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Oompl~ functlono ot a single complex variable involve 

four unknowns,, two independent and two dependent variables,, 

and thus. cannot be BA.eq,uately represented 1n two• or th~ee~ 

dlmens1ona.l apaoe. Varioua geometrtc oonstruot1ons in both 

two and three d1men81onf'J have been devised: 1n the past, how• 

eter• in attempts to· 1llu.rn1nate complex tunotion theory. The 

standard• and moat useful, of these representations is that 

developed by Gauss and Ri~ann ·enploy1ng two compl~ planes 

s1multaneouely1* • 1.'hese· show the oorrespond.enoe between a. tar• 

tiouia.r curve or region in the object plane and its 1mage, as 

mapp0d by a given transformation, in the image pl4n$• Tabl$S 

based on this system or ~epreaenta.tion have been eomp1lea.2,. 

The chief Cllsad.vantage hel-:e 1s" of course, the fact that es.ch 

pa.1r of graphs · shows only one fa.oat or the pa.rt1cula.r. complex 

tunot1on involved; 1, e. 1ta effect on some one reg1on or set 

ot ourvea. No overall graph ot e. oomplex function 1s present• 

able 1n ·this system •. · 

A clearer idea ot the effect of a particular trant;lforrna.•· 

* Uumbera appea.r1ng as superaor1pta ref er to notes and refe~ 
enoes at end of pape~. 
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t1on can b~ obtained under this system by oonstruoting the 

images ot a x-ectangular grid over the reg1on3 Ol' ot a family 

ot concentr10 a1ro1es4. An important, varlation or this 1s the 

plotting of the images under a. gl'fen transtomat1on of' the 

contour curves or levei' 11nes of the conjugate harmonic func­

tions. In certain pract1c~l appl1oations, these orthogonal 

sets ot cunes represent 1aotherms or equ1potent;ials a.nd 

their accompanying lines of flow,. flux 11nes, or streaml1nes5. 

Other ingenious geoDletr1c oonf1gurat1ons in tw and three 

diinens1ons tor representing (in part) the nature of complex 

functions are des~ribed in the folloWing excerpts from art1• 

oles; some not W1 thout a hint of frustration, which ha~e a.p-­

peared 1n the American Ma.thena.t1cal llonthlt over the pa.st 

torty years. 

"The 1mpoesib111ty in three d1nsens1ons'*• writes Norman 

W.ller0 • 'nof' repr,esent1ng graphieall1 a. fUnot1 on of a complex 

variable makes 1t necessary for the student to oal.l on his 

imagination in other ways 1n ordeJ' to realize tb.e propertl ea 

of these fllnotione~ Two method.S are common in the geometrical 

theory ot tunottops,. one is to represent .in two different 

planes or 1n two Riemann surfaces the var1a.blea z and w and 

to study the oorres:pondenoe between the points· of' the two 

planes or (lurfaces• wh.1ob. 1e determined :PY the relation 

w : f(z) • The second, method• which does rnu3h to 1llum1nate . 

the sub3ect for the bee;1nner17 1s to represent in one plane 

both the independent and dependent variables and to 1nt~rpret 

the transt'ormat1on k1n~at1oally as a flow. of the points 1n 



3 

the ple.ne7 • 

"A complete graph ot the tunot1on w m t(z) or u +iv a 
f (x + ly) cone1sts ot a tw~mens1ons.l man1tol4 in spaoe of 

four dimensions• Neve?'theless the student, 1n his effort to 

Visua11z~ the function. thinks 'inatlnotivelJ ot a. surface 

spread out ovett the plarte ot z. Suoh a. surface is actua.ll.J' 

. dete~ined by taking for a thil'd coordinate the ablolute Val"" 

u&. ot 'f(z) ••• tt 

. In an earl11!r 1ssue, A. >7• Frumve11er8 had propoaetl two 

. simultaneous th?'ae-Mrnens1onal si-aphs, reducing the four•d.1"" 

mensional problem to three dimensions by holding first one1 

then a second e.x1s. equal to zero i 

"Since [B] has been shuttled out of s1gh.t bu :r:roJeot1ng 

its t1eld [xar] into the point (o,o) ot the (•]-Plane;· two 

separate dia.gra..-rns w111 be needed 1n plotting •· one1 ·to show 

the path· of [z] in 1 ta oim plane ,.. tho other, to show the 

pos1 t1on and length ot the veotor•ordinates 1.n the plane ot 
[w] •• , 

A mod1f1oation "lf th$ above, by E. L •. Rees9; suggests a 

single thl'*ee-dia~nsional figure showing the surtace u(x,y) 

on which are drawn °the eontoura tor v a •i• vet etc •• the 

oonseout1ve -v' a d1f'fet-1ng by a. constant• fb.ese contours en• 

able ua to v1sua11ze the variation of v, so that we have pie• 

tured the var1at1on of both tt and 'I and, therefore_. Of [•] 1 

all on one surf'e..ae. 0 

Twenty yea.rs later a refine:nent and extension of three­

d1niens1ona.l representation wa.s given by Luise tange10 as 



follows: 

"• •• Pairs of complex numbers interpreted as coordinates 

of e. point would1 indeed# require a tour-d.1.mens1onal apace. 

"The a1ass10~1 representation ot functions ot a complex 

•aria.blej as developed..bJ' Gauss and Riemann, uses an alto• 

gether different id.ea; the functional equation 1r : t(z) bel:ng 

interpreted. as a. transtorznation of the points of one t•o.,.di• 

mensional eontinµum onto another. The Cartesian aohtmu~, on 
the other handt has also been adapted by J)lotting 1tt reote.n~ 

gular space coordinates separs.tel.1 the two eurfaoea u(x,y) 

and. v(x,y); or the surface of the modultta R(X#J)• 

tt1n the following a somesrha.t different method 1s $et torth 

to adapt the Oartes1a.n scheme to the representation ot tuno4!1' · 

tiona of a complex variable. It consists in presenting on one 

coordinate a.,"ds linear fields of the complex independent var-­

iable• and on the other two s.xea the real and 1mag1nar,r parts 

ot the'dependent va:nable. fhe tunot1onw a f(e) thereb1 a~ 

pear• in· the form of one-parameter families of space curves• 

Theae CutVeBj which may be regarded as threeo.d1mena1onal aec­

·tions through the_ non•pres&ntable tour"'dirneruU.onal ~1091;,·,('0r 
' 

as one..-dimeneional sections ot two•d1mens1ohal surtaoes ,_n. 
tour-apace) 1 are the complex generalizations ot the familiar -

plane real curves. 

nva.rious fa..m111ea of curves (or different sets of seot1ons} 

for a given tunotion are obtained b;r ·different choices of the 

para.meter or the linear complex z•f1 eld. In the tollow1.ng 

have been tr~ted some presentations ue1ng1 



s 
n(a) ·~as para.met$!" with r as independent vat-1&ble (nrad!• 

al aeotionstt ) t 

u{b) x as parameter with 1 e.s independent variable (ff.a~'" 

t1ons parallel to the imaginary axis")•· an4 

·. 
0 (a) 1 as parameter with x a.a 1ndepend&l1t variable ("sec• 

tions parallel to the real axio0
)." 

An exte:mu.on of this 1dea. to the general four•ditnenstonal 

function of three independent variables and. to oompl~. tune• 

t1on$ or several complex variables, using tarn1l.1ea of suoces-. 

B1ve three•dimens1onal sect1ona~ 1a ausgerrt.ed ln a lat~r art .. 

iole ~ Stefa:rt Bergma.nll. 

H®strer, 1n all of the goometrio repreaents:t.1.ons O\ltlined 

above, the bas10 dilen.."lla. la still present 1 a toutt'-41Jnena1on• 

al quant1 ty cannot be adequately and completely represented 

in two or three d1inens1on~h Some cbaraote.rist1c f'eature ot 

the complex tunot1on has to be aaorifioed. or supPl'eased to 

equeeze the tour d1mena1ons down to 2 .... or )•$pace• A new e.p­

Pt'OaCb ls therefore tleed.ed before we can construct a. full 

geometr1e: analogue or a. tunetion or a oomplex variable• 

Undo:r the impact of t.'1e purely ana.lytioal methods of mod• 

ern mathemat1os, . graphical x-epreaentat1on has been relegated 

to the role C)f a pictureaque but limited aid to rne.n' s ma.the• 

mat1oal comprebens1on .. tlo dOubt a oontr1.but1ng taetor to this 

s1tuat1on bas been the traditional. l1mita.t1on of .euch repre..-

eeritations to tfuo'S'e' <llmenaions. Man's "common ... aense" expert• 



eno$S with the phyttioal world .were long a uiental barrier to 

the extension ot geometry into an nunreal'i realm of tou:r or 

more dimensions. Only since the early nineteenth century has 

four--d1mens1<mal geometry bean seriously oonaidered and de• 

velot:>ed12• 

It tleems r~arka.ble to the author• however, that this ge• 

ometry of·hyperspaoe was not. founded ont~a simple extension 

of the oartes1an ooord1na.te systan1 't<> become a hypet"-filli:i 

J.;yt10 geometry. Without s. tour, or more, d1mens1onal trame 

of rete:renoe• the oon.struct1ve features ot hypergeoUletr.y are 

necessarily vague and tnaocurate~, and adequate gra.Jjl1ea.l rep• 

resenta.tion or .functions of more than three va.ria.bl. ea thus 

remains imposeible. 

'?he value ot an a.dequ~te geometrical analogue 1s1 ot 

course• undisputed. As Arnold ilnoh13 points out1 

··~en ln more advanced fields and certain doma1na ot ma.th-. 

ematical resee.roh the establishment of the' constructive tea"*' 

tures cf a rnathemat1oal theory may sometimes be greatly aided 

and 1llum1nated by appropriate graphs. diagrams and models. 

f!Mot 1nfrequen_tly lt happens that; after \he actual con~ 

struction of a :figure ott of a model, a close exai111na.tion ot 

, the finished product reveals ·or suggests the ex1stence of new 

properties of the form tnvest1gated which were not ant1c1.pat• 

00. before· the oonstruct1on. 

"Another 1mpot'tant fa~tor 1n the construction ot figures 

and models lies 1n its strengthening of the geometrical imag• 

1na.t1on and or rnathema.t1cal intuition 1n general ••• n. 



The road, however, has been paved with warning signs dis"" 

couragins any attempt at a complete graPhioal representation 

of four or more . dimensional funot1ons ~ 
0 ot ··course,.tt ·ea.ye· E. · '?• Bell· in· Mm of Ma~!Sr&t1ggl4,. "it 

'tfe take :eqin:trs as the elements out of which our space 1a to 

be oonetruoted, nobody outside ot a J..unat1c aaylltm has yet 

auoceeded. in visual1t1ng a aps.oe ot more than. thre!9. di.men .... , 

alone." 

In l~fi'bhamattcs. an§ the ,Imag3Jj$t~l5•, Kasner and Newman 

say: "Gr$ph1q representat1ons ot four•dimensiona.1 t1gU.:res haVe 

been attanpted: it cannot be said these efforts have been 

crowned with any great success•·" 

And R. E. Ga.aki~l in Jns&n~Sirins M&l:hegt~ggl.6 says: "[A 

graph of] the relationship w : f (z) ... • would require four 

dimena~ons. Since ~~ do not have a supply of rour-d1mene1ons.l 

graph paper, the beet •e oan do 1s to provide the two oomplex­

pla.nee ••• and call attention to a. fe11 correspondences •••"• 

However, let us "rush in whe11 e angels tear to trea.drt and 

arbitrarily add a fourth "perpendicular" axis to the carte•. 
' 

s1an system, thus. creating a Jnz:Pet-SlMlY41c sggguz,tt• As w&· 

shall see• four--dimensional functions can be completely and 

aaourately represented in suoh a. system. And• in fact, by 

using n "perpendiouls.r'' oogt,c!.1ngM§ axes. geometry. ls liberated 

rrom its three-dimens1onal .prison and becomes once more a 

powerful friend and advisor in higher analyn1a 1n the n-d.1· 

~ens1ons of functions of n var1ables17. 
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Geometric representation ot complex tunctionsf as was eeen 

in the preceding o.~apter; has been confined in the pa.st to 

the two- and three-411I1ens1onal spaoe ot which we have a first• 

band lmowledGG• This ordinary· space ot. our experience, how• 

ever 1s basically 1nadequata for the· representation of eu.ch 

tunotiona. 

The author presents in this paper •hat he believes to be 

an original method for the complete geometric representrat1on 

ot functions of a complex variable, using a hyper•analyt1o 

geometry of four dimensions. 

For our frame of reference in the hyper-analytic geometry 

of four dimenaione, we postulate and construct four coord1• 

nate axes• x, 1; Ut and v, mutually perpendicular l?!;,d~f!~l~ 

t:ion at a common or1g1n o. The number of mutually perpendic ... 

ular p~dimensional coordinate manifolds in n-epace 1a C(n,p}; 

the co~ff1o1ent of xP 1n the expansion of (1 + x)n. In tour 

d1mens1ons, s1noe (l + x) 
4 = l + 4x + 6x2 + 4x3 + x.4 • we thus 

have: 

one "mutually perpend1ou1arn coordinate pointi the or1ginl8; 

four mutually perpendicular coordinate axes: X; Yo Ui v: 
a1x mutually pe:rr:endi<mlar ooordina.te planes: X3' • xui; xv~ 



yu, yv. uv; 
four- mutually perpendicular coordinate hyperplanes: xyu, 

xyv, xuv, ;ruv; 

9 

one "mutually perpendicular" coordinate hyperspacet X1JUVtt 

Also• n•d.1rnensiona.1 space is partitioned by n mutually pe~ 

pend1cular ht - l) •dimensional ma:n1tolds 1nto 2n distinct 

(1.e. disJoint .. and exhauat1ve) n-dimenaional oells. Thus, in 

three· dimensions. the three coordinate planes divide ordinary 

space into eight three•dimenaional ootants. Sim1larlyr 1n 

four dimensiona, the four coordinate hyperplanes divide hyper-­

space 1nto sixteen fou~dimens1onal cells which we will call 

. "hexa.d.eka.nte" • 

To obtain a four-dimensional graph, or itpioture•• of an 

obj eot 1n 4-spa.co, we must project from the four dimensions 

of the figure to the two dimensions of the gra.-ph taper. 

Oentra1 projeot1on (1.e. peropeotive) 1a too involved in 

construction and metrical determination for our purposes here; 

and of the p.lrallel pr0Jeet1ons. orthogonal projection •ould 

require three views; to be una.mblguoua. We bave available 

thent and will us9t an oblique proj action and1 la.ter1 axono­

metr1o (1.aometric) a.nd etereoscop1o projections for our f'ig• 

ures19. 

In three-dimensional oblique projection (that uaed for o~ 

d1n11ry three•d1mena1onal graphs); two axes are drawn 1n true 

length, while the tb1rd is foreshortened. Thie ao-oalled "cab• 

1net projection" gives a fairly natural appearance. to three"" 

d1mens1ona1 drawings. An alternate system, called a "cavalier 
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proj e~tion" extends the third axis to the same length a.a· the 

other two,. with a resulting distortion of the figures .. 

In ~ur ~ur-dlmension.al system, a "cabinet proj ect1on" 

would foreshorten two of the axes. Since; as we shall eee 

late~, this 0 doµble foreehol"ten!ng" 1S S. Oha.raeter1at1C proP""· 

erty of two-dimensional projeationa of four dimensions, it 

woul(} be natural to use aueh a. projection> fo:- our f1gu.reth. 

However, for convenience 1n working in the a• and w~plane$ 

of complex variables, whloh is our primat"y.objeot1ve ~ere, we 

will use 1nstead a. "cavalier projection" w1tb. equal scales on. 

all four S.XfllSr and preserrve the right angle between the ues 

of the s-pla.n~. In this way we will be seeing each or the two 

perpendicular planerJ1 ·· the xy and the uv coordinate plan~s, in 

true shape. our hyper-figures then, while still perfectly rep­

resentative, will be somewhat distorted from their "natural 

appearanc~n .(whatever that is) in rour---d1mena1ons. 

To a.void crowded figures and. tbe oonrueion of coincid1ng 

11nea20• we will uae the following particular asymmetr1oal 

arrangement of the axea. (See Figure 1). Start1ng w1 th the 

horizontal half-line to the left of the origin and proceeding 

eounterclookw1ee; the positive ends of the a~es are located 

as follows: 

the x-axis ;;oC below the left horizontal halt-line, 

the y-axis 90° ·to the right of this• 

the .. u-axia 60° above this on the right horizontal half ... 

l1ne1 and 

the v-axis. 90° from th1B and vertioa.J.. 
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Ft '3· 1 The Fov.v--Dirnensional Coo)""dinate S!j.stem 

Fi9. 3 



Notice that in th1&' arrangement the xy and the uv ,Planes 

are not only 1n true shape but, w1 th· the usual orlt'tnta.t16n ot. 
the, a.xes, so that figures may be plotted directly 111 ea.oh t>t 

the two planes, 1 t only being n.eaesaary to rotate th~ paper 

when working in the rs plane. Altemate designs for ·four-di• 

mensional graph pa.per particularly suited for comple;c tuno• 

tions are shown 1n Figures a and. 3.,. other a.ttangements of 

the axes w111 be discussed 1n later chap'l:ters. 

,Pointe a.re plotted in this aysteme as indicated in Fig• 

ure lt by starting at the or1g1n'&nd moving sucoeas1vel.7t 1n 

any order, the g1 ven coordind.te diata.noe parallel to ea.ch . 

axis. We define the vector t• drawn trom the origin to the 

point P( x, y.u,v), to 'be the veotor sum ot i, "i 1 it, V• · It .may -be repl"eeented by the notation t • (x,,,.u,y) t and will be 

called a "trans:format1on vector"• 

:PE:FINITIQtS1 fie Shall define e. Sl'ittEb ill Q•dimens~on~ as 

~lu1 J:gous of "ttha .. end ... :EQints ·qt the ttta.nsrog:mgtAon :rector 
- n_ .· . . : . ~ ati:~: Buch a ;locus is a "transformation locus"• When 

n ~· 3, . th1a def1n1t1on gives us the gi-a,phs obtained. by the 

ordinary methods or plotting. For n > :;, we ma.1 oall these 

1001 "hypergraphs0
• 

The k;tpd of graph, whether it will be a point, curve, sur .. 

taoe; solid• or hype;rsol1.dt 1s determined by the proportion• 

ate number of constraints on the degrees or freedom avail&• 

ble. In thrtle dimensions, for example, one equation det1nea a 
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surface (a two•d1mens1ona1 manifold), two oona1etent and 1nd&"i' 

pendent equations· define a skew curve (a one•d1mena1onal man1• 

fold), while three suoh equations def'1ne 1sola.ted. points (r.ero• 

d1mens1onal manifolds), In. general; it ,_.. o~tra1nts are t.o bfJI 

1mpOsed on the points of n ... space, with tbeir n'tVariabl4!Ps or 

degrees of freedom, we will need r dependent rel.a ti onships a­

mong the n var1ables 11 leaving n • r ot the variables still in­

dependent. G1ven r consistent and independent equations ex• 

pressing such dependence, r of the variables; uaually those 

expressed or expreeaa.ble as expl1o1t tunotions of the others, 

are customarily called the dependent variables. The remaining 

n • r variables of the n•spaoe are called the 1ndepend.ent va.r-

1ablea• It one or more or theae do not occur explicitly 1n 

the equations then the manifold 1s some type. of "oylindr10e.l ~ 

manifold., S1nee an (n • r) •d1mens1onal man!f'old. is a set of 

points with n • r degrees of freedom or independent variables, 

we have the following theorem for determining the ltind of 

gra]il vte can expect: 

mEORF'~l "A set of r oona:1atent and independent equations 

among n va.r:tables. uniquely determines a.n (n • r)•d1mens1onal. 

rae.nif'old 1n n-spa.oe. 021 

We often speak of the manifold i-eaulting from two or more 

simultaneous eonstra.1ntB as the ,j,gte1:qeg:fi1on ot the manifolds 

described by each of the separate oonstra.inte+ Such 1nteraec ... · 

tions are uniquely determined by the given constraints: how~ 

ever, they are not .uniquely d€SCribed by than• s1nee any num• 

ber of comb1nat1ona of suff1c1ent constraints can ba round to 



14 

desoribe the aa.me manifold., Thus.· three pla.nee, under suitable 

reatrtctions, determine a unique point .in ;5-spaoe1 but this 

Point . ce.n be ·deacri bed in any nwnber of other. ways• The. theo• 

. rem tells us the ~ype qt i~t~rgeat12n our Iftal'lifold or graph 

will be. 

Exact definitions of the usual na.met1 f'~,;r the various m~ .. 

folds in zero to f1VG dimensions are given 1n the accompany-. 

1ns table. We have proposed two add1t1onal names. Juat as .a 

pla.n.e CUl"V'.e, a one-d.1mens1onal manifold 1n two dimensions* 

1f given a nt'm' dimension in 3•spaoe1 will twist into a "skew 

curve" in t1hat spa.oe while,. however, still .keeping 1.ts chara.c ... 

teris.t10 identity as a one-dimensional suoceasion ot po1nts# 

so a surface or a solid in three dimensions. given an added. 

fourth d1mena1on ot treed.om, will tw1 st and change into a new 

sh~pe in four dimensions while atill reta1n1ng the basic 

oha.ra.cter1st1os ot a. surface or a solid. For this reason we 
·, ', . 

will sometimes call a two•d.1.mens1ona.l manifold 1n4~ instead 

of 3•Sp$.(!G a "skew aurf'Qce", a.nd a three•dimens1onal manifold 

in 4-spaoe a ~skew solid". Note that "skew solids", or more . . 

properly• 111pereu~aoes, include not only hyperplanes bµt a.1• 

so hy'peroubes, byperepheres; etc. whioh suggest four dimen­

sional hyperso11ds. Actually, of course, these are all hyper­

aurra.oes (threa•d1mens1onal solid.a), since their equations 

give us only the points on their hyper surtaces·1 not the 

paints ot the enclosed hypersolid• The same thing 1a true 

in three dimensions. A oube or a sphere, as defined by its 

equation. 1s, l1ke a plane, a two--d1mena1onal surtaeei 1t we 
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TABLE OF'· MANIFOLDS .. IN ZERO TO FIVE DIMmSIONS. 

n n • r 
Dimension • Dltnens1on (Exaot "Common [Proposed 
<>t. gpa.ot gt mantt9J:d . Deftn1i tign} .. , ;pea1cmA~\2nstt ·· li'imn>l · .... 

0-0 (Po1nt Point) "Point .. 

1-0 (Line Po1nt) "Point" 

' l.•1 (Line Curve*) "LinG" 
. I . , 

2-0 (Plane Point) ttPo1nt" 
' . 

' . 
2·1 (~lane Curve) ttnane ourv-e'' or nourve0 

2 .. 2 (Plane surtaoe*) "~e surtaeett or "Plane" 

3•0 (Space Point) "Point" 
' . 

3•1 (apace Gutte) lJSpaoe .curve" or> '*Sk• oun<1u 

3-2 (Space Surface) ''Surtace" . 
3•3 (Spacf! Sol1d) "So11d11 

4-0 (Hypf;)rapace Point) "Point» . .. 
4•1 (ff1perspace Cune) "ffyperpo1ntff 

' . 

4-2 (Hyp~paoe Surtaoe) "Hypercurve" [Skew eurta.o~ 

4·3 (Byperepaoe Solld) "Hype>!'surtaoe" [Skew solid] 

4-4 (Hyperspace Hypersol1d.) ••Hyperao11d." 

S...O (Hyper.-'h;rperspaoe Point) 0 Po1nt.0 or "Po1nt•S7stem" 

5•1 (Hyper-hypers.pace Curve) n0u!"lle0 

5·2 

s~' 
S-4 

5 .. 5 

{lf1p~hypeJ:i!SpsQG Surtaoe) n·Hyper•hyperpoint" or 11Super; 
. _ · · . . auxve 

(J~per·hyperspaoe Solid} ttJirper•hyperoune" or .,Subsur-
. . . . taoe" 

( H1par-hyperepaoe HJ'p&rsolld) "Hy'per-twpcn"surta.oe" or 
, : · . . "Surta<.u:t0 

(Hfper-b;ypel:'space Hfper•bypersolid) "Ryper•eypersolid" or 
·· 

0 Space0 

* ti the manifold 1~ linear, read ''line" for ·,.ourte" and 
"plane" for r•surtaoe" throughout the table. 



wish to describe a three•d1mens1onal solid we 11ave to use 1n• 

equalities ()r parameters. The final names given in the· table 

under five dimens:lona are th~ terms used by Oayler• 

If; . in plotting the grar.h of a set ot equat1.ons6 vte let 

OA equal the vacto~ sum of the n • r veotors representing the 

independent Variables• and OA •. the veo.t.or SUtl'l ot the r ve¢• 

tors r'3present1ns thG ¢ependent variables,. then by our def- · 

1n1t1on, i • (OAiOA') #I O.A*1 where A*• the end ot the i vec• 

tor, · ls . the, eorreapond.1ng transto1"llla.tton point on the graph 

of our :runotion. Figures 4 ·through 9 111ustrate the d.et:tni ... 

t1on and tbeot'em ot · thls section fox- various man1folda when 

n "=; ?,.3,,. and 4, and. 'shO\lt the mture or a graph aa a trans..-, 

formation 1oeus between the independent and. dependent val'!&• 

bles. Cylindrical tnaliitolde• not shown here, are oontnd.ered 

in the first eeet1on or Chapter l!I. {S~e Figures 1.0 and 11)., 

Vore generally, the PX'OOeSf;l of plotting s graph is that of 
"' 

'1"eotor cornPoS1 t1on and oonaiS ts of finding a set 9t pointt:l in 

n•Sp!l.Ce; given a $et ot ooord1nates .. The general inverse prob .... 

lem., vector resolution, 1a to find the eet of ooo:rd.1nates,'. 

given the sett or Points. :tr:rom OA and 1ta tra.nstomation point 

OA*1 we can readily find. OA•. Whether, given OA*, a method is 

available for finding OA {or Viae versa), a.nd whether we can 

further )."esolvtt OA and OA' 1nto the. vectors or the irtd1v1d.ual 

va:r1ables determines our t\b111ty to complete th1s 1nverse pro• 

cess. For- a two .. dimens1onal graph, of a ourve an~ a three•di• 

menaional model of a skew ourve or aurraoe this 1S .always pos...: 

Sible by orthogonal projection. Undw s:cy other oond1t.1ons• 
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add.1 tional. 1nfoma..t1on, .1nclud1ng the cor:reapondence 'between 

the VtlKlto:r ·sums ot the independent or dependent variables and 

the1it transformation pointa,1s needed to solve th16 1nverst 

pro bl an• 

t"1ven ~ equa.tiona in r 4.epondent varia blea, expreasable a.a 

explicit tunot1ons of tt • r independent variables w1th1 per­

hap4, some zero ooeffleienta. •e oa.n assign values to the'.1n~ 

. dependent variables, determine the corresponding values of the 

dependent variables .an.a find their veotor sums t• Thus we can 

plot a graph• or "tra:neforma.t1on locus", which ieJ an accurate 

geometric representation of our mapping function. 

The' uae of the s:ra.ph •. on the other hand~ to actually per-

.. form a tnnaforma.t1on .may not be so; simple a probletnJ sine& ' 

it 1s one .form ot the inverse gr$.ph1ng procesa. In the pro• 

jeot1on of' points between two. manifolds, such as a p•d.1men• 

S1onal manifold in n•space and the two•diment\lional manifold 

of 1ts graph on ~per. ambiguous results occtll' if the .. dimen~ 

Sions ot the two ma.nitold.S a..r~ different" 22 That is; the pro-

.. l eotion oan then be aooompltshed 1n only one d1raot1on; the 

process has no 1:nVerse, or fin1 te correspondence, 1?l the re• 

verse order. Fott $1'..atnple, we can proj eot e. point ot a cube 

into only one point or· 1 ts shadow on a. plane,· but the reverse 

process gives us &.&~ indeterminate location; actually an infin• 

1tud.e or po~s1ble locations, for our point projaot.ed ftorn. the 

shadow back into the cube. This meana t.hat, while our hyper• 
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ana.l7t10 geometry will. enable ua to sra.ph th(l oorreepondenoes 

between the variables in n-spaoe, the use or suoh gra.pha aa 

a.ctuo.1 transfot'nlation devices or nomogra.phs is 11lll1ted to & 

fel/I oaaes in the lower dimentU.ona1 unleaa we employ SQtne &d"­

d.1 tiona.l method tor equalizing the difference in dimeniu.ontl 
,. 

between the manifold and !ta p1.,0Ject1on. (Some method.a tor 

a.ccomplishin.g th!s are given 1n Chapter IV.) E!Ven though we 

may not desire to perform the aotual graphic tran atorms.tiona, 
. 

it a. "read-out" 1s possible,, the eorrespcnde:nees represented 

by the graph then become 1ntel11g1ble. 

Fortun.a.tely, we can perform graphical transforme.t1ons, at 

least .in the .usual direction from independent to dependent 

variables, 1n a.11 cases through four d.imertsions,. and in moat 

ot the f'1ve-dimensional. ea.sea1 the particular oa.se Of the 

four•dimene1onal hyperpoint', a.nd soma of the f1ve-d1mena1on• 

al oases, however, requiring additional features to make then 

a.mEJnable • (See Chapter !V) •. 

In the ~~1aular ·ease in which we are interested here1 

that of two independent a.nd two dependent variables, our the­

orem tells us we a.re dealing with a two-dimensional, manifold 

1n 4-spaoe; thus we can proj eot from this to the tw_o '.fil.men--
I 

Siems of our graph paper w1 thout a.m.b1gui ty. The hypergrapba 

ot complex functions, then, will not only give us pictures of 

the funotions themselves but will also perform the aotua.1 

tranefoX'ttl\tions 6l"QPhica.11y. They therefore will be oomprehen""" 

aible a.nd val.id geometric representations of the aQtual cor ... 

respondences expressed by. the complex functions. 
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A function or a a1ng1e complex variable ha.a the tom w 8 

t(z), where w * u +iv and z • x + iY• From u +iv tit f(x + 1y) 

we obtain, on separating the real .9.?la imaginary parts, u ~ 

u{x,y) and v :r v(x11); t"o equai;1ona in two independent and 

two dependent variables. 

ln three Mmeniaonat two equations in one independent and 

two dependent variables give us a .skew curve in 3-space, 

which is the 1ntereeot1on of two perpendicular cyl1ndr1oal 

surfaces.··· (Figure 10). In a $1m1lar fashion, in tour ·dimen.• 

s1ons, two ettuat1ona ·in two independent and two dependent 

veriables g1 ve us a "skew surtaoei• or hyperourve in 4•spaoe1 

which is the intersection ot two perpondicular ayl1ndribal 

"skew solids" or hyperoyllndr1cal hypereurfacea23. (F1gUre 11). 

(The entire object in Figure 11 1a a pla.no•oylindrioe.1 hy• 

. 24) peraurtaoe and ita interior. If w 1a en analytic function 

of z# then u an~ v are conjugate ha:rmonio f1.mot1ons. Thus, 

the graph of an analytic tunotion or a oomplex variable 1s 

the intersection of its conjugate ha.rm.onio hyperoylindrioa.l 

hypel'Surfao~a. 

In P'igure lO, we see that a·po1nt P1 (x1,y1,z1) on the skew 

curve of 1nterseot1on 1s the intersection ot perpend1cular 
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cylin<t?ical elements cut· trom the two 1nterseot1ng cyl1n4r1 .... 

oa.1 surfaces by a plane through xi. parallel to the pla.ne. ot 

the dependent variables. That 1s, Pi 1e the 1nte:r-aect1on of 

Y o f(x1) and a • g(x1)• Sim1lar111 in Figure 111 a point 

P1(x11Y1;u11v1) lying on the akew surface of 1nterseot1on 10 

the 1ntersect1on of perpendicular" cyl1ndr1ca.1 . elements out 

from the two ayl1ndr1oal skew solids by a plane th~ugh the 
' . ' . . ' ' 

point (x1.y1 ) pa.ratlel to the plane or· the dependent variables. 
. ~ . . 

Not1oe that, tor eaob. point (X].;Yl>t we have aome particular 

Pa1r of values u : u1 (lti,Y'l) • "ff :. v1 (1i_~Yl); 1. e. $a.Oh plane . 
drawn parallel to th c uv plane through. some point in the Xy 

plane cuts eaoh of the cyltndr1oal skew solids 1n .onJ.t one 

elcment25. The intersections or these p:iirs of perpendicular 

elements determine the akew surface. We might oall such a 

-
0 akeJr surf.ace'* variously a. 0 tranerorma:t.1on aurtacett 1 ut ... sur­

f'ace*', "hypergraph rt, or "hypercurve0
• or, s1noe 1 t. is inter­

posed between and P6rfonns the tranefor®tion from an 11obJeot" 
' 

in the z-plane to its 0 1mage" in the w•plane, we might oall 

1 t a hm1rror eurfaeen or "m•surtac~"20 • (See Figura l2) • 

In the geometry or real ve.r1a.bles, there are soma curves; 

suoh 4s 01rcles and e111psea, which ca.n be plotted in the1r 

entirety. !~ost funot1ona, ·however~ are unbounded 1n one or 

both variables, and we content ourselves with plotting and 

studying the salient features of the most 1nterest1.ng pOrt1on 

of the eurve1 often that near the origin. Similarly, there 
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are relatively few special analyt1o function& wh1ch have 

their regions ot existence limited by natural boundar1eai and 

even these function& are ueuallf unbounded in absolute value 

on euch boundaries, Moat analytic f\lnet1ons (1f •e 1nOlude 

their analytic continuations and exclude singular·. points) are 

defined crier the entire complex plane. FUrthermore, unless the 

function is a constant• by J..1ouv111e's Theo:remf 1t 1.s unbound• 

ed in absolute value for at least one Point ot th1s plane. ln 

'View or these cons1derat1ona, we cannot expect to plot the 

entire graph of an analytic tunct:ton, any more than we oan 

plot an entire parabola. We can, however• construct and ex• 

am.1ne the transformation surface of a complex tunct1on for 

any portion· of the complex plane 'lfe w1sh1 suoh as a region 

near the origin or about a pole; and thus become tam111ar 

w1 th 1ts part1oula.r charaoter1stic shape• just as in real var­

ia.blet'h 

We will use for our basic region in th1s paper a 3n x 3n 

square grid. 1n the xy plane, ueua1ly with n • 1; and 1n or­

der to keep our figures here e1mple, we will confine out'* 

selves for the most part to the first quadrant, start1!lg at 

the origin. This will give us sixteen pointa on the transror• 

mat1on eurfa.oe, trom Which we oe.n gain some idea of the Char­

acter of' the tunot1on both 1nd1 vi dually and 1n compar1eon 

with other tunctions, aa well as make use ot the hypergraph 

to illustrate a. few simple tre.nsfonnations, 

As with ordinary· graphs, we first compute a set· ot values 

for u and v oon:'esponding to those assigned to x and Y• On.Ce 
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we have these. we can use e1thera or two aH~thodB tor plotting 

the aotua.l points ot the transt'onnation surface. First, as 

stated in Chapter II, we oan plot successively, a.long lines 

ps.ra11el to the respective ues• ea.Ch· set ot values of x, Yt 

Uj and v. taken in any order. A triangle with scales along· 

the perpend1oular sides ia an aid in sueh plotting• A aecond 

method ls to plot point (x.y) in the z•plane, and its corre"" 

spond1ns point {u1v) in the w-plane, then draw vectors i a OA 

and; : OA1 and from these, by completing the parallelogram 
' - ....... and drawing its diagonal, f'ind th&ir. vector swn t * e + w • 

OA:tf. A mechanical plotting a.id for th1s method ie descrtbed 

below. Ea.oh "mirror point'- A* obuined iB correlated with its 

"object poitrt" A by some convenient notational system, as 

discussed 1n tbe next section• Ua1ng a trench curve, smooth 

"mirror curves" of the grid lines are now drawn through the 

con-espond1ng mirror points. gi tr1ng us for the complex tune• 

tion being plotted e. nmtrror surface•' 1n four dimensions ot 

our ba.s10 gr1d. 

To "read" the transformation surface thus obtained ror the 

nature of' the transf'orma.tlon it ef'f'eots 1 it is, only necessary 

to keep 1n. mind that if the VEkotor trom each point 1.n ·the Z•· 

plane to 1ta mirror point on the transformation surface be 

moved to the orig1n1 it ma.pa the image or that po1nt 1n the 

w•pla.ne. Thus the tr impending transf1gurat1onn or the object 

plane oe.n be v1sua11.z&d by rea.d1ng1 B9.1; counterolockwise 

a.1'90Urtd the border· of' the grid · 1n the z.,..plane, · "oarry1ng the 

or1s1n with us" from ea.oh grid 1ntersect1on to the next as· 



we note the changing vectors to the tnnarormation aurfa.ce. 

Sea, for e:xampla,. Plate 1.6. 
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Graphic transformation of points, ~uM'es, and ~eg1ons from 

the Z•plane to .the,w•pla.ne can .now be :aoc.ompl1Shed1;. From, any 

obj eot point A ot the curve or region· 1n the &•plane we draw 

thevveator AA* to the oorre&pond.1ng m1rroi- point. A* on the 

transforma.t1on surtaee. The vector difference OA* ~ OA *' oA• • 

found. by completing the parallelogram with OA* aEJ a diagonal•· 

gives us tbe vector oA• locating the image point A' in thew• 

pl.Mch When point A does not lie on a grid intersection• we 

must either use e. more finely divided grid system, compute a 

speoie.l po1nt1 or use jud101ous 1nterpola.t1on, ·in locating 

its mirror point A*• 

Inverae gra:ph1c transformation from the w- to the .g ... plane · 

can be 1 aooompl!ehed by a. "trial and error'' eea.roh method.. 

Better• of course, airl"·or curves of the grid lines u. = 01; 

v = o2, oan be plotted on the transf'o:rmat1on eurfa.oe··also and 

inverse tra.neformat1ons performed directly. 

Graphic transformation should be an aid in the solution, 

part1oularly •here irregular paths or regions are involved, of 

certain boundary value ;problems connected with heat tlow, e• 

1ectr1c potent1a.lt fluid now, and air fo1ls,. For auob. pre.c• 

t1cal applications; the transfoma.t1on aurfacee and the z~ 

and w-grid.s would have ·to be drawn accurately to f1ne d1v1• 

s1ons1 like r1ne graph. paper,. and. perhaps pr1nted in d1tf er• 

ant colors; -e.g. z ... plane, light blue; t .. aurtaoe, light red; 

w .. plane- light green; reserving black for the curves and re-
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glone to be plotted and transformed• 

:tn th1s oonnect1on, the. work would be fao1l1tat.ed by eome 

t.ype of meqha.n1ca1· plotter constructed as a;. parallelo~, · 

adjustable 1n size and shape; fto duplioa.to the vector figure 

OAA*A' • A pair ot surmounted parallel :rulel."s or a ayst$m ot · 
cams or . gears would maintain a t1'lle parall,elogram tor: all 

pottitions. In use, the. tiret or o vertex would be anchored. at, 
. . ... . . 

the. or1sin, the eecond or z vertex with tracer point would bft 

plaoed on a point 1n the z•pl.ane;, the fourth or ; te.rtiex with 

tracer point on the correaponding point in the w-plane,., The ... ' . . . 
thi:rd or t vertelt with pencil would then mark the. point on the 

traneformatton surface• Such a d&vioe would not only plot the 

tr.a.narorme.tton surface• but once.this had been obtained, 1t . 

could then be uaedj. interchanging· the pen.oil and trace?' ':point 

between the l and ; 1"ert1des. to plot ' th.a image in' the w~phne 

of ariy. figure in the z-pl®e,. using its corres]'JOnd1ng .. points 

on·: the. transformaticm aurtaoe. Of oouree, a'ueh $ meehan1Ca.l 

plotter lfould not be 11m1tod to complex funot1ona; s1nae 1t 1s 

perteotly·general in pr1no1ple; 1t could be Applied to Mfr·. 

graph in any number o.f dimensions. (See Chapter II.,·Figures 4. 

through 9)• M.dltional,ref1nanents oould obviate the. neoes~itJ 

ot first sum.niing ,the independent and the dependent varle.bles. 

3 • . :foint, Ngtat1on~ 

We noted, 1n Chapter II• .Section 2t that one of the two · 

problems connected with graphic transformation is th& corre;... 

la.ting of the veotorr sums· of the independent Variables and ... 
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the1,... tra.nsfo11nation po1nta. With a.graph of' a two•d1meneiona1 

manifold 1n n~apaee• ~he beat method tor indicating tbta· oor• 

reepondenoe 1s by·the use of l111rror. curves ()f ,the :tt plan~ 

grid 11ne11t Values ot x a.nd 1 can be wr1 'tten along the 1n1rror 

axes; ·for added clarity, the 1 values can: be underlined. (A 

memory a.id here l&· that a numbe~\w1th l\· hori.zont71l· J.~U _under 

1t1 .St indioates ~e mirror of. 1 # . o• · Whio.h 11 A 1M?t3 ZQllt&.\ 

ltne in th~ usual xy graph-.) ·An altema.te method. ot ·point ·no-. 

ta.t1on ror two-d1mens1ona.1 man1tolils is given lat-er 1n th1s -, 

seotion. 

For a three ... ru.mensional manifold. in n-.spaoe we oa.n subst.1• 

tute a series of suooese 1V$ t?to.,.d1.mens1onal layers or s.urraoes, 

Joined by ourV"ea through their comers, each 1dent1.f'ied .along 

one of these corner OUM"t:JS as to 1 te pos1 t1on1 u :; g; in th& 

hnereurface:; and ea.oh marked. with m1l"r0r gri..ds.· Additional 

curves can be drawn on two of. the external f"ces to correlate 

the x and y values between the. several au.rts.oes. Clarity 18 

1noreaaed by t!la.king the weight · ot the lines heav-ie~ on the 

border e.nd visible faces• All. actual 1nterseot1olUJ ot mlr.tt0:r 

grids in the figure, ·as well as on two-dimene.ional .Su?'faces 

wnioh double back on themselves• should be marked w1th hes.VJ' 

dots or sma.11 x' s to distinguish. the'Q from the many ta.lee or " 

appe.rsnt 1nte:rseot1ons. Interpt>lation between grid lines be­

comes • major problem here• 

. Beyon.4 a three-d1mens1on~l man1foldt the projection on the 

plane of the graph pa.per .becomes too .oumbersome\!t in' general• 

to use for graphic transformation' although some 1nterest1ng 
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hypergraphs can be obtained. 'tie muat then resort to proj ec• 

. tions on the various planes and hyparpla.nes •. or successive 

1nterseot1ons w1 th these1 or to purely nomoe;raph1c devices i• 
Th1s is our difficulty 1n the general f1ve-d1mens1onal oaae 

with one dependent and tour independent ve.r1ables1 

If it is desired. 1netead to assign letters to the srid 

1nterseotions of' a two-dimensional manifold, the follo111ng 

system fOf! & on X on Square array Of points, With any Soale 

and any center; 1s convenimt. Since moat ot the :tnterest1ng 

featut'es of. the common functions ocour wi th1n au<h a region, 

w1 th n : l, centered at th$ origin: .mueh of our work will be 

done there. a.n« the letter notation ind1oated belo• will be 

adopted• 

~~gyla£, J22J;n~ notat1on 18 $hovtn 1n Figura 13~ Which gives 

the m1~ror point letters tor the aorrespond1ng gr1d points of 

the ~-plane. The notation 1(" can be read 11k m1nua 11 
• Plotting • 

QM be faoi11tated by writing these symbols in J.4e.bZ.lii on the 

z-sr1d.. It 1s then only neoesaary to plot the u and v values 

ot eaoh P01nt from its symbol; which 1e then erased and wr1t• 

ten 1n clearly 'bea!de the final point obtained. 

s~n.gyl!r IQlnt notation 1s shown 1n Figure 14 tor a pole 

at point k• About a. singular point, e. "sp1d~·web0 pattern of 

nested. regions 1s used, and the letters of the original. square 

are :repeated 1n the sma.llei- squares, with dote over the let­

ters indicating the euooess1ve subdivisions o:r the region. If' 

quarter Points are desirable, they can be lettered a.a shown 

with the unused aymbols left over from the regular point nota• 
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'' t1on aehemeit 

Speo1e.1,poin~ notation 1s shown in F1su:re 15. 

This system or notation accompl1ahes an order11 yet tle:c-

1-ble method of 1dent1fioation ot points 1n the region with an 

efficient use of a minimum ot basic symbols-. Two worksheet 

forms based on the system are included. (F1gurN lo and 11) • 

If des1redt any point or the entire system can be extended 

to the corresponding points in the z• and w-planes by using 

the subscripteu k2v kt' It,,• 

In the following pages we prea~nt a number of tra.ns:ronna.­

tion surfaces obtained with the plotting methods we have de­

sc~i bed as applied to various elementary tunoiions ot a com­

plex variable. Some tra.nstoma:t1ons with these surfaces a.re 

a.ls o shown~ 1n red • 

. Jlany or these surfs.cea are the uoomplex genera.l1.z.a.tions0 

or real plane curves. In these inetanoea, the tunot1on w : t(s) 

1s real when z is real, 1.e. v • O when y :: O; and the cor­

responding real variables curve 18 then u = f(x), seen 1n the 

hypergraph as the trace t•abcd11 of the surface on the horizon• 

ta.1 real xu plane. In other instances• the complex surtaoe haa 

no real oounterpa.rtt (111e• no xu tra.ce)1 or sometimes only 

one real point or two. Tracee on various planes a.nd three-di• 

m~sicnal sections 1n various hyperplanes will help us to bet• 

ter understand tho nature of the surfaces. Note that the m1r­

ro:r 'D01nt of' the or1g1n in these gra:P;te 18 ''a."1 the min-or 
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oune of the x-axis the line "Qbod" j'· and o:r the y•ax1s .. aeiui" • 

±.he. h:ypergraphs shown are construoted:; for most of the func• 

tions, over a 3 x 3 region 1n the first quadrant ot the xy 

plan~. A large unit scale has been ueed to magn1 f'y ~he obarac• 

ter1st1o features of the surfaces at .the origin. For w • z·~. 
however• we have used a 12 x 12 region ,.centered about the or• 

1g1n to show the continuous mirror au:r:f'ace oorrespcnding to 

the Riemann surte.ce of two sheets in the a-plane. 

In °v1aual1z1ng" the surfaces, Without the ald of stereo• 

scopic drawings as described 1n the next section, 1t should 

be kept in mind that all u and v values are plotted in. planes 

parallel to· the uv plane., which. is the plane of the raper; 

:from pointia in the xy plane, which exten.dB from ,the uv plane · 

toward the observer. TherefOre the relative nnearnesa 11 or any 

point of the tranarorma.tion s:urfaoa correspondS to that of the 

obj eot point. 1n the xy plane treat.eel as & ttpl.a.n View", show-

. 1ng the xy plane from above with the observer at the lower 

edge of' the pa.per. Thus, toi- examplt., in the graph of w • z, 
. 

the surtaoa does not 11 • in the plane or the pg.per,· but ex-

tends from the origin toward the obs.erver, point p1 as in all 

ot these graphs, being the closest. This is read.117 seen in 

the stereoscopic view of w : z. Using this proximity pr1nc1• 

. ple, we can draw a series ot horizontal lines through the grid 

points of the xy plane and obtain the following "order of 

proximity'' Of the paints to the observer, t9t ,OU:C PA£1e!C\!J.S.J;:: 

.attane;ment 9t: the a0e~Jt starting ~th the oloaest p<S1nt pc 

pol n km h j n' g 1 o• d f J' p' o e k' h" b t' l' s~ a 



.... i· ..... 
k n o p • 

For the f1rat quadrant po1nt.e only,;. we ha.vet 

po 1 n km h 3, g 1 d t c e b th 
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In det~m1n1ng the relative positions of the mirror sur ... 

tace and the X1""Plane1 1 t shottld be kept in mind that 11' 'f' 1s 

nega.t1ve,. the mirror points are below both the xu and the x:y 

pla.n&. From tne graph 1 tselt; we can reason· as follows. The 

object point and 1ts mirror point, lie 1n the same vert1cal 

plane para.llel to the pa.per, so they are each the Brune dis• 

, ta.nae from the obser"ler. If the mirror point is farther trom 

the bottom-edge of the paper than its object point, the 

"slopen of a line from the or1g1n to the mirror point 1e less 

than that or one to the obj eot, point ror points this side of 

the origin, grea.ter beyond. In either case this point of the 

J!l1rror auttfa.ce lies above the Z•plane. Conversely1 if the 

mirror point is nearer to the bottom edge than its obj eot 

point. 1t llee below the z-:plane. 

Commentaries on the individual plates are g1ven below. 'l'he 

graphs, as mentioned previously, are only c small portions of 

the entire (usually unlimited and unbounded) surfaces. 

(1) w : o : The hypergraph 001noides with the xy plane, an• 

alogous to the real variables oase. u • o, wh1oh ooinoides 

with the x-u1a. The latter 1s seen here as the trace abed on 

the real xu plan,e. Since the object and mirror poin~s coin• 

oide throughout, all vector differences are zero, 1.e., every 
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point of the xy plane is napped into the origin by the su:r• 

ftr.ee w a o. 

' 
(2) w = 2 • 1 : Here our X'!. plane 1s repreaented by a paral• 

lel plane through the point 2 - 1 to the right and below the 

rea.l xu plane. Sinoe the m1rror and obJeot planes are pa.ral• 

. lel, they do not intersect i thus there is no rMl counter• 

~rt to this complex tunct1on. By completing parallelograms 
' 

between the z•, t•, and w•points, we see that all points of 
. . 

the xy plane are mapped by the surtaoe into the complex point 

(3) ,, •. § : As Pointed out above, we have here a eurraoe 

extending out from point a at the origin to point p nearest 

the ob&el""ler. The fact that the mirror grids, 'tfhiob a.re aotu ... 

ally orthogonal on the mirror eurfaoe, a.lao plot out on ®r 

projection or this surface as perpendiculars although we are 

obViously seeing the surface "at an anglen, ia due to the use 

ot equal soales and perpendicular axea in our oblique prc>Jeo• 

t1on o:f the z-plane. If we had used a cabinet project1on with 

equa.1 foreshortening on the two axes~ the surfa.oe would still 

a.ppea.r square, though smaller+ (See. far example, the gmph of 

w • 2z). Unequal foreshortening or nonperpendioular axes will; 

1n general, g1 ve us an inclined mirror of the pla.ne as a par­

allelog:ra..f!l• 

If 11e "shift our viewpoint" here by rota.ting the z-pla.ne 1n 

the plane or the paper about the origin, we find that the 

equare pro3eotion of the mirror surface remains square• illus-
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trat1ng a four-dimensional extension of the ·fact that we oan 

see the true length ot tt line :trom more than one position• it 

we are 1n a th1rd..,d1mens1onal plane perpendioula.r to the line, 

Here we are in a tourth•d1mens1ona.l plane perc-pendioular- to 

the plane in which the right angles occur, eo we can "wa.lk 

~und" it in this perpendicular plane and still alwa.ys see 

the mtrror plane as a true square• A tt Sida effect", however, 

1s a change in the apparent a,1z1 of the plane (compare the 

gra.yils of' w • z and w • -z) caused by a 1'double toreshox-t• 

en1ng'' in four dimensions; which will be discussed 1n a lat,.. 

er chapter. 

Not1oe the complex meaning ot "linearity" and. "slope" 

here. Since w • z 1& linear, our hyperspace surface is ni'la.t" ,. 

1._e •. f'. a hyperspace plane or "hyperline". Since this function 

baa a "slope" or one;. 1 ts m1rror plane malt es eqool "angles .. 

w1th the z .... and w•planes. Without defining "flatness .. lf "slope"•' 

o!' 11e.ngles" in four d1mens1ons,. our hypergraph of w • z still 

gives us a geometrioal teel1ng tor these qual1t1es.· It 1s 

interesting to see the interpretation ot the Ca.uohy-R1ema.nn 

equa.t!ons in th1a graJ;h as the slope ;~ ot line abod equal to 

the slope ~v ot line aeim,, with~ = -µ :O at the orig1na' 
()'j O i o>C 

Mlrro~ point g appearing near the obj eot point ( o~ l) is the 

mirror· ot object point (2.1), and the latter 1s "closer to 

the observer" (at the bottom of the page) than is point (Ottl). 

Front this we knol'f that g,. and thus the ent1re mirror surtaoe 

shovm• 1s nnearer" to the observer than is the obj eat plane,. 

1.e .. ,. 1t Will appear to be "aboven the xy plane in a stereo• 



scopio v1ew,. a fact wh1oh is aonfinned. in the next section. 

Th$ real . counterparl• u :r :ic, is the line abed in the xu plane. 

A'. pure iraaginary counterpart 1s also seen as the, tt-a.oe ae1ttt 

1n· the vertioa.l ·"pure 1mag1naey" ·'!r'· plane. 'rhe four.d1men­

s1onal .line :x :a y :: u :1 v, whieh is equ!dJ.stant from all four 

axes, lies in the mirror pl&ne and is seen there an the diag-. 

one.1 afkp. Points of the z .. pla.ne are "reflectcdn by the .mi~ 

ror a.s shown 1nto the same ra:Lat1ve JX>Sitiona in the Vt•pla.ne, 

(4) w • z + 2 1 The er:rect of an additive oonsta.nta as seen 

in Plate (2) above,. 1s to· shift the entire surface in trans• 
.. 

lat1on to a parallel position through a now point. i'h1s is 

the complex counterpart o:r translation of a. oul"'lte to a paral• 

lel 1'os1 t1on by an addi t1ve· oonsta.nt, 1lluatra.ted here by the' 

r~ai' line abed with slope one th~ugh the point (01 0.2,0). 

The ~app1ng ia . oorrespand1ng1y translated by this ah1ft,.27. 

(5) w • •Z i N<;>t1oe here that we have been t'ot'Oe4 to xeeduce 

the scale of the lcy' plane in order to aooomod.ate the change · 

1n °apparent e.rea" between th1a surface and that for w ~ z. 

Actually the two have the arune area, ae will be es.a1ly ·ver1.,. 

fied in the next ohapter. Xh,e change in "apparent area" re ·t­

sults fl"Om our change of viewpoint for the two surfaces$ s1noe 

mirror point f; in the same vertical plane as 1ta objeot point 

(11 2), appears near point (31 3) which 1e closer to the obs~r-. 

ver• we know that 3 and thus the entire eurfaae 11 es "below" 

the Z!""plane1 but "in front Ofn the UV plane through (O,O). , 

The. atereoscopio view will confirm this. The real counterpart 
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u =t •x 1s the line abed 1n the xu. plane. The surface maps re,. 

gions from th~ first quadrant or the z-plane to the third. 
. . 

quadrant of the w-plane. 

(6) ! = -z "!'" J. +, ! s Another 1lluatmt1on or the effeot ot 

an additive consta.nta this time shitting the mirror plane up 

and to the left, so that it is "hinged0 at point •l + 1. 

Sinoe the constant is complex. there is no real counterpart. 

The line s.bod lies 1n the plane v • l parallel to the real 

plane. The image 1a correspondingly shifted. 

(7) !' = ;?J,:: '11th the multiplicative faotor, the transfot'ma­

tion plane. ha.a 1noreased in actual as woll as apparent area, 

be1ng:two and a halt times larger 1n actual (computed) area. 

than the mirror surface of w : z for the same region. The map 

of course, has doubled in 1;11ze, It le interesting to note 

that the transformation surface ie rotated by this rea.l fa.otor 11 

although the map of the region is not. Witb a complex factor 

the map ,would also be rotated.27 • The l.1ne abed 1s the line 

·u • 2x in the real plane. 

(~) ! = RC~l and (9) w = It·~.l : These two mirror planes. as 

one might have expected, a.re orthogonal in 4-spa.oe. Like the 

Z• and w-planes, they ha~e only one point (the origin) in 

oommonJ thus they are ttabsolutely perpendicular" plo.nea .. 28 

Their complementary nature 1s evident from a comparison ot 

the two surfaces, shown here in the same plate. Together 

they resolve any veotor 1n the z-plane into its real and 
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imaginary components in the w•pla.ne. 

· (10) w • i t. 'fhe tranatorma.t1on aurf'ace of this non-analytio 

function is a.n "edge view" of the mirror plane, which maps 

the region 1.nto a retlection 1n the real axis. The conseout1ve 

alphabetical order in probably meaningless, s1noe a plane 

lettered by the system used here oan be Tiewed from a ellgbt­

ly different position and give a non•conaeoutive reading ot 

its points. The real part of th1a surtaoe 1a its intersection 

w1th the real plane~ the line u • x. 

(11) !' •. lzl, : Since this is a real function, v • Ot a.nd we 

are oonf 1ned to the xyu hyperplane. 'nle equa.t1on 1s that of s. 

cone• two elements of which are the straight lines abed 1n the 

xu plane and ae1m in the yu plane. Though not appearing so, 

~n our projection, these elements are actually or equal length. 

Despite the fact that th1e is a real tunotion, 1ts mirror 

eurtaoe lies 1n a complex hl'})&rplane, since 1ts argummt is 

complex. Only the mirror loci of real tuncti ons of real vart• 

ables can lie tot.ally in the l'ea.l xu plane. The con1ca.l sur­

face here maps every point ot the xy plane into 1ts 0 absolute 

value0 on the u•aXis. A three-dimensional model of this map. 

ping surface oan be oonst:ruoted. 

(12r ! ~ mm a : Like its companion, " a lzl. this 1e a real 

function of a complex variable. The value of this function aa 

we near the or1g1n depends nPon the direction of approach; 

the surt'aoe 1s thus d.1saont1nuoue there. The m1rror surface 16 
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Ghown tor all four quadttants; it 1s; aotuall7 a s1ngle-Val.ued 

branch (obtained by restr1ct1ng the arc tangent tunotton to 

1ts principal values) ot an infinitely repeat.ins per1od.1o eur­

tacth Ea.ch point in the Z•plane 1a mapped by this surface 

into its vector angle value on th.e u•axis. 

(13) w = z2 and (14) 1!. • zi i These two funot1ona represent. 

the same oha.ra.cter1etic surtaoe, since if we reverse the va.r1• 

ables 1n one ot them• they b$Oome inversea. ~us it will be 

1nati-uot1ve to examine their tra.ns:f'ormation surfaces together, 

as two different views of the same su:rfa.ee. Th!S surface is 

seen in full 1n Plate (14) for a 12 x 12 square region about 

the o:r1g1n. For work with the multlple-valued tunct1on w • zi, 
) 

the a-plane is oustome.rily replaced by a Riemann surtaoe ot 

two &beets. connected across a branch cut to form one cont.in• 

uous surface on wh1eh the runot1on is single-Valued. The cor­

responding continuous s1ngle•surf'aoe character ot the trans­

formation surface is seen in Plate (l4). 

By comparing pa.ira of neighboring points on the two mirror 

sheeta• usin.g the ~order of proximity" deaeribed pr~ioualy, 

1'e eee that the mirror aurfa.ce or eheet one (0.1Pl.Pi • P2•P2"~) 

1.s above that of ehe'et two (~P,,1':3 'p4 °~4"d1 ) • The ent1re su:r­

ta.oe is eloping away from ua, with the lower corners Pi and. ~ 

neareat, e.nd the upper corners p2• and p4 - the farthest. 

'fhe erreot or "double foreshorten1ngn is seen in the ap• 

parent d1ff'erenoe in a.l."eas of the equal quadrants of the two 

mirror sheets, the direot1on of Viewpoint and not the proxim• 
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1t1 (aa 1n three~d1mens1onal perspective) determining the ap-

parent s11e. Compare, for example, the equal lower corner ar• 
. ' 

eas; o1Itil1P1 ando3k313p3• of l'lh1oh the f'1ret appears sinallerj 
,i 

even though it iEJ nearer, beeauae we are v1ewing 1\ at more of 

an °artgle0 
• V1sua11za.t1on of the c:ross•over 1n four d1mens1ons 

between the two SheetSJ along the teal pnrabola bra?tCh•aut 
2. i • • 

JC :: u (curve di81~), 1s d1f:f1oultJ especially when W$ tin4 

that the order Of Pl"OX1m1ty Of the f'ollo?ting po1nte 1S 41' f 3 

cl h4", 'ha 640 • 

· In comparing the two plates, •e must keep in mind tha.t our 

grid systems and hence outlines are diagonally oppc:>Sedi; eo 

. that point p of Plate. (13),. tor example, lies on the total. 

surface somewhere beyond and. bet•een Pl and Pi• of Plate (14) • 

our t'1rst quad.rant surface shown for w : z2 thus is a portion 

of the surface in the v1c1n1ty of the first half Of mirror 

sheet, one of w = z*, so that in Plate (l:;) we are viewing 

Plate (14) roughl7 from 1ts positive v-a.x1th The eurfa.ce here 

extends Gut toward us from the origin, point p (oft· the top 

ot the pa.per) being the peak or the root above us. 

A look at the mirror curves or the x• and y•axes in Plate 

(14) proves interesting. The PQS1t1ve x~axia, on eubat1tution 

into the u and v funot1ona .for w • zi, yields the parabola 

u2 : x, v : o 1n the re~l xu ple.rie• seen here as curve a.1a1~. · 
The negat1v-e x-axia gives the p.sra.bola v2 = Xt u • 0 in the 

oomplex xv plane, curve di ·i!i d:5 • • (The corresponding ourvea 

are seen partaall1 in Plate {13) aa abed and aeim respect1ve-

1Y•) Thus we have two para.bolas 301ned at the or1g1n and each 
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curled a.bout the·x<i.axia• but ext.ending in opposite directions 

and lying ill perpendioular planes, Thees i:arabolae represent~. 

the,; corresponding rea.l and, complex graphs of' the real variable, 

tunotion, u = x* * for both PoS1tive and negative values of x, 

We 11a"le th~retore a.rr1ved,; through one· ta.oat of our oompl~ 

surface, at the same method :for displayin.g ·the graph of a com• 

plex function or real .variables as described by Ward29, Kempw 

ner3°, Frumveller8, Lanse10, and oth~s. Our gra.!'.JbS of tune ... 

tions or.a eomplex variable thus 1nolude not only the real 

functions of real variables as,a apeaial ease, but aleo the 

complex funot1ons ot real variables• and, as seen in ?~ates 

(ll) and (12) for w : f zl and w = arg z. the :real funotione of 

oomplex variables. A .tour•d1mensiona.1 hypergraPh, then, 1e a 

complete graphical representation of fu.nctions of a single 

variable in the field. of real and complex numbers. 

The m1rror cu!'V'aa, ot ·the y•h1a a.re the ourvea m1e.im3 and 

m2·a1m4·• By subetituttng x = O into the u and v funetions of 

w : zi, we obtai.n 1 : 2u2 and y ~ 2v2, from which we have 

u a ± 'V-. Thus ·these m1r~or curves are the 1nteraeat1ona. ly1ng 

in the planes u .. :!: v of the yuv hyperplane, ot the pa.ra.bol1o 
. ' 2 - ~ cylinders y = 2u and y. = ;::v-• But when y > o, u ~ v, and 

th& oyl1nders thus intersect 1n the u. = v plane. When 1 < a, 
u: ~~.and the eylinder~ intersect 1n this perpendicular plane, 

as can be seen in t~e graph. 

We see then .that :the mirror qurves of the two axes are both 

plane curves. It is interesting to note that, although these. 

curves l1e 1n different hyperplanes, in tha graph the branches 
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or the mirror x•ax1e appear to flow smoothly along the surface 

into branches or the mirror y•ax1s. When we remember that one 

transformation of this surface, in the form w • z2 * doubles 

the angle at the origin• this does not seem unreasonable. 

:If we plot w - K = (z .i. Hl2, u, K complex• the *'vertex., ot 

the· four-dimensional complex pare.bola. is moved to the complex 

rcur-d1mensional Point (H1 K}. For the pa.rtioula.r case when 

B : h, K e k_. h and k .real and Positive, th1a is the point 

(h9 o,k, o) and the real trace e.bad ... in the xu plane no long­

er .1nterseots the x•axie, for the real variables equation 

u - k a (x - h)2 yields; when u • 00 the q.uadratic equation 

x2 • 2hx + h2 + k a o which has no real roots. However, the 

imaginary roots or this equation are now seen in the hyper­

gra.ph, tor u : "If :a o, e.a the intersection of the "ltertioal 
' . . ' 

para.bola aeim ••• w1th the rJ plane in the Points x a h :!: 1'/i. 

Similar figures a.re obtained. for complex V'aluea of H and K; 

1.e.1. for roots of quadret10 equat1o~e with co~plex coeff'1~ 

o1ents. 

Just as the parabola u • x'2- oocupies two of four quadrants 

in a plane, we f1nd1 by checking the possible sign combina• 

tiona of the complex tunot1on, that the surface w • z2 ex­

tends through e1ght of the sixteen hexadekants in. 4-spaoe. 

Aleo1 u • x2 and u : xi. share one quad.rant out ot four. The 

t•o oomplox analogues a1mila.rly share one-fourth, 1. e• 1t four, 

of the hexadeka.nts. The surfn04a w • ~2 transforms a quarter 

circle in the ti.rot quadrant into a eem1~a1role in the upper 

halt-plane e.s shown. &!!oh m1rror sheet of the function w ::: zt 
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maps a 01role into a sem1~01rcle (not shown here), the upper. 

sheet into the upper half-plane and the lower sheet into the 

lower half-plane. 

So much tor the aomple:x generalization ot the para.bola, the 

f'our-d1mens1onal complex surfa~e of which we! might oall a. 

••pa.rabolex0
• Next we look at the complex hyperbola.t or 

'*hyperbolex1
•. 

(lS) "w : t t Here 1s our :t1rat surf'aoe!with a. singular Point, 

the origin. Only the first quad.rant surface 1a shown here; 

the reader will find 1 t instructive to plot the complete sur­

taoe, 8.nd to note the intersection with the 45° vertical 

plane, x: Ui 1: 00 throug}1 the v•ax1e1 which gives a'o1role 

about the or1g1'1H This vertical complex o1X"cle jo1ns the two 

horizontal branches of the real equilateral hyperbola, u ~ it~ 3l 

The positive branch of this hyperbola. 1e aean here in the xu 
••• 

plane ae 1:> ;Q 'bed. Since v 1s negat1 ve throughout the f1 rst 

quadrant_. the rest or the ·surface shown here lies below both· 

the xu ·and the X1 planes. As the z valuee approach the origin 

from the first quad.rant• the surface twists into a vortex 

away from the obseriert thea spreads out indefinitely down• 

ward. and to the right, approaching the fourth quad.rant of the 

w•plane. In the contplex analogy to the real hyperbola., the 

surface is asymptotic to the z 3.lld w ooordina.te planes. Al• 

though 1t 10 symmetrical with respect to the origin•' the 
0 hyperbolex" r,aa.y be a 11ttla difficult to viaualize· near this 

singular point, .since it ohanses here from a surface which 
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waa ·asymptot1o to the lat.· 2nd• Jrdt and 4th quadrante of the 

z•plane into a surface asymptotic respectively . to the 4th, 3rd, 

~d. and· 1st qua.d~nts of the w•plane. · 

A :rectangular strip in the first quadrant or the z-plane 

pat"9.1lel to the y-s.xis ie mapped by the surta.oe, ae ahown, in• 

to a fourth quadrant Porlion of the area between two 01roles 

in the w-plane passing through tho origin and w1 th centers on 

the u axis. 

(lo} w ::= ·~z ++
1

1 -: The first quadrant, surface, shown here, ot 

thiB linear rra.c£fona1 transformation presents a pleasantly 

uncomplicated appearance. However, th1a appearance ia deoep• 

t1ve1 as the aurfa.ae ha.a a singular point at z = -1, toward 

which the mirror aune of' the x .. s.xis doba. 1B beading,. This 

trace on the XV' plane 1s an equilateral hyperbola. with center 

at po1nt (-1,•1) 1 so the surface "comes 1n agaln" from the 

minus v d1rect1on past this point. The xu trace yields only 

one real point, b(l, o). The m1~ror curve of the y""'axls is the 

three-d.ittiensional skew curve aeim in the yuv hyperplane. In 

visua.11z1ng the portion of the surface shown, we note that 

point e 11es in the yu plane, and that all other mirror grid 

points except a, b, and e lie below the 'X'J plane. 

' The word n11near" for these :f'raot1ona.l tranuformationa 1s 

misleading• as the ~1rror surfaae here indicates. Actually, 

the most interesting part or this surface, that around the 

singular point, is not shown here. S1nae the complex hyperbo­

la~ w • f 1 1a one form of a linear fractional trnnarormat1on, 
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we can exr.)eot many a1m1larit1es between these two aurfaoes1 

suoh as the plane equilateral hyperbolas in each, asymptotic 

· . planes,. singular points, the t.YPe of trn~a:romat1on etf ected• 

etc. 

Looking more closely at the general linear fractional 

transformation, w = ~i !f- o<.& • f3K :#: o, we aee tha.t 1t 

oan be written in the torm of the suooeasive transto:rmat1omu 

{1): w' :: .f..· ; (2):w' aw· T°' : (3): z': Jtrn-t:S 2, oes--i•o· . ~r-cts 
As in Platea (4), (6), and (7), the tranaforma.t1on (2) 

above 1s simply a translation or the w•plane, while the trana­

tomatlon ()) translates, rota.tea, and expands the ~-plane •. 

Since (1) above 1s the complex hyperbola., this meana that the 

mirror surface or any linear fraot1ona.l tra.nefoma.tion 1.s 

simply that or the oompl~ equilateral hyperb6la1 d1stoxated 

somewhat by being plotted from coordinate planes which have 

bean translated, rotated, and exi>9.nded by the Enounts deter­

mined bf the oonatanta or the linear :f'raotion. 

{17) 1': ;s f!l~ : In this tirst quadrant portion of the exponen• 

tial surface we s1Se the real exponential out'V'e represented ~ 

the trace a.bod in the xu plane, while the pure imaginary 

oounterpa.rt 1s the skew curve aeim in the yuv hyperplane,. 

This surface is periodic along the 1-ans; approxims,tely halt 

a. period 1a shown here. fo plot the full period of 2tr 1, wet 

would have to use a considerably reduced. aoale on the u and v 

axes. Thia 1s the same surface, of coursei viewed from a 

d.ifferent d1reot1on, for the inverse function w " log Sh 
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· The impending tran.sforma.tion of the z•pla.ne grid lines into 

w-plane circles and rays is seen here foreshadowed by the pat.-.· 

tern of the suoceeaive. mirror grids• . 

(18) and (19) w ~ ain.,.! : l'le 1nolude Plate (18) for its 

shook value, At the center of th1G mathematical whirlw1nd1 

the d1seerning reader will find the sin~ curve f.l,Obab""'o•d ... 1n 

the xu plane, and. the hyperbolic a1ne eurv'e m1ea.e·1·m ... 1n the 

rt plane. Not much else can be gathered t'rom this asymmetrical 

pro3ect1on• plotted here for all four qundrantstt except to 

note that the surface twists back on itself doubly in some 

complicated fashion. 

Our serious purpose here is to· illustrate the advantages 

of the s:rmmetr1cal. projection. discussed later 1n th1s chapter. 

tor these more compl1oated surfaces. this same tunot1on is 

plotted again in Plate (19) using these symmetric axes, and 

now the surface presents a much more orderly appearance. 

The s1ne curve dd" and the hyperbolic sine curve mm• are 

aga1n seen in th1s plate, this time both 1n true aha.pa. other 

advantages of the·aymmetric systE.tn will be given in Section 6 

of this chapter. 

Since w =.t einh z can be written in the form of the suo­

aes.s1ve transforma.tione 

(1) w' : sin z', (2) z• :; 1z, (:;) w' -. lw, 

we see that it we rotate tbe surface for w • &in z counter .. 

clookW!ae through 90° and reletter the axes;, we ba'ie the sur­

face tor w a sinh z, Similarly• w =cos z andw ~ aoah z are 

essentially the so.me. Thus these corresponding circular and 
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hyperbolic functions are but two aspects or the same complex 

fUnct1oni tn their complex form they ha.ite the &sJllE) trans:rorma.• 

t1on surface; 1n their real variables form, they &.tte &Jeen as 

the. traoea or thita surface on the two .absolutely perpend1oulax­

xu and yv planes. !hese aame surfaces also repl'eaentt froni . 
dittet-ant· V1$Wpo1nts1 the inverse trigononietrio and hypex-bol1Q 

runot1ona. w • a1n•1z, w = s1nh•lz, etc. 

Visualization of the tour-dimensional tra.nsforma tion su:r­

taces or complex .!'unot1ona is greatly aided by viewing thm 

in three dimensions instead of two. ~is is aooomplished by 

the usual process ot making two etereosoop1c drawings trom 

slightly different angles, and viewing thEm in suoh a manner 

a.a to see only one itnage with each tJ'ffh The figure w1ll then 

be, seen 1n deptht a.nd the spatial relationships ot the va.ri• 

ous surtacea and ecord.1na.te planes will be readily apparent. 

!ha ma1n d1ff1oulty in the use of stereoscopic tt1ews is 1n 
i 

acquiring a method _for separating the images tio eaoh eyej the 

actual plotting of the two images is basically S1mple. Atty 

available stereosoop1o devioe will be suitable; pr1ams, mir.-'J 

rors. red and blue tilters, etc.; or the images oa.n be super­

imposed d1rectl1 by use or the eye musclqs .• Vie have .tnoluded 

a few atereoeaopio drawings 1n this section whioh can be seen 

1n three dimmsions by this le.st device. A little practice in 

moving one image toward the other with the eyea will enable 

moat 1ndiv1d.ua1s to eventually see these figures in full 



three•d1mena1onal depth• (Figures 18, 19; 20,· and 21). 

1'he relationship of the tour coordinate hyperplanes to 

ea.ch other 1n rour.d1.mens1onal si:ace ls s~n in Figure is. 
Only the first ootants of the three•dimensiona1 hyperplanes 

. ' 

and the first hexa.dekant ot 4•spa.ce al"e shown here. Notice 

the "apparent int'erseot!lon" of' the real"X\l plane, and the pure 

imaginary ;:1v plane a.long the rour•d1meriaiona.l line x = 1 "* '\1 

·a v• In Figure 19, the plane· w :: o is aeen parallel to. and. 

above the z-pla.ne., !n Figures 20 and 21,, the ;relative posi• 

tions of the t?¥:!.nsro~tion surfaces for w a z and vt • •Z are 

cle'.!rly apparent, as well as the mappings of the z-plane onto 

the w•plane by these eloping mirror sur:raoes., 

To draw a pair of sterooseop1o views• we flrst plot the 

t"ight hand image' by· tha usual methods. Then, on s. horizontal 

. ~1ne to the left at a dieta.noe determined by the particular 

'tfiewlng dE!V'1oe we a.re using (two inches for the unaided eyes) t 

we draw a set of axes with the z-plane rotated oounterclook• 

wise five more degrees) eo that it 1s tilted down at 35o in• 

stead of tb.e uaual 300 • We have thus shifted our v1ewpc>int 

slightly for the second image,. The soalea along the x and y 

axes 1n this left view are now adjusted by projecting hori• 

zontally train the norma.1 .:X and y seal.ea in the right hand 

view. Or, we can use the formulae: 

~· • ~i~ j~~ Xa • o.87xR; 1L •. gg! 5§g YR • l•OOYa• 

Every point of the lett z-plane has now. been dtsplaeed 1n a 

horizontal d1reot1on only1 and by an a.mount proportional to 

the distance of the point from the origin., our two require• 
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ments tor a atereosoopio conjugat~. 

It remains simply to :replot the points of the bypergra.ph 

~n ·this left V1SW' from outt new axes by the usual method1h 

Since we a.l:-e using the sa.rae u and v values for each point 1n 

both views, all of our points will be pa.ired horlzonta.lly., e.n4 

proPorttona.lly displaced, as r-equ1red. 

For a more formal approach, we introduce t.he fo11<WJ1ng 

nota.t1oni 

@h "appears closer (to the obaervar) than"• or "is ahead of0 

· 1: nappears equidistant with .. , or "1s the S&llle distance ae" 

~t 0appears farther away than", or "1s behindn. 

Given the etereoscop1o ps.1:r of views,. tL and ta• ot a. PQ1nt 

t, 1et hL and ha be the horizontal .Mao\gd distano&G (:pos1• · 

t1ve it t is to the right of the origin, negative to the left) 

X--$Speot1vely or t'L and ta front the vertical axis it through the 

origin• Then 1t wtiJ disregard. the oompl1oating secondary et•· 

rects of perspeet1ve0 tlle relative proximity• p, of point t 

to the obseX"Ver is the horizontal d1splseement of t between 

the two V1 ews1 and _1s s1ven b1 p • hi. • ha• If p > o, t @ uv 

plane through the origins it p =: Ot t i uv plane; if p <. o, 

t • uv plane• In general, for any two points, t1 and ~' if 
,.,.. 

pt> Pe• then t 1 @ t 2 i it Pi. • p2, ti @ t 2 : and it ·Pi< 12• 

tl - t2. 
A formula. for p ln terme of the coordinates x a.nd y and 

the anglea of the two stereoscopic planes can be obtained.; 

w1 th which we oan then determine the relative apparent prox,.. 

.1m1 ty of any point to the obs en er wi thou$ actually oonatruo .. 



tins & stereoeeop1cr View' We mus~ be oa:reitul, bowwe~. to con.• 

st:ruot the figures and der1ve the formula in such a manner as 

not to· shift the obServerta Position to that ot the added 

view,_ By· setting p equal to zero in thia formula* we find the 

line of "apparent 1ntorseotion1
• of the ~- and •-planes ~ 

3lhS! .mr~1qy1a.:r vtf!mlnu b9Y!S ue@s\• as det-erm1ne<i bJ the at'­
rangement or· the axes. This line is not actually in either or 

the planes, of course, as the z"'" and w•p1anes intersect in 

only one point,;· the origin• ·It 14 the four-dimensional lines 

x e y • u =r v; wh1oh 11 the &J2mtelll 1nterseot1on ot all three 

i>airs or coordinate planes interaeoting in only a. point, and 

is the ~ojf uat 1nt.erseot1on of the three. planes each equidis• 

·taint fl'Om a pg.1r or these coordinate planes: (1) x * 1• u ~ VJ 

(2) x • u, 1 • v, (thew= t plane); a,ru1:(3) x ~,,.v, 7 = u. 
i, 

The analogy to the three-dime..""l.s1onal lirie; x = 1 * z 1 is 

oloae. The line perpendicular to tbis sppe.rent 1nterseot1on 

16 the line of "apparent maximum slope" of the ,z•plane, ·.~ 

our vimmo1:nlf • 
Stereoscopic views and equations a.re a 1cons1dera.ble help 

with the more oompl1ca.ted figures. For many of' the simpler 

surfaces, however; the "ordet- or proX1m1ty" ,p:r1no1ple given 

in the ,preceding section is sufficient to enable us to vis,.. 

ua11ze ,the surta.ce in throo d1mens1ons,. if not in tour. 

r.:iow Li"?eE! 1 Instead, of showing a mirror surta.oe, we oan, 

tr we wish, represent the tran.af'orma.tion of a complex rune""· 
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t1on kinemat1oal1y as a field of vectors or tlow lines be~ 

tween the two planes., V9.r1ous vera1onl.l are PQS&ible. We can 

oonneot ea.ch point of the z-plane d1rectly by a vector to 1t~ 

image Pe>1nt 1n the W•plane (see Cha.pt et- I• page 2) • Or we oan 

construct one field of vectors from ea.()h object point to lts 

mirror Point, then e.d.d a seoond field trom these. to the oo;r... 

responding image p<:>1nts. (See Figure 22). Finally, we ca.n 

also 1nclude the intermediate three•dimensional hannon10 

surtaoea by running the first set . of vectors from the obj eot 

plane to 1ts harmonic surface, from this a second set. to the 

mirror surra.oe• another aet from the mirror to the. cfonjugate 

harinon1o surface; and a final. set from this to the . lmage 

plane. 

Mode'Jis: our ab111ty to obtain three--dimensional »p1otures" t 

a.s oeen in the preceding section, of the tour--d1mens1ona.l 

tra.neformation surf'aoea leads us to tu~her wonder if' three­

d1mens1onal models of' these surfaces a.re not p0ss1ble. Such 

models would represent the surface from only one particular 

v1ewJX)1nt, of oouree1 since the apparmt area and conf1gura• 

t1on of the tour•d1mens1onal surface are alla.nged by d1tferent 

angles of proj eotlon, just as With the proj eotlone of a skeiw 

~urve in three d.1mens1onth Right o.ngl ea and d1 stances 1n the 

rour.,.d1mens1ona.1 figure 'WQuld not neoessaril:v be preserved in 

this three dimensional projection. Strings running from objeot 

to mirror to image po1nta would 1nd1 oate the "now lines" ot 

the tr'.mstorma.tion in these models. Even "pop-up" models, 

which could ba included in a text book• might be possible for 



76 

v 

x 

Fig. 2.2. Flow Lines: vv = z 



a. surte.oe such as w ;: z •· 

Besides representative viaua.l models; two end three-dimen .. 

s1ona1 dyna.tni<) models: or ana.logues ot the transtors t1on SUJ.9• · 

faces might be constructed along mecha.n1oal1 electrtcal; or 

optical linea for a wide variety of applications in such 

fields as aerodynamic.sit thermodynamics, f'l.uid mechs.n.1as1 · eleo­

trioal theory• optiaa, eartqgl'&PhYt analogue computert;J, etO•t, 

that ia, in any application were automatic oit continuous , 

oonfonnal mapping is desired •.. 

smetr1e e.ie~s We have ohosen in this paper to oonstruot 

the hypergrap'bs with an asymmetr1oal arrangement or the axes• 

'because this gives more ot a "tour--d1mens1on.a.l feel'~ to the 

figures •. However1. often. the best and mat pra.otioal arrange­

ment or the axes to use in four ... d1Jllens1onal plotting 18 the 
11symmetrioal n arrangement introduced. in Plate (19) with 

w ~- s1.n t• tn this symmetrical projection, we use a view.,.· 

point tor our "cavalier proj'eOt1on'• which rotates the z-pla.ne 

another 00° counterolockw1Se until the y and .u- axea,:cQoincide• 

Then; for eonven1GllCe;. we rotate the ent1:re :f'igt.ire another 

90° •· eo that tbe x and y axes are given their customary "rea.1 

var1ablesn pos1~1on in the first quad.rant~ with the u and v: 

e.xe-s falling in the second." This 1a,, in effect, a four-di.men• 

sional 111sometrio proJeotionn ,_ obtained by sighting along the 

line x • y = u :t v,, with tbe axes renamed for oonven1enoe •. 

(~we can obtain this projaot1on by sighting directly along 

a pa.rt1oular one of the s1xteen directed lines: ±x •±7 ; 

± u • ±ir.) In such e. proj eot1on the four axes* and consequent• 



ly the four fl.:111 pla,ne~·; will be seen foreshortened. More 

prope:rly, the ttsymmetric projeat1on" here ia an "isometric 

drawing«• with the foreshortened sea.lea restored. to Ml size. 

We are thus viewing four ot the six planes in true ahs.pe and 

the remaining two edge on• a.ne.logous to the tbree-d1mens1o:nal 

viewing of two of three perpendicular lines in true lwe;th 

w1 th the third end on,. 

There are many advantages in the use of the symmetr10 torm 

or the axes for hypergrapha .of complex. funet..1ona4 Firstf or 

course, we no longer need a special four•dimensional gtaaph 

paper• We can plot our four~dimensional figures directly·on ~ 

ordinary gm.ph paper, and by rot.~ting it but e. quarter of' a 

tum• we can •orlt ln either of the complex planesi; Seoond1 · 

the plotting is oonstders.bly simplified. Slnee the horizon ... 

ta.1 coord1nate (X.) ot any point ls the difference between th$ 

x and v values, and the -vert1ce.l ooordinate (X) is 'the sum 

ot the 1 and u values, we ca.n first find the values for: 

X ::; x • v and '! : y + u,.. as in Table (19), then plot these 

pa1ra as ordinary pointa in the XY l>l.ane.17 Third,_ th1G 

arrangement d1eolosea many or the symmetries or the surface 

a.rid of 1ts traoes with respect to the coordinate plane.a,. 

the axea, Qnd the origin1 as Plate (19) illuatrates, wh1oh 

helpe 1n both the plotting and the understanding of the tis~ 

ure. This 1a our reason tott calling theae n symmetric axes'• 
Fourtll• visual1te.t1on df the mirror surface is greatly 

simplified. since we a~e st111 considering the uv plan.a as 
the plane o:r the pa.per and the ry plane as extending toward 
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us (though lengthened by a cavalier proJectlon), that tor fJZf1 

two points P1 and ~2 on the mirror surfa.oe, we have simply 

that Pl (@1 it d) P2 &I X . (>1 =• <) x2 1t 
. ' l 

This means then that tho mirror curves of' the parallel lines 

x : a are the "contours" of the surface; 11t e. • they are the :, 

intersections of the su:rraee with a aeries or planes ).:t!l.ra11~1 

to the paper 1n front oft in; and behind 1t. 'lhus1 in Plate 

(19) 1 o~e pp" is a plane C\U'Ve and the Closest part ot the 

surta.oe to us. One unit beh1nd th1s1. as measured. on the sloP"" 

1ns x-axis soalep 1s a plane conta.1n1ng the curve 0011 of the 

surface, and so on to the curve 1n the fa.rthest plane from us 11 . 

p' p• • OontrarilY·• the mirror curves of the parallel lines · 

1 = o1 suoh as pp1 
• p"p•• etc. t\re the nreoed1ng ourvea" or 

"ebb curvea0
• 1.e .. , the curV'es of maxiflllltr:t reoeas1on of the 

surtace from the observer. 

Fitth, the graph ot the epec1al oaae for :real functions ot 

real variables now appears in true a1ze and ehape 1n the xu 

plane., and similarly tor pure 1ma.g1nar1es · 1n the JV plane. 

(See• tor example;_ the Sine and hyperb>11o a1ne ott?"'1es in 

Plate (19).) And e1xth~ we will find in the next chapter tba.t 

by viewing four of the eix coordinate planes in true sbape1 

we also• aa a bonus, aee. the tra.nafo:rma.t1on surface of tne 

l.inea.r: tunotion4 w =: az·+ f> , where a is real; 1n true s1ze. 

(The arialo51 to three dimensions is obvious+) 1'bua the effects 

ot double foreshorten1ng a.re obviated for the linear :!'unction 

with a real coeff 1o1ent, eo that the mirror surfaces ot w • a 

and w :: -z, for example, will now both appear in the same (true) 
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The price we PB-1 f'o~ theee advMta.ges 1s the loss ot the 

traces 1n the yu and xv planes (See, tor exa1!lplet trace aeim 

1rt Plate (13)., and tra.ee a.bod in Platte (16) .• ) other usymmetr1on 

arrangements can be used showing these planes and supprasa1ng 

anoth~r pair~ if our primacy objective 19 thus batter set"1ed• 

Of oourae, when destredi we oa.n always abo.ndon the symmet.r1c 

proj ect1cn and 1 ta e.d.Ventages and view all six pla.nes a1mul­

taneously in some e.aymmetrioal arrangE'Jilent such as that use4 

for moat ot the platos in thia chapter. 

FMn.~tiona ,of Sw,ersil C2m12l~x Vg.r1ab;;t.~ui: The hyper ... analyt1o 

geometry ·we ha.Ve used to represent funot1ona of a single com­

plex variable oan be extended to the atudy of functions of 

several complex variables~ by adding extl"a "perpendleula:rtt 

axes to: the system. For tunctions or two complex va.r1a'bles1 

q : f(z~w), where q f!. r + 1s1 z * x + 1y, and w • u + 1Vt 

two axes are added to the asj1T.imletr1ae.l ayatem, is0 to the 

left of the previous v-a.xis and 15° e.bo'V'e the previous x•axis .. 

The axes are then renamed, starting with the upper left) 1n 

the counterolook?t1ae order x, y, u, v; r 0 a- (Figure 23). 
0 

Alternatively, three 90 pairs of axeo can be equally spa.cod 

30° apart around the or1g1n (Figura 24). For symmetric axest 

we a.dd the two new ve.rittbles!i r and Stt to the left horizontal 

(v) axis and the lower -tert1Cal axis reapeotively ( Figure 25} • 

For functions of more than two complex variables• an exten• 

e1on of this eymmetr1c syst~~ is probably the most suitable• 

We aannot hope to obtain usable hypergraphs for a s.s,mp}.e.t,~ 

t~s1on ot these tunot1ons~ since the transfonnat1on locus ot 
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a fUnot1on or just two ·oomp1ex variables 1.s a e1x .... d1inens1onal 

hypersolid.1 while the argument (z~w) 1teelt ranges over a 

four•d.1mens1o~ hyperspace. We can, however; use one or the 

above systems to 1nvastiga.te ce:'ts.in subregions of the locus~ 

oons1st1ns of mirror points of given ourves and surfaces in . 

the hyperspace of th& a:rgument. By our det1n1 tion 1n Cha.pt~l' 

II,, these tr$l.nSforrnat1on locus po1nta1 as with all tunot1ons, 

art;) the veotor sume ot the n "ariables involved• 



·With the oonstruotion of the f our .. dimena lonal graphs of 

functions of a complex variable• out" main objective 1.n this 
' • 1 

pa.per ha.a been accompliahed.. However, there are several ad~ 
' 

ditional :teaturee or the syste.n we.have used which are J10rth 

presenting he~e. 

We have 1ntl'Oduoedt without developing syata!!at1oa.lly1 a 
. ' 

hn>er•analytio geometry ot four (or more) d1mens1ons1 h9.eed 
' on a. direot graphical ex,tenaion of the oartesian ooordj.na.te 

. . 
system. Following the pattern established in clasa1oal plane . . . 
and solid analytic geOm$try, we may def'lne A. it2Yr.:9.lmens;\on-: . . . 
f!l, s:nag~ as m smqe which can be w\ .into .one•tfl•2ne 92tt~-r. 

' . ·\,•, . . 

.~l}SU'.~denoe With th! g~a4£t!l2}§t ,2~ ,.r~l UUtgbet§ .(x, ia U;Jtl • \Ve oan 

then proceed to develop the geometry of this space along par-. . 

allel algebraic and graphical lines in a aimila.r faah1on to 

t.h !l!' plane and solid a.na.lyt1o geometries. Since funot1ona of a 
' com;:::J.ex variable are representable as sets of quadruples of 

real numbers~ th1a hyper-analytic geometry can repreaant such 

functions, a.a we have S~(m in this Jll.J;>er. 

The usual extensions to four d1menalona of the distance 

formula.! direot1on cosines, eto. a.re adopted; thus, for 

example, 
2 2. 2· 2 ~ 

d = x + 1 + u + v-, 



and 
2 . 

oos2ct + coa
2(3 + ooa r + O.t'>El

2 ' • l. 

· Oena1n aspects of hyper-analytic geometry have already 

been presented in the preceding dhaptera in connection with 
" ~ . . 

the exp0s1t1ori. ot our main 11ubjeet. We ha.v$ given, to~ exa..ftl• 

. ple, some general results for the hypergmphs of n-dimeneional 

byper-a.nalyt1o geometry in our def:\.n1 t1011 of n-d1mena1ona.l 
' 

.. gmphs, the number of p-dirnensiona.l ooordinate manifolds in 

n-spFJ,ce~ the number of partitioned cells, and the theore~ on 

manifolds in n .. spa.oe~r as w~ll as some rundamentals of g:rapf.d.c 

tra.nsfo:rmatton, stereoscopic methods, eta .. .-

Tbe various cases of the general four•;.mid f'iv e--d1mens1on­

a.l graphs have been mentioned in paae1ng; to these we will 

·:return later for a more detailed treatment. 

In the partioula~ appl1cat1on to complex fUnct1ons1 enough 

. of the hyper-analyt1o geometry background ha.a been given to 

show that here we are dealing ba.s1oa.lly with a 0 geometry of 

surfaces••. Thus., whereas tlle analytic geometry of functions 

of a single real variable 1a a study or the :rela.tionsh1ps be­

tween two•dimens:tonal curves and the correspondenoes between 

sets of points on a pair of perpendicular l1nea, the ooord.1-

nate x ~nd y axes, the hype~-a.na.lyt1o geometry ot tunct1ons 

ot a single oomple.x variable 1a conoerned with the relation­

ships between four•dimensional surfaces and the oorrespon• 

denoea ~tween seta or points in s. pair or perpendi,oular 

coordinate z.., and w ... pla.nes. The basic element in this ••au~ 
n . . .. . , 

faae geometry is no longer a point moving on a coordinate 



axiei but a. line {veotor) moving in its coordinate plane. 

With th1s. analogy, features and theorems ot plane analytic 

geometry can often be extended to hyper•analyt1o geometry 

as 

with the s1mple substitution <rt the words, ffl1neu tor ''Point"• 

"plane" for "11ne" • and "surface" for "eurve0
• For example, 

geometrically, y ;r x ts a line which 1e the l.oous of all 

points equidlst.nnt from the two ·perpendicular coordinate 

lines. Similarly,. w # z, hyper•gecinetrloa.lly• 1s a plane 

which 1s the, locus of all lines equidistant. from the two per­

pendicular coordinate planes• 

The analogy brings up turther interesting questions. Since 

'the formal ma.nipula.t1ons with x, y, and z are unchanged bJ' 

replacing them with z• Wl and q, are the hypersP:tere~ the 

J>ara.bolex• tl;le.~yfferpolex#\'·~to• » ::!hyper"i"cohio aeetiona"t That 

10, ·are they the 1ntt.erseetions of a hyper-cubed•plane with a 

hyper-eubed-ooru~ in the s1x .... d1uiensional space of tu.notions ot 

two·oomple:c variables? 

ls the limiting torm of the parabolex (Plate (l!~)) two 
I . 

parallel planes, just as a parabola degenerates into two 

parallel lines? 

Is the limiting ·rorm or the hyperbolex (Pla.te (15)) the 

ttre~tangu l.ar system"32, 1,. e. 1 the four coordinate planes• of 

four-dimensional apace,; juat aa an equilateral hyperbola 

degenerates into the a.symptotia coordinate axes? 

Is the circular trace, a.bout the origin in the hyperbolex 

cut from a tangent and perpendicular (in six dimensions) 

hypersphere whose limit 1s the hyperpoint a.t the origin? 



II there an 1ma.g1ns.ry ekew tottus·_ 1n four <U.mena1ons 

wrapped about a regular three ... dimensiona.l cone such that. a 

byperline cuts the 1ma.g1naey circle :from it1 as well as the 

real bypei"'bola from the cone? 

Returning to more tangibl~ results; other aspects of hyper• 

analytic geometry .which have been presented -in the prelJeding 

Chapters are the graphtea.l analye1tt ot oomple:x equations, in• 

cludiTig a hyper•geometr1cal 1nterpreta.t1on of intercepts, , 

traces, and three .... dimensional sections of the StU-faoes repre­

tsenting these equations, the. special cases ot real and pure 

imaginary variables; complex roots or quadra.tio equations 

with real and· complex: ooef't1o1ents• etc. Also we have $een the 

geometrloal results ot additive. and multiplicative cr;>mplex 

constants• , ,_ . , . 

· ·-T.ransformat1on of the c~rd1nate planes (a..Tlalogoua to ·the 

transformation of uea in plane analytic geometry) waa illus• 

trated bf e. translation of the 1Xtrabolex1 and by the suooes ... 

s1ve transformations of the general linear f'raetiona.l tmna""' 

formation wh1oh. reduoes to translations, a rotation~ a.nd an 

expansion of the coordinate planes of a hyperbolex. 

A tormal presentation of hyper•a.na.lytic geometry; however,· 

would require tnany aspects we have not touched on here• ~ome 

or these ara already defined and available from .the usuat 
treatments of n•dirnens1cnal geometey. We would needt tor 

emmple1 def1n1 tions of "slope" t ''angle"; 0 parallelism0
-, .. 

"perpendicula.ri ty"; etc., a.a well e.a a general treatment of 

'such things as r.ota.tion ot axes, length ot aro, area or a~ 
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taoes" volume or hypersurfaoes; hyperv-olume ct hyp$raoli<ls, 

and, for· the two dependent variables case; the exact geom et• 

r1¢al meaning or the complex der1v1t1vei the complex integral, 

residues• the Ca.uehy-Riema.nn conditions; the Oauchy•GourBat 

theorem, eto. 

HO?tever, we w1ll leave this geometry in the embryo stage; 

and. turn instead. to some f'1nal interesting aspects of tour- -· 

dimensions and of the pe.rt1cula.r graphioa.l syeten we have 

employed. 

l{ost -of ~he unusual fea.tu?'efl ot _,four•d1mens1ona.1 geomett7 

are presented in the sta.nda.r~ literature on the subject, and 

the reade~ 1a rcten:-ed to this tor a basic orientation in 

this field·'' 

Some of' these odd1t1es are ap~ent from the atereoscop1o- · · 

view (Figure 18) of the t1rst hexS.dekant. By adding r•againl!t 

na.turen e. fourth perpendicular axis, we ar~ ravrard.ed w:tth &. 

system in which there are four unlimited but. non-overlapping 

three-dimensional spaces or hyperplanes. Also we now have s1x 

mutually perpendicular -planes, two t:e.irs ot wh1oh intersect , 

1n lines wh11e the remaining pa.1r intersects 1n only a point.28 

further, there are th~•dimenaional spaces (hyperplanes} 

perpendicular to 11nes1 planes and other three-dimensional 

spaces, .etc. Of _course. our basic aasumpt1on or a fourth~ per­

pendicular axis means that we can have ~ny number· {a 'Whole 

plane) of 11nes perpend1culs.r to· a plane at a Point. And, aa 
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we shall see bel.owt just ae a. point 1n a. graph of three d.imen• 

si'ons ma.y rep:resant the end view or a line, 1n a. hypergra.ph 

ot tour d.1mens1ons it may represent the n endv.im-11 or a plane. 

(F1gure 20, (l)). · 

.. One of' the more atartling effects 1a the apparent che.."lge 

1n size or an object as it is rotated or translated in a 

fourth dimension. In three-d1mena1ona.l perspective we expeet 

the apparent si~e of an. object to chru1ge with :alll!&1'9j?• In 

-tour dimensions (neglecting perspeot1ve)., the obj eat. ohangea 

in apparent size with our 94t!iOti2D of vi-evting. this results 

from the faat., stated In an earlier ohapter1 that a. two• 

dimensional projection Of a four•d1mens1onal object intro­

duces a double foreshortening etfeot; or change of p?'Ojeoted 

distance in two perp:lndioular ~ireetionat which thus pl"Oduoes 

a change in projected &pparent area, 1.e., our impression of 

the "size" ot the ·objebt. (Oom~re. for· example, the equal 

mirror eut'ta.ees of w r: z, :Plate (3) 1 and. w = -~; Plate (5) •.) 

We can experience the same thing· in three dimensions. If we 

look edgewise along a table at the shadow of an obj eet on it, 

we see a one•dimene1ona.l line which 1a a projection of a 

three-dim ens 1ona.l obj eet doubly toreshortaned. Sil!l1la;rly 1 

··the shad.ow of a. plane "edge onn to the sun is a line; wh1ch 

if we look a.long it will be a po1nt. 1'hEl plane has thua been 

doubly- foreshortened from two to zero dimensions .. 

Aa we either nmove a.round" or nmove pa.et0 a. four-dimen ... 

siona.l objeott we will Bee this object apparently ohange in 

1t1~A (~en diminishing to zeroh a1noe a four ... dimeneional 
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solid1 surface• or cu?'V'e is e. oqa.usins three d1mens.1ona.i .. 

solid, St..Wfaee. or eu~e 1n this fourth direot1on.'4 lt'igure 

26 shows thie variation in apparent arf?>.l. ror a mo~ing view• 

y;-o1nt tor the identity surface w a z. In the distortion of our 

cavalier proj eotlon, the variation here ranges froin a nttnitmm:J 

ot zero to a msximuni area twice the aotual size. 

We Pl'"Odeed to prove a few simple theorems in the hype~a.na­

lyt1 c geom$try ot complex functions. 

(1) For the general linear fl..motion, w = Az + B• A and 8 

compl~x 11 ea.oh square region of' the z ... plane has a. oorrespondin.g 

square m1rror 1n the t~plane and a square image in the w~plane. 

Since the z~ and w•planes are absolutely perpendicular, any 
' 

line in one plane through the1r common point O 1s perpend.1cular 

to any line in the other throufYi. ·o.28 Therefore Z 1.s perpen• 
" ,' ; ' I . . . ... - .... 

dicular tow for all z•s and all w's. Butt a z +tr; so 

l..;.12 1-12 1-12 
t ... z + w • Thus ea.oh squax-e 1n the t•plane ls equal -

to the sum of the oorrespond1ng squares in the z-. and w•pla.nes. 

'We ,th'us h'ave t11e following 

'fHEORr1ui Clli Under the general 11near tra.nsfomat1on• 
I 

" ill Az + a, A and B oo~plex. the area of any region of the 

t•plane is the sum of the areas of the corr ea ponding regions 

of tbe z ... and 1'-planes.-

(2) For the linear f'unotion w = oez, where d..• c1 + 021, we 

ha.ve u ;; 01x ... e2y • v : a1y + o2x. Ir we compare the e.t>eaB. ot 



the corresponding square regions of tbe obj eat1 mirror and 

image.planes: 

(abte)z = l, (abfeltf and (abfe)w 
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under this tranef'orma.tion plotted for symmetr10 axes, we find~ 

by computing the lengths (ab)t and (ab)w' and using the re• 

la.t1onsh1pe rot- these axes: X i!I x • v, Y • y + u., a.nd u = 1; 

v = -x, that these areas a.re related as followa: 

At : "z + Aw .;. 2e2 
When « 1s rea.11 o2 : o, and we have At : Az + \r• whieh ie 

the true s1ze of the mirror plane~ by Theorem (l). We can thus 

oonsHler this r;a.rt1cula.r V1eti1po1nt as "perpendicula.rt' t<) the 

mirrox- plane of the function w o az, where a is :real+ Since 

the effect of an a.ddi t1ve constant• real or complex, 1a simply 

a translation of the mirror planet we have the result mentioned 

in the la.st chapter: 

TrfltORF.lJ {2l: In symmetric a.xesi the mirror plane of the 

linear fUnctlon, w : a.z +{J , where a 1e real• is seen 1n true 

size. 

(3) In three dimensions we have pa.ired words to indicate 

.our three direet1ons, for exa.mp1et "up, down", "right, left", 

"towa.rd.t e.way0 
• The human raoe has no expar1enoe with a. fourth 

dimension 11 however; con.eequently we have no oorrespond1ng pair 

of words 1n our language for euoh a direction. S1nce we need 

for this two words denoting opposite directions, ~t uns.t• 

taohed to any or the three ordinary dimensions, we w111 oall 

this 'fourth direction t•z1g" and. "zagn. 

It the d1reot1ons ind1ea.ted. by the x, Y':t u~ and v vectors 
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1n (1) or FigUre 26 are eons.tdered the four positive d1reot1onsl 

"~1g0 e1 "toward" 1 "right", and "up" respectively, then using . 

'~eorem (2) t we have the' f'ollowin5 

WIIEORm. (3): For the function w tt az +~ t where a ,la :real•: 

when <'>Ur viewp'..'l!nt ·is such that the product of' the signs of 

d1~ection of the tou~ axes ts negative tho apparent area .is, 

the tr»e s:rea; when the1~ product 1B positive. the awe.rent 

area is at an extreme .. or convergence ol' diverge.nee. 

(4) Analytia r~nctions )have the important property of de• 
, ' 

tem1n1ns a conformal mapping between the object and image 

planes, 1.e.# s.nglea are preserved under such a. transrorma• - . ~ 

t1on. The following eonjeature (proved here in a l1m1ted 
' ' form) states that the projection on the mirror surface is 

' also conformal. Taking the perpendicular segments of the x 

and y axes through points (ltO) and (0;1) 1 we have for the 
' 

direction numbers 0£ their mirror segments, respeot1velya 

l 0 a·c.c. ~v 
. 11 , 'i~' ~~ and 

0,1, ~i· ~· 
Under the Cauchy ... ·Riemann cond.1 tions• the oross•produot here 

is zero, therefore the mirror lines are perpendicular. Hence, 

we have a partial proof of the following 

CONJFCTURt, {a,}: Projections from the coordinate pla.nea 

onto mirror surfaces of analytic tunotiona are conformal. 

We 'have been working with hypergra.phs ot two 1ndepandent 
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and two dependent variables. In this section we will discuss 

the other tour·d1mens1ona.l ca.sea~ aa well as r1,/e..:'a1mensiona.l 
hypergrapha. 

In Figure 27 is shown· the graph of a curve 1n hyperspace, 

determined by three eqUAt1ons in one independent ver1a.ble1 x1 

and three dependent variables, y, u, and V• We can plot th1a 

graph without difficulty. To make 1t nreadablen, 1,. e. t 

amenable to graphic transformation, however, we need an 
I . 

additional feature, since the vector sum or the dependent 
) ' 

variables 1s in a higher dimenslom.l spa.oe (three~ than the 
. ' 

two dimensions or the graph paper.· A logical solution here is 
"· . ' \· 

to add the projection of the ourve on the uv plane to the 

grapb, and eorrele.te the points between the ·curve (whose ·x 

values are labelled) a.nd 1ts p:roject1on, by a series of 

straight llner:~elements of the projecting sur.fa.ce, aa shown, • 
.. 
W$ ·can now perform graph1o trans:rormat1on with the curve, o~ 

read the oorrespondenoee represented by 1t, by· following .the 

steps given in the figure. 

In Figure 28 we have the graph of a hypersurfaoe, or three­

dimensional transform at ion solid in four dimensions,, whose 

equation 1a 1n the fonn of one dependent variable, v, and 

three ind.eper.i.dent va.r1ab'l ea• x, y-, and u. The hYJ'eraurfaoe 

gl!'aph can be plotted for any thrae-dimens1ona.l region of the 

argument desired, but it must be dl~mn and labelled 1n euoh 

a fashion as to make it possible to find the corresponding 

three-d1mens1onal points within 1t. (Sea the instructions in 

Chapter III, Section 3.) Onoe this is done~ 1t is a. simple 
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(6) Find (v) 

(4) Draw 

(5) nm! (u) 

Find correlated point on 
projection o:t' ourve in 

UT plane. 
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Draw t : (x,y,u,v) to 
corresponding point 
on hyperspace ourYe. 

(l) Given (x) 
~~t----...... ~~~~~~~~ 

x 

Fi 9. 27 

(7) Find 

(6) Draw 
t : (x,y, u, v) ----· 

v 

· (7) Draw ( x,1) 

(8) nM (1) 
~ 

4- dims. 3 dep. vars. 

Find correlated. point 
1n hyperaur:t'ace. 

(1) Given 
~-~-+IP.P-------, u 

x 

Ftg. 28 

\~ 
4 dims. 

G1yen (u) 

Draw ( x,y, u) 

I dep. var. 
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·matter to tind the 'Value of the dependent variable, v, tollow-

1_ng the steps g1ven in the figure. The task of finding the 

corre1ated point in the hypersurte.ce 1a mad.a simpler by the 

tact that we pro.1eot 5J1rectl;gu12 from the (x,y,u) point to 

that part1oular mirror surface within the mirror solid wh1tlh 

corresponds to the value given for u. 

·In five dimensions we add a t1tth axis, St 60° oounter­

olockw1se from the vertical axis, V• With four dependent va.ri• 

ables we w.111 have a ourve, which can be ma.de amenable to 

gm.phic transformation in the same fashion as that shown in 

Figure 27 for four dimensions. For the oase or three depen• 

dent variables, we will have a transformation surf'aoet which 

we can haridle by 1nolud1ng ita correlated projection on the 

uv plane. 1n a s1m11ar manner to our treatment or a curve. 

For two dependent variables we have a transformation solldt· 

which can be ma.de tractable in the same way shown in Figure 28 • 

The case ot one dependent and tour independent variables, 

however• we will leave for the reader to atte.11pt for himself. 

(See Chapter !II, -seot1on 3), 

We oa.n p~rf'orm graphic tmnef'orms.tions, 1n tact, from any 

graph of a one- or two•d1mens1ona.1 ma..'l'lifold 1n n-epaoe. And1 

. as vte have aeenf even a three ... dimenaional manifold oan be 

handled 1n 4 ... or 5 ... apaoe;. Be--1ond this, however; 1 t becomes 

difficult to actually use the hypere;m.Iil itself' to perform a 

transformation between the variables represented.. 



!f we art-ange the 16 hendekanta or 4-epaoe a.ocording to 

eome orderly oyole ot sign changes such es tha.t shown in the 

table of Figure 29, and number the approximate locations of 

these hexad.ekants 1n out- four ... dimensiona.1 coo:rdina.te system,· 

we oan investigate the pa.ttem of' the pqrtl.cular hexadekants 

oocupted by a hypergraph•' and thus increase our eoncept1on of 

the geometrt cal figu~e 1nvolVed- By determining the possible 

sig.."1 eombinations of· the tollow1ng functions; for e..icarnple1 we 

can obtain from the table the numbers of the hexadekante 
-'·•, 

oceup1$d s.nd note the oorre~ponding patterns 1n Figure 29., 

w :: 2 • 1: 2; 1. 10, lS 

w :: z: l, 70 11, 13 

w :: z2 : l, l~It 7. 6, 15, 14\t 9, 12 
i ... · .. 

w : ~ l l. 16, 12, 5; '· 14, 10, 7 

We oan now ''play" with these numbers• noting the common hexa.• 

dek~"'lts of two functions, or tha.t their sums paired oonseau• 

t1ve1y·or f'rom each end total 17 ftl.irly conw.stently; some­

ti1me$ 13iot' 211 etc. Ae:t;.uaJ.lYti of course, we are dealing hei--e 
- ~ . . ' ' 

with oyc1le group transforrw:it ions .. 
. . 

The method or plotting four ... fil.t"llensiona.l graphs of complex 

funotions presented in this paper was developed in~ependentl1 

by the present author. In making a search to ascertain 1t 

a.nyth1ng or a similar nature had been done previously; the 
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author discovered the va.r1ous two• and three•d1mena1onal 

~apresenta.t1ona of complex functions discussed in Chapter I1 

and also a. series or articles by R .. s. Underwood;,5 on an 

uE:xtended Analytic Geometry f'or n Variables"• Tboue;h th1s 

geometry w>a.s not applled to complex ru.notions in the above 

articles, the methods given for plotting points in this 

extended analytic geometry were baaioally the same as those 

developed for the hyper-analytic geometry ot the present 

pa.per. 

The two geometries themselves, however& are ba.s1oally dif­

ferent. Prof~saor Underw-ood poetulatea an nn .. axes plane" it and. 

proo$eds to develop the equations for the :t:raq~s of the 

h1gher•d1mensional tunot1ons on this plane• In hyper~analyt1C 

geometry, on the other handi an n-dimensional opaoe with n 

mutually perpendicular axes 1s postulated and constructed. As 

wo nave aeen, projected lengths mJd.arf~!1 are a fUnot1on ot 

the angle of proj eotion ohoosen.. Thus d1:fferent results w111 

be obtained 1n a. geometry of an n•ditn~nsional manifold and a 

geometry of' 1ts tr,9.oes. In particular, distance. Which is 

given by the usual extension of the distance formula and 1s 

invariant in hyper-analytic geometry, becomes a function ot 

the angle ot proj eotion and 1s thus no longer invar1antiw 1n 

extended analytic geometry. 

These basic differences bet11e€1'l the two eyatematJ of course, 

do not detract from the importanoe ot Professor Underwood's 

wol"kS Minkowski developed a. very valuable geometry of relat1v ... 

1ty in which the usual distance formula 1a no longer valid 

either. 



Hypergeometrical interpretations of the basic theorems and 

operations in complex function theo17 still remain td be made .. 

It ts hoped. that the graphical reJ?reaentationa of complex 

:tunot1ons presented here w111 not only help in a better under-. 
standing ot these f'un.otions, bUt 11111 also inspire turthei" 

1nvest1gat1on into the four•d1mens 1onal meaning of such things. 

as the complex derivative and the Cauchy-R1enann conditions, 

the complex 1ntegra1 and the Cauchy--Gouraa.t theorem.,. a.nd the 

value of residues at poles+ 

The author oonjeotures that the derivative represents 
the "alope" or a. four ... d1mens1ona.1 tangent plane to the 
mirror surface. that the Oauohy ... !Uemann conditions 
require thnt the normal to this plane make equal "angles" 
with the u and v axes (or perhaps the x and y axes) and. 
that an extension of this is the general requirement tor 
ana.lyt1c1ty 1n n•spa.ce. that the value of the dei"in1te 
integral ia conn.eeted with the projected areas ot the 
harmonio hypercyl1ndr1cal. hypersurfa.oes of the fun.ot1on1 
ln an analogous fashion to the three•dimens1onal inter­
pretation of line integrals, that.. th1a value ia zero 
around a closed curv"e 1f the mirror surface ia cont1nuoua 
w1 thin this region~ and that the value Of the residue at 
a polf) is a property of the hypersphere about the pole . ·· 
tangent to a hyperbolex of tiret order a.pproXimat1on to 
the m1rr-or surface of the function~ 

But 1:t the render 1s not inolined to look into these 

subtleties, or apply hyper ... analytio geome~ry to, say, rela• 

t1v1ty theory, he can still pass an amusing and profitable 

hour us1ng the method~i of th 1s pa.per to plot a few complex 

tunctionstt or even the f'e.m111ar hyperat*iere or hypercube. 

THE END 
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