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Abstract 

 Polycyclic aromatic hydrocarbons (PAHs) are hypothesized to comprise a significant 

portion of interstellar carbon identified from the Diffuse Interstellar Bands (DIBs). Gas phase 

cation-molecule reactions between compounds that previously existed as weakly bound species 

provides the best explanation for the emergence of PAHs in the interstellar medium (ISM). In 

this work, we use computational methods to characterize one of these weakly-bound systems. 

We discovered that intramolecular charge distribution (calculated using the Natural Population 

Analysis) dictate the complexes formed between a paradifluorobenzene cation and either one or 

two HCN molecules. Additionally, the relative stabilities of the complexes and the binding 

energies released upon their formation are also determined by the molecular charge distribution. 

Ultimately, this finding helps us better understand the properties that dictate weakly-bound 

species that potentially serve as precursors for reactive systems in the ISM. 
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 Introduction 

The Diffuse Interstellar Bands (DIBs) are absorption lines seen from the spectra of 

nearby stars following light’s pass through the interstellar medium (ISM). The absorption lines 

observed in these spectra, observed as early as 1922 (1), correspond to compounds of a uniquely 

stable nature that exist in the harsh environment of the ISM (with a temperature of approximately 

4 Kelvin). Despite the efforts of the scientific community since the discovery of the DIBs, the 

first absorption lines were not conclusively identified as C60
+ until quite recently (2). Therefore, 

the specific identity of the remaining DIBs remains an area of focused study in current research. 

Additionally, the presence of these compounds in the ISM engenders questions regarding the 

unique stability of these species and their formation from smaller molecules in an environment 

unfavorable for reactions. 

Current researchers have hypothesized that the majority of the DIBs correspond to 

carbonaceous gases in the ISM (3 - 5).  Furthermore, it is hypothesized that the majority of these 

carbonaceous gases are large carbon molecules, such as fullerenes (further supported by the 

recent identification of C60
+), diamond, and polycyclic aromatic hydrocarbons (PAHs).  

Specifically, the documented evidence of smaller organic molecules in the ISM provides support 

for the hypothesis that some of the DIBs correspond to PAHs. These smaller molecules could 

serve as precursors for PAH synthesis in the ISM. Moreover, PAHs have the ability to exist in 

the ISM because of the overall stability, while these molecules have strong potential for electron 

transitions (due to their aromatic rings) that would lead to the absorption lines observed in the 

spectra. For these reasons, researchers have focused on how PAHs could emerge from reactions 

between smaller molecules in the ISM. 
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 The majority of the PAHs in the ISM most likely emerged from gas phase reactions 

between small molecules (4). Gas phase reactions between one cationic species and another 

neutral species are more likely to occur than neutral-neutral reactions because of the lower 

activation energy required for the initiation of the reaction (5 - 7). Since the smaller organic 

compounds required for PAH formation exist in space, cation-molecule reactions between these 

species present a possible pathway for PAH synthesis in the ISM. Therefore, in order to 

understand the reactions that lead to the presence larger PAH molecules, scientists need to 

understand the properties that dictate weakly bound interactions between smaller precursor 

molecules. Indeed, small molecules could exist in these weakly-bound states in the ISM for 

substantial periods of time before obtaining the energy from an outside source that induces the 

reaction. Therefore, understanding the weakly bound interactions between small molecules in the 

ISM provides a frame of reference for understanding interstellar chemistry. 

 Ionic hydrogen bonding interactions, formed between a cation and a polar molecule 

capable of hydrogen bonding, could dictate the arrangement of small molecule species in the 

ISM. Ionic hydrogen bonds (IHBs), which are of particular importance in some biological and 

organic molecules (8 - 10), are a particularly strong intermolecular 

interaction (11). IHBs have also been shown to dictate the 

arrangements of weakly bound species in the gas phase (12 - 14). 

Additionally, the stepwise formation of species consisting of a 

single cationic hydrocarbon and multiple small organic molecules 

held in place due to IHBs has also been demonstrated (7, 12, 15 -

17). Therefore, the complexes formed between small 

carbonaceous gases and small molecules in the gas phase due to 

Figure 1: Ionic hydrogen 
bond between HCN and 
pyridine+. Calculated IHB 
structures of pyridine+ and 
HCN (17). In this case, the 
attractive force is particularly 
strong because of the system’s 
ability to form an IHB due to 
presence of cation. Distances 
shown are in angstroms. 
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IHBs could serve as precursors for reactions that lead the formation of PAHs in the ISM. 

Importantly, the overall stability of these species due to the strength of IHBs suggests that small 

molecules could form these species in the ISM and exist in that arrangement until overcoming 

the requisite activation energy barrier. 

 Benzene-like cations and hydrogen cyanide (HCN) can form IHBs and exist as stable 

weakly bound species. For that reason, we computationally analyzed weakly bound species 

formed between paradifluorobenzene cations and (HCN)n (n = 1 and 2) in order to better 

understand the properties that dictate the interactions between these molecules. Moreover, the 

presence of HCN in space in both comet dust and planetary nebula has been well established (18- 

21). Additionally, the fact that paradifluorobenzene is the most stable of the two-fluorine 

benzene like ring species made it the focus of this work. Similar to HCN, evidence of the 

existence of both C6H6
+ and F2 in space has been documented (22 - 24). From our computational 

analysis, we report that the weakly-bound interactions between paradifluorobenzene cations and 

HCN, in addition to these species relative stabilities, are dictated by the charge distributions of 

the two molecules. 

Theoretical Methods 

 Gaussian 09 was used to carry out Density Functional Theory calculations on complexes 

formed between a single paradifluorobenzene cation and either one or two HCN molecules. 

Numerous combinations of starting positions between these molecules were initially drawn using 

the ArgusLab software package. These calculations were performed at Truhlar’s M062X level of 

theory (25) using Dunning’s aug-cc-pVTZ basis set (26). From these calculations, the zero point 

vibrational energies were determined. Frequency calculations for all species were also performed 
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in order to confirm the lack of imaginary frequencies.  Additionally, the Boys and Bernardi 

counterpoise method (27) was used to correct the basis set superposition error, leading to the 

determination of a zero point counterpoise corrected energy for each species. Counterpoise 

corrected binding energies were also calculated for each complex based upon the counterpoise 

corrected vibrational energies of the independent paradifluorobenzene cation and HCN 

molecules. Optimized geometries, relative zero point counterpoise corrected energies, and 

counterpoise corrected binding energies were compared in order to determine the stability of the 

species. The stability of these species was further justified using the charge distribution for each 

molecule calculated using the Natural Population Analysis (NPA) at the same level of theory and 

basis set (28). 

Results and Discussion 

 Table 1 displays the stable geometries obtained following our calculations for complexes 

formed with only one HCN molecule. From the numerous initial geometries that we used as an 

input, we identified only these three structures as stable arrangements between the two 

molecules. Therefore, we see that the HCN can occupy one of three stable positions relative to 

the cation. Based on the relative stabilities of these positions, we saw that the most stable 

complex forms when the HCN binds the cation in an out-of-plane fashion where the HCN is 

positioned above the carbon molecule bound to the fluorine in the cation. The two other 

positions, both of which form in-plane IHBs, are less stable the out-of-plane position. From the 

amount of starting arrangements inputted, it is clear that these are the only three positions the 

HCN can occupy that form stable complexes with the paradifluorobenzene+. 
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 Optimized Geometry Zero-Point Counterpoise Corrected 
Relative Energy 

Counterpoise Corrected 
Binding Energy 

1 

 

0 -12.34 

2 

 

1.168 -11.27 

3 

 

2.280 -10.11 

 
Table 1: Paradifluorobenzene cations with one HCN molecule. Table displays the optimized geometries obtained 
using the M062X/aug-cc-pVTZ level of theory and basis set. Zero-Point Counterpoise Corrected Relative Energy 
indicates scaled energy of the overall complex. Counterpoise Corrected Binding Energy represents energy change 
due to complex formation based upon the Counterpoise Corrected energies of the standalone paradifluorobenzene 
cation and HCN molecule. All energies calculated in kcal/mol. 
 
 In order to explain the presence of only three complexes and their relative stabilities, we 

calculated the charge distributions for the cation and the HCN molecule using both the Mulliken 

Distribution and NPA. As shown in Fig. 1, both calculations predicted the same sign of charge 

for the molecules in the paradifluorobenzene+, however, the Mulliken calculation produced more 

extreme values. Additionally, the Mulliken calculation assigned the carbon atom in HCN a 

negative charge, which violated our chemical intuition based upon the polar nature of the 

molecule. Mulliken charge distributions are known to be heavily dependent upon the basis set 

used, therefore, given our results, we decided to proceed with our analysis using the NPA charge 

distribution (29). As shown in Fig. 1, this calculation indicated that the two carbon atoms in the 

cation bound to the fluorine atoms were positively charged, while the remaining carbons in the 

molecule were negatively charged.  
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 Using the NPA charge distribution, we can explain the stable positions occupied by the 

HCN. The three stable positions we observed correspond to regions in the cation where the 

negatively charged nitrogen atom in the HCN can access the regions of positive charge in the 

paradifluorobenzene+. Correspondingly, the most stable complex forms when the HCN accesses 

the most positive region in the cation: the positively charged carbon in the ring that is bound to 

the fluorine atoms. Therefore, the relative stability and binding energy changes observed for 

these complexes also relate to the regions of charge within the paradifluorobenzene cation. 

 

Natural Population Analysis 

Mulliken Distribution 

Figure 2: Calculated charge distributions of paradifluorobenzene+ and HCN. Charges assigned to each 
atom in the molecules based upon the Natural Population Analysis and Mulliken Distribution methods. All 
charges calculated at the M062X/aug-cc-pVTZ level of theory and basis set. 
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 As shown in Fig. 2, the influence of the charged regions in the paradifluorobenzene+ have 

different impacts on the HCN depending upon whether it bends in an in-plane or out-of-plane 

position. When the HCN occupies one of the two in-plane positions, the sum of the charges the 

HCN faces (due to the hydrogen atoms) is positive. Therefore, the HCN is still able to occupy 

this spot, in spite of the negatively charged carbon atoms. By contrast, when the HCN binds in 

out-of-plane position, the only atom nearby with a positive charge is the carbon atom directly 

underneath the HCN. Therefore, the out-of-plane species does not depend on the sum of the 

charges faced, but rather the individual charge of the carbon atom. Additionally, as indicated by 

the calculated energies, the out-of-plane position is the most stable because of the direct access to 

the most positive region in the molecule. This access is exhibited by the shorter distance between 

the nitrogen and the carbon in the out-of-plane species (278.5 pm) than in the in-plane species 

(314.2 pm). This distance corresponds to the two molecules ability to interact due to their 

charged regions, which relates to the increased stability in the out-of-plane complex. 

 

 

 

 

 

 

 

 

 

In-Plane Species 

Figure 3: Difference in interaction between in-plane and out-of-plane complexes. Most stable in-plane 
species and out-of-plane species shown here with relevant charges of paradifluorobenzene+ atoms displayed. The 
in-plane position is stable because of the sum of the charges the HCN molecule faces. By contrast, the out-of-
plane species is a stable location because of the single positive charge accessible to the HCN. 

Out-of-Plane Species 

0.47649 

-0.08374 

-0.08374 

0.13355 

0.13355 
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 Following the analysis of the complexes with a single HCN molecule, we performed 

similar calculations with species containing two HCN molecules. As shown in Table 2, the 

complexes formed by adding an additional HCN are simply combinations of the stable positions 

observed in the single HCN species. Furthermore, as seen in complexes three and seven, the 

HCN molecules can also form a dimer and position themselves in a single, stable location 

relative to the cation. This analysis did not reveal any other stable positions the HCN molecules 

can occupy that were not previously identified in the single HCN calculations.   

 Applying the NPA charge distribution to these species explains the relative stabilities of 

the resulting compounds. The most stable species are those where the HCN molecules access 

separate regions of positive charge in the cation. Furthermore, we can see that more stable 

complexes form when the molecules occupy individual positions instead of forming a dimer in 

single location. This corresponds with the greater attractive force due to the IHB between the 

paradifluorobenzene+ and the HCN, which is greater than the attractive force of a typical 

hydrogen bond that the HCNs form independently. Interestingly, complex four has a lower 

relative energy than complex three, in spite of the fact that it has a higher binding energy. This 

indicates that the presence of a single HCN in the out-of-plane position may negatively impact 

the ability of another HCN to bind in the other out-of-plane position on the same side of the 

paradifluorobenzene+. However, once both those HCN molecules do form IHBs with the cation, 

a more stable complex is formed than some others with greater binding energies. 
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 Optimized Geometry Zero-Point Counterpoise Corrected 
Relative Energy 

Counterpoise Corrected 
Binding Energy 

1 

 

0 -23.02 

2 

 

1.203 -22.34 

3 

 

1.470 -22.27 

4 

 

1.407 -21.99 

5 

 

1.511 -21.72 

6 

 

2.006 -21.72 

7 

 

2.933 -20.54 

8 

 

3.948 -19.01 

 
Table 2. Paradifluorobenzene cations with two HCN molecules. Table displays the optimized geometries 
obtained using the M062X/aug-cc-pVTZ level of theory and basis set. Zero-Point Counterpoise Corrected Relative 
Energy indicates scaled energy of the overall complex. Counterpoise Corrected Binding Energy represents energy 
change due to complex formation based upon the Counterpoise Corrected energies of the standalone 
paradifluorobenzene cation and HCN molecules. All energies calculated in kcal/mol. 
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 The stable species identified contain only some of the predicted combinations of two 

HCN species based upon the stable positions identified in the previous calculations. Given the 

HCN molecules ability to form dimers in each stable location, we would expect to see seven 

additional species with the two HCN molecules. We hypothesize that we did not observe these 

complexes due to a change in the charge distribution of the cation following the formation of the 

first IHB between the paradifluorobenzene+ and one HCN. We expect that this initial interaction 

alters the charge in the cation and eliminates the second stable location, which prevents the 

second HCN from occupying that position. The fact that the calculated binding energies for the 

two HCN complexes are not direct sums of the binding energies from the one HCN species (in 

fact, the binding energies in the two HCN complexes are approximately 1 kcal/mol less than the 

sums of the appropriate one HCN species) supports this hypothesis. This suggests that the IHB 

formed with the first HCN alters the other stable positions in the cation, making the energy 

gained from the second HCN’s attraction slightly less than expected. 

 Overall, our calculations indicate that the existence of these stable complexes between 

the paradifluorobenzene cation and HCN molecules, in addition to their relative stabilities, are 

dictated by the charge distribution of the two molecules. Future work will help us further develop 

the influence of HCN addition to the overall charge distribution of the system, which will help us 

understand the absence of several expected complexes. These findings help us understand the 

properties that dictate the formation of these weakly bound species that could serve as precursors 

for cation-molecule chemical reactions. Ultimately, this work contributes to our overall 

understanding of the characteristics of systems that may ultimately be responsible for the 

presence of large interstellar molecules. 
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