
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

2016

Nonexistence of nonquadratic Kerdock sets in six variables Nonexistence of nonquadratic Kerdock sets in six variables

John Clikeman
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Clikeman, John, "Nonexistence of nonquadratic Kerdock sets in six variables" (2016). Honors Theses.
948.
https://scholarship.richmond.edu/honors-theses/948

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/948?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Nonexistence of Nonquadratic Kerdock Sets in Six Variables

John Clikeman

Honors Thesis∗

Department of Mathematics & Computer Science

University of Richmond

April 2016

∗Under the direction of Dr. James A. Davis

The signatures below, by the thesis advisor, the departmental reader, and the honors coordinator

for mathematics, certify that this thesis, prepared by John Clikeman, has been approved, as to style

and content.

(Dr. James Davis, thesis advisor)

(Dr. William Ross, departmental reader)

(Dr. Van Nall, honors coordinator)

Abstract

Kerdock sets are maximally sized sets of boolean functions such that the sum of any two

functions in the set is bent. This paper modifies the methodology of a paper by Phelps (2015) to

the problem of finding Kerdock sets in six variables containing non-quadratic elements. Using

a computer search, we demonstrate that no Kerdock sets exist containing non-quadratic six-

variable bent functions, and that the largest bent set containing such functions has size 8.

Contents

1 Introduction 1

1.1 Boolean Functions and Reed-Muller Codes . 2

1.2 Properties of Reed-Muller Codes . 5

1.3 Extensions of Reed-Muller Codes . 7

1.4 Nonlinearity and the Walsh-Hadamard Transform . 7

1.5 Bent Functions . 10

1.6 Other Applications of Bent Functions . 11

2 Problem Statement 12

2.1 Cosets of Reed-Muller . 12

2.2 Affine Equivalence . 13

3 Methods 16

3.1 Generating 20 billion Affine transformations . 17

3.2 Removing linear terms . 19

3.3 Walsh-Hadamard Transform Implementation . 21

3.4 Constructing Candidate Sets . 21

3.5 Generating Maximal Bent Sets . 22

4 Results and Discussion 26

1 Introduction

On November 14, 1971, the Mariner 9 unmanned space probe reached the orbit of the planet Mars.

Over the next 12 months, it transmitted 7,329 images of the planets surface back to Earth. Some of

these images traveled as much as 230 million miles through space before reaching Earth. Nearly a

quarter of the data transmitted did not reach its destination in its original form due to interference

from cosmic rays and other hazards of space travel. However, NASAs Green Machine hardware

reconstructed these incomplete transmissions into crystal-clear images of Martian landscapes. This

was possible because the information sent by the Mariner 9 probe was encoded using a binary error-

correcting code called a Reed-Muller code. This coding scheme allowed the decoding hardware to

perfectly reconstruct nearly all of the original information from the portions of codewords which

arrived to Earth.[1]

Coding theory is the branch of mathematics dealing with the construction and analysis of error-

correcting codes. A code is defined as a finite set of strings called codewords of a fixed length. A

codeword is a string of characters from an alphabet. The alphabet used in all codes in this paper is

the binary alphabet 0, 1. The property of a binary code which gives it its error correcting power is

called the minimum Hamming distance. The Hamming distance (or simply distance) between two

codewords is defined as the number of bits which differ between the two codewords. For example,

the Hamming distance between the codewords 0011 and 0101 is 2, because there are two places

which differ between the first word and the second. The minimum Hamming distance (minimum

distance) of a code is the smallest Hamming distance between any pair of distinct codewords. A

code with a high minimum distance can correct many transmission errors because, in the event

that some bits of a codeword are altered in transmission, it is unlikely that these alterations will

turn one codeword into another codeword or into some intermediate state which is equally close to

several codewords. If a receiver of a message receives a string which is not a codeword in the code

in which the message was transmitted, then the receiver knows that one or more errors occurred,

and can correct the errors by replacing this word with whichever codeword it is most similar to.

As long as the number of errors was small, we can be confident that the codeword that was sent

1

originally is still more similar to the received word than is any other word in the code, meaning

that this correction perfectly reproduces the original message. Formally, a code is guaranteed to

be able to correct any number of errors less than half of the minimum distance of the code. If the

number of errors is exactly equal to half the minimum distance, then the error can be detected, but

not always corrected because there may be two or more codewords from which the received word

is equidistant.

1.1 Boolean Functions and Reed-Muller Codes

Some of the most widely studied and used binary error-correcting codes are the Reed-Muller codes.

The code used by the Mariner 9 probe was a Reed-Muller(1,5) code (denoted RM(1, 5)), which is

one member of the wider class of codes.[1] There are two parameters which define a Reed-Muller

code. The first is the order of the code, in this case 1, and the second is the number of variables, in

this case 5. The number of variables determines the length of a codeword in the code. In this case,

RM(1, 5) contains codewords of length 25, or 32. The order of the code determines the minimum

distance and of the code, and the number of codewords. Reed-Muller(1,5) contains 64 codewords

and has a minimum distance of 16, while Reed-Muller codes of order larger than one contain more

codewords, with the tradeoff of a smaller minimum distance.[4]

To better understand the construction of Reed-Muller codes, we must introduce the concept of

a boolean function. A boolean function in n variables is a function from Zn
2 → Z2. We label

the n components of the input x1, x2, . . . , xn. As an example, f(x1, x2, x3, x4) = x1x2 + 1 is a

boolean function in four variables. The output of the function is determined by multiplying the

first and second inputs and then adding one to this product modulo 2. Boolean functions have a

degree, defined as the highest number of input terms multiplied together at one time. The example

function has degree 2, so it is called a quadratic boolean function. Similarly, boolean functions can

be linear, cubic, quartic and so on.

We can create a graph, or output vector, of a boolean function by listing the outputs for all possible

2

inputs. There are 2n possible inputs for every boolean function in n variables, so the output vector

of a boolean function is simply a binary vector of length 2n. All we need to do this is a consistent

ordering of the possible inputs. Two such orderings are common in the coding theory literature.

The first interprets a vector of inputs 〈x1, x2, . . . , xn〉 as the binary integer x1x2 · · ·xn and lists

the inputs in ascending numerical order (0000, 0001, 0010, 0011, 0100, . . . , 1111 in 4 variables). The

second treats the vector 〈x1, x2, . . . , xn〉 as coefficients in the finite field GF (2n) and lists them

in multiplicative cyclic order (0000, 0001, 0010, 0100, 1000, 0011, . . .).[4] For consistency, the first

ordering is used throughout this paper.

Example 1. Output vector of the boolean function f(x1, x2, x3) = x2

f(0, 0, 0) = 0

f(0, 0, 1) = 0

f(0, 1, 0) = 1

f(0, 1, 1) = 1

f(1, 0, 0) = 0

f(1, 0, 1) = 0

f(1, 1, 0) = 1

f(1, 1, 1) = 1

(1)

So the output vector of f(x) = x2 is 00110011 using the additive ordering.

We may perform algebraic operations on boolean functions using either the function or output

vector, interchangeably. Of particular note is the sum of two boolean functions. In function form,

this is intuitive, noting that the coefficients of any terms are elements of Z2, so they are added

together modulo 2.

3

Example 2.

(x1x2 + x1x3) + (x1x2 + x3) = x1x2 + x1x2 + x1x3 + x3

= x1x3 + x3.

(2)

In the output vector, the sum of two boolean functions is computed bitwise, with each correspond-

ing pair of bits added together modulo 2. Multiplication is also defined bitwise in a similar way. We

note that within the sum of two boolean functions, there will be a 1 in precisely the places where

the two functions differ, and a 0 in precisely the places where they are the same. This leads us to an

alternate definition of Hamming distance as the weight (number of 1s) of the sum of two functions.

Example 3. Demonstration of boolean function addition and Hamming distance.

00001111

+ 00110011

00111100

The distance between the two vectors is 4 because their sum has four 1s in its output.

We may now use these definitions of boolean functions to describe Reed-Muller codes. An arbitrary

Reed-Muller code RM(r,m) is defined as the set of all boolean polynomial functions of degree r

or less in m variables. The actual codewords are in fact the graphs of these functions, which we

recall are binary strings of length 2m. To determine the number of codewords, we observe that,

as with real-valued polynomial functions, boolean polynomial functions of a given degree form a

vector space over Z2, which is spanned by the set of monomials less than or equal to that degree.

For example, RM(2, 4) is the set of boolean functions of degree 2 or less in 4 variables. A basis for

the code is

{1, x1, x2, x3, x4, x1x2, x1x3, x2x3, x1x4, x2x4, x3x4}.

The basis vectors are shown below, using the additive ordering of outputs.

4

1 : 11111111 11111111

x1 : 00000000 11111111

x2 : 00001111 00001111

x3 : 00110011 00110011

x4 : 01010101 01010101

x1x2 : 00000000 00001111

x1x3 : 00000000 00110011

x2x3 : 00000011 00000011

x1x4 : 00000000 01010101

x2x4 : 00000101 00000101

x3x4 : 00010001 00010001

Since the coefficients of these terms come from Z2, there are 211 linear combinations of these

vectors, and 211 elements of the code. In general, there is one nonzero monomial of degree 0 (the

constant function f(x) = 1), m monomials of degree 1 (x1, x2, . . . , xm),
(
m
2

)
monomials of degree

2, and so on. So, the number of codewords in RM(r,m) is

2

∑r
i=0 (

m
i)
.

1.2 Properties of Reed-Muller Codes

Now we can describe some properties of RM(r,m) codes. First, they are linear codes, meaning that

the code is closed under addition. This is because the sum of any boolean polynomials of degree

r or less will also have degree no greater than r. While linearity does not improve their error-

correcting power, it makes the codes very easy to generate and analyze. Second, the minimum

distance of the code is 2m

2r .[?] This means that the class of Reed-Muller codes contains a wide range

of possible minimum distances, making them useful for a variety of different settings. In particular,

first-order Reed-Muller codes such as RM(1, 5) have a minimum distance equal to half of the length

5

of a codeword. This gives them an error-correcting capability of nearly 1/4th the number of bits,

making them ideal for tasks such as the Mariner 9 mission which sent messages over a wildly

unreliable medium.[1] In more common settings, second-order Reed-Muller codes, which have a

minimum distance of 1/4 the length of a codeword, provide much larger varieties of codeword and

lead to higher information density, although at the expense of some error correcting capability.

An example illustrates the usefulness of being able to select a code for a particular intended use.

Imagine the case of a cell phone network deciding on a code to use to encode text messages. The

medium of wireless telecommunication is unreliable, so this code must be an error-correcting code.

Suppose the network decides that its hardware best supports codewords of length 16 bits. The two

Reed-Muller codes which are most appropriate for this situation are RM(1, 4) and RM(2, 4). Of

these, RM(1, 4) has 32 codewords and a minimum distance of 8, meaning that it can detect up

to 4 errors and correct up to 3 in any codeword. This high error correction capacity will make

communications in this code very reliable. However, 32 possible codewords does not produce a

satisfactory alphabet for text messaging, as it would allow no lowercase letters and very limited

punctuation. The only workaround of this problem would be to encode a single character using

two codewords instead of one, which would double the cost of transmitting each message.

RM(2, 4) has 2,048 codewords, more than enough to encode a standard character set for text

messaging. However, its minimum distance is half that of RM(1, 4), allowing it to correct only one

error. This may not be sufficient to provide an acceptable level of reliability.

This example demonstrates the inherent tradeoff in error-correcting codes between information

density, message variety, and error-correcting capability. It also demonstrates that Reed-Muller

codes, while optimal for many cases, do not adequately cover some scenarios of very clear real-

world importance. To address these needs, coding theorists must search for new codes.

6

1.3 Extensions of Reed-Muller Codes

One solution to this problem is to attempt to create a hybrid code which averages the qualities

of RM(1, 4) and RM(2, 4). Such a code would be a superset of RM(1, 4) and a subset of some

higher-order code such as RM(2, 4), with a minimum distance in between those of the original

codes. We can guess that this code would contain enough codewords to encode an entire character

set, but still have an error-correcting capability greater than 1. Now the question becomes, how

can we create this code? Put simply, we begin by including all elements of RM(1, 4) into the new

code, and then add select elements of RM(2, 4).

1.4 Nonlinearity and the Walsh-Hadamard Transform

The elements we wish to add are those which are as different as possible from the elements of

first-order Reed-Muller. This will result in a new code with the largest minimum distance possible.

We call the minimum distance of a codeword from RM(1, n) the nonlinearity of the codeword,

since elements of RM(1, n) are degree 1, or linear, functions. Now we will introduce a means of

calculating nonlinearity, called the Walsh-Hadamard transform.

The 2n × 2n Walsh-Hadamard matrix Hn is defined recursively as

H1 =

1 1

1 −1

 ,

Hn = H1 ⊗Hn−1, n ≥ 2,

(3)

where ⊗ denotes the Kronecker product of two matrices.[4]

Walsh-Hadamard matrices have many interesting properties. For our purposes, the most useful

of these is that any two rows of Hn are mutually orthogonal, meaning that their dot product is

7

zero. Since all entries in a Walsh-Hadamard matrix are equal to ±1, this means that any two

rows are alike in 2n−1 places and different in the other 2n−1 places. This is the same property of

distance shared by RM(1, n) codes. In fact, if we take the output vector of a boolean function

from RM(1, n) (using the additive ordering of elements) and transform each component using the

mapping (0 7→ 1, 1 7→ −1), we get either a row of the Walsh-Hadamard matrix Hn, or −1 times a

row of the matrix.

Utilizing this observation, we can use Hn as a test of nonlinearity. This test, called the Walsh-

Hadamard transform, is defined as follows. Given the output vector of a boolean function in

n variables, we convert the components of the vector from {0, 1} to {1,−1} using the mapping

(0 7→ 1, 1 7→ −1). We then multiply Hn by the column vector containing these values. The column

matrix resulting from this multiplication is referred to as the Walsh spectrum. Each component

of the Walsh Spectrum represents the similarities minus differences of the vector relative to the

given row of Hn. Thus, a Walsh spectrum value of 2n means that the vector is identical to that

row of Hn, and a value of −2n means that the vector is identical to the complement of the row.

Since each row and its complement are transformations of codewords in RM(1, n), a codeword

with high nonlinearity will have all of its Walsh spectrum values close to zero. The nonlinearity

of a codeword is given by 1
2(2

n −max(|Wf (λ)|)), where Wf (λ) is the value of the Walsh spectrum

corresponding to a row λ of Hn. The following theorem allows us to derive an upper bound on the

nonlinearity of any codeword.

Theorem 4 (Parseval’s Identity). Let Hn be the 2n × 2n Walsh-Hadamard Matrix, and let x be an

n× 1 column vector with values from {1,−1}. Then

(Hnx)
ᵀ(Hnx) = 22n

.

Proof. We proceed by induction. Suppose that the theorem holds for n ≤ N . Let x be a {−1, 1}-

8

valued vector of length 2N+1. Then x =
(
x1

x2

)
, for x1, x2 vectors of length 2N . We also observe

that

HN+1 =

HN HN

HN −HN

 .

So HN+1x =

HNx1 +HNx2

HNx1 −HNx2

 .

By our inductive hypothesis, we know that

(HN+1x)
ᵀ(HN+1x) =

(
(HNx1 +HNx2)

ᵀ (HNx1 −HNx2)
ᵀ

)HNx1 +HNx2

HNx1 −HNx2

 .

= [(HNx1)
ᵀ(HNx1) + 2(HNx1)

ᵀ(HNx2) + (HNx2)
ᵀ(HNx2)]

+ [(HNx1)
ᵀ(HNx1)− 2(HNx1)

ᵀ(HNx2) + (HNx2)
ᵀ(HNx2)]

= 4(22N)

= 22(N+1)

(4)

For our base cases, we use H1. The four possible vectors are
(
1
1

)
,
(

1
−1

)
,
(−1

1

)
, and

(−1
−1

)
. For each of

these, (H1x)
ᵀ(H1x) = 2, so the theorem is proved.

This theorem tells us that the sum of squares of the components of the Walsh spectrum is constant.

We achieve maximum nonlinearity by minimizing the magnitude of the largest Walsh spectrum

value, so by Parseval’s Identity, the boolean functions with the highest nonlinearity are those whose

Walsh spectrum values are all equal to ±2n/2. Such a function would have a distance of 2n−1 ±

2n/2−1 from every codeword in RM(1, n), giving it a nonlinearity of 2n−1 − 2n/2−1.

9

1.5 Bent Functions

Boolean functions which meet this upper bound on nonlinearity are known as bent functions. The

origin of the word bent function is that their nonlinearity is as high as possible, making them the

”least linear” functions. The upper bound 2n−1 − 2n/2−1 is an integer only if n is even, meaning

that bent functions exist only in even numbers of variables. Boolean functions in an odd number

of variables which attain the largest possible nonlinearity are called semi-bent functions, and their

mathematical properties are slightly different than those of bent functions. The weight of a bent

function (the number of ones) is 2n−1 ± 2n/2−1, which we know to be the case because this is their

distance from the codewords which consist of all 0s or all 1s. We divide the bent functions into

low-weight and high-weight bent functions depending on their weight.

From this definition, we see that bent functions are ideal choices to add to first-order Reed-Muller

codes to create expanded codes. A new code consisting of the union of the Reed-Muller code and

the bent function will have a minimum distance equal to the distance of the bent function from

the closest linear function, which by definition is the largest possible distance for any function not

already in the code.

So, an extension of a first-order Reed-Muller code which keeps its minimum distance high must

consist of bent functions. However, this is not yet enough information to tell us how best to choose

the bent functions and incorporate them into the new code. One early method was to expand the

basis of the Reed-Muller code by adding bent functions as additional basis vectors, creating a new

linear code. This method is still used to create codes using semi-bent functions, for example in the

Samsung code, which is used to encode transport format combination indicator information used

in 3G cell phone communication. However, in cases with an even number of variables, it has been

superseded by a better method.

The earliest example of a code constructed using this construction method is called the Nordstrom-

Robinson code, developed by mathematician John Robinson and Alan Nordstrom, a high school

student. The Nordstrom-Robinson code is a nonlinear extension of RM(1, 4) containing 256 code-

10

words and a minimum distance of 6. This is twice as many codewords as any linear code with the

same word length and minimum distance.[5] Rather than being constructed as a vector space, the

Nordstrom-Robinson code is a set of eight cosets of RM(1, 4), meaning that it is eight copies of the

vector space RM(1, 4) with one boolean function added to each element of a copy. The eight func-

tions chosen as coset representatives form a bent set. This is defined as a set of boolean functions

with the property that the sum of any two functions in the set is a bent function. By convention,

the boolean function f(x) = 0 is a member of every bent set, and the remaining elements are bent

functions. The Nordstrom-Robinson code is built using a bent set of size 8, which has been proven

to be the largest possible size of a bent set in four variables.

The generalized Nordstrom-Robinson code for higher numbers of variables is called a Kerdock

code. A bent set of maximum size is called a Kerdock set, and a nonlinear code constructed using

a Kerdock set is a Kerdock code. In general, a Kerdock set composed of boolean functions in

2k variables has size 22k−1, meaning it contains 22k−1 − 1 bent functions. There exists a general

construction for Kerdock sets, so we may produce a Kerdock set in any even number of variables.[4]

Kerdock codes are optimal codes for their codeword size and minimum distance, and contain twice

as many codewords as the largest comparable linear codes.

1.6 Other Applications of Bent Functions

Bent functions and bent sets have numerous applications to mathematics outside the construction

of error-correcting codes. For example, a single bent function can be used to construct a difference

set in the group Z2k
2 . Difference sets are subsets of groups such that the set of all differences of

elements in the difference set ({ab−1 : a, b ∈ DS}) is a multiset containing all nonidentity elements

of the group a constant number of times. The construction of difference sets in a variety of groups

is an ongoing area of research.

Bent functions are also highly useful in the field of cryptography. Here their property of high non-

linearity (difference from linear functions) is what makes them ideal. In particular, bent functions

11

satisfy the Strict Avalanche Criterion, used as a metric for determining generators of good crypto-

graphic hash functions.[7] [2]

2 Problem Statement

The goal of my research was to determine the existence or nonexistence of Kerdock sets containing

nonquadratic elements. The known construction methods for Kerdock sets invariably produce Ker-

dock sets containing only quadratic bent functions, and it is not known whether any Kerdock sets

contain nonquadratic elements.[4]

I focused on six-variable bent functions, since this is the simplest class of bent functions which are

still not perfectly understood. The total number of bent functions in six variables is 5,425,430,528.

This number is small enough that it is feasible to conduct computer searches on the entire set of

bent functions. In fact, though, the number of bent functions we actually need to consider is much

smaller. We narrow down the set by applying certain properties of bent functions.

2.1 Cosets of Reed-Muller

First, the sum of a bent function and a linear function (an element of RM(1, n)) is bent. This means

that given one six-variable bent function, we may construct an additional 127 bent functions by

adding it to each of the nonzero elements of the RM(1, 6) code. This set of 128 elements is known

as a coset of the first-order Reed-Muller code, meaning that it consists of a closed set (RM(1, 6))

with some function (the bent function) added to each element of the set. It is this process of

forming cosets which turns a six-variable Kerdock Set (31 bent functions) into a Kerdock Code (31

cosets plus the Reed-Muller code, for a total of 4,096 elements). The practical implication of this is

that we may treat any two bent functions which differ by only a linear term as the same, since they

produce the same coset of RM(1, 6) and are interchangeable in any Kerdock set. This reduces our

search space by a factor of 128.

12

2.2 Affine Equivalence

The second tool for narrowing down our search space is an equivalence relation known as Affine

Equivalence. It states that two six-variable bent functions f1(x) and f2(x) are Affine equivalent if

and only if there exists a matrix A ∈ GL(6, Z2) and lambda ∈ Z6
2 such that f2(x) = f1(Ax) + λ · x.

In other words, we may apply a substitution of variables on the bent function so long as the new

variables we use also form a basis of first-order Reed-Muller. The λ ·x term represents adding linear

terms, and the preferred choice of λ is the one which cancels out all linear terms created by f1(Ax).

The transformation which takes f1(x) to f2(x) is called an Affine Transformation.

Example 5. An Affine Transformation between two bent functions.

Define f1(x1, x2, x3, x4, x5, x6) = x1x2 + x3x4 + x5x6 and f2(x1, x2, x3, x4, x5, x6) = x1x2 + x2x3 +

x3x5 + x4x6

Let A =

1 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

.

To apply the Affine transformation to f1, we replace the input vector 〈x1, . . . , x6〉 with

1 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

x1

x2

x3

x4

x5

x6

=

x1 + x2 + x3

x2

x3

x5

x4

x6

.

13

f1 applied to this vector is equal to

(x1 + x2 + x3)x2 + x3x5 + x4x6 = x1x2 + x2 + x2x3 + x3x5 + x4x6.

Now we need to choose λ. We notice that our transformed function is identical to f2 except that it

contains an additional x2 term. To remedy this, we choose λ = 010000, so that λ·〈x1, x2, . . . , x6〉 = x2.

So f1(Ax) + λ · x = f2(x).

Bent functions which are Affine equivalent are not interchangeable within Kerdock sets in the

way that bent functions differing by linear terms are. In fact, within the known Kerdock sets all

bent functions are pairwise Affine equivalent, but this gives no indication of whether any pair of

functions has a bent sum. Instead, Affine transformations prove useful in two ways. First, they

provide a tool for constructing bent functions. If we apply all possible Affine transformations to a

bent function, we obtain every bent function in the initial functions equivalence class (the set of

bent functions Affine equivalent to that function). Thus, to construct every bent function, we need

only the set of Affine transformations plus one bent function from each equivalence classes.

The second use of Affine transformations is in defining equivalence of Kerdock Sets. We define two

Kerdock Sets to be equivalent if there exists an Affine transformation which takes every element

of the first Kerdock Set to an element of the second Kerdock Set. This will allow us to restrict our

search space by showing that any Kerdock Set outside the search space must be Affine equivalent

to some Kerdock Set within the space.

Lemma 6. Let B = {f1, . . . , fn} be a bent set. Let T be an Affine Transformation. Then T (B) =

{T (f1), . . . , T (fn)} is a bent set.

Proof. Let B = {f1, . . . , fn} be a bent set in n variables. Let T be an Affine transformation in n

variables. Then T (f(x)) = A(f(x)) + λ · x for some A ∈ GL(n, F2) and λ ∈ Fn
2 . Let f(x), g(x) ∈

B, f 6= g. Then f(x) + g(x) is a bent function. We will show that T (f(x)) + T (g(x)) is also a bent

function.

14

T (f(x)) + T (g(x)) = A(f(x)) + λ · x+A(g(x)) + λ · x

= A(f(x)) +A(g(x)) + λ · x+ λ · x

= A(f(x) + g(x)) + 0.

(5)

A(f) + 0 is an Affine transformation. This means that A(f(x) + g(x)) is Affine equivalent to f(x) +

g(x). So if f(x) + g(x) is bent, then so is A(f(x) + g(x)). We have now shown that the sum of any

two elements of T (B) is bent. Therefore T (B) is a bent set.

There are four equivalence classes of bent functions by Affine Equivalence in six variables. This

table gives an example of each equivalence class and the number of cosets of Reed-Muller(1,6)

contained in the class.[3]

Table 7 (Equivalence Classes of Six-variable Bent Functions).

Class Example Number

1 x1x2 + x3x4 + x5x6 13,888

2 x1x2x3 + x1x4 + x2x5 + x3x6 1,874,880

3 x1x2x3 + x2x4x5 + x1x2 + x1x4+ 10,499,328

x2x6 + x3x5 + x4x5

4 x1x2x3 + x2x4x5 + x3x4x6 + x1x4+ 29,998,080

x2x6 + x3x4 + x3x5 + x3x6 + x4x5 + x4x6

The most important division within this table is between the quadratic bent functions (class 1) and

the cubic bent functions (classes 2-4). All known Kerdock Sets, in any number of variables, consist

entirely of quadratic bent functions. This is somewhat surprising, given the small percentage of

total bent functions which are a member of this class. The purpose of my research was to attempt

to construct six-variable Kerdock sets containing non-quadratic elements.

Much of the methodology of my research was inspired by a paper by Kevin Phelps.[6] This paper

15

performed an enumeration of quadratic Kerdock sets in an attempt to determine whether any

two Kerdock sets were Affine inequivalent. It performed this enumeration by treating the set of

quadratic bent functions as a graph. The bent functions were the vertices of this graph, and a pair

of vertices were connected with an edge if and only if their sum was also a bent function. This

reduced the problem of constructing Kerdock sets to a question of identifying cliques (subgraphs

in which each pair of vertices are connected) containing 31 vertices, something relatively easy to

do using computer algorithms. The paper concluded that all quadratic Kerdock sets were Affine

equivalent.[6]

I attempted to apply this methodology to a more ambitious open problem: the existence of Kerdock

sets containing non-quadratic elements.

3 Methods

The goal of my research was to construct examples of Kerdock sets among bent functions in six

variables and determine the existence of Kerdock sets containing non-quadratic elements. This was

to be accomplished through a series of steps. First, develop a method of producing all six-variable

bent functions. Second, given an initial bent function, develop a procedure to find the set of all bent

functions whose sum with the initial bent function is a bent function, called the candidate set. All

bent sets containing the initial bent function must be formed entirely of elements of this set. Next,

apply this method to enough choices of initial bent functions to insure a representative sample of

all bent functions. This can be done by choosing as an initial bent function one element of each

Affine equivalence class. Finally, given an initial bent function and its derived set, search the set for

Kerdock sets and maximal bent sets, using the graph construction developed by Phelps.[6]

16

3.1 Generating 20 billion Affine transformations

To construct his sample space, Phelps used a technique known as symplectic matrices, which in-

volves encoding the quadratic terms of a bent function into a binary matrix with certain properties.[6]

Using this technique, it is possible to construct all quadratic bent functions by constructing all in-

vertible matrices with these properties. However, this technique is not applicable to non-quadratic

bent functions. To construct the total set of bent functions in six variables, I instead used Affine

transformations.

All six-variable Affine transformations consist of two elements: a binary six-by-six invertible matrix,

and a set of linear terms. Thus, the first step in constructing all Affine transformations is to construct

all six-by-six binary invertible matrices. I did this using a Java program which represented a matrix

as a set of six integers, each integer encoding a row of the array. Since the elements of the matrices

are binary values, each element of the array was encoded using a single bit. The matrices were

constructed using a series of nested for-loops, each loop iterating through every possible value of

a single row of the array. Each row consists of six entries each with value 0 or 1. Since no row of

an invertible matrix can consist entirely of zeros, there were 63 possible values for each row of the

matrix.

The remaining restriction on invertible matrices is that no row can be a linear combination of the

rows above it. In binary, the only scalars by which a row may be multiplied are 0 and 1, so we must

simply compute every scalar multiple of the existing rows of the matrix, and be careful to avoid

those values when adding each new row.

The following pseudocode procedure iterates through all Affine transformations in four variables.

To ensure that all rows of the matrix are linearly independent, the variable lc is a set of all rows

which are linear combinations of rows added to the matrix. Before adding a new row to the matrix,

we first verify that this new row is not an element of lc. If it is not, we create a new set containing

the linear combinations of the new row with elements of lc and update lc by taking the union of it

and the new set.

17

Figure 1: Code to generate Affine transformations in four variables

There was an important optimization in the implementation of this code, having to do with how

the Set data type was treated and how set operations were implemented. Ordinarily, determining

whether an arbitrary element is contained in a set is a costly operation, requiring either a linear

search of the elements of the set or keeping the set in sorted order and increasing the cost of

inserting new elements. In this case, however, we can take advantage of the fact that the set is

18

hashable, meaning that we can describe all of its possible elements. In this case, the set contains

linear combinations of the rows of a binary matrix, each of which is represented as a binary integer

from 0001 to 1111. This means that all we need to represent a set is a binary integer with 15 bits

of precision, one for each potential element. The possible elements are ordered (using the natural

ordering of binary integers), and an element is added to the set by setting the bit at the position

corresponding to the element equal to 1.

This representation allows set operations to be completed very efficiently. To check whether an

element is in the set, we examine one specific bit of the set. If the bit is a 1, then the element

is in the set. To evaluate the union of two sets, we use a bitwise or operation on the integers

representing the sets. In six variables, a single 64-bit precision integer can store the entire set, so

this operation takes a single hardware operation to complete. Similarly to subtract two sets, we use

an integer subtraction operation (this assumes that the second set is a subset of the first, but we can

make this assumption). This optimization allows us to iterate through the 20 billion six-variable

Affine transformations in about 5 minutes.

3.2 Removing linear terms

The next subprocedure the program needs is to remove the linear terms generated by an Affine

transformation. This step represents a specific choice of λ, which is standardized for convenience.

To see how we can identify which linear terms are factors of an arbitrary function, we provide as

an example the basis of RM(3, 4).

19

1 : 11111111 11111111

x1 : 00000000 11111111

x2 : 00001111 00001111

x3 : 00110011 00110011

x4 : 01010101 01010101

x1x2 : 00000000 00001111

x1x3 : 00000000 00110011

x2x3 : 00000011 00000011

x1x4 : 00000000 01010101

x2x4 : 00000101 00000101

x3x4 : 00010001 00010001

x1x2x3 : 00000000 00000011

x1x2x4 : 00000000 00000101

x1x3x4 : 00000000 00010001

x2x3x4 : 00000001 00000001

Now, suppose that we have an arbitrary boolean function which is an element of RM(3, 4) and

wish to determine with linear terms (1 and x1 · · ·x4) are factors of the function. Looking at our

basis, we can see that if our function has a 1 in the first (leftmost) place, then it has the codeword

1 as a factor. If this is the case, then we subtract 1 from the function to remove the factor. Next, we

look at the ninth position of the function. If there is a 1 in this place, then either 1 or x1 is a factor.

Since we have removed the factor 1, then this leaves only x1. Accordingly, we subtract x1. In six

variables, we may identify and remove each of the seven possible linear terms by examining these

seven positions in order, indicated by the boldfaced numerals:

20

1 : 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

x1 : 00000000 00000000 00000000 00000000 11111111 11111111 11111111 11111111

x2 : 00000000 00000000 11111111 11111111 00000000 00000000 11111111 11111111

x3 : 00000000 11111111 00000000 11111111 00000000 11111111 00000000 11111111

x4 : 00001111 00001111 00001111 00001111 00001111 00001111 00001111 00001111

x5 : 00110011 00110011 00110011 00110011 00110011 00110011 00110011 00110011

x6 : 01010101 01010101 01010101 01010101 01010101 01010101 01010101 01010101

3.3 Walsh-Hadamard Transform Implementation

The final subprogram necessary for the first program is the Walsh-Hadamard transform, which tells

us whether any boolean function is bent. This was implemented using a Fast Fourier transform,

which acts by decomposing the Walsh-Hadamard matrix into a product of six other matrices. These

matrices contain only two nonzero entries per row or column, which means that each individual

matrix multiplication requires only O(n) computations, rather than O(n2). This decreases the com-

plexity the total computation from O(n2) to O(nlog(n)). As an additional optimization, the weight

of the function was computed before applying the Walsh-Hadamard transform to identify functions

which were obviously not bent without having to complete the more expensive computation.

3.4 Constructing Candidate Sets

The following program describes the first program in its entirety.

This program returns the set of all bent functions (whose linear coefficients are all zero) which

are members of Affine equivalence class 1 whose sum with the initial bent function is a bent func-

tion. To compute the sets of bent functions from other equivalence classes, we repeat the program

replacing c1 with elements of the other equivalence classes.

The following table summarizes the findings of this program.

21

Figure 2: Code to Calculate a Candidate Set Given an Initial Bent Function

Table 8 (Number of Functions in Candidate Set of Initial Function).

Equivalence Class of Candidate Set Members

Initial Bent Function Class 1 2 3 4

1 5,760 51,740 0 0

2 384 11,136 21,504 0

3 0 3,840 7,680 15,360

4 0 0 5,736 30,720

3.5 Generating Maximal Bent Sets

To generate each of the candidate sets used by the final program (the sets containing all possible

elements of a Kerdock set containing the initial bent function), we took the union of the bent

functions in a single row of the table. This produced the entire set of bent functions with a bent sum

relative to the single initial bent function. Since the four initial bent functions are representative

22

of the entire set, we know that any similar subset of the set of bent functions will be equivalent

to one of these sets. One exception to this rule was the first row of the table. To construct the

set with a quadratic initial function, we included only the class 1 terms and not the class 2 terms.

The reason for this was that we could use this set of only quadratic bent functions to search for

the known Kerdock sets and check our results against those found by Phelps. Another reason to

do this was that the non-quadratic Kerdock sets found in the first row would be a mix of class 1

and class 2 elements. Sets of this type would also be found in searches of the second row set, with

the advantages that the second row search space is smaller and that we would not have to sort

the results of the second set search into quadratic and non-quadratic Kerdock sets, since it is only

members of the second type that we need to find.

The second program operates in two stages. In the first stage, it accepts a candidate set constructed

by the first program and, using this set, constructs a graph of the type previously discussed. In the

second stage it iterates through this graph, identifying all of the cliques, which represent maximal

bent sets.

To construct a graph, the program applies the Walsh-Hadamard transform to each pair of bent

functions. This allows it to construct the adjacency matrix of the graph. The initial bent function

used to generate the candidate set is not included in the graph. If it were, it would be connected

to each other element. Since we know this to be true, we can proceed without performing any

additional calculations on it. Since the adjacency matrix of the graph must be symmetric, we can

fill in two positions with each Walsh-Hadamard transform. So the total number of Walsh-Hadamard

transforms which must be computed is n(n-1)/2, where n is the size of the set, ranging from 5,760

to 36,096. This stage can be completed in at most about 10 minutes.

Each row of the matrix represents a set, and is encoded with the Set data type described in the

first program. This again makes very fast the operations we wish to perform on it, but also greatly

reduces the amount of memory necessary to store the matrix. A 36,096 by 36,096 array, the largest

we use, contains about 1.3 billion entries. This data type representation allows us to store an entry

using a single bit - the theoretical optimum value. This allows us to store the matrix in about 163

23

megabytes of space, comfortably inside the limits of a computers RAM.

Once the graph is constructed and stored in memory, the program searches for maximal sets using

the following recursive algorithm. Here the program is included as written in Java.

Figure 3: Code to Search for Maximal Bent Sets within a Candidate Set

The algorithm accepts a set (using the same Set data type defined before) indicating which bent

functions (of those stored in the array called searchSpace) are candidates to be added to the

Kerdock set. The Kerdock set initially contains a single bent function - the initial bent function used

to create the search space. At each level of recursion depth, the method adds a single element to

24

the Kerdock set before passing control to the next level of depth. Before passing control, it updates

the candidate set to eliminate the bent functions whose sum with the function just added is not

bent. This process continues at each level of depth until an instance of the method notices that the

candidate set is empty. At this point there exist no bent functions which have a bent sum with every

element in the set. This means that the set is maximal (it is not a subset of any larger bent set).

To eliminate bent functions in the candidate set, the algorithm searches the adjacency matrix,

stored in the array sets. An element of sets is a row of the matrix corresponding to a particular

bent function. The rows of the matrix are stored using the same Set data type as the candidate set.

Then, the set of bent functions with a bent sum relative to all elements of the bent set including

the element just added is given by the intersection of the current candidate set and the row of the

matrix corresponding to the new bent function. This intersection computation requires O(n) time,

where n is the length of a row of the matrix (between 5,760 and 36,096).

After control is returned to a particular level of recursion from the next level, the bent function

added just before the recursive call is removed from the bent set and replaced with the next bent

function which can be added. Then the program makes another recursive call, eventually iterating

through all possible choices of bent function at that level of depth. The bent functions are always

added in increasing numerical order (calculated using the binary integer expression of the output

vector), to ensure that bent sets containing rearrangements of the same bent functions are not

double-counted.

To determine whether a bent function is a candidate to be added next, the program makes the

method call candidateSet.at(i). This checks to see whether or not the current set of candidate

bent functions has a 1 in the place corresponding to the current bent function. This lookup takes

O(1) time, since it is simply a lookup of a specific array element. The counter iterationsLeft

keeps track of the number of successful calls of this method on the current candidate set. The total

number of successful calls which must be made is given by the weight of the candidate set. Once

iterationsLeft reaches zero, then we know that we have found and explored all possible candidate

functions, and are ready to return to the previous level of depth.

25

This program was run numerous times with different levels of optimization based on what informa-

tion was required. If we are concerned only with finding Kerdock sets (bent sets containing 31 bent

functions) rather than maximal bent sets of any size, then we may stop the iteration at different

values of iterationsLeft. For example, if iterationsLeft < 31 − kerdockSetTop, then the total

number of candidate functions (from this level and all future levels of recursion) are less than the

number needed to provide the remainder of the 31 elements of a Kerdock set. If Kerdock sets are

all we wish to find, then we can use this criterion instead of iterationsLeft == 0 as the point at

which we can stop our iteration of codewords.

4 Results and Discussion

The searches of the sets containing non-quadratic functions yielded maximal bent sets containing

3, 4, 5, and 7 bent functions. Any element of RM(1, 6) may be added to these bent functions,

creating a bent set with size 1 greater. The following table shows the number of maximal sets of

each size found in each candidate set.

Table 9 (Number of Maximal Bent Sets Given an Initial Nonquadratic Element).

Size of Maximal Bent Set

Initial Bent Function Class 4 5 6 8

2 1,381,632 6,881,280 48,513,024 2,031,501,312

3 529,920 1,474,560 13,639,680 676,003,840

4 870,912 172,032 903,168 135,380,992

This leads us to our main result.

Theorem 10. Let B = {f1, f2, . . . , fn} be a maximal bent set in six variables containing a non-

quadratic bent function. Then B has size 4, 5, 6, or 8.

Proof. Let B be a maximal bent set in six variables. Suppose there exists f ∈ B such that f is

a nonquadratic bent function. Then f is Affine equivalent to one of the three nonquadratic bent

26

functions shown in Table 7. This means that there exists an Affine transformation T such that T (f)

is one of these three functions. Then T (B) is a bent set containing T (f). We know that T (B) is also

maximal because if there was a function g which could extend T (B), then T−1(g) could extend B,

which is maximal.

By computer search, we have shown that all maximal bent sets in six variables containing any of

the three nonquadratic bent functions shown in Table 7 have size 4, 5, 6, or 8. T (B) is an example

of such a maximal bent set, so |T (B)| = |B| is 4,5,6 or 8.

Corollary 11. There exist no six-variable Kerdock Sets containing a nonquadratic element.

Proof. A six-variable Kerdock set is a maximal bent set of size 32. So, by the above theorem, no

maximal six-variable bent set containing a nonquadratic element is a Kerdock set.

It was surprising to see such a dramatic difference between the size of a maximal bent set containing

quadratic elements (32) and containing nonquadratic elements (8). To illustrate why this may be

the case, we reproduce Table 8 describing the size of the candidate sets, but replace the size of

candidate set with the proportion of all elements which are candidates.

Proportion of Functions in Candidate Set of Initial Function

Equivalence Class of Candidate Set Members

Initial Bent Function Class 1 2 3 4

1 0.4147 0.02765 0 0

2 0.02765 0.005940 0.002048 0

3 0 0.002048 0.0007315 0.0005120

4 0 0 0.0005120 0.001024

This table suggests an explanation to why quadratic bent functions produce much larger bent sets

than either nonquadratic bent functions or combinations of the two. Although the absolute size of

the candidate sets are larger in the nonquadratic case, they represent a vastly smaller proportion

27

of the total number of bent functions considered. This means that at each step of the graph search,

we eliminate many more bent functions from the nonquadratic cases than the quadratic case, and

the total size of the candidate set shrinks to zero in fewer steps.

Also of particular interest is the existence of maximal bent sets of size 4. Although rare compared to

maximal sets of other sizes, they appeared in all searches containing nonquadratic bent functions.

This means that there must be several equivalence classes of such bent sets, since some contain

class 2 bent functions, while others contain class 4 bent functions and no class 2s. We do not yet

know how many equivalence classes of these sets exist.

In general, we do not know which of the maximal bent sets counted in Table 9 are Affine equiv-

alent to one another. Table 8 indicates that bent set cannot contain both class 2 and class 4 bent

functions. This tells us that the bent sets with initial bent function from class 2 and from class 4 are

all Affine inequivalent. This means that there are at least 8 equivalence classes of six-variable non-

quadratic maximal bent sets (at least two of each possible size). We hypothesize that the number

of equivalence classes is much greater than this.

For comparison, we performed a similar search for bent sets on the set of quadratic bent functions.

Although the size of this set is much less than the size of the other sets, the resulting graph is much

more densely connected, due to the high proportion of bent sums shown in Table 4. This meant

that the search of the quadratic set took much longer than the other searches.

In the search of the quadratic bent functions, the smallest maximal bent set found had size 8 (7

bent functions) - the same as the largest bent set found in any other search. Bent sets also exist of

sizes up to 16. The only bent sets with size larger than 16 are Kerdock Sets, which have size 32.

28

References

[1] W. Cherowitzo, Combinatorics in Space: the Mariner 9 Telemetry System. Lecture notes from

University of Colorado at Denver

[2] R. Forr, The Strict Avalanche Criterion: Spectral Properties of Boolean Functions and an Extended

Definition. Crypto ’88. 450468, 1988

[3] S. Gangopadhyay, D. Sharma, S. Sarkar, S. Maitra On affine (non)equivalence of Boolean func-

tions. Computing 85:37-55, 2009

[4] J. MacWilliams and N. Sloane, The theory of error correcting codes. North Holland, 1977.

[5] A.W Norstrom, J.P. Robinson An optimum nonlinear code. Info. Contr. 11:613-616, 1967

[6] K Phelps, Enumeration of Kerdock codes of length 64. Des. Codes Cryptogr. 77:357-363, 2015

[7] A.F. Webster, Tavares, E. Stafford, On the design of S-boxes. Advances in Cryptology - Crypto

1985. Lecture Notes in Computer Science 218. New York, NY,: Springer-Verlag New York, Inc.

523534, 1985

29

	Nonexistence of nonquadratic Kerdock sets in six variables
	Recommended Citation

	tmp.1464717399.pdf.3yJc5

