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 Looking into the Mind of the Mother: 

Pup Exposure and Reactivation of Maternal Circuits 

TRICIA LAUREN NORKUNAS 

 

M.A. in Psychology, University of Richmond, 2009 

DR. CRAIG KINSLEY 

 

The female rat, among other species, undergoes a fundamental brain re-modeling as 

a consequence of experiencing the normal and natural events of pregnancy and 

offspring stimulation. Compelling data show that maternal experiences produce 

neurobiological modifications in the female leading to specific maternal behaviors, 

affective states, and the basic underlying female neurobiology necessary to raise 

viable offspring.  This study aims to evaluate the number, quality and selective 

activation of neurons that develop during the maternal experience.  The study 

showed a trend toward supporting the hypothesis that a “maternal-circuit” is formed 

through the proliferation of neurons during late-motherhood and lactation, and is 

selectively reactivated by mothers exposed to foster pups. 
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Looking into the Mind of the Mother: 

Pup Exposure and Reactivation of Maternal Circuits 

 The successful propagation of genes makes reproduction an outstandingly 

motivated behavior amongst species, particularly mammals.  Researchers over the 

past several decades have recognized that the importance of reproduction is vital 

from an evolutionary standpoint, and invested their time examining mating 

behaviors.  Because reproduction causes a multitude of changes, the directions 

research has taken are innumerable.  From behavioral to hormonal and neurological 

changes, much has been discovered in regards to the impact of reproduction on both 

maternal and paternal caregivers.  However, the majority of changes usually occur 

within the mother, thus maternal behavior is a notably researched area, as well as 

the focus of the current study.   

 

Maternal Behavior - Learning and Memory 

A range of behavioral changes occurs with the transition from virginity to 

motherhood in female mammals.  In order to protect and provide for her offspring, a 

mother must adapt quickly and consistently to their demands. The shift in mainly 

self-survival behaviors to those behaviors benefiting her offspring is primarily 

driven by hormonal changes, leading to the production of new neurons, which then 

leads to the activation of maternal behavior circuits and inhibition of inhibitory 

pathways for these behaviors and production of new neurons. These new behaviors 

include retrieval, grooming, crouching licking, nursing, foraging and nest building.  
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Referred to by Leckman & Herman (2002) as “a highly conserved set of behavioral 

capacities that are crucial for reproductive success,” these behaviors become the 

focus of a new mother rat. Newborn rat pups are completely dependent on maternal 

behaviors for survival because they are essentially immobile and unable to 

thermoregulate.  Maternal behaviors are natural, being caused by many factors 

including environment and hormones.  These behaviors necessary to a mother, 

which increase the likelihood of pup survival, create a female with abilities beyond 

that of a non-mother. 

Mothers have been found to perform better on a number of tasks when 

compared to virgin rats, one being predatory behavior, which is critical for pup 

survival.  Kinsley and Bardi, et al. (2006) found the latencies to catch a cricket in an 

open field for food-deprived nulliparous females (NP or non-mothers) were 

significantly larger than those for lactating females (mothers).  In a similar study, 

Lambert et al. (2005) exposed female rats of different reproductive experience to 

pups for 21 days.  They were then required to find a piece of food in one of many 

wells in an open maze.  Primiparous females (PP or one reproductive experience) 

outperformed both nulliparous (NP) groups, being those exposed to pups and not 

exposed to pups.  However, nulliparous females who were exposed to pups 

outperformed the nulliparous females who were not exposed to pups for 21 days.  

Lambert et al. (2005) suggests that both reproductive experience and pup-exposure 

improve foraging ability.  Both studies provide support for enhanced foraging and 

predatory behavior with motherhood and exposure to pups. 
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In addition to an increase in foraging and predatory behavior, some research 

has indicated that reproductive experience and/or pup stimulation is beneficial to 

learning and memory.  Pawluski et at. (2006) tested multiparous (more than one 

reproductive experience), primiparous and nulliparous females in a radial arm maze 

task in which they searched for food in four out of eight baited arms.  Three 

different types of memory errors were assessed depending on which arms the rats 

entered.  Reference memory errors, working memory errors and working/reference 

memory errors were all assessed.  Primiparous females made the fewest errors, 

regardless of type, out of the three groups. There was also a trend of multiparous 

females outperforming or having fewer errors than nulliparous rats.  This 

demonstrates that while one-time mothers were the most successful with the task, 

both groups with reproductive experience made fewer errors than the group without 

reproductive experience.  A similar study (Gatewood et al., 2005) used a dry land 

version of the Morris water maze and also a reversal task, in which the location of 

the baited well was changed, to determine the long-term spatial memory affects of 

motherhood.  They tested multiparous, primiparous and nulliparous females at 6, 12, 

18 and 24 months. Primiparous and multiparous females learned both spatial tasks 

significantly better than virgin females and also exhibited attenuated memory 

decline up to 24 months of age.  These studies display enhancement in both learning 

and memory as a result of reproductive experience, as well as showing support for 

long-term memory enhancement also due to motherhood. 

Gatewood and colleagues demonstrate that motherhood changes memory and 

 



 5

learning processes not just during pregnancy or until weaning occurs, but for a 

lifetime.  So what exactly is occurring during pregnancy and the postpartum period 

to create these drastic changes between females with reproductive experience and 

those without?  One possibility is the effects of hormonal changes.  Changes in 

hormone levels lead to neurogenesis, which may then alter specific brain structures. 

Research in these areas and links between them will be examined, followed by the 

application of past findings to the current study.   

 

Neurogenesis  

The behavioral changes of motherhood are only the physically observable 

traits that occur during this time.  Because behavior is represented by a change in 

the brain, in order to find out why the behavioral changes are occurring in mothers, 

the neural circuitry must be examined. As explained by Kolb, Gibb and Robinson 

(2003), the brain is not fixed as we once thought but instead has the ability to adjust 

according to developmental and environmental variables.  The field of neuroscience 

assumed for over 100 years that new neurons were not added to the adult brain.  

Recently, belief in this dogma declined with the understanding that the adult brain is 

structurally modifiable through many different types of experiences (Gross, 2000).  

A few techniques developed around the 1990s that confirmed the reality of 

neurogenesis in the dentate gyrus of adult rats.  A method used to label and examine 

new cells is the administration of the synthetic thymidine analogue BrdU or 5-

bromo-3’deoxyuridine.  Proliferating cells take up BrdU during the s-phase of 
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mitosis and continue to label their progeny as well (Gross, 2000).  This method was 

also used in the current study. 

Neuronal marking was also a technique that helped to phase out the belief of 

the static adult brain.  Cell-type specific markers such as NSE for labeling neuron 

specific enolase and NeuN for neuronal nuclei (used in the current study) expressed 

in adult-generated cells are solid evidence for the now accepted notion that new 

neurons are born in the adult brain (Gross, 2000).  Gould and colleagues (1999) 

were one of many researchers to demonstrate that not only are new neurons born in 

the hippocampus, but that this brain region is specifically effected by and involved 

in associative memory formation.  In this study, BrdU was used to label new cells 

following specific behavioral tasks, using the Morris water maze.  Gould and 

colleagues found the number of neurons in the granule cell layer to increase in adult 

rats following a spatial learning task using the Morris water maze.  They were 

compared to a control group with no spatial learning task.  A significant number of 

the BrdU labeled cells found in the dentate gyrus of the hippocampus were also 

immunoreactive for TOAD-64, the marker of immature neurons, illustrating further 

the generation of neurons in this area as a result of spatial learning.  The result of 

Gould and colleagues study demonstrates the direct connection between learning 

dependent on the hippocampus and neurons generated in this area.   

Although Gross (2000) and Gould et al. (1999) among many others provide 

much evidence of new neuron birth, the actual incorporation of the newly generated 

neurons to previously established neuronal circuitry is less clear.  Recently, 
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however, Kee and colleagues (2007) examined more closely the integration of new 

neurons into already established memory (specifically spatial) network circuitry in 

the dentate gyrus of the hippocampus.  They found that as the new granule cells 

began to mature, they became increasingly more likely to be incorporated into 

established circuits.  Through BrdU and Fos expression, Kee et al. found neurons 

around 6-8 weeks of age were the most likely to be recruited into established 

memory networks. This demonstrates that the birth of new neurons, specifically in 

the dentate gyrus of the hippocampus, as found by many researchers (Gould et al., 

1999 & Gross, 2000) are not without significance, but once mature, make 

preferential contributions to memory processing.  As mentioned previously, research 

has documented that learning and memory is enhanced through the duration of 

pregnancy and following parturition (Kinsley et al., 1999, Pawluski & Galea, 2006).  

The current proposed study will therefore then use the BrdU labeling method 

combined with neuronal marking techniques in order to trace the development of 

new neurons in the dentate gyrus of the hippocampus during motherhood. 

 

Hormones and Brain Plasticity 

 Why is it that such changes are occurring in the brain circuitry?  It is 

possible that the environment or genetic changes lead to newly formed cells and 

neuronal pathways.  It is also likely that a demand for new circuitry arrives with 

pregnancy, in addition to parturition and lactation.  According to  Kolb, Gibb & 

Robinson (2003), brain plasticity in general can be influenced by a  number of  
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factors.  They include growth factors, diet, genetic factors, disease, stress, brain 

injury, psychoactive drugs, and anti-inflammatory agents among others.  However, 

those most applicable to the behaviors and changes that occur during pregnancy are 

pre- and postnatal experiences and hormones (Kolb, Gibb & Robinson, 2003).  

Kinsley et al. examined these factors (1999 & 2006), demonstrating that hormones 

induce morphological modifications to the hippocampus.  The first study (Kinsley et 

al., 1999) found that improvement in certain cognitive tasks, such as navigating 

efficiently through open land mazes to find baited wells (Lambert et al., 2005) or 

radial arm mazes (Pawluski et al., 2006), may be due to an increase in hippocampal 

dendritic spine concentration, which in turn may enhance cognitive abilities.  This 

dendritic spine increase is a result of the spike in progesterone and particularly 

estradiol when the female rat becomes pregnant.  The total synapse surface area is 

larger, because of the increase in dendritic spines, which may be the reason for 

improvement in learning and memory and enhanced cognitive skills in female rats 

with reproductive experience (Kinsley et al., 1999).   

Kinsley et al. established this further in 2006 by examining the concentration 

of dendritic spines in the CA1 region of the hippocampus during three stages of the 

estrus cycle (virgin females), late-pregnancy rats and lactating rats for a total of five 

groups.  Spine density was increased in both the late-pregnancy and lactating 

females when compared to all three virgin groups.  These results show that although 

during certain stages of the estrus cycle there is an increase in estrogen and 

progesterone (particularly in proestrus), only pregnancy was shown to alter 
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hippocampal neurons (increased dendritic spine concentration), which may in turn 

help to regulate certain aspects of maternal behavior, such as nest building, or 

foraging in order for the mother to better provide for her offspring (Kinsley et al., 

2006).   

Providing further hormone-induced neurogenesis support, Shingo et al. 

(2003) examined the forebrain subventricular area in female mice during pregnancy.  

This brain region is related to the motherhood experience through its connections 

and effects on the olfactory system.  An increase of the hormone prolactin occurs 

during pregnancy and also during mating.  Prolactin is secreted in surges in the 

afternoon and night during the early stages of pregnancy (Bridges et al., 1993).  It is 

suppressed mid-pregnancy when placental lactogen secretion occurs and surges 

again the night before parturition (Brunton & Russell, 2008).  This surge of 

prolactin directly before delivery acts in the brain in order to elicit maternal 

behavior to ensure a successful transition from pregnancy to motherhood (Mann & 

Bridges, 2001).  More specifically, the prolactin surge stimulates the production of 

neuronal progenitors in the forebrain subventricular area, which then migrate to the 

olfactory system, creating new interneurons in this area (Shingo et al., 2003).  This 

neurogenesis is likely occurring because olfactory discrimination is important in 

mating, offspring recognition and rearing, which are all crucial aspects of 

reproduction. 

Oxytocin is another hormone that triggers a succession of changes leading to 

brain plasticity of the parous female.  Labor and lactation are controlled by the 
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release of oxytocin, activating hippocampal plasticity, there by improving learning 

and memory in mothers (Monks, Lonstein & Breedlove, 2003).  This was further 

demonstrated in virgin mice, which received intracerebroventricular injections of 

oxytocin (mimicking the release that occurs in pregnant females), and demonstrated 

improved long-term spatial learning.  In addition, an oxytocin antagonist 

administered to multiparous mice significantly inhibited the improved spatial 

memory gained from the impact of oxytocin release during motherhood (Tomizawa 

et al., 2003).  These studies are excellent representations of the importance of 

hormones and neurogenesis and their significance in the brain changes linked to 

pregnancy and motherhood.  

 

Environment and Brain Plasticity 

 The neurogenesis or brain plasticity causing the behavioral modifications in 

mothers are not just the result of pregnancy and hormones associated with it, but 

also the environmental changes that occur.  These environmental changes, according 

to Kolb, Gibb & Robinson (2003) are one of several factors leading to brain 

plasticity.  Mothers are immersed in a variety of new sensory stimuli when their 

pups are born, creating an enriched environment and need for adaptations on the 

part of the mother.  Lambert et al. (2005) reported that nulliparous females who 

were exposed to pups for 21+ days demonstrated enhanced performance on both 

plus maze and open maze foraging tasks as compared to isolated nulliparous 

females.  
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 Similarly, Tashiro, Makino, & Gage (2007) suggest that there is a critical 

period during the first three weeks of the development of new cells during which 

experiences can determine the survival of the new neurons.  In the current study, the 

female rats will be housed with their offspring for the first 21 days following birth 

and the BrdU injection, which will mark the cells born during this critical time 

period. Tashiro, Makino & Gage (2007) suggests that this 3-week exposure period 

could be a mechanism by which the dentate gyrus is altered permanently.  

Pawluski & Galea (2007) also focused on the postpartum period of the 

female rat, specifically hippocampal alterations.  The four groups included consisted 

of multiparous, primiparous and nulliparous females, as well as one group of 

nulliparous females exposed to pups.  All groups were injected with BrdU within 24 

hours of birth (pup-exposure in the case of the nulliparous females) and perfused 

either 24 hours or 21 days following the injection.  This split was necessary to 

examine both early and later postpartum effects.  Interestingly, results showed 

primiparous and multiparous rats had significantly decreased cell proliferation in the 

dentate gyrus during the early postpartum period (one day following BrdU 

injection).  During the later postpartum period (21 days following BrdU injection) 

primiparous rats expressed a decrease in cell survival in the dentate gyrus, as 

compared to all other groups, including pup-exposed.  However, both nulliparous 

females with brief pup-exposure (about 24 hours) and 22 days of pup exposure 

resulted in increased cell proliferation and cell death in the dentate gyrus.  It is 

important to keep in mind that with cell proliferation must come cell death, in order 
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to maintain a sort of homeostasis.  The older neurons can be “replaced” so to speak 

because of the generation occurring along side the death.   

To reiterate the findings of Pawluski & Galea (2007) both cell proliferation 

and cell death are more prominent in nulliparous females exposed to pups as 

compared to those not exposed to pups   A decrease in cell survival was found in 

multiparous and primiparous females, showing a longer lasting trend among first 

time mothers.  This neurogenesis found in the hippocampus of the nulliparous 

females is likely to be initiated by external stimuli from pups.  Is it possible then, 

for the cell survival decrease in multiparous or primiparous females to be hindered 

by pup re-exposure?  Would there be more cell survival if mothers were re-exposed 

to pups, as the case was for nulliparous females? 

 

Current Study 

 The current research examines the possible re-activation of the cells 

generated during early motherhood of primiparous females, by means of foster pup 

exposure. The study aims to evaluate the number of cells that develop during the 

maternal experience of first time mothers as well as the selective activity of those 

cells. It is hypothesized that the states of late-pregnancy and early lactation will 

stimulate the proliferation of a set of cells that will be integrated into a form of 

“maternal circuitry” within the mother’s brain, specifically focusing on the 

neurogenesis occurring in the dentate gyrus of the hippocampus.  With re-exposure 

to pups, it is proposed that the maternal circuit formed during the early postpartum 
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period will be reactivated.  This finding would demonstrate that once a female rat 

becomes a mother, the mechanisms by which her behaviors and motivations have 

adapted to fill the maternal, caretaker role are forever changed.  In other words, 

once a mother, always a mother.  

 Previous studies suggest that motherhood influences aspects of cognition, 

emotionality, neural plasticity, and neuronal health not just during pregnancy, but 

for a lifetime.  Finding that even one of these effects generalizes from rats to 

humans opens the door to the investigation of variables that may provide therapeutic 

benefits for existing neurobiological threats to the female brain.  These threats 

include depression, anxiety disorders, maternal-offspring interactions and neural 

degeneration, among others.  This study is only a small step, but may provide a 

foundation for further research dealing with these threats to the female brain, 

specifically to mothers.  Although generalizations from rats to humans should be 

made with appropriate caution, the natural maternal rat serves as a valuable model 

for investigation.  It is essential to generate competent biomedical models of the 

complex reproductive-related neuroendocrine and behavioral modifications 

experienced by the female in order to further the knowledge of neurobiological 

phenomena and their effects on the mother.   
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Study Design & Methods 

 

Subjects 

 Eighteen Sprague-Dawley virgin rat females weighing approximately 300g 

were used for this study (n=9 for both group).  Ten male rats were also used in this 

study for mating purposes only, in addition to six host female rats, which were not 

used in the study themselves, but provided the foster pups.   

The females were age matched and placed randomly in either the 

experimental or control group.  Rats in both groups were kept in 20 x 45 x 25 cm 

clear polypropylene cages and exposed to human contact only for the purposes of 

feeding and cage cleaning.  The cages were lined with corncob bedding and changed 

once a week.  A wire top covered the cage and provided Purina Rat Chow and water 

to the rats ad libitum.  All mothers were housed with their pups until weaning at 21 

days (+ or – 1 day) after delivery.  The animal housing rooms were controlled for 

both temperature and light for the duration of the study.  All animal maintenance 

and the procedures used in this study were strictly conducted according to the 

standards set forth by the University of Richmond Institutional Animal Care and 

Use Committee and the National Institutes of Health (for which approval was 

received:  #06-05-6).   
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Materials 

Behavioral Assessments  

 Other than mating, no behaviors or assessments were evaluated in this study.  

Each subject was exposed to either foster pups or a control object (hand or novel 

object) after weaning from their genetic litter but the interaction was minimally 

assessed.  Basic information was recorded regarding the nature of the interaction the 

female had with either the exposure to foster pups (non-genetic re-exposure) or the 

control object.  Subjects exposed to foster pups were recorded as either displaying 

motherly behaviors or not.  The subjects exposed to the novel object were recorded 

as either noticing and investing the object or ignoring it.  There were minimal 

behavioral investigations because the focus of this study was not on behavior or 

interactions but on the neurobiological changes that occur during late-pregnancy and 

early lactation.  

Neural Assessments  

 To prepare the BrdU (bromodeoxyuridine) for intraperitoneal injection, BrdU 

was dissolved in 0.1 M phosphate buffered saline (PBS), and heated to 50-60 °C.  

Following testing, sodium pentobarbital was used to overdose the animals.  For the 

perfusion (discussed in detail later) phosphate buffered saline (PBS) and 4% 

paraformaldehyde (PF) were used.  

 Analysis of the collected brain tissue was done using fluorescent 

immunohistochemistry in order to selectively stain neurons in the dentate gyrus of 

the hippocampus.  This process required the use of the following substances: sodium 
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pentobarbital, phosphate buffered saline (PBS), paraformaldehyde (PF), sucrose, 

antibody, fluorescing secondary antibody, and clearing solutions (alcohols and 

xylenes). A cryostat was used to cut the desired hippocampal sections from the 

brain.  Microplate wells, slides, cover slips, and microscopes were also used.  The 

uses for each of these substances and materials are described below.  

 

Procedures 

 Once obtained, the eighteen female virgin rats were mated accordingly.  

After mating, each female was placed alone in a cage (described earlier) until they 

completed pregnancy and delivered pups.  If the female did not become pregnant 

she was mated again. Within twenty-four hours of cessation of delivery, each 

mother was administered an injection of 200mg/kg bromodeoxyuridine (BrdU) 

intraperitoneally. This dosage is comparable to that used in Shors 2004; Shors et al., 

2001 and Van Praag et al. 2002) and Van Praag et al. (2002). BrdU is used as a 

marker of proliferating cells and their progeny (Holmes & Galea, 2002).  The 

females were housed with their pups until weaning at 21 days after delivery ± 1 day.  

 One week post weaning, nine randomly selected subjects (now primiparous 

females) were each exposed to ten newborn foster pups, which were no more than 

ten days old. The primiparous female and ten foster pups were left in a 25 x 45 x 25 

cm polypropylene cage for sixty-minutes.  The remaining nine subjects were divided 

into two control groups, predicted and demonstrated to have no difference between 

them.  One group (containing four subjects) was exposed to a novel object (small 
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beaker) for sixty minutes.  The second control group, containing five subjects, had a 

hand quickly placed into and withdrawn from their cage at the beginning of the sixty 

minutes.  This control group was to ensure consistency among all three groups, 

having the only variance between them be what is actually placed into the cage.  

The two control groups were predicted to have no difference, and were therefore 

merged together into one control group.  If, however, a difference is found between 

the two control groups, the study will be separated into three groups. The number of 

subjects would stay the same (9 experimental subjects, 5 control exposed to a novel 

object and 4 control exposed to a hand) but the analysis of the data would be 

modified.  

 Following the single sixty-minute exposure to foster pups, or the novel object 

or sixty minutes after the brief hand exposure, all animals were overdosed using 

sodium pentobarbital and transcardially perfused with 4% paraformaldehyde.  

Following the perfusion, brains were blocked for the area containing the dentate 

gyrus, and the entire span of this region was sliced at 50 –microns using a cryostat.  

This tissue was processed for BrdU-immunoreactivity and c-Fos expression in 

addition to the labeling of mature neurons through the use and expression of NeuN.  

BrdU is a thymidine analogue that is used to identify proliferating cells.  C-fos is an 

indicator of recently activated cells.  Using this component allows visibility of cells 

specifically activated in response to the presence of the foster pups or novel object.  

Finally, the NeuN antibody, marks cells of mature neurons, as it specifically 

recognizes the DNA-binding neuron-specific protein NeuN present in most neuronal 
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cells in the central and peripheral nervous systems. 

 Following the immunohistochemical procedures (described in detail below), 

the number of triple-labeled BrdU/c-Fos/NeuN cells in the dentate gyri of foster 

pup-exposed mothers was compared to the mothers in the control group using a Carl 

Zeiss Axioimager fluorescent microscope.  NeuN labeled cells expressing both 

BrdU and c-Fos are predicted to be higher in number in mothers exposed to foster 

pups versus those subjects with no foster pup interaction.   

 

Immunohistochemistry 

 The animals were first administered an overdose of sodium pentobarbital.  

They were then transcardially perfused, pumping the vascular system first with PBS 

(phosphate buffered saline) followed by chilled 4% PF (paraformaldehyde) to begin 

the preservation process. The brain was post-fixed in 4% paraformaldehyde 

overnight, followed by immersion and storage in 20% sucrose 80% PBS solution 

until the tissue could be assessed.  Each brain was blocked for the hippocampus at 

the optic chiasm and cerebellum.  Slices measuring 50 –microns were taken from 

the blocked area using the cryostat set at -16oC.  Sections of tissue were saved 

starting with the first sighting of the dentate gyrus.  The entire span of the dentate 

gyrus was taken, but only ten slices from each brain were collected and placed into 

microplate wells (2 slices per well) for the immunohistochemical process (the 

remaining slices were saved in the event that further processes are desired).   
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 Basic fluorescent immunohistochemical techniques were used to stain the 

obtained brain tissue (Kee, Teixeira, Wang, & Frankland, 2007).  Primary and 

secondary antibodies with fluorescent tags were used to locate and bind to BrdU, c-

Fos and NeuN triple labeled cells.  

 To begin the staining process, the tissue first went though 3 five-minute 

washes at room temperature of TBS or tris buffer, followed by a 2 hour incubation 

of 50% Formamide at 65 oC.  The tissue was then rinsed in 2xSSC at room 

temperature for 15 minutes.  Sections were then exposed to 2 N HCL for 30 minutes 

at 37oC followed by a 10-minute rinse at room temperature in 0.1M Borate Buffer 

and 6 fifteen-minute washes in TBS (tris buffer).  In preparation for the primary 

antibody cocktail the tissue was blocked for one hour in TBS++.  The primary 

antibody cocktail of BrdU (sheep anti-BrdU polyclonal – GeneTex, 1:500,), c-Fos 

(rabbit anti c-fos polyclonal – GeneTex, 1:1000, and NeuN (mouse anti NeuN – 

Chemicon, 1:1000) was then applied.  The tissue was incubated in the cocktail for 

24 hours at 4oC.   

 The second day of staining began with 2 fifteen-minute washes of TBS at 

room temperature.  Again, in preparation for the application of the secondary 

antibody, the tissue was rinsed for 15 minutes in TBS++.  The secondary antibody 

cocktail was then applied - donkey anti-sheep conjugated with Fluorsecein, donkey 

anti-mouse conjugated with Aminomethylcoumarin, and donkey anti-rabbit 

conjugated with rhodamine, Red-X, all Jackson Immuno antibodies with1:500 

dilutions.  The sections were incubated with these complementary fluorescent 
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markers for two hours.  At this point the tissues became light sensitive, requiring the 

duration of staining to be conducted in the dark, and storage thereafter.  The tissues 

went through a final series of 7 TBS rinses at room temperature for 15 minutes each.   

 Following the staining procedure, the sections were mounted with TBS on 

double-subbed slides and allowed to dry overnight.  Once dry, the tissue was cover-

slipped using Dabco, an anti-fade fluorescent mounting medium, and sealed on the 

edges using a clear lacquer.  

 

Microscopic Imaging and Quantification 

The sections were examined and quantified using a Carl Zeiss Axioimager 

fluorescent microscope recently obtained through the National Science Foundation 

by Dr. Craig Kinsley.  A total of 146 images were taken of adequate quality for 

analysis (100 experimental and 46 control).  Tissue and images were excluded from 

analysis if the dentate gyrus was not apparent in the image or if a quality image 

could not be taken due to debris or bubbles on the slide obscuring the targeted area.  

This means that not all animals had tissue adequate for quantification (see 

expansion in discussion portion).  For those images that were deemed adequate for 

analysis, the number of triple labeled BrdU/c-fos/NeuN cells were quantified by 

finding the average of the left and right hemispheres for each section.  This 

unilateral score was found for each section of tissue.  The number of unilateral 

scores adequate for analysis was 50 from the experimental subjects and 23 from the 

control subjects.  Images were taken at 20x in order to include the entire “beak” area 
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of the dentate gyrus.  All images were taken, analyzed and quantified by blind 

researchers.  

 The Axioimage software program was used to quantify both the number of 

triple labeled regions and the size of the total area containing triple labeled cells 

within the dentate gyrus of the hippocampus. The threshold level of areas to be 

included in the quantification was set at 15%, 25%, or 35% of the overall gray level 

displayed.  This value was dependent on the overall exposure of each individual 

image. Using these set values allowed the method of quantification to remain 

reasonably constant from image to image.  

   

Results 

 

Statistical Analysis 

The following analyses are a product of unilateral scores, thus the left and 

right hemisphere of each viable section were combined and averaged.  The number 

of regions of triple labeled staining, regardless of size, was first found in order to 

then calculate the total area of those regions.  The regions were measured in each 

hemisphere to find the total area in micrometers (uM) of triple labeled BrdU/c-

fos/NeuN cells – a more accurate measurement than number of regions alone.  Here 

again, the total area of triple labeled cells was averaged for the left and right 

hemisphere of each section to establish one unilateral score.   
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To determine whether there were differential effects of the type of exposure 

(foster pup or novel object) on the total area of triple labeled cells in the dentate 

gyrus, a one-way single factor analysis of variance (ANOVA) was calculated.  

Results revealed that the type of exposure had a marginally significant effect on the 

total area of triple labeled cells, F (1,71) = 2.815, p < 0.098 (see Figure 1).  This 

trend suggests that the primiparous females exposed to pups had a larger area 

(reported in uM) of triple labeled cells in the dentate gyrus (Area sum = 

1809067.34, M = 36181.35, SD = 37911.56) than those females exposed to a novel 

object, (Area sum = 1208266.82, M = 52533.34, SD = 40342.93). 

In order to determine the approximate number of triple labeled cells in the 

areas measured, each unilateral area score was divided by the average area of a 

single neuron found in the dentate gyrus of the rat hippocampus as discussed by 

Roy, Seidler, & Slotkin, 2002.  This analysis simply allows for easier understanding 

of the neurobiological interaction being examined.   

A one-way single factor ANOVA was also used here to determine the 

number of triple labeled BrdU/c-fos/NeuN cells in the dentate gyrus of the 

hippocampus. Results revealed that the type of exposure did not have a significant 

effect on the number of triple labeled cells in the dentate gyrus, F (1,71) = 0.035, p 

= 0.852. 
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Discussion 

The results of the current study demonstrated a trend towards supporting the 

hypothesis that when a primiparous female is exposed to foster pups, the maternal 

circuit formed during late pregnancy and the early-lactation period would be 

reactivated.  Represented in Figure 2, is a primiparous female exposed to foster 

pups.  This particular subject also demonstrated maternal behaviors including 

anogenital licking and attempting to nurse the pups.  The staining technique used to 

target BrdU, c-fos and NeuN are confirmed here and also in Figures 3 and Figure 4.  

Figure 2 is taken at 20x and Figure 3 at 100x – both experimental subjects.  Figure 4 

captures the triple label stain of a primiparous female in the control group.  This 

particular female was exposed to a novel object (beaker).  During this subject’s 

sixty-minute exposure she investigated the beaker and covered it with the corncob 

bedding.  Both Figure 2 and Figure 4 were taken at 20x capturing the triple labeled 

green, red and blue staining, marking BrdU, c-fos & NeuN, respectively.  The 

overlapping of the three tags can be seen as a yellowish-green color. 

As mentioned previously, the general behavior of the subjects was recorded 

for both the group exposed to pups and those exposed to the novel object or hand.  

While these overall behaviors were recorded for each subject they were not coded 

and therefore not included in the statistical analysis.  It is important to note 

however, that six out of nine of the primiparous females exposed to foster pups 

displayed maternal behaviors during their sixty-minute interaction, which included 

grooming, anogential licking, and nursing.  One of these six subjects also displayed 
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aggressive behavior at the end of the sixty-minute exposure when she was being 

removed from the cage containing the pups.  In addition to recording these 

behaviors, the number of genetic pups in each primiparous females’ litter was also 

noted.  This was done to determine whether or not there was a correlation between 

the number of pups the mothers originally had and their behaviors towards the foster 

pups.  The correlation comparing the number of pups each mother had in their 

genetic litter to their behavior with the foster pups (6 displaying maternal behaviors 

and 3 ignoring the pups) showed a positive relationship (r= .12).  This positive 

correlation suggests that with an increase in the number of pups, the behavior of the 

mother with foster pups tends to be more maternal.  Finding this positive correlation 

has interesting implications, as the reasons why this may be occurring are numerous.  

While this was not the focus of the current study, it would be of value to look 

deeper into this relationship with future investigations.  

A possibility for the lack of significance found in this study may be due to 

the differences in the types of mothers included in this study.  It is possible that the 

three subjects, who did not display maternal behaviors towards the foster pups and 

instead ignored them, were perhaps neglectful mothers.  There are no data in this 

study supporting this inference but it would be of extreme interest and value for 

future research. 

Because varying behavior was found both between and within groups, the 

lack of more precise behavioral observation and analysis is a limitation on the 

current study and if included, may have impacted the results significantly.  The 
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implications of the behaviors observed for each subject and their relationship to the 

number of triple labeled cells in the dentate gyrus would be of significant value and 

therefore a possibility for future research.  This study, as it only includes analyses of 

neurobiological changes, may not be enough to understand the complex changes 

occurring during late pregnancy and early-lactation because the behavioral 

interactions were not considered.   

While there is a possibility that some of the subjects included in the current 

study may have been neglectful or irresponsible mothers, another possible 

explanation for the lack of a significant difference between the mothers exposed to 

foster pups or to a novel object, is the amount of time the subjects had with the 

foster pups.  It is possible that in order for the cells born during the subjects’ initial 

maternal experiences to be re-activated by the foster pups, the amount of time may 

have need to be greater than sixty-minutes, if not in all but perhaps some cases.  

Some animals may have been more wary of the sudden exposure to young that were 

not their genetic offspring and thus they may have needed more time to investigate, 

accept, and begin to care for the foster pups.   

Another limitation to mention in the current study involves the histology 

process and analysis of the tissue, as referenced previously.  Not all sections were 

adequate for analysis for a number of different reasons.  Due to poor slicing using 

the cryostat or poor mounting and cover-slipping, the dentate gyrus could either not 

be located or was blocked by debris in a large number of sections and therefore 

were not included in the analysis.  The total number of images analyzed was 146.  
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This accounts for 100 sections from the experimental animals or 50 unilateral scores 

and 46 sections from control animals or 23 unilateral scores (73 total unilateral 

scores out of a possible 90).  Starting with 10 sections per brain and 18 total brains, 

the reduction of tissue adequate enough for analysis from 180 to 146 was a 

considerable decrease.  Being that 18% of the sections were not viable and thus not 

processed for analysis, the implications of this portion of the data on the results of 

the current study may have been significant.  

In conclusion, while the results of the current study demonstrate a trend in 

supporting the initial hypothesis, they also suggest that simply evaluating the 

quantity of cell proliferation in the dentate gyrus as an effect of pregnancy and 

motherhood, and tracing the re-activation of these cells, is not enough to determine 

that a permanent change is occurring as a result of these experiences.  Due to the 

lack of statistical significance in the current study and the lack of behavioral 

analysis, it may be inferred that there are differences in the processes and behaviors 

necessary for the formation and reactivation of the “maternal circuit” and its ability 

to change the motivations, affective states and overall behaviors of a mother 

forever.  While this may be the case, the methods and procedures of the current 

study may be a valuable building block for future research.   

 Past research using animal models suggest that motherhood impacts the 

emotional, behavioral, cognitive, hormonal and neurobiological aspects of a female.  

While generalizations from animals to humans must be made with appropriate 

caution, finding that any one of these effects generalizes from animals to humans 
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would open the door to investigations that may provide therapeutic benefits to 

existing neurobiological threats to the female brain.  Included in these threats are 

depression, anxiety disorders,  neural degeneration, and maternal-offspring 

interactions, among others.  Maternal behaviors are perhaps the most significant, 

critical set of behaviors for the propagation and initial survival of mammals, 

including humans.  The importance of this research to gain a greater understanding 

of these behaviors, maternal motivation and responsiveness and the neurobiological 

route of them all, would be of great benefit to health providers but more 

importantly, to mothers and their children.  
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Table 1. 

 

      
      
Group Count Sum M SD  

Experimental 50 1809067.34 36181.35 37911.56  

Control 23 1208266.82 52533.34 40342.93  

      
 
 
 

     

      
Source of Variation df F p- value F crit  

Between Groups 1 2.815 0.097 3.976  

Within Groups 71     

      
Total 72     
      

Descriptive Statistics and Single Analysis of Variance  
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Figure 1. Area of triple labeled BrdU/c-fos/NeuN cells in the dentate gyrus of the 

hippocampus. 
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Figure 2. Dentate gyrus triple label BrdU, c-fos, NeuN fluorescent stain. Experimental 

subject. 20x. 
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Figure 3. Dentate gyrus triple label BrdU, c-fos, NeuN fluorescent stain. Experimental 

subject. 100x. 
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Figure 4.  Dentate gyrus triple label BrdU, c-fos, NeuN fluorescent stain.  Control 

subject. 20x. 
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