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FOUR « DIMENSTONAL GRAPHS OF COMPLEX FUNGTIONS
Chapter I, NATURE OF THE PROBLE.

lex Var ables

1 Funat ong of

Complex functions of & single tomplex variable involve

fagn unlmowns; two independent and two dependent variablaesy
and thus cammot be adequately represented in two= or three-
dimensional 8pace. Various geometrle constructions in both
two and three dimensions have been devised in the past, how-
‘ever; in atbemphs to illuminate complex functien theory. The
atandafd; and moel useful, of these ra@réaentationa is that
developed by Gauss and Riemana‘empleying two’complax planes

1multaneeusly1 s These ghow the correspondence belween a par-
‘tieular‘qurve or region in the object plane and its image, as
mapped by a given transformation, in the image plane. Tables
based on this system of represéntatiaﬁ havé been eqmpilé&aw
The chief disadvantage heve 1s, of course, the faot that each
pair of‘graphe'ahowaianly one facet of the particular ¢omp1ex';
function involved; 1. e. 1te effect on some one region or set
of cut@as‘ No overall graph of 2 complex function 1s present=
able in this syshem, -

A elearer ides of the effest of arparticular trangforma@t

* Humbers aapearing as superscripts refer to nntea and rofere
ences abt end of paper.
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tion can be obtained under this system vby conatructing the
images of & rectangular grid over the region or of a family
of concentric circles?. an important var-ia\’;lmi» of this is the
Plotting of the images under a given tranafémation' of the
eani;oizr curves or level lines of the conjugate harmonic funce
tions. In certain practical a.ppucsatiqna, these orthogonal
seta of curves rep:?esent isotherns fof equipotentials and
thelr éecompanying lines of flow, J’flux lines, or streamlinesss;

Other ingenious geometric configurations in two and three
dimensions for representing {(in part) the nature of complex’
funstions are described in the following excerpts from arbi-
cles, some not without a hint of frustration, which have ap~
peared in the American Mathemilceal Honthly over the past
forty years, .

"fhe impossibility in three dimensions”, writes Horman
mnerﬁ,""@f representing grarhiecally a funotion of a complex
variable makes 1 necessary for the studsnt to oall on hig
imagination in other ways in order t0 reslize the properties
of these funotions. Two methods are common in the geametmcal
theory of functions. one 1s to represent in two different
planes or in two Riemann surfaces the variables 2 and w and
to study the correspondence between the points of the 'iwcf:f S
plénea or surfaces, which is dete:ﬁined'py the relation
W 3 £(2), The second method, which does much to illuminate .
the subject for the beginnery is to ‘repmeent, in one plane
both the independent and dependent variables and to interpred
the transformation kinematically as a flow of the points in



tha‘piane7£

"p complete graph of the function w 2 £(2) or u + iv %
£{x + Liy) coneists of a two-dimensional manifold in space of
four dimensions. Nevertheless the student; in his effort to
visualize the funoction, thinks instinctively of a surface
spread oub over the plane of z, Such g surface is actually
o determined by taking for & third coordinate the absolute val-~
ue of f(z}g,,‘;.‘° R A o

~Inan earlier 1asue, AW Frumvellers had,prqposed two -
-gimultaneous three«dimenaiana& grarhs, reducing the fouredis~
nensional problem to three dimensions by holding first one;
then a second axls, equal to Zero:

"Since [2] has been shuffled out of sight by rrojecting
it f£leld [xy] into the point (0,0) of the [w]-plane, two
geparate dlagrams will bo needed in plotting +~ one; t¢ show
the path-of [3] in 1t8 own plane =~ the other, to show the
: poéitian‘anﬁ length of the vector-ordinates in the plane of
[l ,
A modification of the sbove, by E. L. Reesd, suggests &
‘single three~dimensional figure showing the surface ul{x;y)
on which are drawn "the contours for v z vy, Vo ety the
aonseeutive'v‘s differing by a constant. These contours ene-
able us to visualize the variation of v, so that we have pic~
tured the variation of both u and v and, therefore, of [w],
811 on one surface.”

Twenty yeoars later s refinement and extenalon of three=

dinensional repregentation was given by Lulse Langelo a8



followe:

"esuPalrs of complex numbers interpreted as coordinates
of a point would, indeed, require a Touwr-dimensional 8paca.

“The classical representstion of functions of a complex
variable, as developed by Gauéa and Riemann, uses an alto=
gether different ides; the funational equation'#‘é.f(s) heing
intorpreted as a transformation of the points of one two-dis
_menaibnal continuum onto another. The Carteslan schemey on
the other hand, has also been adapted by plotting in rectans
gui&ﬁ space coordinates separately the two surfaoes ul(x,y)
and v{x,y); or the surfase of the modulus R(x,7).

"In the following a somewhat different method is get forih
t0 adapt the Uartesian scheme to the representation of funoe
tions of & ocomplex variables It consists in predenting on ons
eéOrainatefaxia linear fiolds of the couplex independent var-
 iable, and on the other two axes the real and imaginary parts
of the dependent variable. The function w = £{2) thereby ap~
pears 1n'ﬁha-farm of one-parancter families of spade éur?&aa
These curves; which may be regarded as thres-dimensional sec~
tions through the non-presentable ﬂour~dimen$ianalﬁibgi;ﬁ§ar
a8 one-dimensional sections of two-dimensiohal surfaces in
fcur~spa¢a), are the complex generalizations 6f>€ha-£mhiliar :
plane real curves.

"Yarious families of curves {(or different sets of sectlons)
for u given function are obtained by different cholces of the
varaneter of the linear complex z2-fields In the following

have been treated some presentations using:
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- "(a) £ as paranmeter with r as independent variable ("radi-
al) secbions"),

"{b) % as parameter with y as independent variable ("sece
tions parallsl to the imaginary axis"),; and

"{e) y as parsmeter with x as independent variable ("sec«
tions parallel to the real axls")."

An extension of this idea to the general four-dimenaional
function of thres independent variables and to complex funge 7
tione of Beveral complex variables, using famillies of success
sive three-dimensional sections, ia suggested in a later arte
lcle by Stefan Bergmenlld, -

However; in all of the geometric representations outlined
above, the basic dilemme is stlll present: a fouredimensions
81 gquantity oannot be adequately and completely represented
in two or three dimensions. Some characteristic feature of
the campleaﬁ function has to be sacrificed or suppressed to
squeeze the four dimensions down to 2« or 3-spaces A new ep-
proach 1s'therefers needed befaravwé can construcht a full -

geonetric analogue of a funotion of 8 complex variable

2, Hyper=Analytic Geor

Under the impach éf the purely analytical nmethods of mod~
vefn mathematios, graphleal representation has been relegated
to the role of a picturesque bub Limited aid to man's mathe-
matioal comprehension. No doubt a aantr&butiﬁg factor to this
situation has been the tradltional limitation of such fapraa

dentations to thrge dimensions. Man's "common-sense” experie
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enaes with tﬁa'yhyﬂical world were long a mental barrier to
the extension of geometry into an "unreal” reslm of four or
more dimengions., Only since the early nineteenth century has
four-dimensional geometyy been serlously aonaiﬁeredtand dew
veloped12'4

It aeems remarkable to the author, however, that this ge-
ometry of3hyparﬂgsca was not,foundeﬁ on:a 8imple extension
of the oartesian coordinate syst.em;“‘féb” become & hyper-ange
1ytie geometry, Without a four, or mer@; dimenglonal frane

of reference; the constructive features of hypergeometry are

necessarily vague and inaccurate, and adequate graphleal rep~
regentation of functions of more than three variatles thus
rensing impesaible.

The value of an adequate geometrical analogue is, of
course; undisputeds 48 Armold EMGh13 voints oﬁt: ‘

“Even in more advanced fislds and certain donmains of mathe
ematical research the establishment of the constructive fea-
tures nffa mathematliecal theory may sometimes be greatly alided
and 11lluminated by appropriate graphs, diagramg and models.

"Kot infrequently it haﬁp&ns thaty after the actual conw
‘Atruction of a figure or of a model, & close examination of
‘the finished product roveals or Suggests the existence of new
prﬁperties of the form investigated which were not anticipat~
ed before the construchions
. "Inother important factor in the construction of figures
and models lies in its atrengtheming of the geometrical imagw

ination and of mathematical intuition in general...”s
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The roads howevery has been paved with warning signs dig=-
couraging any attempt at a complete grarhioal roepresentation
of four or more dimensional functions:

"Of course,” says E. Ts Bell in Mg

we take paints as the elements out of which ocur space 48 to
be constructed; nobody outside of a lunatic asylum has yeb

succeeded in visuallzing a space of more thdn thres dimen=

gilong."

In Hathematlcs and the Imagination'S, Kasner and Newman
say: "Grarhig representations of four-dimensional figuyes have

been attempted: it cannot be said these efforts have been
crovned with any great success.”
. And Ry E, Gaskill in Engd

ingerl hematlog™ says: "[4
graph of] the relationship w = £{2) «.s would require four

dimensions. Since we do not have a supply of four-dimensional
~ graph paper,’, the best we can do is to provide the two aamplex
planes ..+ and call attention to & few aarreapcndeneea u.’ i
However, let us "rush in where angels fear w tread” and
arbitrarily a.&d a fourth "perpendicular” axis to the aewteﬁ |
glan éyetem; thus creating a W@m@m As we.
shall see, four-dimensional functions can be campletely and
sccurately represented in such a syetan. And, in fact, by
using n "perpendicular” cosrdinate axes, geometry is liberat.ed.
from 1ts three-dimensional prison and becomes once more a
powerful friend é.nd adirmor in higher analysis in the n%«diw_

mensions of functions of n variablesl?,



Chapter II. GRAPHE AND HYPERGRAPHS,

Geometric representation of complex functions; as wes seen
in the preceding chapler, has been confined in the past to
the two=- and three-dimensional space of which we have & firsie
hand knowledge. This ordinary space of our experilence, howe
ever 18 basically inadequate for the representation of such
functions, _ ,

Thé author presents in thie paper whal he belleves to be
an original method for the complete geometric representation

of functions of a complex variable, using a hyper-analytic

geomtetry of four dimensionsg,

For our frxme of refereﬁae in the hyper~aaalytic geametry
of four dimensiona, we pastulate and construct four coordi=
nate axeg, X, ¥y U, and v, mutuslly perpendieular by dgf;n;~
tion at a comon origin 0. The number of mutually perpendicn
ular p~d1mensiona1 coordinate manitfolds 1n n-space is c(n,p),
the coefficient of xP in the expansion of (1 + x)™ In four
dimensions, since (1 + x) =1l+4x + 65° + bx® + xq, we thus
havet ‘ - .

“ ene muﬁually perpendicular coordinabe pointz the crlgiﬁﬂ&

- four nmutually perpendicular caordinate axes: x, y, uy V8§

81x mutually perpendiocular eoorﬁinaﬁe planea‘ xy, Xurg xv,




yu, yv, uvy

four mutually perpendicular cosrdinazte hyperplanes: xyu,

XYV, XUV, yuvy

one "mutually perpen&icuiar“ coordinate hyperspacet Xyuvs
Also, n*diﬁenaienal space is partitioned by n mutually pere
pendicular {n - 1)<dimensional manifolde into 2% distinct
{1 disjaiﬁtnand exhaustive) nedimensional cells. Thus, in
three‘dimemsioﬁs;:the three coordinate planes divide ordinary
space inte elpht three-dimensional ococtants. Similarly, in
four éimensions, the four coordinate hyperplanes divide hypapr=
space into sixteen four-dimensional c¢ells which we will call
hexadekants",

T6 obtain a four-dimensionsl graph, or "pioture” of an
object in A-ppace, we must project from the four dimensions
of the figure to the two dimensions of the graph parers
Geﬂtral projection {(i,es perspective) is too invelved in
construction and metrical determination for our purposes here;
and of the parallel projections, orthogonal projection would
require ﬁhree views,; to be unambiguous. We have available
then, and will use, an oblique projection andy later, axono=
metrie (lsomotric) and shereoscoplc projections for our fie«i
ureslg
| In three«dimanaiun&l oblique projection {that uaeﬁ for or=
dinary three-dimensional graphs), two axes are drawn in true
length, while the third 1is foreshortened, This ackealleg "cabw
inet projection” gives a fairly natural appearanoelto ﬁhreef

dimensional drawings. 4n alternate system, called a "cavalier
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projection” extends the third axis to the same length as the
other two, with a resulting dlstortion of the figures,

In our four-dimensional system, a "eabinet projection”
would foreshorten two of the axes. Since, as we ghall eeé
later; this "doudle foreshortening” is g characteristic prop=-
erty of twcfﬁimens;cnal.prajections of fauﬁ dimensions, 1t
would he natural to use such afprogeetiaﬁifbwjour figures.
However, for convenience in working in the 2~ d w-planeg
of complex variablesg which 18 our yrimary abjeetive here, we
will uge instead a "cavalier projection” with equal scales on.
a1l four axes, and preserve the right angle betwesn the axes
of the z~-planee In"this wéy we will be seelng each of the two
perpeﬁdicuiar.planes§<the xy and the uv coordinate planes, in
true shape, Our hyper-figures then,'while'still,parfectly rep=
resentative, will be gomewhat distorted from their "natural
appearance” {whatever that is) in four-dimensionss

To avoid erowded figures and tbe confusion of coineiding
11ne92°; we will use the following particular asymmetrical
arrangenent of the axess (See Figure 1). Starting‘with the
hariéenﬁaﬁ ﬁalfwlihé 1o the left of the origin and yﬁoceediﬁg
counterclockwlise; the positive ends of the axes are lecated |
as fellcwa'

the x-axis 30° below the left hori zontal ha:.f«-z,me, |

the y-axis 90° to the right of this,

the u-axis 60 above this on the right horizonta) half~

line, and

the v-axis 90° from this and verticals




Fig. 1 ,rThe Feur-Dimensional Coordinate System
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‘Hotice that in this arfa.ngemeent the xy and the uv planes
ére not only in true shape but with the usual orienta‘c.ibn of
the axes, so that figures may be plotted difectly 1n., each of
the two planes, it only being necessary to rotate the paper
when working in the xy plane, Alternate designs for four~di-
mensional graprh paper particu’larly sulted for complex funo~
tions are shown in Figures 2 and 3, Othor arrangements of
f_ahe‘ axes will be discussed in later .e!mptera.

‘Points are plotted in this system, a8 indicated in Fige
ure 1; by starting at the origin-and moving successively, in
any order, the pgiven coordindte distance parallel to eath
axiss We define the vector £, drawn from the origin to the
point P{x,y,;u,v}; to be the vestor sum ér-ﬁ, ¥s '5,-; Yo It may
be represented by the notation -5 » {x,y,u,v}, and will be

salled a "transformation vector".

DEFINITIONS We shall define a graph in n-~dimensions as
the ;g ug of the ez:d«ggin 8 of the ggansrogggt;ag geetog

'E
n

. ?5‘ Such a locus 18 a “transformation loocus”s When

=
é 3;\ this definition gives us the graphs obtained by the
,cardinary methoeds of plot.iing& For n > 3, we may call t.heae
locl “hypergrarhs’s
~-The kind of grarh, whether it will be a point, curve, sur-
faocey ‘aclild,' or hypersolld, is determined by the proportion-
ate number éf constraints on the degrees of freedom avalla~ -

ble. In three dimensions, for example, one equation defines a
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surface (a two~dimensional manifold), two consistent and inde<
pendent equatlions define & skew curve (é-one~dimenaianai'man1~
fold), while three such equations define isolated points (zero-
dimensional manifolds}e In general, if r constraints are to be
impssed on the points of n~apacengith thelr nivariables or
degrees of freedom, we Wwill need r dependent relationshlps a-
mong the n;var;ablea; 1eavihg n - r of the variables still in-
dependent. Given r consistent and independent equations ex~
pressing such dependence, r of the varlables, usually those
éxpreasaa or expressable a8 explicit funotions of tﬁe'othera,
are customarily called the dependent varlables. The remaining
n - r varisbles of the n-space are called the independent var-
iables. If one or more of these do not oocur explicltly in
the equations then the manifold is some type,of_"nylindriaal"
manifold. Since an (n = r)-dimensional msnifold is & set of
points with n « r degrees of freedom or independent variables,
we have the following theorem for determining the kind of
grarh we‘éan expecd:

THEQREM: "A set of r consistent and independent equations
among n variables uniquely determines an (n =« r)-dimensional
menifold in n-space,"2l |

~ Weo often speak of the manifold resulting from’two,cé_more
eiﬁultaneous constraints as the,lgggggggglgg of the manifolds
desoribed by each of the separate constraints, Such intersec-.
tiéns are uniquely determined by the given constraints; howe
ever, they are not uniquely deseribed by them, since any nume

ber of combinations of sufficlent constraintas can be found te
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deaori‘bé the same manifold, Thus, three planes; under suitable
- restrioctions, determine a unique point _,1n3»apace, bt_:t this
~ point ean baydeseribedkin any number of other ways. The theo=

. rem tells us the type of intersestion our manifold or graph
w111 be.

| 'E::act defini*bions,of the usual names -fg._r the(varlqua mani~
foldé ',13 zero to five dimensiens are given in the accompany=
ing tabim We have proposed two additional namess Just as .a
plane vwr:va," e one-dimensionsl manifold in two dimensionay

1f given a new &immsicn in 3-space, _wil:i. that. into a skew
curve” in that space while, however, still ,keepmgi'ij‘c.s chayacs
berietlo identity as a one-dimensional succession of points,
so a surface ar a so0lid i'n three dimensions, given an added
fou.rth dinension of frecdom, will twlet and change into a new
shapa mvfou‘r dimensions while 8111l reta»ining thé basic

, characterist.ica cf & surfaae or & solid. E‘or this veason we
will sometimes call a two-‘dimensmnal manifold in 4~ instead
of 3-spa"e a "skew surface”, and a three«ﬂimensional manifold
in 4-opace a skew aalm“; Hote that “ekew sollds”, or more
pmperly, hyperaurfaees § inalude not only hyperplanea ut al-
8o hypereubesg twperspheres, etc. which suggest four mm—
stonal hypersolids. Actually, of course, these are all hyper-
‘ auri‘aces (three»ﬁimenﬁional aolids), sinda their equati.éna
g.’we us only the pointd on their hypwsurfaces, not the
points of the enclosed hypersolid. The same thing 1is true

in three dimensions. 4 cube or a sphere; as def;ned by 1’(;3
equation, 18, like & plane, & two-dimensional surfaces if we
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TABLE OF MANIFOLDS IN 2ERO 20 FIVE DIMENSIONS
n ner

mmension - Dimension (e%  "Common  [Proposed
of space _ of manifo ition) Designations” Name] '

0-0 (Point Point) “?éiﬁt“. |

1-0 (Line Point) "Point"

?-ﬁ/(&ineimwe%‘} "z’Line’ |

2-0 (Plané ?omt.) “Pomt” |

2—1 (?1ane Cuwe) “I’lane curve" or "cuwe"

2§2 (Plane Surfaca%) “Plane aurface ci “Plana

5«0 (Space Point) "Pornt" ’ |

3~‘i (Space cuwa) "Spaee auwa or “Bkew cuwe

3-2 (Spaae Surfacse) "Surface"

3=3 (3pa.ea Salid) “Salid”

50 {Hyperspace ‘foim) “Peint”

isél (Hypsrspa@e Guwe) "Hyperpomt“

Hud (Hyperﬁpaue Surface) “Hypemuwe [Skm surfae@
a3 {Hypmmoe Scsuci) "Hypersurface” [smw aoll&]
1 (Hymmpaoa Hypersolid) "Hyperaaua“

Bed {Hyperwhypersz:aae Point) "Foint" or “?ointﬁystw
Bl {Hypev»hyperapaee Guwa) Curva”

Gud (Hypexﬁ-hypempaae Surface) !vperahyperpoin’a" or “Supar-

curve"

S5e% { fiypera-hyperspaae Bo1id) "Iiyperabyparcuwe o:" "gggaur-—
e"

5—4 (Hyper«hyperapaee Hyperealid} "Hypewt;ypersﬁifaae or
- "Burface"

5-5 (Hypewhs*p@rapaae Hyper-hypersolid) "Hypez"-hyparaol.;::gor

% Ii’ the nani fold 19 linears read "line" for "curve” and
“plane” for “surface” throughout the table. ,
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wish to desoribe a three-dimensional #olid we have to use ins
equalities op mr&ﬁi&ﬁéi’ﬁﬁ The Tinal names given m‘t,hef‘ i:a.‘blé
under five dimensions are the terms used by Cayleya

If‘, in platt,ing the grarh ax & get cf equations, we let
OA equal the vector sum of then = r veaﬁars ‘representing the
independent variables, and OA' the vector sum of the X vec~
tors rénreaenting the dependent mrmbies,. then by our def-.
inition, T = (OAQOQ') & OA®, where 4%, the end of the § vecw
tor, 18 +the, carreapenﬁing transi‘amation poirt on t,he gmph
of our funotion, Figures 4 through 9 illustrate 'I'chﬁ' &eflnia
tion and theorem of tma aeation for wvarious ma.nimiéﬁ wheni
n w2, 3, and 4, and ahow the mture of & gragh as & transny
fomation losus between the independent an& dependent varia-
‘bles. Cylindrical manlfm‘lﬁa, not shown here, are cona* dered |
in the first section of Chapter IXI. (sGe Figures 10 and 11).

Hore generally, the process of plotting a8 graph is that of
Veei-.cr composition and conalsts of finding a set ai‘ pomta in

, n-smce, given a set of aaardinates. The general 1nvez-se prob-

em, vector rs:aalutien, lg to find the set of coordmates,
given the aet of mints; Fron QA and its trans*omation point
OA%, we can reaadily find OA's Whether, given 0A®, a method is
available for finding 0A {or vice versa); and whether we can
further pesolve OA and OA’ into the vectors of the individusl
?a:*iablea deterrmea oux' ability to eomplete thig inverse pm..

ceds, For a two-dimensmnal graph. of a curve and a threeadin

mensional model of & gkew curve or surfage this 1s.always POS-

8ible by orthogonal projection, Under any other conditlons,
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additional information, including the correspondence between
the veotor sums 6f the independent or dependent variables and
theiyr transformation pointa,ls needed to golve this inverse

problems

{iven » equationa in r dependent wvariables; expressable as
expliocit functions of n = ¥ independent variabiea with; per~
haps, some Zero cgeff‘ieientsi we oan asaign values to the in»
. depeondent variabled, »det-ém:}.m the corresponding values of the
dependent variableg and find thelr veotor sums ts Thus we can
plot a graph, or "transformation locus", which is an smccurate
geometric yrepregentation of our mapplng functions ‘

- The Qse‘ of the graph, on the other hand; to actually per-
. form a transformatlon may not be 8o aimplé a problem, since
it 18 éne form of the inverse graphing process. In the proe :
 Jection of points between two manifolds, such as a p-dimens
sional manifold in n~gpace and the two-dimensional manifold
of its grarh on paper, ambiguous results occur if the A4 mene
sions of the two menifolds are dii‘ferezitu?‘? That 18, the pro-
~ jeotion can then be accomplished in only one direction; the
process has no inverse, or finite corre-épenaenae,' in the re-
verse order, For example, we can project a point of a cube
into only ona point of its ghadow on a plané,'but the rev‘ereke
process gives us an indeterminate locatlon, acetually an infine
itude of possible locations, for our point projeoted from the
ghadow back into the cube. This means thai, while our hyper
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analytic geometry will enable ug to graph the correapondences
_between the variables in nespace, the use of such graphs as
actual transformation devices or nomographs 15 limited to a
fer cades In the lower dimensions, unless we employ gome ad-~
ditional method for equalizing the difference in dimensions
bébweeﬁ the manafold and 148 projection. {Some methods for
, accompliahing this are glven in Chapter IV.)} Even though we
may net desire o perform the aetual graphle tfansfarmaﬁiang
i? a "read-out” 1s‘pasaible, ﬁhe-carreépondeneealrepresentea
by the graph then become intelligibles |

Fartunaﬁely, we tan perform graphical,transfdvmationag‘am
least in the uaua1 éireetion from independent to dapendenﬁ
‘variableé, in 811 cases througﬁ four dimensions, and in most
of the five«diménsional,easea, the particular dase of the
four-dimensional hypsrpoint,‘and some of the five»dimenaianw
al cases, however, requiring additional features to make then
amenables (See Chapter IV)s o

In the particular case in which we are interested here,
that of %wo!inaependent and two dependent variables, our thee
orem tells us we are dealing with & tﬁo~dimensioa&lzmanifold
in 4-gpace; ﬁhﬁs’we can project from this to the twOMéimenm
sione a? euf granﬁ paper without ambipguitys The hypergraph
of cennlax functiens, then, will not anly giveé us pictures of
the funoctions themsnlvea but wlll also perform the gatual
.tranefarmatiansrgraphically. They therefore wlll be comprehenf
sible and valid geometric representationa of the actual core

respondences expreased by the complex functions.
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Chapter IIT, HYPERORAPHS OF COYPLEX FUNCTIONS

1. The Special Foupr-Dimensio Case: Two _Inde
- Two_Dependent Variables,

s A fumtion of & single aamplcx va.ria.ble has the i’cm v a
£(z), where w s u + ivand 2 & x + iy From utivae f(x+ 1y$
we obtaln, on separating the peal and imaginary parta, u g
u(x,y) and v = v{x,y), two equations in two independent and
two dependent va?iabies. | | | | |

In three ’aime‘nsiona, two equations in one in&ependentand
'bwé dependent variables give us a akew curve in 3~spac:a, |
which is the intersestion of two perpemiwular eylindrical
surfaces: (W‘igure 10), In & similar fashion, in four dimen=
glong, two equatinna 1n two independent and two dependent
veriables give us a "awrew surface” or hypercurve in 4-gpace,
which is the intersection of two perpendicular cylindribal
"akew so0l1ds” or hyperoylindrical hypemurfaues%. {rigure 11).
(The enﬁire object in Figure 11 ig 8 plane~cylindrical hy-
persurface and 148 interiara%) If w 18 enn gnalytic funchion
of z, then u and v are conjugate harmonio functions. Thus,
the gi-aph of an analytic funotion of a complex varlable is -
the interaeotion of 1t§ conjugate harmonic hyperdylmdrical
hypersurfaced.

In Figi;re 10, we see that a point Pl(xl,y'l,zl) on the skew
cuw§ of intersection is the intersection of perpendicular
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eylindrical elements ocut from the two intersecting cylindri-
cal surfaces by a plane throﬁgh X1 parallel to the plané,af
the dependent variables. That is, Py 18 the intersection of
vy e f(xi) an& 2 = 8(xq)e¢ Similarly, in Fngra 11; a po1nt
Pl(xl,yl,ul,vi) lying on the skew surface of intersection 1ia
the intersestion of peryendieular cylindrical ‘elements aut
frcm the two eylinérioal Bkew aalids by a plane tnraugh the
paint (31331) parallel to the plane of the &ependent variables.
Notice that, for each point (zl,yl)* we have sone parbiaular
pair of values u = ul(xisyli,‘ =V (xi,yl)s‘i.e. sach plane
drawn parallel to the uv plane ﬁhrmugn gome point in tne Ry
plane cuts each of the cylindrical skew solids in only 6ne
elementgs The 1ntersections of these pairs af perpendiaular
glenents determine the skew surface. Ve mlght eall sudh a
Makew murface” variously a “transformatien'surface s+ "tesure
face , "hypergraph”, or "hypercurve". Or, since it 18 intepr-
pasea between and performs the ﬁwansformaticn £ron an "objeot”
in the z-plane to its “1mage" in tha w-plane, we might call

1t a "mirrar aurface or m*surf&ee"26¢ (See Pigura 12}

2, Lonatruction of prermraghs of Complex Functionse

In the geometry af real variablea, there are some curves;
>5uch as cifcles and ellipses, which can be plotted in their
entirety. Most fuﬂetioﬁsgihawever, are unbounded in one or
both varisbles, and we content euraelvéa with plotting and
studying the sallent features of the most interesting portion

of the curvey often that near the origin. Bimilarly, there
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are relatively fev special anelytie functions which ha&e
their regions of existence limited by natural boundarleé; and
even theme fﬁnctiona are usually unbounded in absolube value
on such boundaries, Moat analytic functions (if we include
their analytic continugtions and excilude singular pointa) are
defined over the entire complex planes Furthermore, unleass the
funotion is axcsnatant, by Liouville's Theorem, it is unboung~
ed in absolute value for at lesst one point of this planes In
view of these considerations, we cannot expeat to plot the
entire graph of an analytie function, any more than we can
plot an entire parabola: We can, however; construct and ex-
anine the transformation surface of a complex funetion for
any portion of the complex plane we wishy such a8 a region
near the origin or about a pole, and thus become familiar
with it8 particular characteristic shape, just as in real var-
- 1ablesn.

We will use for our basic reglion in this paper a 3n x 3n
square grid in the xy plane, usually with n a 1, and in o=
der to keep our figures here simple; we will confine curQ
" melves for the most part to the first quadrant, starting at
the origin. This will give us sixteen poinits on the transfore
mation surface, from which we can galn some idea of the char-
astor of the funotion both individually and in comparison
with other functions, as well as make use of the hypérgraph
to 1llustrate a few simple transformations,

An with ordinary graphs, we first compute a set of values
for u and v gorresponding to those assigned to X and y. Onte
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we have thess, we ¢an we either of two methods for ,plét;bing
the actual points of the transformation surface. First, a8
stated in Chapter II, we can plot successively, along lines
parallel to the respective axes, ench set of values of %, ¥,
u; and v, taken in any orders A triangle with scales along
tho perpendioular sides is an aid in such plottings A second
method is to plot point (x,y) in the z-plane, and its corre=
sponding point (uﬁv) in the w-plane, then draw vectors z z OA
and ¥ =z OA' and from thesey by completing the parallelogram
and drawing 1its diagonal, find t.heirmector'ém? = E-l- W o
0A*, A mechanical plotting aid for this method 18 desoribed
belows Each "mirror point.’* A* obtained is aarreiated-withls-its
"object point" A‘by gome convenlent notational system, as
discussed in the next section, Using a French curve, smooth
"mirror curves” of the grid lines are now drawn thmugh the
corresponding nirror poinits,; glving us for the complex funce
tion being rilotied a "mirror surface” in four dimensions of
our basic grid.

To "read” the transformetion surfade thus obtained for the
nature of the transformation it effects, it is only necessary
to keep in. nind that 1f the vector from each point in the z-
plane to its sirror point on the transformation surface be
moved to the origin, it maps the image of that polint in the
w-planee Thus the "impending transfiguration” of the object
plané can be visualized by reading, say, counterolo.ckwiae :
around the border of the grid in the z-plane, "carrying the
origin with us" from each grid intersection to the next as
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we note the changing vectors to the tpanaformation surfaces
See, for example; Plate 16.

- Graphic transformatlon of points, Gurves, and regions from
the z-plane to thew~plane can now be:aeaam;}liahaam From. any
-objeot _po'mﬁ 4 of the curve or reglon in the z-plane we draw
thevvector 44% 4o the earreaponﬁing mirror point A* on the
transformation surface. The vector difference OA* = DA & OA'y
found by completing the parallelogram with OA® as a diagonsal,
gives us the vector OA' locating the image point A' in the we
plane., When point A does not 1lle on & grid mt’.erascﬁion, we
‘must eilther use a more finely divided grid system; compute a
special point, or use judicious interpolation, in loeating
1ts mirror point A%,

Inverse graprhic transformation from the w~ %o the Z~plans
can be .accomplished by a "trial and error” search method,
~ Bettery of course, mirror curves of the grid lines u z c1y
v = O,y can be plotted on the transformation surface'alse and
inverse transformations parfdrme& directly.

Graphic transformation should be an aid in the egolution,
| partiéularly where irrcgular paths or regions are involved, of
certain boundary value problems connected with heat flow, e=
. lectrie potential, fluid flow, and air folls. For such prac-
tical applications, the transformation surfaces and the z-
and w~grids would have to be drawn accurately to fine divie
. glons, like fine grarh vaper, and perhaps printed in AAffer~
ent colors; e.g. z-plane, light blue; t-surfzoe, light red;
w-plane, light green; reserving black for the curves and re-
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gions to be plotted and transformeds

: fm this commection, the work would be facilitated 'by- gome
type of mechanical plotter gsonstructed as a: parallelogram,
adjustable in size and shape; to duplicate the veotor figure
0AA%A', ‘A palr of surmounted parallel rulers or & system of
oans or gears would maintain & true parallelogram for all
positions, In use, the. firat or O vertex would be anchored at,
the origin, the Becond or Z vertex with tracer point would be
plaeed on a point in the z-plane, the fourth or W vertex with
tracer po;nt on the corresponding point in the w-planes, The
third or 'i'.' rertex with pencil would then mark the point on the
transformation surfaste. Such a device would not an‘:!'.yzrplct the
trenaformation surface, but once.this had been obtained, it
could then beuaed;, -interahangmg- the pencil and tracer spoint
between the t azxé. w verticdesy to plot the image in the weplane
of any figure in the z-plane, using ita corresponding. poinbs
on: the transformation surface. O coummﬂuch g mechanieal -
plotter would not be limitod to complex funotions; since it is
peﬁfecﬁly’general in prineiple, 1t could be epplied to any,
5raph in any nunber of dimensiongs (See Chapter II,. Fisizfea 4 .
thmﬁgh 9). Additional:refinements could obviate the necsgasily
of first summing the independent and the dspendent varlables,

3. Point Hotation g»‘

 We noted, in Chapter I, Section 2, that one of the two -
problems connected with graphic transformation 1s the corre-
lating of the vector pumg of the independent variables and -
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thelr transformation points. With a.gra@h of ‘a trvo~dimensional
manifold in nespace; the best method for indicating this cors
rkaspanamceu is by tho use of mirror curves of the 3y plane
grid lines, Values of X and y oan be writben along the mirror
azes; for added clarity, the 'y values can be underlineds (A

memory 214 here is that a number with a horizontal 1
1ty gy Indicates the mirror of y = ¢4 which 18 g
1ine in the ususl Xy gragh:) aAn aliernate method of point noe
tation for two-dimenslonal manifolds is given later in this.

sectiony

‘For a three-dimensional manifold in n-space we Gan substie
tute a serles of successive two~dimensional layers or surfaces,
joined by curves through their corners, each identified along
one of these cornepy omesaﬁ to ﬁazposmian; uz 8y in the

hypersurface; and each marked with mirroy grids., Additional

‘eurves can be drawn on two of the externsal faces to correlate

the x and y values between the goveral surfaces, Clarity 48
inoreaged by making the welght of %hesltinéé-heaviar on ‘the
border snd visible faces, A1l actual intersectlons of mirvor
grids in the figure, as well &8 on two-dimensionsl surfaces
which double back on themselves,; should be marked with heavy
dots or small x's to dletingulsh them from the many false or .
apparent intersectiong. Intarpolation botween grid lines be~
oomed & major problem here.

. Beyond a three-dlmensional manlfold, the projection on the
plane of the graph paper becomes t0o ﬂgx'zmbax#sameg in general,

te use for graphie transformation; although some interesting
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 hypergraphs can be obtalned. We must thén regort to projec-

_ ticns on the various planes and hyperplanes, or successive
intersections with these, or to purely nomographic devices.
This is our difficulty in the general five-dimensional tase
with one depen&ent and four independent variables, |

If 1t is desired instead to aéaign iettefa to thé grid
inﬁerseoticna of & two-dimensional manifald, the following
systen for a 6n x 6n square array of points, with any scale
and any center, is convenient. Since most of the interesting
featurés of the common functions acaur<éiﬁh1n such a region,
with n = 1, centered at the origing much of our work will be
éane‘ﬁhere, and the lebter notation india&ﬁea below will Dbe
aﬁﬁ?ﬁe&, |

Begular point natﬁtianvis shovmn in Flgure 13; which giﬁea
the mirror point letiters for the aarresp@ndlng gr&d‘poinﬁs of
the z-plane, The notation k” can be read ”k.minua"; Flotting -
ean be facilitated by writing these symbols in dightly bn the
z-grid. It 18 then only necessary to plot the u and v values
of each point frsm its symbol, which is thenveraaed and writ-
ten in olearly beside the final point oblained.

Singular roint notation is shown in Figure 14 for a péle
at point k. About a singular point, a "spiderewed" pattern of
nested rogions is uaed; and the letters of the original gquare
are repeated in the smaller squares, with dots over the lete
ters indieating the successive subdivisions of the region. If
quarter points are desiyable, they can be letiered as shown

with the unused symbols left over from the regular voint nota=
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Fr’g. |13 Regu!ar Foint Notation



Fig. |4 S'mgu.lar Point Notation
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tion schemes | ’
Bpesial point notation is shown in Figure 15.

This aysteg of notation accomplisnea an orderly yel flex-
ible method of identification of points in the reglon. with an .
affiaient use of a nininmum of baslc symbols. Two worksheet :  '
‘forma based on the system are included, (Figurea 16 and 1?):‘ |
If desired, any paint or the entire system can be axﬁended

to the corresponding pointa in the 2+ and w~p1anes by using
the subseriptat Ky 49 kw‘

In the following pages we preaént & number of transforma~
tion surfaces obtained with the plotting methods we have de-
acribed'as applied to\varibus‘elementary funotions’bf a com~
piéx'?arlable. Some transformations with these surfadces are
also shown, in red. B

~ Many of theae surfsces are the "complex generalizationa
of real plane ourves. In these instances; the function w = f(z)
18 real when z 18 real, 1‘é. v e 0 ﬂhen ¥y = 03 and the cor-
respoﬁding real variables curve 18 then u =z f£(x), geen in the
hypergraph ag the ﬁraca "abed" of the surface on the horizon-
tai real xu planes In other instanceé, the complex surface hag
no real cﬁuntarpart; {1.es no xu trase)g'ar sometimes only |
one real point or two. Traces on various planes and three~di=
‘mensicnal sectiona in various hyperplanes will help us to bet-
ter unﬁerstand the nature of the surfaces, Note that the mir« o

1%, 1

ror ncint of the origin in these grarhe is "a", the mirmror
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surve of the x~axis the line »amw and\of'the y-axis "aelm”.
The hypergraphs ghown are constructed, for most of the funde
tf.ionve, over a 3 x 3 region in the first guadrant of the xy
-plar‘xe. A large unit scale has been used to magnify the charac«
teristic features of the surfaces at the origin., Forw s z%,
however, we have used a 12 x 12 reglion .centered about the érn
igin to show the continuous mirror surface darreapanding to
the Riemann surface of two sheets in the z-plane.

In "visualizing" the surfaces, without the ald of stereo~
8copic drawinge as described in the next section, it should
be kept in mind that all u and v values are plotted in planes
parallel to the uv plane, which is the plane of the paper,
from pointg in the xy plane, which extends from the uv plane
toward the obderver, Theret‘c re the relamva 'nearnese™ of any
point of the transformation surface corresponds to that of the
objest point in the xy plane treated go a "plan view", show-
ing the xy plane from sbove with the ebaervexf at the lower
edge of the papers Thus, for exauple, in the graph of w » &,
the surface does not 1ie in the plane of the paper, but ex~
tends from the origin toward the observer, point p, 88 in all
of these gravhs, being the closesnt. This is readily seen in
the stereoscopic view of w = Z. Using this proximity px*inch
ple, we can ﬁraw a series of horizontal lines through the grid
points of the %y plane and o‘o*bain the following ar&er of
proximity” of the points to the observer, for our particular

amang@em of t.hg axed, starting with the ¢losest point pi
palnkmh,}n gia‘df,}‘p cek! h" b 1 g% a




a7
g ﬂf"wh'we cp jf éo zg n" 4w nt
kﬁlap-

i?or'the'firat quadrant points only, we havet

polnkmhjgldfcebas
In determining the relative positions of the mirror sur-
face and the xy-plane, it should be kept in mind that if v is

_negative, the mirror points are below both the xu and the xy

plane,s From the graph itself, we can reason as follows, The
object point and its mirrer point lie in the same vertical
plane parallel to the paper, so they are each the same dig-

. tance from the observer. If the mirror point is farther from
 the bottom edge of the paper than 1ts 0bJecb point; the

"glope” of a line from the origin 40 the mirror point is less

‘than that of one %0 the objeot point for points this side of
.tha*crigin, greater beyond. In either case this point of the

‘mirror surface lles abQVevtheréwplanea Conversely, if the

mirror point is nearer to the bottom edge than 1%s object
point, 1t 1ies below the z-plane.
Commentaries on the individual plataskare given below. The

graphs, as mentioned previously, are only small portions of

.the-entire~(usua11y unlimited and unbounded) surfaces,

(1) w 2 0 The hypergraﬁh colncides with the xy plane, an-

| alogous to the resl variables case, u s Oy which coineides

\with the xpaxiag The latter 18 seen here as the trace abed on

the real xu planes Since the object and mirror points coin-

cide throughout, all vector differences are zZero, l.e., every
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point of the xy plane is mpped into the ‘émgin by the sure

face w 2 Os ,

{2) w 2 2 « 41 1 Here our xy_“plaﬁe is represented by a pa.rgl» '
" lel plane through the point 2 = L to the right and below the
real xu plane, 3ince the mirror and object planes are paml- .,

lel, théy do not intersect; thus there is no rezl counter-
part to this aompleaz: ﬁznctiaﬁ. By completing pamllelogms
between the 2=y, t=, and wepoints, we sce thab 21l points of
tha xy plane are mapped by the surface into the complex point
2 < 1.

{3) m.» 2 : &s pointed out above, we have here a surface
extending out from point & at the origin to point p nearest
the observer, The fact that the mirror grids, shich are astu~
ally orthogonal on the mirror stwf‘ace, also plot out on our
’prcs ection of this surface a8 perpendiculars although we are
abviously seeing the surface "at an angle"j, is due to the use
of equal scales and perpendicular axes in our oblique projec-
tlon of the z-plane. If we had used a cablnet prc,}aétion with
equal foreshortening on the two axes, the surface would s$ill
appear square, though smallers (Sec, far example, the graph of
v = 22), ﬁnequal f‘areahortenmg or nonperpendioular axes will,
in general, give us an 1nenned nirror af the plane as & par-
allelogran. | |
~ If we "ghift our viawpoint” here by rotating the z-plane in
the plane of the paper about the origin, we £ind that the |

square projection of the mirror surface remalns aqt.ze.'zwg;gi 1llus~




3|12]-!

4 U

XIYILLY

mio | 3 2]-1

ml !

Q'Z.BZ.-!
42332.-4

N\

EAT ‘c’

=

2|2

X1 Y 1WlY

l

21zl 21!

tloj2j2|-!

JIEAEAYA R

2 -1
21l

XIXIUlY
o

[
ABI

XlYlulv

Ol2rl

a|o0lof 2l

L1

clzlolZH

Al3]loj2])-

\\ \ g
pd -~ P P
\ \\ \\ ] )
N Q
=N (
) VA\ s
- s e, /f.uwi!f
S
]
S——_
/ —




|

>l cof ™
Sol—|ij™
b I ELI IV KL
xJ 0 olf v
§ 99
> o o
3o} —|olfm
A o] of b} ag
Xl o] —{dlim
RIS
> — . .
S o] —| o] ™
™ i
Xjo| —jolm
oY
>1 O olfa]
310 ™M
Hojojojo
XO N
3K 4

A\

X
Plate (3)

’a"4

e

AN
\

= Z

Y




trating a four-dimensional extension of the fact that we can
gee the true length of a line from more than one position, if
we are in a thirawﬁiméhaional plane perpendicular o the lines
Hers we are in a four%haﬂimenazanal plane per?andlaulaw to
the plane in which the right angles occury 8o we can,“walk
around” it in this perpendicular plane and still always see
the mirrér plane as a true mquare. A “gide effect", however,
18 g change in the apparent gize of the plane (compare the
graphs of W = 2 and w s -z) caused by a "double Poreshorte
ening" in four dimensioné, which will be discussed in a late
ervéﬁapter. |

 Notice the complex meaning,of "linearity” and "elope"
here. Slnce w a 2 is\;inear, our hyperspace sﬁrface ig ?flat”y
1¢é., a hyperﬁéace plane or "hyperline". Sinae‘ﬁhié functian4
has a "slope” of one, 1is mirror plane makes equal "anglen"
‘with the z- and w%planea«,W1thout defining "flatness", "slope",
or "angles" in four dimensions, our hypergraph of w » z still
gives us n geometrical feeling for these qualitless It 18
interesting to see the‘interpretaxion of the Cauchy~Riemann
equations in this grath as the slope 3“»cf line abed equal to
t»he glope -3—}; of line aeim,. withs-% = -9-‘-'-..0 at the origins
Mirror point g appearing near the Bb)eat point {051) is the
mirror of object point (2 1), and the latter is clcser to
the observer” (at the bottom of the page) than is point (le).
From this we know that g; and thus the entire mirror surface
shown, 18 "nearer” to the observer than is the object plane,

1.e,, 1t will appear to be "above" the xy plane in & stereow
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scopicfv1ew,'a fact which is confirmed in the next seoction,
The real caunternart, u = %, 1s the line abod in the xu plane‘
A pure 1macinary counterpart is also Been as the trace aeim
in the vertical "pure imaginary” yv planes The fcur@dmenf
siongl line x 2y = u = v; which is equidistant from all four
axes, lles in the mirror plane and is seen there as ihe diag=
onal afk@. Points of the z~plane are t7'1en<a'f‘:%,ectea:?a"’'by the mire

ror ag shown into the sama rolative positions in the weplanes

{iiyhﬁ é‘z + 2 :vwhe»efféat 6: an adﬂitiVe.ccnstant, as aéan
in Plate (2) above, 18 to‘ehift the entire éurface in trana;
'1atien-ta'é parallel position through a new point. This is
the eémplex‘counterpart of translation bf a curve to a para1~
lel position by an additrve conatant, 111uatrated here by the
real 1ine abed with slope one through the point (0,042, O).
‘ihe mapp@ng 18 eorresncn&ingly transiated by this shift.27

(5) w._®m =z @ Hotice here that we have been forded to reduce
ﬁhe seale of the ¥y plane in order to accomodate the shange
in "apparent area” beﬁ#een this surface and that foé ﬁ " Za
Actually the two have the same area, as will be easily veris -
fied in fhe next chapter. The change in "apparent area” re =
sults tram'éur change of viewpoint for the two aurfacéa. Since
mirror point jJ, in the same vertical plane as its cbjeot‘point
{1,2), gppearg near pgiﬁt (3,3) which is closer to the obser-.
ver, we know that J and thus the entire surface 1lies "below"
the z=plane, but “1n_fr0nt’cf"rthe uv plane through (0,0).

The stercoscopic view will confirm thiss The real counterpart
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ﬁ;é'*ﬁ 15 the line abed in the xu plane, The<surfaée naps ro-
glons from the flrst quadrant of the 2-plane to the third
quadraﬁt of the w-plane.

(6) w2 =2 =143 1 Another 11lustration of the effect of

an aaditivé constant, this time ahifting the mirror plane u§
and to the left, so that it 13 "hinged" at point -1 i-iu
8ince thé echstant is complex, there i8 no real éounterp&rt¢
The 1ine abed 1ies in the plane v = 1 parallel to the real
planes Thevimage is oerrespandingly shifted. | |

(7) w.2.2z:: With the multivlicative factor, the transforma=
tion plane has increased in sctual as well as apparent areay
-beiﬂgitwa and a half times larger in actual (computed) area:
ihan theAmirror gurface of w & 2 for ihe sane regions The nap
of course, has doubled in size, It 18 interesting to note
‘that the transformation surface is rotated by this real factor,
althéughlthe m$p~af the reglon is nobe With & couplex factor
ﬁhe map would also be retatedg7a The line abed 18 the line

U = 2x in the real planéa

(8) = =”ﬁ$;}»and (9) w_= 1{z) : These two mirror planes, as
one migﬁt have expected, are orthogonal in 4-sraces Like the
Z- and.whplanea, they have only one point (the origin) in |
common; thus they are "absolutely perpendicular” planea.28
Their complementary nature is evident from & comparison of
the two surf&ceé, shown here in the same plate. Together

they resolve any vector in the s-plane into its reel and
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iﬁaginaryvcpmpOnentﬂ in the weplanes

’(m),m s The tmnsi‘ormation‘ surface of this non~analytio
function is kani‘ "ecige viewff bf the mirror Ple.ns, which maps
the reglion into a reflection in the real éxia. The éouseaﬁtive
alphabetical order is probably meaningless, since a plane |
lettered by the Bystem used here can be viewed from a slight-
ly different position énd give 8 non—conaecutive reading of
its points. The real part of this surface is its inbtersection
with the real plane, the line u s X.

(11) w.= lz] : Since this 18 a real funotion, v = O, and we
are gonfined to the xyu hyperplane. The equation is that of a
aone, 'tw_a elements of which are the straight lines abed in the
su plane and seim in the yu plane. Though not appearing so,
in our projection, these elements are sctually of equal 1ength.
Despite the fact that this 18 a real function, 1ts mirror
surface 1les in a complex hyperplane, since its argument is
cmnpiex. Only t.he"mirrar loci of’ reé.l functiona of real '&'ari#
ables can lie totally in the réal xu planes The conilcal suyre
face here maps every polnt of the xy plane into its "absolute
value" on the uéé,xis. A three-dimensional model of this map=

ping surface can be constructed.

(12) w = arg 2 1 Like its companion, w =|zl, this 18 a real
function of a complex variable. The value of this function asg
we near the origin depends upon the direction of approachs

the surface is thus discontinuocus there. The mirror surface iz
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ghown for all four quadrants) 1t 48 actually a singleévalue&
brahchV(nbtained by restricting the are tangent function to
its principal values) of an 1n£1n1te1y repeating yerladio Bup=
racee Each point in the a»plane 18 mapped by this aurface

into 1ta vector angle value on the u-axig,

(13) m.= 27 22

the same characteristic surface, since if we reverse ﬁhe'vari~'

a2 ' -
and {(14) w = 2% 1 These two funotions represent

ables in one of them, they become inverses. Thus it will be
instructive to examine their transformation surfaces together,
as two aifrereat views of the same murface. This surface is
seen in full 1n Plate (14) for a 12 x 12 square regien about
tha arigin. For work with the multipleuvaluea function w = z%,

the z»plane 18 cuatomarily replaeed by a Riemann surface of

two ahaets, cannectea across a ‘branch cut te fcrm one contin~

,ucus 3urfaee on which the funetion is single~va1ued; The cor=-

‘respanding continuous singla‘aurfaee oharacter of the trans~

fcrmatien surface i8 seen in FPlate (14).
By oomparlng pairs of neighboring pointa on the two mirror
sheets, using the "oprder of prox1mity deseribed prsvlously,

we ﬂee that the mirror surface of. aheet one (d1p1P1’P2°Pgnﬁe)

is above that of sheet two (623393 P, P,"dy)s The entire sur-
face 18 sloping away from us, with the lower corners p; and p3
nearest, and the upper Gornexs pé and p& the farthest,

The effect of "double foreshortening” 18 seen in the ap-
parent difference in areas of the equal quadrvants of the two
mirror sheets, the direction of viewpoint and not the proxim-
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1ty'(aa.in three-dimensional perspective) determining the ap-
parent size. Compare, for example, the squal lower corner ar
eas, 01k111p1 and 93k313p3, of which the firat appears smaller,
avan though 1t is nearer; because we are viewing it at more of
an "angle". Visualization of the oross~over in four dimensions
bewween the two sheets, alnng the real parabola branch~eut
p S u (eurVQ dzaldé)# 18 difficult; ‘espeoially when we find
that the oraer of praximity of the fallowing peinta 1a al f3
oy hy" By " |

“In comparing the two plates, we must keep in mlnd that oupr
grid systems and hence outlines are diagonally opposed; 8o
“ﬁhat point p of Plate {13), for example, 1lies on the total
surface somewhere beyond and between py and p,' of Plate (14),

Our first quadrant surface shown for w = 22

‘thus is a portion
of the surface in the vicinity of the first hal§>a$ mirror
‘gheet one of w = z%, 8o that in Plate (13) we are viewing
Plate (14) roughly from its pcsitive~v~axié¢ The surface here
extends out toward us from the origin, point p {(off the top
of the paper) being the peak of the roof above us,

A look at the mirror curves of the x- and y-axes in Flate
{14) proves 1ntéreat1ng. The positive“x—axis, on substitution
into the u and v functicns'for W oo a%; yields the parabola
u? = X, v 3 O in the real xu plane, #een here as curve dya4,ds.
The negative x-axis gives the parabola ve 3 %, 4 s 0 in the
complex xv plane, curve dy"4,d; « {The corresponding curves
are seen partially in Plate (13) as abed and aeim respective=
1y.) Thus we have two parabolas joined at the origin and each




curled about the-x+axis, but extending in opposite directlions |
and lying in perpendicular planes. I:izess parabolag represent.
the. corresponding real‘ anﬁ;v'camplek graphs of the real variable,
| :’une'tion; u = x%, for both positive and negative values of s
We have therefore arrived, through one-facet of our complex
'surface,» at the same method for displaying the graph of a com-

plex function of real .variables as described by Wamgg

10

s Kempe
ner>0, Frumveller®, Lange''s and others. Our grarhs of funce
tions of a complex variable thus include not only the real
functions of real variables as a special case, bubt alec the
complex functions of real wvariables,; and, as Been'm Plates
{11) and (12) for w = |zland w = arg 2, the resl funotiona of
gomplex variables. A four~dimensional hypergraph, then, is a
complete graphical repregentation of f’uncﬁiona of a single
rariable in the field of real and complex numbers,

~ The mirror curves of ‘the y*élxia are the curves mya;my and
mp"aqmy " By substitubing x = O into the u and v functions of
W gz”??“, we obbtain 7 = 2:48 and y = 2v‘2, from which we have
»u, £ £ ve Thus these mirm# ourves are the intersections, lying
13'1 the planes U » :k v of the yuv hyperplane, of the parabolic
cylinaers y = Qua and v = 2v2 b when ¥ > 0, u 5 vy and

the oylinders thus mtersect in the u g v planes When y < Q,

¥ 2 »¥ and the oylinders intersect in this perpendicular plane,
a8 can be seen in the graphs

We see t.hen that the mirror ourves of the two axes are both
plane eurves. It ia interesting to note that, although these

curves lie in different hyperplanes, in the graph the branches
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of the mirror x-axis appear to flow smoothly along the surface
Ainto branches of the mirror y-axis. When we remember that one
trangformation of this surface; in the form w = 32,,' doubles
the angle at the origin, this does not Soem unreasonables:
CIf we plot w - K 2 (2 « H-),a, H, K complex, the "vertex" of
the four-dimensional complex parabols 18 moved to the complex
four-dimensional point (H,K) a For the particular csse when

g hy Kak, hand k resl and poei‘*ive, this is the point
(h,o,k,e) and the real trace abed.ss in the xu plane no long-?
er mt,emecta the x-axig; for the real variablea equation |
u~ka= {x ~ h}e yields, when u = 0O, the quadrat.w equatioﬁ |

2 - 2hx <+ h2+ k 2 O which has no real rooﬁsa However; the
maginary roots of this equation are now seen in the nyper«
graph, for Uzva 0, a8 the intersection of the varﬁiaal ‘
parabola eime.s With the xy plane in the points x = n+ VT,
| 3imilar figurea are obtained for complox mlues of H and K,

j -2 for roots of quadratic equations with complex coeffi*
oients;

Just. as the parabala u = xa aecupﬁ.es t.wo of four quadrants
:'m a pla,ne, we find, by ehecking the posaible sign combina~
tiona of the complex functian, that tbe surface w s 22 ex-
tends through eight of the sixteen hexadekant,a in l&nsnaoe,
Also; u s xa and u = %% share one quadrant out of four, The
two complex ana.logués gimilarly share cne-fourth, i.e., founw,

af t,he hex..dmkan‘ts.. The aurfaae w a zg

transforms a qua.rtsr
eimle in the first quadrant into a semi~circle in the upper

half-plane as shown. Each mirror sheet of the function w = zé'
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maps a eircle into & semi~cirele (not shown here), the upper.
sheet into the upper half-plane and the lower sheet into tﬁé‘-
"lawer halféplanea
o So much for the complex generalization of the parabola, the
 four-dimensional ocomplex surface of which.we}might call &
"paradolex”, Next we look at the complex hyperbola, or
"hyperbolex", |

(15) w 53% ‘Here is our first surface'with a aingular point,

theé origin. Only the first quadrant ‘surface is shown here;
the reader will £ind 1t instructive to plot the eomplete BuYie
face, and to note the intersection with the 45° vertical
plahe, X zu, vy 0, through ﬁha v~axie, which 51vea a cirole
about the origin. This vertical complex eirele joins the two
horizontal branches of the real equllate“al hyperbtola, u =‘§ 31
~The pasitive braneh of this hyperbola is aeen.hare in the xu
plane as b ‘D'beds Since v 18 negativa throughout the first
quadrant, the rest of the - snrfaae ehcwn here lies below both
the xu and the xy planes. 4s the & valuea approadh the origin
from the first quadrant, the surface twists into & vortex
away from the observer, then spreads out indefinitely acwn~
war& and t6 the right, approaching the fourth quadrant of the
w§pl&ne.'1n the complex aﬂalogyvto the real hyperbaié, the
surface:is aaymptotié‘td the z and w ccordinate planes. Al-
though it 18 symmetrical with respect to the origin, the
"hyperbolex” may be a 1little difficult to visualize near this

singular point, .8ince it changes here from a surface which
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was asymptotic to the 1st, 2nd, 3rd, and hth quadrants of the
_Zaplane 1nta a surface asymptctia respectively to the 4th, 3rd,
Ena, and 1st quadranta of tbe w»planeu

A rectangular strip in the first quaﬁrant of the znplaﬂe o
parallel to the ynaxis ia mapped by the surfaue, as shown,. ine
to a fourth quaﬁrant»portion of the ares between two eircles
1n:the~w-p1éne pasaing thrbugh the origin and with centers on
the u éx’iis';

(8) w %M“iz*fii The £1 st quadrant aurface, shown here, of

this 1inear fractional transfermaﬁian presenta a pleasantly

uncamnlicated appearance¢ However, this appearance is deeep~
tive, as the surfaoe has a singular point at z g ~1, taward
whiah the pirror curve of the x-axis dcba is heading. Thia
trace on the %xv plane ig an eguilateral hyperbola with center
~at point (~1,+1), 8o the surface "oomes in again"” from the
ninusg v»direeti&n past tﬁis voints The zu trace ylelds only
one'real point,.b(l,o)g The mirror curve of the y~axisvis the
three-dinensional skew curve aeim in the yuv hyperplans, In
visualizing the portion of the surface shown, we mwte that
point e lies in the yu plane, and that all other mirror grid
points except &, b, and e lle below the Xy planae

" The word "linear" for these fractional transformationa is
misieaﬁing, as the mirror aurfaaerhere'indicatésﬁvActually,,
the moat interesting part of this surface, that around the
singular polnt, is not shown here. 9ince the complex hyperbo-

1a, w\gié s i8 one form cf a linear fractional tnansformations'
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we can expect, many similarities between these two surfaces,
“such 28 the plane enuilateral hyperbclas in each, asymptotia
*_planea, singular points, tha type of transrcrmatian effected,
oto. '
Looking more cldseiy at the‘general linear fractional
transformation, w -G%—té &5~ BF & O, we ses that 1t

gan be written in the fbrm of the successive t?anaformationsz

{1): w' ::»5- s (2w’ aw -%‘- ; (3): o' %}"&’5‘1’ «S-8¢o0.
As in Plates (4), (6), and (7), the transformation (2)

above is simply a translation of the w-plane, while the trans-

formation (3) translates, rotates, and expands the zZ-planes

8ince (1) above 18 the complex hyperbola; this means that the

mirror surface of any linesr fractional transformation is

éimply that of the conplex equilateral hyperbola, diatorted

gomewhat by being'platted from ¢oordinate planes which have

| heen transléte&, rotated, and expanded by the amounts deter-

mined by the constants of the 11near.fractian.

(17) g;ghgi i In this first quadrant portion of the exponen=
.ﬁial‘éurfaca wo 86e the real exponential ocurve represented by
the trace abed in the xu plane, while the pure imaginary
counterpart is the skew curve seim in the yuv hyperplanes
This surface ig periodic along the y-axis; approximgtely half
a period is shown here, To plot the full period of 213, we
would have to use & conslderably reduced scele on the u and v
axes, This 48 the same surface, of course, viewed from a

different direation, for the inverse function w a log .
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The impending transformatian of the z-plane grid lines 1nta"
w«planp cireles and rays is Scen here forearaﬂnwea by the patu”

tern of the auccesaive mirror grids,

(18) ana'tlg) g;”mﬁzgﬂg : We include Plate (18) for its .
sheek value, Ax the aenter of thia maﬁhematical whirlw1nd,
. the axseemmg reader will find the sine curve dcbab"e”d in
the xu plane, anﬁnﬁhe hyperbolic aine gurve mieae™ 1.m in the .
yv plane. Hot much elsé can bs’ga$hére& from thié aa&mmetrzcal |
pr@jeatian; piottedfhere for all four guadranta, except to
‘note that the surf&ee twists back on itself doubly in scme
complicated faehion,

Our gerious purpcse here is to 11lustrate the advantages
of the symmetrical ﬁbcjestién, discusged 1atér in this chapter,
for these more complleated surfaced. This same functicn is
plattea again in Plate (19) using these symmetric axes, and' 
nqw:tﬁe surface presents a much more orderly appearances .
The“sine e@rve 4d™ and the hyperbolic sine curve ma™ are |
agéin seen in this plate, this time both in true éhape. Other
advanﬁages of the symmetric system will be given in Sectlon 6
of this chapter | |

Since w = sinh % can be written in the form of the suce
cessive transformations
(1) ' = sin z', (.2)‘ z' 2 1z, (3) ' » 1w,
@6 soe that Lf we rotate the surface for ¥ = sin z counter-
'clgggwige through 90° and reletter the axes, we have the sure
face for w » sinh z. Similarly, w2 co8 z2andw ] ¢cosh % are |

essentially the same« Thug these corresponding cirocular an&
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hyperbelic functions are but two aspeots of the aame'eoﬁplex
funetion: in thely complex form they have the same transformaw
tion surface; In thelr real variables form, they are soeen as
the traces of this surface on the two absolubely perpendiocular
xu and yv planess These same supfaces also yepﬁesentg from .
aifferant*viewpointa, the inverse trigonometric aﬁa hyﬁezéolia

functiong, ¥ & sin”lzg ¥ = siﬂh‘lz;‘atao

5, Stereoscopie Hypergrarhsd,

‘;Visualiéaticn of the four-dimensional transformation sure
faces of complex functions isg greatly aided by viewing them -
in three dimensionaginstead of two. Thils is sccomplished by
the wsual process of making two stereoscopic drawings from
slightly different angles, ané viewing them in such a manner
a8 to sece only one lmsge with each éye; The figure will ﬁhen
be seen in depth, and the apatial relatlonships of the varin‘
ous aurfacea and coordinate planes will be readily apparant‘

" The main aifficulty in the use of stereoscopias views is ln
acquiring a m@ﬁhod for eeparating the images to each eye; tha
actual plotting of the two images ia basically'aimple‘ &ny
available steremacapio device will be sultable: prisms, mirw:
rors, red aﬁd blue filtera, etc.; or the images can be auéer»
1mpoaed dir@ctly by use of the eye muaclqa. ¥e have included
a few sterecaeopic drawings 1n this aeetion which can be sesn
in three dimensions by this iast device. 4 11ttle practice in
moving one image toward the other with the éyea will enabla»
most individuals to eventuslly See these figures in full



thres«dimensional depthes (Figures 18, 195 20, and 21).

The relationship of the four c¢oordinate hyperplanes to
 eaéh_othe§ in fourwdimeﬁalaﬁal space 18 seen in Flgure 18,
Only the firat cotants af'ﬁhe’ﬁhreeaaiﬁenaiénal,hyperpianQS»
ana the first hexadekant of 4-space are shown here, Notlce
the "apparent intersection” of the ragl“xu“plane;and*the"pura
imaginary yv plane along the four*dimeﬁéional'liné Xeysu
‘» vi In Figure 19, ﬁne'plane“w[g o 18 seen parallel ta and
above the z-planes, In Flgures 20 and 21, the relative posi-
tions of the transformation surfaces for w & 2 and w = =% are
clearly épparﬁnﬁ, as well as the é&ppinga of the s-plane onto
- the w~plane by these sloping mirrpor surfaces.

, lTb draw & palr of sterecscopic views, we first plot the
»rigﬁtvhand imagé‘by-tha ugual methoda. Then, on & horizontal
llinewtc the left at a distance determined by the particular
vxswing device we are usimg {two inches for the unaided eyes),
we draw a set of axes with the z~plane rotatea counterclock~
wise five more degrees, Bo that it is tilted down at 35% inw
gtead of the usual 309, We have thus shifted our viewpoint
B8lightly for the second imsge. The soales along the x and y
axes in thie lefd view’ave naw.&djuaged by projecting h@#ié
zontally from the normal % and y scales in the right hand
view. Or, we can use tha formulas: |

x, = 210 307 *g = 0.67xg; Vi = 208303 yp & 1.06yp.
Every point of the lefit z-plane has now been displaced in a
horizontal ﬁirection only, and by an amount proportional to

the distance of the point from the origln, our two require-
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ments for a stereoscoplio coniugate. V
It remains simply to replot the points of the hypergraph
in this left view from our new axes by the usual methods.
Sime we are using the same u and v values for e¢ach point in
both views, all of our polnts will be paired horizontally, and
proportionally dieplaced, as requireds

‘For a more formal approach, we introduce the following
notationt

‘@ "appears ologser (4o the observer) than”, or "is ahead of"

@: "appears ‘equidistant with"; or "im the same distance as"

#: "appears farther away than", or "is behind".

Given the stereoscoplo palr ﬂaf'viewa, ty, and by, of a point
%, let hy and hy be the horizontal directed distances (posi-
tive if t 1s to the right of the origin, negative to the left)
respectlively of ty and tp from the vertical axis v thrbugh the
origine Then if we dispregard the complicating secondary efe
fects of péwspectiveg the velstive proximity, p, of point %
to the obéew«ar it the horizontsl displagement of % bétweeh
the two views, and 18 given by pe by = hpe I£p> 0, t @ uv
plane through the origing if p = O, ¢ B uv plane; if p < O,
t # uv planes In general, for any two points, t3 and by, if
Py > oy then &y @ By3 12 Dy » Pyy by @ tp3 and Af Dy < Ry
ty Bty | - |

A formula for p in terms of the coordinates x and y and
the angles of tﬁe two stercoscoplc planes can be obtained,
with which we can then determine the relative apparent prox-
imity of any point to the observer without actually construe~




Th
ting & stereoscople viewd ¥We nmust be careful, however, ia ‘cons
etmét the figures and derive the formuls in such a manner as
not to shift the observer's position to that of the added
views By setting p equal to Zere in this formula; we find the
line of "apparent intersection” of the 2~ and w~planes from

‘ god, as determined by the are

rangement of the axes, This line is not actually in either of
the planes, of course; as the 2+ and weplanes intersect in
only one point, the origin. It is the four-dimensional lines
X8y &u gz v; which 18 the apparent intersection of all t.hréa
pairs of coordinate planes intersecting in only a point, and
is the actual intersection of the ‘hhrea‘ planes each equidipe
tant from & pair of these coordinate planes: (1) x a y, u = v3
‘(2)*:: 2 U, ‘y avy, (thew =% piana) H vané@;:‘(ﬁ)rx,r.ﬁv, ¥osts
f‘ih‘e analogy %o the three-dimensional 13;:1‘53;1, =¥ 2 2; 18
cloae, ‘\I‘he‘ line perpendicular to this apprarent intersection
is the line of "apparent maximum elope”" of the z-plane, from
our viewpoint.

Stereoscoplo views and equations sre a consideradble help
with the more complicated figures. For many of the simpler
gurfaces, however, the "order of proximity" principle given
in the.preceding section 1s suffiolent to enable us to via=

ualize the surface in thres dimensions, if not in four,

6+ QOther Representations of Complex Functions.

Tlow Linest Instead of showing a mirror surface, we oan,

if we wish, vrepresent the trandformation of & complex funo~ -
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tion kinematically as a fleld of vectors or flow lines Be* :
tween the two planes: Various veralons are possible, We can
sonnect each point of the z-plane directly by a vector to its
image point in the w-plane (see Chapter I, page 2)s Or we can
construct one field of vectors from each object point to ite
nirror point, then add a second field from these to the cor-
responding image points. (See Flgure 22). Finally, we 6an
also include the intermediate three-dimensional harmonio
gurfaces by ruming the first set of vectors from the'abject
plane to its harmonic gsurface, from ﬁbis a second set to the
mirror surface, another set from the mirror)to %he,éénjugate
harmonie surface, and & final set ffaﬁ this to theyiﬁaga’
planes ‘ S

Hodelg: Our abillity to obtainvthree~éimeﬁsiénal "pietures”,
‘a8 Been in the‘preceﬁing section, of the‘feuradimensional
iranaformation surfaces leads us to further wonder if three-
dimensional models'cf theae surfaces are not p@asibleﬂ Sugh
models would represent the surface from only one particular
viewpoint, of course; since the apparent area and configura-
tion of the four-dimensional surface are changed by different
angles of projection, Just as with the projections of a skew
surve in ﬁhrea dimensions, Right angles and distances in the
four-dimensional figure would not necessarily be preserved in
this three dimensional projections Strings running from objsct
to mirror to image points would indicate the "flow lines” of
the transformation in these models. Even "pop-up" modsls,
which oould be included in a text book, might be possible for




Flow Lines:

F:is. 22



. | i3
a8 surfece such as w = 2 |

Besides representative visusl models; two and three-dimens
slonal dynamie models ’ér' analogues of the tmﬂafarmtim sups -
faces might be cénatme‘beﬁ along mechanical, electricaly or
optical lines for a wide variety of epplications in such
fields as aserodynamics,; thermodynamies, fluid mechanics, elec-
trical theory, optice, cartography, enalogue computers, etd.:; .
that 18, in any apprlication wvhere automatic or continuous
conformal mapping is desired.

Symmetric axess We have chosen in this paper to construct
the hypergrarhs with an asymmetrical arrangement of the axes,
because this gives more of a "four~dimensionsl fecl” %o the
flgures. However; often the best and most practical arrange-
ment of the axes to use in four-dimensional plotting 18 the
Paymmetrical” arrangement introduced in Plate (19) with
w = gin Zs In this symmetrical projection, we use 8 views
point for our "eavalier projaction™ which votates the z-plane
" another 60° counterclockwiss until the y and W axes:coinoldes
Then, for eanvexiience, we rotate the emtire figure another
909,, so that the x and y axes are given their customary "real
variables” position in the first quadrant, with the v and v
axes falling in the second. This is, in effect, a four~dimenw
sional "igometric projection”, obtained by sighting along the
1ine X s ¥ 2 U = v, with the axes renamed for convenisnoce,.
(Or we can obhtain this projection by sighting directly along
a partiocular one of the sixteen directed lines:itx sty =

+u z+v.) In such a projection the four axes, and consequent-




w8
1y the four full planesy, will be seen foreshortened. E&ci*e
properly, the "symmetric projection” here is an "iscmetric
drawing”, with the foreshortened scales res_ﬁa‘red to full sizs.
We are thus viewing four of the 8ix planes in true shape and
the remaining two edge Gﬁg enelogous to the three-dimensional
viewing of two of three perpendlcular 1ines in true length -
with the third end on.

_’Eherev' are many advantages 1n the use of the symmetrice form
of the axes for hypergraphs of complex funchtions, First, of
goursey; we no longer need a special four~dimensional graph -
parers We can plot our four-dimensional figures direcily on :
ordinary graph paper, and by rotating it but & quarter of a
tum;“we can work in elther of the complex planes; Secondy *
fhe plotting is considerably simplified. Sinse the horizon=~

tal coordinate {X) of any point is the difference between the
x @a 4 values; and the vertical coordinate (¥) is the sum

of the ¥y eimi u values, we can fipst find the values for:
Xsx~vand¥ ey u, as in Table (19), then plot these
pairg ag ordinary pointe in the XY plane.el? Third, this -
arrangement discloses many of the symmetries of the surface
and of 1ts traces with respest to the coordinate planes,

the axes;, and the origin, as Plate {19) iliustra{;es; which
helps in both the plotting and the unéerﬁtar;ding of the fig=
ure, This 1s our reason for calling these "symmetric axes"s

Fourth, visualization of the mirror surface is greatly
gsimplified. 8ince we are still considering the uv plane as
the plane of the paper and the xy plane as extending toward
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us {though lengthened by a eavalier projection), then for any
two points Py and Eé on the mirror surface; we have simply
that Py (3 G #) 2y a8 x (O =0<) Xy
This means then that the mirror curves of the parallel lines
x g's are the "ccntpura“»af the surface; i.e0., they are the .
intersections of the surface with & series of planes parallel
to the paper in front of, in, and behind it. Thus; in Plate
(19), curve pp" is a plane curve and the oclosest part of the
surface to us. One unit behind this, as measured on the slop~
ing x-axis scale; 18 a plane containing the curve oo” of the
surface; and 80 on to the ourve in the farthest plane from us,
p‘p“s-centrarilﬁ&vthe mirror curves of the parallel lines
Yy = ©8; such 28 ﬁﬁ’} p'p", ete. are the "receding curves" or
"ebb curves”, i.es, the curves of maximum recession of the
- surface from the observer.

~F&fth,‘§he graph of the special case for real functions of
real variables now aprpears in true sizZe and shape in the xu
pﬁane,fand similarly for pure imaginaries in the yv plane;
(See, for example, the #ine and hypertoliz sine curves in
Plate {19).) &nd eixth, we will f£ind in the next chapter that
by viewing four of the six coordinate planes in true shape,
we sleo, as a bonus; see the transformatlion surface of the
linear function, w = a2+ , where & 1s real, in true 8ize,
{The arnalogy to three dimensions 18 obvious,) Thus the effects
of double foreshortening ave obviated for the linear function
with a‘real coefficient, o that the mirror surfaces of w o

and w z -z, for example, will now both appear in the same (true)
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The price we pay f‘er these advantages is the loas of the
traces in the yu.and xv planes (see, for example; trace aeim
in Plate (13), and trace abed in Plate (16).) Other "symmetric”
ayrrangements ¢an be used shawing these planes and suppresaing
anéther pair, if our primary objective isg thus better gerveds
of courfée,, when desired, we ¢an always abandon the symmetric
projection and 1is a&vantages and wiew all sixz planes glmule
taneously in some asymmatriaal» arrangement such as that used
for most of the plates in ‘thia chapbor. |

Funetions of Several Complex Variablea: The hyper-analytic
geonetry we have used to represent functions of a gingle com-

plex variable can be extended to the study of functions of
several complex variables, by adding extra "perpendicular”
axes toOithe éyﬁtema For funciions of two complex variables,
q = f(z,w}g. whore q = 1 +"ia,, 28X 4iy, andwesu+ :!.v,k
two axes are added t.é the asymmetrical systenm, 15“ to the
left of the previous v-axls and 15°‘ above the prev;ous i:—axiem
The axes sre then reénamed, starting with the upper’ left, in
the counterclockwise order X, ¥, u; vy r; 8s {(Figure 23).
Altema‘biveiyg three '909 ralirs éi’ axes c¢an be equally spaced
50° apart around the origin {Figure 24), For symmebtric axes,
we 2dd the two new variables, r and 8, to the left horizontal
(v) axis and the lower vertical axls rospectively { Figure 25),
For functions of more than two complex variables, an extene
slon of this symmeirlic system '15 probably the most suitables
We acannot hope to obbtain usable hypergraphs for a gguplete
region of these funotions, since the transformation loocus of
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Funcﬂons of Two Complex Variables
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‘a function of just two complex variebles is a six-dimensional
hypers‘oliag while the argument {z,w) itself ranges over a

faur»diména:.aml hyperspace, Weo can, however, use one of the
a‘bwe systens to investigate cardaln ﬁu‘bregions of the locus,
consistmg of mirror pmnts of given ourves and surfaees in .
the hyperspace of the argument. By our definibian fm Chanter
II, ’c.hem trans:‘amatian 1neus painta, 28 with all mneticna,

are t:ne veohor suns af the n variabzea 1!1'?@1\7@‘5& :
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Chapter IV. HYPER = AHALYTIC < GEQUETEY

1e B ésamg’i

,;rﬁlgh the constructlon of the fouradimensional graphs of
functiana of a caﬁplew variable, our main abjectrve in thiﬂ
paper hag been accempliﬁhedg ﬁowevera there are aeweral aﬂ«
ﬁ;ﬁicnal features of the systan we have used which are worth
pfeseniing heéeg

~ We have introduseds withaut develeping aystematiaally,-
hyper~analyt1c geame%ry of four (or more) dimenazons, based
en a airect graphical extension af the cartesian ooordinata |

syatem; Follewing the patﬁern eatabliaheﬁ in clasaieal p&ane
ana aalid analytia geametry, we may define g four= Q;mgns;ag-

&l grace a8 g Qgﬂe which can bgﬁgut inte one-tg =gne_corres

nggdegc with gga qua , . : X
then proceed ta éevelep ﬁhe 5eometry af this space along par~

allel algebraie and grarhical 1ines in a similar fashion to
the plane and solid analytia gmametries; Since funotiona of é
eaw*?ex variahle are representable as sets of gquadruples of
real numbera, this hyper~aﬂalyt1c geametry can repreaent such
fuaetions, an we have seen in this mper.

The usual extensions %o four dlmenslona of *ha distanae\

formula, direction ecaines, etc. are adopted, thus, far

example,




and
cos’d + cos®B + cos” ¥ + 00825 = 1.

 Certain aspeots of hypar~ana1ytic’5éometry~have already
vbeen presentaé in the preceding chapters in canneation with
the exposition of our main aub;ec%; We have glven, for exam=
. ple, sqme'general results for the hypergraphs of n~dimensional
hyper-analytic geometry in oup definition of qédimen81énal
‘,graghs, the number of p~dimenaion§1 cocrdinage mani%ﬁlﬁa in
‘n=-Apacay; the number of partitioned cells, aﬁd the thedrem'an
manifolds in naspaéeg as well a8 some fundamentals of graphie
transformation, stereoscople methods, stas
| The various cases.of;the‘general four~;aﬁd five~dimension=
alrgéaﬁhé have been.méﬁtiened in passing; to these we will
return later for a more detailed treatment.
| In the particular applieation to complex funetiona, enough
 of the hyper~analytic geometry background has been given o
phow that here we are dealing basically with a geometry‘of
surfacés”. Thus, whereas the aﬁalytic geometry of functions
af{a‘single resl variable is a study éf the relationships bew-
tween two-dimensional curves and the coxrespondences between
sets of peints aﬁ 8 pair of perpendicular linea; the coordi-
natevx and y axes, the hyper-analytic geometry of functions
of & aingle complex»variablé is concerneé‘with the relation-

ships between four-dimensional surfaces and the correspon=
dencea Boetween sets of points in a pair of perpendicular

ecordinate z~ and w-plancs, The basic element in this "sure

ace‘geametry is no longer & point moving on a coordinate
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axis, but & line {veator) moving in 1its coordimate plaﬁea
With this analogy; features and theorems of plane analytic
geometry can often be extended to hyper-analytic geometry
with the simple substitution of the words, "line" for “"point®,
"plane" for "line"; and "surface” for "curve". For example;
geometrically; ¥ = X 18 & 1ine which is the locus of all
points equidistant fron the two perpendicular coordinste
lines. Similarly, w = Z, hyper-geometriocally, 418 a plane
- which 1a the loous of all lines aqui&iatant,from the two pers
§endica1ar coordinate planes, |

- The analogy brings up further interesting questions, Since
the formal manipulations with x; y, and 2z are unchanged by
replacing them with z, w, and q, are the hybaraﬁhere, the
parabolex, theggyﬁerbqlexfwetcs;cﬁhype%#céhic gestions"? That
; 13,‘aré they the intersections of a.hyperncubed*plane‘witn a
hyper~eubed~eoné 1n'the~éix~dimenaional'spacgvéf funetions of
‘two ‘complex variables? |

I8 the limiting form of the paraboiex (Plate (14)) twe
parallel planes, Buaﬁ.as a éarabala degenerates inte two
parallel lines? )

Is the limiting form of the hyperbolex (Plate (15)) the
"rectangiler syatem”Bg, is0s,; the four coordinate planes, of
Pour-dinensional space, just as an equilateral hyperbola
degenerates into the asymptotic coordihate axes?

Is the circular trace about the origin in the hyperbolex
cut from a tangent and perpendicular (in six dimensions)

nypersphere whose 1imit 18 the hyperpoint at the origin?




85

- Ia there an imaginary skew torus in four dimensions | .
wrapped sbout a regular three-dimensional cone such that a
hyperline cuts the imaginary circle from it, as well as the
- real hyperbola from the cone?

Returnipg to more tanglble results, other aspects of hypere
analyﬁic'gecmetryuwhieh»hava'been presented in the precsding
chapbers are the graphienl analyesis of complex equationsy ins
¢luding & hyper-geometrical interpretation of 1nteroe§ts,’
traees;.ana ﬁhreamdiménsianal sections of the surfaces ryepre»
senting these equations, the apecial cases of real and pure |
1maginary variables, ccﬁpiex rocta‘of quadratic equations
with roal and complex coefflclents, etc. Also we have'aeen\tha
gedmaﬁfiaalfresultakaf additive. and multiplicative complex
ﬁnnstgntas R HE
"rTransforma@ian of the coordinate planes (analogous to the
transformation of axes in blane anaiytic geometry) was illusge
trated by a translation of the parabolex, and by the succesw
sive transformastions of the general linear fractional trans-
formation which yeduces to transiations, a rotation, and an
expansion of the coordinate planes of a hyperbolexs _

' 4 formal presentation of hyper~analytic geometry; however,
would require many aspects we have not touched on here. Some
of these are slready defined and aféilable frcm.ﬁhelusual
treatménts of n-dimensional geomebtrys. Wa would need, for
example, definitions of "slope”, "angle”, "parallelism",
"perpendicularity”y etés, az well as a general treatment of

“Buch things as votation of axes, lengith of arc, area of surw
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faces, 4vo1ume of hypersurfaces; hypervolume of hypersolids,
andy for the two dependent variables case; the exact geomebe
rical meaning of the complex derivitive, the complex integral,
reaimes, the Cauchy-Riemann conditions, the Cauchy-Goursat
theorem, ebo.

However, we will leave this geometry in the embryo stage,
and turn ingtead to some final interesting aspects of foure -
dimeneiaﬁa and of the particular graphical systen we have -
enployad,.

2. Some Peculiary

Host of the unusual features of four-dimensional geometry
are presented in the stanéarcl li‘aerature on the subject, ‘and

the reader is referred to this for & basic orientation in

- this field;mﬁ

-~ Bome of these odditiea arse apparent from the stereoscopic -
view {Figure 18) of the first hexadekant, By adding "againat
nature” a fourth perpendicular axis, we are rewarded with a
gyatem in which there are four unlimited but nonw=overlapping
three-dimensional gpacea oy hyperplancs., Also yé now have siz
mutwally perpendicular planes, two pairs of which intersect -
in lines while the remaining pair intersects in only a »pointqgg
Further, there are thréeédimensm:nal spaces {hyperplanes)
perpendicular to lines, planes and other three-dimensiosnal -
spaces,; ehto, Of course, our basic assumption of a fourth per-
pendicular axis means tzw.t we can have any number {a whole

plane) of lines perpendicular to & plane at a point. And, ag




we shall see below, Just as a point in a graph of three dimen=
slons way repregsent the oend view of a 11n§, in 8 hypergrarh
of four dimensions it may represent the,"éneyisw“ of & planes

(Figure 26; (1))

- One of the more startling effects is the apparent change‘:
in size of an object aslit is rotated or translated in a
fourth dimensions In three~dimensional perspective we expect
the apprarent size of an object to change with distance.: In
four dimensions,(negléeting perape&tive)glthe objeat  changesd
in apparent size ﬁith our direction of viewing. This results
from the fact, stated in an earlier chapter, that a twoe
dimensional projection of a four-dimensional object intro-
duces a double foreshortening effect, ér change of projectéd
distance in two perrpndicular diéectiona, which thua produces
a chamge in projected apprarsnt area, l.e.y; our impression of
the "pize" of the~ob3e6£¥ {Compare, for example; the equal
mirror surfaces of w g 32, Plaﬁe'(B)g and w = -2, Plate (5).)
We can experiende the sgﬁe thiﬂg~in:three dimengions; If we
look edmewibe aloﬁg a table at the shadow of an object ch'it,
we See n one-dimensional line which 1s a projection of a
three-~dimens ional object doubly foreshorteneds Similarly,
“¢he shadow of a plane "edge on” to the sun is a line, which
if ﬁe look along 1t will be a point, The plane has thus boen
doubly foreshortened from two to zero dimensions,

As we elther "move around” or "move past” a four-dimen-
gional object; we will see thla object apparently changé in

atza (even diminishing to zero), since a four-dimensional
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‘#olid, surface; or curve is & ghanging three dimensionsl .

solid, surface, or curve in this fourth direction.> Figure
26 shows this variation in apparent ares for & moving views
roint for the identity surface w = Z. In the digtortion of our
cavalier projection, the "e"ariatzon‘hex?e rangee from a minimm

of zero to s maximum grea twice the actual s ne.

We proceed to prove a few simple theorems in the hyper-ana-

lytic geometry of complex funotions,

(1) For the genera.l linear fxmetion, LI Az + By 4 and B

‘eoamlax,@ aach aquaare region of the aﬂplane hes a correaponding

square mirror in the t.wpla.ne and & aquare image in the w--plane.

Since t.he B and waplamea are sbsolutoely perpendleular, any

line fm one plane through t.heir‘ common point O 18 perpen&iwlar
to arxy line 1n the oﬁher through 6.28 Therei‘ore % 3.9 perpem
dieular taw for all z's and all w' Q. But 1; = z+w,, so ]
lhlg' = |"§l2 + lwl +« Thus each square in the t~plane is equal
to *i*.he sum éf the. corresponding 'squares in the z~»ain6. w-npia.nea.

We thus have the following
1): Under the general linear transformation,

w & 42 + B, 4 and B complex, the area of any region of the
t-plane is the sum of the areae of the corresponding reglons

of the z- and w-planes,

(2) For the 1llinear function w = &2, where ds ¢, + ol We

g&ve W 0% = Ca¥s V = 04¥ + cax._ If we compare the areas of
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the corresponding square reglons of the object; mirror and
image planesg:

(abfe), = 1, (abfe);, and (abfe)y
under this transformation plotted for symmetric axes, we find,
by computing the lengths {ab)t and (a‘a)w, and using the res
lationships for these axes: X a X v, Ymwy+ 4, anduz ¥,
v = «x,; that these areas are related as followsi
A,z A+ A= 20, |
¥hen o 48 real, o, = O, and we have Ay = Az-l- A, which is
the true size of the mirror plane, by Theorem (1). We can thus
sonsider this mrticular viewpoint as "perpendicular” to the
mimr plane of the function w w 2z; where g is8 r‘éals Slnce‘}
the effect of an additive constant, real or ec;mpléxg 18 simply
a8 trsna};ation of the nmirror pians, we have thé msulf. ment loned
- in the last chapter: | |
IHEOREM (2): In symmetric axes; the mirror plane of the

1linear function, w = az +B8 , where a is real, 18 geen in true

size,

(3) In three dimensians we have palred words to indlecate
our three directions, for example, "up, down", "right, left",
"toward, away”s The human race has no experience with a fourth
dimension, however; consequently we have no corresponding palr
of words in our language for such a dlrectlon. Since we need
for this two words denoting oproslite directions, bubt unate
taéhea to any of the three ordinary dimer:sibna, we will call
this fourth direction "zig" and "zag" .

17 the diprections indicated by the %, ¥y 4, and v vectors
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1n (1) of Figure 26 are considered the four positive direotions:

"zig", "toward", "right", and "up" respectively, then using .

‘Theorem {2), we havé the,following

THEOREY {3): For the function w s az +B8 , where a.is real, .

when our viewpsint is such that the product of the signs of
direction of the four axes 18 nepative tho gpparent ares is,
the true areas when thelr product is pbsitive‘, the amparent

area 18 at an extrene of convergence or dlvergences

) {4) &nalytm functicns hava the importanb prapert.y of de~
temimng a conforma.l mapping between the object and mage |
planes, 1.e.,, anglaa are preserved under aueh a transfomai-

t,ion. The followmg conjecﬁure (praved here in & limited |

: ﬁ‘am) states that .t.hs‘proj ection on the mirror surface is .

also conformal. Taking the perpendicular Begmerﬂ.e of the x
and vy axes thmugh pcint.‘a {1,0) and (0;1),' we have for the |

direction numbers of theiy mirror ‘segments, reape'etively:

0’3’3 %‘g’ %‘z‘i
Under the Cauchy-Riemann conditlons, the cross=-product here

is zero, therefore the 'mirz'oz- lines are perpendicular. Hence.

we have & partlal proof of the following |
: Projections from the coordinate planes

cmgrcmmw { )
onto mirror surfacea of analytic functions are conformale

4, Hypergravhs of Foup and Five Dimcngjons.

We have been working with hypergrarhs of two independent



A _ 93
and two derendent variables. In tms seoticm vze will discuss
the other four-dimensional caseas, as well 28 five~dimenaiana1
»hypergt'apha.'

In Figure 27 is *s_hdwn' the graph of & curve in hyperspace,
&étm:{ne&by three aque.t.iéna ‘in one ma.ependenﬁ variabie;v X5
and three dependent vamableag ¥, U, and ve We can plot this
‘grarh without difficulty. To mske it "readable”, L.e.y
amenable to graphio transfomation, however, we need an
’addibional feature, ainae the vector sum of the dependent
variables 18 m a higher dimeneioml space (three) than the
two dimensions of the gm*vh papem A logical solubtion here is
to add the pro,}ectmn of the curve on the uv plane to the
gmph‘ and correlate the point,ﬂ between the - curve (whose x
values are 1abelled) and its projection, by & seriss of
atmight 11nes siements of the projecting surfama, as showm
We can now perform graphic transformation with the curve, or
read the éorréspo‘ndemes represented by it, by fol‘.}.owing the
Bteps given in the figure.
| In Figure 28 we have the graph of a hypersurface, or three-
dimensional transformat ion solid 4-1::' {our dimensions, whose
equation 18 in the form of one dependent varilable, v, and
three independent varialles; X, y, and u. The hypersurface
gravh can be plotted for any three-dimensional region of the
argument desired, but it must be dramn and labelled 1n such
a fashion a8 to make it possible to find the corresponding
three-dimensional points within its (Sez the instructions in
Chapter IIT, Section 3.) Once this is done, it is a simple
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A uv plane.
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(6) Draw
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(1) given (x)

F'{g. 28

- U
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matter to find the value of the dependent variable, v, followe
1ng tha steps given in the figure. The task of finding the
carrelated polnt in the hypersurface 18 made simpler by ﬂhe
faot that we project gigéctlx up from the (x,y,u) roint to
that particular mirror surfaee within the mirror solid which
correspcnds to the value given for ue

In five dimensicna we add a £ifth axis, s, 606 counter*
clockwise from tho vertical axis, V. With four depenaem vam~ .
ables we will have a curve, which can be made amenable to |
graphia transfnrmation in the same fasnion as that shawn in
- Flgure a7 for feur &1menaions, For the case of three depens
denb variables, we will have a tranaformation surfacey which -
we can handle by iﬂcluding ite correlated projection on the

uv plane, in a similar manner to our tréatment of a curves

For two dependent varisbles we have a tranaformation solid,
which ean be made tractable in the same way shomn in Figure 28,
Tfe case of one dependent and four 1ndependent var!ablea, o
however, we will leave for the reader to atteapt for himselfa
(Seo Chapter III, Section 3)s

We can perfora graphic transfarmations, 1n fact, from any

grath of a one~ or two~dimensional manifold in n-spaces 4nd,
&s we have seen, even a three-dimensional manifold can be
handled in 4- or Sespace. Beyond this, however, it becomes
difrfieult to éctuallykuse'the hypergraph itselfl to perform &

tranafermatian between the variables represented.



It we‘arraﬂgé the 16 h@xaﬂakants of A4-gpace according o
some crderly eyole af sign changes such as t%at ghown in ihe |
table of Figure 29, and number the apprezimate locations of
ﬁheae hexadekants in bur~four~d1mensional coordimte syatem, 
we'ean investligate the pattern of t&e'particularVhexadekanta
oecupied Ey a hypergraph, and thus increase 6ur'cohceﬁtia# of
the geometrical figure involveds By deternining the possible
gign ccmbinations of the following functiana, for example, ve
can obtain from the table the numbers of the exadekants 3
oacupled and nete ﬁhe aorrenvonding watterns in Vigure 29,
= 24 2, Ty 10, 15
=23 Y, 7y 11, 13
% z? : 3-: 4y Ty 65 15, 14: 9, 12
W =2 é 1 16, 12, 53 3, 14, 10, T

We ¢an now "play" with these numbers, noting the common hexae

4 4 =

delkants of two fuﬁétions, 6r that their sumsvgaired conseaus
tive&y"ér from each end tobal 17 fairly consistently, someo-
times 13 or 21, ete. Antuallyg of eourse, we are dealing here

_with cyalie group transformxtiens.

+ Btended dnely ﬂ‘.p,mm@m

) “he method of plotting feur»dimenslonal grarhs of complex
funetiona predsented in this paper was developed 1ndependent1y
by the present author, In making a search to aggcertain if

anything of a similar nature had been done previocusgly, the
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author diaccvered the various two~ and three-dimensional
representations of complex functions discussed in Chapter I;
and also a series of artldles by Re Se Underwood§5 on aﬂ
"Extehden.Analytic Geometry for n Variablea";’Though this
ge@meﬁry was8 not applied to complex functions in thexabove
articles, the methods given for plottiné,pointa in this
extended analytic geometry were basically the same as those
developed for the hyper-ahalytie geamétry of the present N
papers | | |

The two geometries themselves, however, are basically dif-
ferent, Prafeaaor Underwood pcstulaﬁea an "n-axes plane”, and
proceeds to develop the equations for the iraces of the.
higber-dimensiona1 functions on this planes In hyper-analytis
geoﬁetry, on the other hand, an n-dimensional space with n
mutually perhendiaular axes is p&stulated and consiructeda As
we have geen, prejeétea lengths and areas are a'funétion of
the angie of projection choosens Thus different results will
be abtaineé.in,a»geamatry of an n=dimensional manifblﬁ.and a
geometry of 1ts traces,s In particular, distanee, which is
given by the usual extension of the distance formula and 1s
invariant in hyper~-analytlc geometryg becomes a function of
the angle of projection and 1s thus no longer invariant, in
extended aﬁalytic geoﬁetrya

These basic differences between the two systems, of course,
do not detract from the importance of Professor Underwood's
works ¥inkowshki developed a very valuable geometry of relativ=

1ty in which the usual distance formula 18 no longer valid

either,



7. Coneluaion.

‘ Hypergecﬁetricai interpretations of the basle theorems and
operaticns in complex function theory s8till remain to be made.
It 1s hoped that the graphical representations of complex
functions presented hers will not only help in a bebter under~
standing of these functions, butawill also 1napire further
inveaﬁzgation into the foura&imensianal meaning of sueh things

ag the eempiex derivative and the Caudhy~Riemann conditiona,

the complex integral and the Cauchy»&oursat theorem, and the

value af reaidues at poles;

The authar nonjectures that the derivatlve represenﬁe
the "mlope" of a four-dimensional tangent plane to the
mirror surface; that the Cauchy-Rlemann canditlana
require that the normal to this plane make equal "angles”
with the u and v axea (or perhars the x and y axes) and
that an extenglion of this is the general requirement for
analyticity in n-space, that the value of the definite
integral is connected with the projected areas of the
harmonic hypercylindrical hypersurfaces of the function,
in an analogous fashion to the three-dimensional inter-
pretation of 11ne~1nﬁe§rala, that this value 18 zero

- around a cleged curve 1f the mirror surface is continuous
within this region, and that the value of the resgidus ab
& pole is a prnper%y of the hypersphere about the pole.
tangent to a hyperbolex of first order approximatian to

" the mirror surface of the funotion.

But Aif the render is not inclined to look into these
subtieiiea, ef epply hyper-analytic geomepry toy, aay; relaw
tiviby theéry, he c¢an st1ll pase an amusing and profitable
hour using the methods of this paper to plot a fow complex

functions, or even the famiiiar‘hypersphere or hypercubes
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31. See Ward, ops clite for figure.
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32+ See Manning, (book) op, gite re B7; 128, 179
33, Bee Kaming, (®d,) "The Fourth Dimension Simply Explained",
¥unn and Company, New York, 1910. Also See the references in
ﬁate 12;’

34. see %annivgg (bﬂak) Eg ;gz s Po 18, Also see referenee
in note 1ls

55 See[the articles by R. 5. Underwood, on "Extended Analytic
Geometry” in The Amerioan Nathematical ifonthly, vols 52,

May 1945, Ds253; vol. 56, March 1949, p.158; vol. 59, Aug.-
Septs 1952, pekS3; vole 61, Cots 1054, p.525.

Fbr an introduction to the theory of functions of a
complex variable, the reader 1s referred partioularly to the

following:

Re Vs Churdhill: ”Inﬁroducﬁionlto Complex Variables and
Appliea%iana“; h;,enﬁla ©r, YeBraw-Hill Book Company,; Inc.,
New York, 1948, |

D. Rs Curtis: "analytic Funcilons of a Complex Variabie”,
Open Gourt:Publishing,Gompany, Chicago, 1926,

ﬁ.«3¢~Tcwnseﬁé: "wunctions of a Complex Variable", Henry Holt |

and Company, New York, 1915,
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