample PDSs at the end):

Al l execut ion o f t h i s method takes : 41.405464682 seconds .
The number o f s e t s checked whether i t i s PDS i s : 418401280
The t o t a l number o f PDS found i s : 94800
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Algorithms 9: Finding the size of the stabilizer of each PDS in Z3
5

ClearAl l [ " Global ` ∗ " ] ;
NotebookAutoSave−>True (∗Does not work . . . ∗ )
L i s tPo in t s=Union [ Table [ {1 ,Mod[ b , 5 ] , Floor [ b /5 ]} ,{b , 0 , 2 4 } ] , Table [ {0 , 1 , c } ,{ c

, 0 , 4 } ] , { { 0 , 0 , 1 }} ]
L i s tP lanes=L i s tPo in t s
(∗ Fie ld s t u f f ∗)

Eva luate InFie ld [y_] :=PolynomialMod [ PolynomialMod [ y , x^3+3x+2 ] , 5 ] ;
Tra [y_] :=PolynomialMod [ PolynomialMod [ y+y^5+y^(25) , x^3+3x+2 ] , 5 ] ;
TurnToVector3 [A_]:={ Co e f f i c i e n t [A, x , 0 ] , C o e f f i c i e n t [A, x , 1 ] , C o e f f i c i e n t [A, x , 2 ] } ;
ListExpo= Table [ { i , TurnToVector3 [ Eva luate InFie ld [ x^ i ] ] } , { i , 0 , 1 2 3 , 2 } ] ;
L i s tSquare s = Table [ TurnToVector3 [ Eva luate InFie ld [ x^ i ] ] , { i , 0 , 1 23 , 2 } ]
Length [ L i s tSquare s ] ;

l i s tA l lExpo=Table [ TurnToVector3 [ Eva luate InFie ld [ x^ i ] ] , { i , 0 , 1 23} ]
d i s c r e t eLog [ point_ ] :=Module [ { answer=−1},For [ i =1, i<=Length [ l i s tA l lExpo ] , i++, I f [

l i s tA l lExpo [ [ i ]]==point , answer=i −1;Break ; ] ] ; answer ] ;
d i s c r e t eLogSe t [D_] :=Module [ { setLog={}, i } , For [ i =1, i<=Length [D] , i++,

AppendTo [ setLog , d i s c r e t eLog [D [ [ i ] ] ] ] ; ] ;
setLog ] ;

d i s c r e t eLog [ { 0 , 2 , 0 } ] ;
d i s c r e t eLogSe t [ l i s tA l lExpo ]
(∗This func t i on get vector +−1 and convert in to s e t D∗)
convertToD [x_] :=Module [ {D={}} ,

For [ index=1, index<=Length [ x ] , index++,
I f [ x [ [ index ]]==1 ,AppendTo [D, L i s tPo in t s [ [ index ] ] ] ; AppendTo [D,Mod[4∗ L i s tPo in t s

[ [ index ] ] , 5 ] ] ; , I f [ x [ [ index ]]==−1,AppendTo [D,Mod[2∗ L i s tPo in t s [ [ index
] ] , 5 ] ] ; AppendTo [D,Mod[3∗ L i s tPo in t s [ [ index ] ] , 5 ] ] ; ] ] ;

] ; D ] ;

(∗ Finding automorphism group s i z e o f any s e t ∗)
(∗Generate a l l autoporphism ∗)
f indSizeOfAutoGroup [D_]:= Block [ {} ,

Pr int [ " Finding the s i z e o f autoporphism group " ] ;
t imeStart=AbsoluteTime [ ] ;
OneRow=Tuples [ { 0 , 1 , 2 , 3 , 4 } , 3 ] ;
count=0;
For [ i =1, i<=Length [OneRow ] , i++,

For [ j =1, j<=Length [OneRow ] , j++,
For [ k=1,k<=Length [OneRow ] , k++,
(∗Check i f matrix has Det0∗)
MatrixAuto={OneRow [ [ i ] ] , OneRow [ [ j ] ] , OneRow [ [ k ] ] } ;
I f [ D i v i s i b l e [ Det [ MatrixAuto ] , 5 ] , Continue [ ] ] ;
YesIsAutomorphism=True ;
For [ index=1, index<=Length [D] , index++,
I f [MemberQ [D,Mod[ MatrixAuto .D [ [ index ] ] , 5 ] ] ! = True , YesIsAutomorphism=False ;

Break ] ;
] ;

I f [ YesIsAutomorphism==True , count++;(∗Print [ MatrixForm [ MatrixAuto ] ] ; ∗ ) ] ;
]

]
]

Pr int [ "The s e t t e s t ed i s " , D ] ;
Pr int [ " S i z e o f automorphism group i s : " , count ] ;
d i s t inctForm=124∗120∗100/ count ;
Pr int [ "Number o f equ iva l en t s e t s i s : " , d i s t inctForm ] ;
timeUsed=AbsoluteTime [ ] − t imeStart ;
Pr int [ "Time used in t h i s p roce s s i s " , timeUsed ] ;
] ;

(∗Example o f what PDS can be in the vector X_D form . This can be obtained from
algor i thms that f i nd a l l PDS∗)

x0
={−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1};

x1={1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1};
x2={−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,1};
x3={1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1};
x4={−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1};
x1001

={1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1};

x7001
={−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1};

x10001
={−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1};
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x11001
={−1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1};

x12001
={1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1};

x13001
={−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1};

x14001
={−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1};

x15001
={−1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1};

x16001
={1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,−1 ,1};

x30001
={−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1};

x17001
={1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1};

x43001
={1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,1};

x70001
={−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1};

x77001
={1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,−1};

x94001
={1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1};

(∗Example o f how to f i nd s t a b i l i z e r s i z e ∗)
f indSizeOfAutoGroup [ convertToD [ x1001 ] ] ;
f indSizeOfAutoGroup [ convertToD [ x10001 ] ] ;
f indSizeOfAutoGroup [ convertToD [ x94001 ] ] ;
f indSizeOfAutoGroup [ convertToD [ x1 ] ] ;
f indSizeOfAutoGroup [ convertToD [ x0 ] ] ;

(∗The r e s t below are opt i ona l − added f o r more v i s u a l i z a t i o n ∗)
(∗Optional ly , we may want to t e s t these x vec to r s ∗)

Clear [ a , b , c ] ;
convertTo3Var [ a_,b_, c_ , point_ ] := a^point [ [ 1 ] ] b^point [ [ 2 ] ] c^point [ [ 3 ] ] ;
convertTo3VarOnSet [ a_,b_, c_ ,D_]:=Module [ { convertedToVarD={}} ,For [ i =1, i<=Length [D

] , i++,AppendTo [ convertedToVarD , convertTo3Var [ a , b , c ,D [ [ i ] ] ] ] ] ;
convertedToVarD ] ;

convertTo3VarOnSet [ a , b , c , {{1 , 2 , 3} , {2 , 3 , 4} , {0 , 0 , 1}} ] ;
d i f f e renceSum [a_,b_, c_ ,D_]:= Total [ convertTo3VarOnSet [ a , b , c ,D ] ] ;
f indDifferenceSumFromVector [x_] :=Module [ {} ,

partOne=di f f e renceSum [ a , b , c , convertToD [ x ] ] ;
partTwo=di f f e renceSum [ a^−1,b^−1,c^−1,convertToD [ x ] ] ;
product=Expand [ a^5 b^5 c^5∗partOne∗partTwo ] ;
PolynomialMod [ product , { a^5−1,b^5−1,c ^5−1}]]

(∗Also , op t i ona l l y we can look at i t s add i t i v e s t r u c tu r e ∗)
lookAddit ive [ xi_ ] :=Module [ {} , Pr int [ convertToD [ x0 ] ] ; ListPointPlot3D [ convertToD [ x0

] ] ]
l ookAddit ive [ x [ 1 ] ]

(∗and also , op t i ona l l y we can look at i t s mu l t i p l i c a t i v e s t ru c tu r e ∗)
l o o kMu l t i p l i c a t i v e [ xi_ ] :=Module [ { setLog , number , i } , setLog=Sort [ d i s c r e t eLogSe t [

convertToD [ x i ] ] ] ; Pr int [ setLog ] ; ( ∗ Print [ NumberLinePlot [ setLog ] ] ; ∗ )
Array [ set , 4 ] ;
s e t [ 1 ]={} ; s e t [ 2 ]={} ; s e t [ 3 ]={} ; s e t [ 4 ]={} ;
For [ i =1, i<=Length [ setLog ] , i++,
number=setLog [ [ i ] ] ;
s e t Index=Quotient [ number , 3 1 ] ;
number=Mod[ number , 3 1 ] ;
AppendTo [ s e t [ s e t Index +1] ,number ] ;
] ;

NumberLinePlot [ { s e t [ 1 ] , s e t [ 2 ] , s e t [ 3 ] , s e t [ 4 ] } ]
]

l o o kMu l t i p l i c a t i v e [ x13501 ]
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