
University of Richmond University of Richmond 

UR Scholarship Repository UR Scholarship Repository 

Honors Theses Student Research 

2016 

Characterization of catecholamine receptors and transporters in Characterization of catecholamine receptors and transporters in 

murine macrophages murine macrophages 

Elizabeth Gonye 
University of Richmond 

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses 

 Part of the Biochemistry Commons, Biology Commons, and the Molecular Biology Commons 

Recommended Citation Recommended Citation 
Gonye, Elizabeth, "Characterization of catecholamine receptors and transporters in murine macrophages" 
(2016). Honors Theses. 941. 
https://scholarship.richmond.edu/honors-theses/941 

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It 
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For 
more information, please contact scholarshiprepository@richmond.edu. 

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/2?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/941?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


Characterization of Catecholamine Receptors and Transporters in Murine Macrophages 

by 

Eliz.abeth Gonye 

Honors Thesis 

in 

Program in Biochemistry and Molecular Biology 

University of Richmond 

Richmond VA 

April 22, 2016 

Advisor: Dr. Krista Stenger 



This thesis has been accepted as part of the Honors requirements 

in the Program in Biochemistry and Molecular Biology 

(advisor signature) 

(reader signature) 

(date) 

(date) 



1. Introduction 

Macrophages are a critical part of the immune response. When circulating monocytes 

move into tissues they differentiate into macrophages to mount the first line of defense against 

pathogens. Macrophages are primarily phagocytic cells, physically engulfing pathogens and cell 

debris at the site of an infection (Abbas et al. 2009). They play a key role in the innate immune 

system, initiating and maintaining the inflammatory response and acting as antigen presenting 
cells to active adaptive immunity (Abbas et al. 2009). Macrophages are activated in two different 

ways: the binding of a pro-inflammatory cytokine or by the recognition of a pathogen-associated 

molecular pattern (PAMP) by a receptor on the macrophage's surface (Abbas et al. 2009, Chi et 
al. 2003). Lipopolysaccharide (LPS) is a component of gram-negative bacterial cell walls and is 

a common activating PAMP that triggers NF-KB mediated pro-inflammatory effects (Abbas et al. 

2009). When an immune response is mounted, macrophages act by phagocytosing pathogens and 
by releasing nitric oxide (NO) and other reactive intermediates as well as by secreting pro­

inflammatory cytokines (Abbas et al. 2009). Cytokine release enhances the activation of 
phagocytes and promotes the recruitment of other immune cells to the site of infection (Abbas et 

al. 2009). Macrophages are able to control the spread of the pathogen through these non-specific 
destructive effects as well as by recruiting other immune cells to initiate a targeted immune 

response. 

Catecholamines are small monoamines that act as neurotransmitters in the central and 

peripheral nervous systems. Norepinephrine (NE) is a specific catecholamine that plays a critical 
role in the stress response as it is mainly responsible for initiating the "fight or flight" response 

(Flierl ct al. 2008). While catecholamines were previously thought to only initiate changes in the 

nervous system, recent work has shown that activated macrophages are able to synthesize and 
release catecholamines (Brown et al. 2003, Engler et al. 2004). In the nervous system, 

catecholamines initiate changes in physiology by binding to adrenergic receptors (ARs) found on 

post-synaptic cells. ARs are seven-transmembrane G-protein coupled receptors that interact with 
Gs proteins (Flierl et al. 2008). There are two main isoforms of AR.s, a. and p which can then be 

divided further into subtypes. Treatment of immune cells with AR agonists, including NE, has 

been shown to have an effect on NO and cytokine production which differs depending on the 
receptors being activated (Spengler et al. 1994, van der Poll et al. 1994). Treatment with P-AR 
agonists has been shown to decrease NO and pro-inflammatory cytokine production which is 

thought to be mediated through reduced activation of the NF-KB pathway (Sigola et al. 2001). In 
peritoneal macrophages, treatment with P-AR antagonists consistently causes an increase in TNF 

production clearly indicating the anti-inflammatory role of P-AR signaling (Spengler et al 1994). 

Treatment of macrophages with an a -AR agonist clonidine has been shown to significantly 

increase macrophage resistance to pathogen growth in Mycobacterium avium infection 
(Weatherby et al. 2003). In general, stimulation of P-ARs is thought to have an anti­
inflammatory effect on activated macrophages and stimulation of a -ARs is thought to have a 

pro-inflammatory effect. 



However, these patterns are not a]ways consistent with the opposite being observed under 

certain conditions (Szelenyi et al. 2006, Hamano et al. 2007). Irf mice treated with NE there was 

an observed decrease in survival of Staphylococcus aureus infection even though there was an 

observed increase in macrophage maturation (Grebe et al. 2010). Additionally, the concentration 

of NE or other AR agonists present has been shown to cause fluctuations in observed data with 

low concentrations having more pronounced anti-inflammatory effects and higher concentrations 

mediating pro-inflammatory changes (Baccan et al. 2010). Additionally, stimulation of different 

receptor subtypes can have widely varying effects depending on complex environmental factors. 
It is possible that the activation state of the macrophage as well as the mode of activation may 

influence the expression of the adrenergic receptors and play an important role in determining 

how the macrophage responds to AR stimulation. Therefore, characterization of the receptors 

expressed by macrophages is important for understanding immune regulation by catecholamines. 

In addition to the adrenergic receptors, vesicular transporters are critical for 

catecholamine signaling. When catecholamines are released into the synaptic cleft to propagate a 
nerve impulse, they must be quickly recycled to ensure proper signaling. In the nervous system, a 

plasma membrane transporter pumps catecholamines back into the cytoplasm where they are 

then packaged into vesicles by a vesicular monoamine transporter (VMA T). There are two 

isoforms of the VMA T protein. VMA T2 is a high affinity transporter found mainly in the central 

nervous system where the time course for signaling is usually very rapid. VMAT1 is the lower 

affinity transporter and is found mainly in the neuroendocrine system where signals usually 

occur on a longer time scale. It is known that macrophages can synthesize and release 

catecholamines under infection conditions but it is unclear whether they can store these 
molecules for release at a later time (Spengler et al . 1994). It is possible that VMATs could be 

involved in the storage and release of catecholamines from immune cells. 

2. Materials and Methods 

2.1. Cell culture 

The RA W264.7 murine macrophage cell line was used as a model for macrophage 

activity. Cells were cultured jn RPMI-1640 complete media supplemented with 10% heat­

inactivated fetal calf serum, 1.5% sodium bicarbonate, 25 mM HEPES buffer, 1 % minimum 

essential medium vitamins, 1 % nonessential amino acids, 1 % glutamine, 100 units/mL penicillin, 

and 100 ~tg/mL streptomycin. Cells were maintained in tissue culture flasks in a humidified 

incubator at 37°C in 5% C02. Fresh media was added and cells were sub-cultured as needed to 
maintain health. 

2. 2. Cytokine measurement by sandwich ELISA 

RA W264.7 murine macrophage cells were seeded into the wells of a 12-well tissue 
culture plate at a density of l .5x 106 cells per well. The macrophages were treated with 5 µM, 2.5 



µM, 500 nM, or 50 nM of the a-adrenergic receptor agonist, clonidine (CLN), or l µM, 500 nM, 

I 00 nM, or 10 nM of the ~-adrenergic receptor agonist, formoterol (FOM). Additional studies 
were performed using RS79948, an cx.2-adrenergic receptor antagonist, at a concentration of 500 

nM for 30 minutes at 37°C in 5% C02 prior to the addition of clonidine. Control wells were left 

untreated and unactivated. All treatment groups were then incubated for 30 minutes at 3 7°C in 
5% C02 before 10 ng/mL or 30 ng/mL of LPS was added to activate the cells. Cells were then 

incubated at 37°C in 5% C02 for the appropriate times (TNF: 4 hours, IL-6: 21 hours). 

Supematants were harvested from each well and centrifuged at 11,000 rpm for 5 minutes. The 
pellet was then discarded and the supernatant was held at -20°C until use. To quantify levels of 

TNF and IL-6 in supernatants, OptEIA Mouse TNFa enzyll?e-linked immunosorbent assay 

(ELISA) kits and OptEIA Mouse IL-6 ELISA kits were obtained from BD Biosciences. The kits 

were executed according to manufacturer's instructions using collected supernatants. 

Concentrations ofTNFa and IL-6 were calculated from their respective standard curves. An 

ANOVA with a Tukey's analysis using a p < 0.05 was used to determine significant changes 
between sample treatments. Statistical analysis was performed with Graph Pad Prism software. 

2.3. RT-qPCR of adrenergic receptor genes 

RA W264.7 murine macrophage cells were seeded into the wells of a 6-well tissue culture 

plate at a density of l.Oxl06 cells/well. Cells were allowed to adhere overnight at 37°C in 5% 

C02. Cells were then activated with 500 ng/mL LPS for 24 hours. Control wells were not 
activated with LPS. RNA was isolated from cells using the Qiagen RNeasy Mini kit according to 
the manufacturer's instructions with an additional 15 minute DNase step (Promega, M61 OA). 

RNA concentrations were measured using a NanoDrop Lite instrument (Thermo Scientific). For 

each sample, 500 ng of RNA was reverse transcribed using a qScript cDNA synthesis kit from 

Quanta Biosciences according to manufacturer's instructions. To detect AR gene expression 

levels, qPCRprimers (~2, MP200467; ~1, MP200466; a1A, MP200460; a1B, MP200461; a.2A, 
MP200463) were purchased from Origene. Actin primers (MP200232, Origene) were also 

obtained to use as the housekeeping gene for normalization. Reactions containing primers and 

SYBR Green Master Mix (Quanta Biosciences, l 70-8880BR) were assembled using 

manufacturer's instructions. Reactions were run on a Bio-Rad CFX Connect Real-Time System 

using the following protocol: 95°C 3 minutes, repeat 35 times: 95°C for 30 seconds, 60°C for 30 
seconds, 72°C for 30 seconds. Cycling was followed by a meltitig curve analysis to ensure 
specific amplification of the desired product. RT-qPCR data was analyzed using -2MCt with actin 

as the control gene. To analyze significance of differences between native and activated 

expression levels, a paired Student's t-test was performed using GraphPad Prism (GraphPad 

Software). 

2. 4. Immunofluorescence 

Glass cover slips were coated with a solution of0.01 % poly-lysine in d.H20. RA W264.7 

cells were plated onto sterile coverslips in a 6-well tissue culture plate at a density of 1.5x105 



cells/well. The cells were incubated overnight at 3 7°C in 5% C02 to allow for cell adherence. 
Cells were then activated with 500 ng/mL LPS and incubated av37°C in 5% C02 for 24 hours. 
Control samples were not activated. After incubation, cells were washed with PBS and fixed 
with 4% paraformaldehyde in PBS. After fixation, cover slips were blocked with· a solution of 
5% donkey serum and 0.001 % Triton-X in PBS. After blocking, cover slips were washed with 
PBS and incubated with primary antibody (a2s: sc-1479, Santa Cruz Biotechnology; P2: sc-570, 
Santa Cruz Biotechnology) diluted 1: 100 in blocking solution. After primary antibody 
incubation, cover slips were washed again with PBS and incubated with secondary antibody 
diluted 1 :5000 (Alexa647 donkey anti-rabbit IgG, Alexa488 donkey anti-goat lgG), DAPI 
diluted 1 :4000, and Alexa594-Phalloidin diluted l: 1000 in blocking solution in the dark. After 
secondary incubation, coverslips were washed with PBS and mounted on slides using 80% 
glycerol, 0.5% n-propyl gallate in PBS and sealed with nail polish. Slides with secondary 
antibody alone were prepared as controls to ensure specificity of primary antibodies. 

Slides were imaged using an Olympus Fluoview l 200 Laser Scanning Confocal 
Microscope with excitation wavelengths of 358 nm, 488 nm, 581 nm, and 633 run. Images were 
collected using Olympus software and were manipulated using ImageJ to produce figure images. 

2.5. PCR ofVMAT genes 

RA \V264.7 rnurine macrophage cells were seeded into the wells of a 6-well tissue culture 
plate at a density of l .Ox 106 cells/well. Cells were allowed to adhere overnight at 37°C in 5% 
C02. For NE treatments, cells were treated with NE at a concentration of 1 µM for varying 
amounts oftime (1, 4, 8 hours). For LPS activation, cells were activated with 500 ng/mL LPS for 
varying amounts of time (1, 4, 8, 24, 48 hours). Control wells were not treated with LPS or NE. 
RNA from cell samples was isolated according to the procedure described in 2.3. For each 
sample, 500 ng of RNA was reverse transcribed using a qScript cDNA synthesis kit according to 
manufacturer's instructions (Quanta Biosciences). cDNA was amplified using primers for 
VMATl (Origene, MP215693), VMAT2 (Origene, MP215694), actin (Origene, MP200232), or 
GAPPH (Origene, MP205604) depending on treatment. PCR samples were assembled using 
GoTaq Green (Quanta Biosciences) according to manufacturer's instructions and were cycled 
using the same protocol as outlined in 2.3. PCR products were run on a 3% agarose gel stained 
with EtBr with a ladder (Quik-Load 50 bp ladder, New England Biolabs) to ensure correct 
product size. Expected size of VMA Tl and VMA T2 products were 132 bp and 138 bp 
respectively. Products were visualized with UV to generate figures. 

3. Results 

3.1. Treatment with /h-AR agonistforrnoterol decreases pro-inflammatory cytokine production in 
RAW264.7 



. 
The inhibitory effect of NE on pro-inflammatory cytokine production is known to be 

mediated by stimulation of ~-ARs on primary macrophages (Br6wn et al. 2003). To better 

characterize the role of ~-ARs in RA W264.7 cells, formoterol, a specific P2 agonist, was added 

to cells prior to activation with LPS. Both IL-6 and TNF secretion levels were significantly 

decreased after treatment with formoterol (Fig. lA-B). Formoterol selectively activates P2-ARs, 
so it is likely that the observed effects are due to catecholamine-mediated signaling through the 

~2-AR pathway. 
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Figure 1- Trcatmentwith ~-AR agonist formoterol decreases TNF and IL-6 production in RAW264.7 cells 
RA W264. 7 macrophages were plated into 12-well tissue culture plates at a density of I .Sx I 06 cells/well. Cells were 
treated with different concentrations of formoterol for 30 minutes and then activated with LPS . Cells were incubated 
(37°C. 5% C02) for 4 hours prior to TNF ELISA analysis (A); or 21 hours prior to IL-6 ELISA analysis (B). Paired 
Student's t-test analysis was performed using Graph Pad Prism software(*= p < 0.00 I compared to LPS alone). 

3. 2. Treatment with a-AR agonist clonidine enhances pro-inflammatory cytokine production in 

RAW264. 7 cells 

Primary macrophages are known to express a-ARs, but the effect of a-AR stimulation on 
macr~phage activity is not well.characterized. Across most primary literature, a-ARs are thought 

to enhance the pro-inflammatory activity of activated macrophages. However, under certain 

conditions, it has been show that a-AR stimulation may have no effect on macrophage activity. 

To characterize the role of a-ARs in RA W264.7 model macrophages, cells were treated with 
clonidine, a non-specific a.-AR agonist> and levels ofTNF-a. and IL-6 released were measured by 

ELISAs. For TNF, data showed that a -AR stimulation led to a significant increase at all doses 

tested (Fig. 2A) while IL-6 secretion increased only at the 500 nM dose of clonidine (Fig. 2B). 

This range specific functionality has been observed in other immune cells, but the exact 

mechanism or factors involved in this ambivalent a-AR signaling are not well understood. 
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Figure 2- Treatment with a-AR agonist clonldine increases TNF and lL-6 production in RAW264.7 cells 
RAW264. 7 macrophages were plated into 12-well tissue culture plates at a density of l.5x I 06 cells/well. Cells were 
treated with different concentrations of clonidine for 30 minutes and then activated with LPS . Cells were incubated 
(37°C, 5% CO~) for 4 hours prior to TNF ELISA analysis (A); or 21 hours prior to IL-6 ELISA analysis (B). Paired 
Student's t-test analysis was performed using Graph Pad Prism software(* = p < 0.001 compared to LPS alone). 

3.3. Treatment with o.-AR antagonist R279948 in conjunction with clonidine inhibits 
enhancement of pro-inflammatory <,ytokine production in RA W264. 7 cells 

To better characterize the role of the a.-ARs in modulating macrophage function, 

RA W264.7 cells were treated with RS79948, an a.2-AR antagonist, prior to treatment with 
clonidine. The addition of RS79948 blocks signaling through a.2-ARs. The addition of RS79948 

prior to clonidine treatment resulted in a significant decrease in TNF production, bringing levels 

back down to or below baseline activation levels (Fig. 3A). IL-6 secretion levels are similarly 

affected with secretion levels of cells treated with RS79948 and clonidine returning to baseline 
activation levels (Fig. 3B). These results suggest that the clonidine agonist affect is mediated 

through the a.2-ARs specifically. They also may suggest that a.2-AR signaling is normally 
involved in the enhancement of macrophage activity in response to LPS activation due to the 

decre·ase below baseline levels for TNF secretion seen in populations treated with RS79948. 
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Fign e 3-Pre-treatment with a-AR antagonist RS79948 inhibits TNF and IL-6 production in RAW264.7 cells 
RAW264.7 macrophages were plated into 12-well tissue culture plates at a density of l .5x 106 cells/well. Cells were 
treated with RS79948 for 30 minutes, then subsequently treated with different concentrations of clonidine for 30 
minutes and then activated with LPS . Cells were incubated (37°C, 5% C02) for 4 hours prior to 1NF ELISA analysis 
(A); or 21 hours prior to IL-6 ELISA analysis (B). Paired Student's t-test analysis was performed using Graph Pad 
Prism software(*= p < 0.05, •• = p < 0.01 compared to LPS alone). 

3.4. RA W264. 7 cells express genes for multiple subtypes of A Rs 

There are many different subtypes of both the a and ~-ARs that exist in central and 

peripheral nervous tissue. The expression pattern of these receptors is not well characterized in 

macrophages. RA W264.7 cells were used as a model to determine both native and activated 

expression levels for multiple subtypes of both a and P-ARs. RA W264.7 cells were found to 

natively express both ~1 and ~1-ARs (Fig. 4A-B). The level of P2-AR gene expression was shovm 

to significantly decrease in cells activated with LPS which is consistent with P2-ARs' proposed 

anti-inflammatory effects (Fig. 4B). Interestingly, the level of P1-AR expression was shown to 

incre~se in cells activated with LPS (Fig. 4A). The effect of P1-AR stimulation has not yet been 

characterized so it is unclear what role these receptors may play in regulating macrophage 

function. 

RA W264.7 cells were also found to express the genes for multiple subtypes of the a -AR 

isoform. RA W264.7 cells natively express both a1A and a.is-AR subtypes (Fig. 4C-D). These 

cells were found not to express a2A-ARs under native or activated conditions (results not shown). 

When cells were activated with LPS, the levels of both a1A and a2s-AR gene expression 

significantly increased (Fig. 4C-D). The level of a 1A-AR expression was found to be more than 

10-fold higher in activated cells than in the native (Fig. 4C) suggesting a possible important role 

for these receptors in regulating macrophage function. Additionally, the gene expression levels 

of all a-AR subtypes tested were shown to increase in activated cells mirroring previous results 

pinpointing the a -ARs as mediating pro-inflammatory processes. 
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Figure 4-RA W264. 7 cells express multi1lle AR subtypes and gene ex11ressioo changes under infection conditions. 
RA W264. 7 macrophages were plated into tissue culture plates at a density of I .Ox I 06 ceUs/mL. Cells were activated with 
500 ng/mL of LPS for 24 hours prior to RNA isolation. Expression patterns of J31 (A), ~ (8), a 1A (C). and a28 (D) ARs were 
detected. qPCR data were analyzed according to MC, method with J3-actin as the control gene. Significance was determined 
by a paired Student 's t-test preformed with Graph Pad Prism software(• p < 0.05. •• p < O.ot , ••• p < 0.001) 

3.5. RAW264. 7 cells display multiple AR proteins 

In addition to studying gene expression patterns of ARs in RA W264. 7 cells, protein 
levels for different AR isoforrns were also analyzed using immunotluorescence techniques. Non­

active macrophages were shown to express both ~2 and a20-ARs (Fig. 5A-B). The levels of ~2-
AR expression appear to be higher than that of the aw-AR qualitatively, but the difference in 

:fluorescence levels was not quantified. 



Figure 5--RAW264.7 cells express both AR isoform 1>roteins 
Blue (DAPI) shows nucleus, yellow (phalloidin) f-actin, red ~rAR (A), and green arAR (B). 
Slides were imaged using a Leica SP2 Laser Scanning Confocal Microscope. 

3. 6. RA W264. 7 cells express a vesicular catecholamine transporter 

Macrophages are known to synthesize and release catecholamines after LPS activation 
(Brown et al, 2003). The release mechanism of catecholamines by macrophages may be similar 
to that found in neurons, with catecholamines being pumped in to vesicles by VMA Ts to be 
released later by exocytosis but_ the expression ofVMATs in macrophages has not been 
characterized. Under native conditions, these cells were found to only express VMA Tl (not 
VMA T2) which is the lower affinity and less efficient transporter (Fig 6A-B). Additional studies 
examined VMA T 1 expression after LPS activation or NE exposure (Fig. 6A-B). Since these 
experiments were not done quantitatively it is difficult to determine whether activation or NE 
exposure alters VMA Tl expression so further analysis with qPCR is warranted. 
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Figure 6--RAW264.7 cells exi>ress the VMATl gene 
Cells were activated with LPS (A) or treated with norepinephrine (B) for the times in hours indicated. cDNA 
from cells was amplified with PCR using primers for VMATI with actin/GAPDH as controls. PCR products 
were separated on a 3% agarose gel stained with EtBr and imaged with UV. 



4. Discussion 

This study was designed to better characterize the expression of proteins involved in 
catecholamine signaling in the RA W264. 7 macrophage model cell line. This cell line is a 
commonly used model for macrophages since these cells are known to possess macrophage 
markers and retain functionality of primary macrophages. Therefore, characterization of the 
catecholamine transporters and receptors in these cells is important to better understand how 
catecholamines may regulate macrophage function. The data reported here provides a detailed 
AR expression profile for these cells in quiescent and activated states and also provides evidence 
for the expression of VMA T proteins possibly involved in the storage of catecholamines in the 
cytoplasm of the macrophages 

Earlier studies (by a Lindsay Ward) demonstrated that stimulation of P-ARs leads to a 
decrease in the release of pro-inflammatory cytokines providing evidence for the dominant anti­
inflammatory effect of P-AR stimulation. In conjunction with these studies, preliminary studies 
suggested that the P2-AR protein is highly expressed in native macrophages but decreases after 
LPS activation which may help to explain the anti-inflammatory effects of P2-AR stimulation. 
Ward' s work also demonstrated that stimulation of a-ARs appears to have the opposite effect, 
with a significant increase in pro-inflammatory cytokine production when cells are treated with 
an a-AR agonist. The preliminary work also suggested that RA W264.7 cells express low levels 
of the a2e-AR when quiescent and the level of C1-AR protein expression was observed to increase 
upon activation with LPS. To better understand the AR expression pattern in these cells, we 
performed PCR studies. RA W264.7 cells were found to express multiple subtypes of both C1 and 
P-ARs and the expression pattern of the receptors was shown to change when cells were 

activated with LPS. Additionally, PCR analysis demonstrated that these cells also express the 
vesicular catecholamine transporter VMA Tl which could be involved in catecholamine storage 
suggesting that macrophages have the ability to carry out regulated release of catecholamines 
under certain conditions. Characterization of this transpo11er's protein expression in native cells 
and how gene and protein expression changes after activation or after treatment with AR agonists 
could lead to a better understanding of the role of catecholamine storage and release in immune 
functionality. These results together suggest an important role of catecholamines in regulating 
macrophage function and carefully controlling the immune response. 

In the body, cross-talk between signaling pathways and simultaneous expression of 
different cell-surface receptors leads to the complex behavior of cells that can be fine-tuned 
based on tiny fluctuations in environmental conditions. When NE is released in the vicinity of 
macrophages it binds to both a and ~-ARs simuJtaneously since both are expressed in the 
inactive state. The concentration of NE released is thought to influence which receptor dominates 
the response of the macrophages. If high concentrations of NE are present, the low affinity P­
ARs are more active and initiate an anti-inflammatory effect (Hetier et al. 1991 ). If lower 
concentrations of NE are present, the higher affinity <l-ARs are more likely to be activated and 
initiate changes in macrophage function (Elenkov et al. 1996). Additionally, C1-ARs have been 



suggested to contain multiple catecholamine binding sites of different affinities which activate 
different signaling pathways upon binding l\TE (Spengler et al. 1~90) . This concentration specific 

activity can help to carefully regulate the immune response when catecholamines are present. It 
also may point to a link between chronic stress, in which higher levels of NE are released by the 

nervous system, and decreased immune functionality as these high NE levels may have a 
pronounced anti-inflammatory effect (Baccan et al. 2010). 

Jn addition to simultaneous expression of multiple AR subtypes, cross talk between AR 

signaling pathways and Toll-like receptor (TLR) pathways responsible for recognizing pathogens 

has been observed in macrophages and could possibly be a mechanism for catecholamine 

regulation of immune function. In a classic innate immune response, LPS binds to TLR4 on the 
macrophage surface which initiates a signaling cascade that eventually leads to the 

phosphorylation of an inhibitory protein IKB leading to its degradation and release of NF-KB into 

the nucleus lo initiate transcriptional changes (Abbas et al. 2009). A recent study on the role of 
~z-ARs in macrophages showed that stimulation of P2-ARs led to a decrease in degradation of 

IKB (Kizaki et al. 2008). These results were mediated through a direct interaction between IKB 

and P-arrestin 2, a protein that is activated in the ~1-AR signaling cascade. By stabilizing IKB, 
lower amounts of NF-KB are released leading to a decrease in transcription of pro-inflammatory 

genes. This study points to an important interaction between pathways that could be confirmed 
by future studies examining the regulation of cytokine genes in activated macrophages treated 

with AR agonists. Similar crosstalk could also lead to changes in VMATl expression levels 

which could change macrophage catecholamine release patterns in stress or infection 

environments. 

The results of this study highlight a clear link between the neuroendocrine and immune 

systems. Catecholamines appear to play an important role in regulating immune function through 
AR binding. Additionally, catecholamines released from macrophages could have an autocrine 
effect to further regulate macrophage functionality. This link between the nervous and immune 

systems provides a new perspective on the role of stress and hormone imbalances leading to 

changes in immune functionality and could provide a new avenue for catecholamine-based 

treatment of immune disorders. 
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