
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

5-1-1996

The use of non-commutative algebra in cryptographically secure The use of non-commutative algebra in cryptographically secure

pseudo-random number generators pseudo-random number generators

Brian M. McKeever
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
McKeever, Brian M., "The use of non-commutative algebra in cryptographically secure pseudo-random
number generators" (1996). Honors Theses. 556.
https://scholarship.richmond.edu/honors-theses/556

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/556?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

M c'-t leJ'i t.....f- \ c t Cit~ d
\)::) f1 r vfer ~t. !'{' ('ll~

ML)\

The Use of Non-Commutative Algebra in
Cryptographically Secure Pseudo-Random

Number Generators

Brian M. McKeever
Honors thesis1

Department of Mathematics & Computer Science
University of Richmond

May 1, 1996

1 Under the direction of Dr. Gary R. Greenfield

Abstract

This thesis begins with a general overview of pseudo-random number

generators and some of their applications. This thesis then describes their

applications to cryptography, and some additional requirements imposed by

cryptography. This thesis then provides an introduction to the ring of quater

nions, and discusses how they can be included in pseudo-random number

generators. Finally, this thesis provides a description of the performance of

these generators.

This paper is part of the requirements for honors in mathematics. The

signatures below, by the advisor, a departmental reader, and a representative

of the departmental honors committee, demonstrate that Brian McKeever

has met all the requirements needed to receive honors in mathematics.

R.~
(advisor)

(honors committee representative)

I. Introduction
In many computer applications, it is desirable to be able to produce a

random number. In general, these are applications where the designer has
tried to model the randomness of the real world. A simulated card game in
which the user is dealt the same hand every time is not very interesting. One
solution is to build specialized hardware that connects the computer to the
outside world. The computer could then choose random numbers based on
radioactive decay rates, or on the static between radio stations. A very dif
ferent solution is to produce a sequence of "random looking" numbers from
an initial seed.

One of the first attempts at this was by Von Neuman [5]. His method is
known as the Middle-Squares Generator:

• Start with a four digit integer

• Square it

• Pull out the middle four digits

• Repeat as needed

Because these types of algorithms are deterministic systems trying to
emulate randomness, we call them pseudo-random number generators or
PRNGs.

As an example of using the Middle-Squares Generator, if we choose to
start with 5604, we square it to get 31404816, so our new number is 4048. The
next number in the sequence would be 3863, since 4048 X 4048 = 16386304.
The sequence continues 9227, 1375, 8906 This type of generator has the
following advantages: the numbers certainly appear to be random, the next
number can be easily produced, and the only knowledge we need (beyond
the algorithm) is the present number. This generator does have its flaws.
For one, the numbers can stop appearing random. If we continue the previ
ous example long enough, we find the sequence 8441, 2504, 2700, 2900
Every successive iteration will produce a multiple of 100. Worse than this,
the sequence will degenerate to 4100, 8100, 6100, 2100, 4100 ... - we have

1

come upon a short cycle.
This highlights the main drawback to the Middle Squares Generator- we
would like to avoid falling into traps like this, but the algorithm is sufficiently
complex that it is difficult to say which innocuous-looking starting numbers
will produce undesirable results. The solution to this last problem is to use
an algorithm that is easier to analyze.

The Middle-Squares Generator demonstrates one of the areas in which a
sequence of numbers based on a generator using an algebraic expression is
vastly different from a sequence of truly random numbers. At some point,
the generator must repeat itself. To minimize the impact that this has, we
want to design generators that will go as long as possible without repeating.

The Linear Congruence Generator has the form:

Xn+l = axn + C mod m.

In addition to the strengths of the Middle-Squares Generator, this system
has the added advantage that we can give conditions on our choices of a,c,
and m so that we have maximum period before repeating. As stated in [5],
the necessary and sufficient criteria are

• c and m are relatively prime

• a - 1 is a multiple of p, for all p I m

• 4 I (a - 1) if 4 I m

A linear congruence generator satisfying these requirements will cycle
through all m numbers between 0 and m- 1 before repeating. For imple
mentations of this generator, m is generally taken to be the largest number
that can be held in the computer's register, so the reduction modulo m is
taken care of by overflow. The Linear Congruence Generator is the PRNG
most commonly used for simulation purposes, since it is fast and has long
period.

II. Random Numbers and Cryptography

2

The cipher systems used to encrypt data fall into two broad classes:
stream ciphers and block ciphers. The main distinction is in how much
plaintext material they encrypt at a time. Block ciphers, such as DES or
IDEA [8], first divide the plaintext into blocks (of typically sixty-four bits)
and then individually encrypt these blocks with a common key. Stream ci
phers, on the other hand, encrypt plaintext in smaller units - at most a few
bits at a time. The two types of ciphers draw their security from different
sources. Block ciphers have at their heart a complicated, non-invertible func
tion that operates on the plaintext. Also, block ciphers may shuffle around
the plaintext bits. Stream ciphers are built around a cryptographically se
cure pseudorandom number generator, or CSPRNG. The generator is used
to produce a key bit for each plaintext bit, and the two are added modulo 2.

The Vernam Cipher is an encryption scheme that offers provably un
breakable security. All that is needed is a random key that is as long as the
plaintext. The ith ciphertext bit Ci is produced by:

where Pi is the ith plaintext bit and Ki is the ith key bit. As long as the key
is truly random, an attacker can never find the plaintext from the ciphertext.
If the key is truly random, every possible key is equally likely, so every possi
ble plaintext could have produced a given ciphertext with equal probability,
which means that an attacker who has intercepted the ciphertext can gain no
knowledge about the original message. The primary drawback of this system
is that it requires as much key as plaintext. That means that in addition
to transmitting the ciphertext, the sender must get an equal amount of key
material to the intended recipient.

In essence, stream ciphers represent an attempt to implement the Vernam
Cipher with a shorter key. Instead of having equal amounts of key material
and message, as required by the Vernam Cipher, a stream cipher requires
only a small amount of key, and from that produces an arbitrary length out
put. This output can then be used as key material in the manner described
above. Because of the determinism of a PRNG, the output is completely
non-random, and we lose the unbreakability of the Vernam Cipher. Any reg
ularity in the output of a CSPRNG is a potential weakness to be exploited

3

by an attacker.

The primary feature that separates a pseudo-random number generator
from a cryptographically secure pseudo-random number generator is pre
dictability. Ideally, we would like it to be the case that no matter how many
previous outputs an attacker has access to, he has no advantage to predict
ing the next output. In practice, this can never be the case. Since these
algorithms are to be run on finite state machines, their corresponding peri
ods are also finite, which allows an attacker to eventually be able to predict
the sequence flawlessly. However, it is often possible to "break" a generator
long before it has repeated itself. For example, suppose we are watching the
output of a linear congruence generator, and we know the value of m, but
not a or c. We can solve for a after seeing only three consecutive outputs:
Let the outputs be x 0, xi, and x2. Then we know that XI = ax0 + c mod m
and x2 = axi + c mod m. Then x2 - XI= a(xi- x0) mod m, from which we
get the value of a, and can substitute to find c. The process of breaking the
generator is more difficult if we don't know m, but it can still be done with
relative ease.

In light of these sorts of attacks, we do two things. First, we make the
period very long, so that someone cannot see every output. Also, we strive to
make it more difficult to set up and solve equations to find the "parameters"
of our generator.

There are certain advantages to using a stream cipher over a block ci
pher. If we imagine that we own a bank that has a branch office, we want
to be able to communicate securely between the two, in order to authorize
transactions. If we use a block cipher, we will be responsible and change
the key fairly often. An attacker can go to our branch office and make a
deposit to his account. The branch office will then send an encrypted record
of the transaction to the main bank. If the attacker can listen in on the
line between the branch office and the main headquarters, he can record the
message sent. Then he can send the message again later. If he does so before
we change the key, the main office will decrypt the message, and thinking it
is a record of a new transaction, the bank will credit another deposit to his
account without a second transaction having taken place.

4

If, on the other hand, we were using a stream cipher, this type of attack (a
"replay" attack) would not work. If the attacker sent the encypted communi
cation that he had recorded, which had been valid earlier, the message would
come across as nonsense since the message would have been encrypted with
a different set of key stream bits. The price we pay is that the CSPRNGs at
the two offices would now be out of synch with each other - any subsequent
real messages we send would also come out as nonsense, for essentially the
same reason.

In practice, we could adjust our protocol to make this sort of attack
against a block cipher infeasible. Remedies include adding a time-stamp or
a serial number to the message. But this example does illustrate that there
are some strengths inherent to stream ciphers.

The most generalized stream cipher consists of a "next-state function" Is,
and an "output function" Ia· A machine is then set into an initial state, uo.
The machine produces an output z0 = la(u0), and proceeds to a new state
a! = Is(a 0). The first plaintext bit is then encrypted with z0• This cycle is
repeated until all the plaintext has been encrypted. In the most general case,
fs and Ia can both be keyed, and key can be introduced into the internal
state at any time. In practice, key is used only to set CTo and Is·

Often, it is enlightening to imagine the different internal states as points in
space. We can create paths between them in accordance with the next-state
function, so that there is a path connecting O"i to u; if and only if u; = ls(ui)·
Any point, then, will lie on either an arc or a cycle, and every arc will lead
to a cycle. It would seem difficult, however, to determine whether a given
point is on an arc or a cycle. The most obvious approach is to iterate the
generator from the given point, and store every state the generator has been
in. If the first repeated state is the original one, then the original state is
on a cycle. Otherwise, the state is on an arc. Unfortunately, this approach
requires that we compare the current state with every previous state, which
will be a time-consuming process.

In [7], Ritter suggests a clever way to make this determination without
having to store every previous state. His method consists of initializing two
instances of the same generator, Gl and G2, to the same state u0 . Then,

5

we clock G2 twice as fast as Gl, and at each step we compare the internal
states of the two generators. If Gl and G2 are ever in the same state, uk,
then we know that the current state lies on a cycle. In addition, we can find
the period of the cycle by counting the number of iterations of Gl it takes
before Gl is again in state Uk. Furthermore, if we continue to iterate Gl and
it reaches state uk again before reaching u0 , then we know that u1 was on an
arc, and we can calculate the arc length between uo and the cycle containing
(J'k.

III. Non-Commutative Algebra
This treatment is based on the one found in [4].

The ring of quaternions was invented by Hamilton as a generalization of
the complex numbers from two to four dimensions. Recall that the complex
number a = a + bi can be represented as

and that this representation defines an isomorphism between the complex
numbers and a subring of the two-by-two matrices with real entries. Similarly,
the quaternion number a = a + bi + cj + dk can be represented as

(
a+ bi c + di)

a = -c + di a - bi ·

Using this defining relation, we can determine how multiplication of
quaternions works: The quaternion

0 + i + Oj + Ok = (~ ~i)

satisfies

i2 = (0 + i + Oj + Ok)(O + i + Oj + Ok)

(
i 0) (i 0) (-1 0) = 0 -i 0 -i = 0 -1 '

6

which is equivalent to the quaternion -1+0i+Oj+Ok = -1. This is the same
relation we observe with the complex numbers when defined by i = ..;=I. In
fact, the complex numbers are a subring of the ring of quaternions, so that
these i's are one and the same. Similarly, we can use the fact that

j = 0 + Oi + j + Ok = (~1 ~),
and

k = 0 + Oi + Oj + k = (~ ~) ,

to show that P = k2 = -1. Additionally, we find that

ij = (0 + i + Oj + Ok)(O + Oi + j + Ok)

(i 0)(0 1) (0 i) - 0 -i -1 0 - i 0 '

which is 0 + Oi + Oj + k = k, but that

ji = (0 + Oi + j + Ok)(O + i + Oj + Ok)

- (~1 ~) (~ ~i) - (~i ~i)'
which is 0 + Oi + Oj- k = -k. Similarly, we can show that jk = i, kj = -i,
ki = j, and ik = - j. This demonstrates the characteristic of the quaternions
that we will be exploiting: in general, multiplication is non-commutative. Be
fore we show that the non-zero quaternions form a non-commutative group
under multiplication, we introduce two more terms:

We define the conjugate of a = a+ bi + cj + dk to be a = a- bi- cj- dk.
Then we define the norm of a to be N(a) = aa =(a+ bi + cj + dk)(a- bi
cj - dk) = a2 + b2 + c2 + d?-. Now we would like to show that this has the
usual norm property: N(af3) = N(a)N(f3). To do this, we first notice that

. (a + bi c + di) . the determmant of a = + d. b. IS -c z a- z

(a+ bi)(a- bi)- (-c + di)(c + di)

7

(a+ bi)(a- bi) + (c + di)(c- di)
(a2 + b2) + (c2 + d2)

a2 + b2 + c2 + d2.

Then we recall that for square matrices A and B, det(AB) = det(A)det(B),
so that N(af3) = det(af3) = det(a)det(f3) = N(a)N(f3).

Theorem 1: The non-zero quaternions form a non-commutative group
under multiplication.

Proof: The first property we must demonstrate is closure: Let a =
a+bi+cj+dk, and f3 = w+xi+yj+zk. Then af3 = (aw-bx-cy-dz)+(ax+
bw + cz- dy)i + (ay- bz+cw + dx)j + (az+ by- ex +dw)k, which is also an
element of the ring of quaternions. Then we need to show that every element
has a multiplicative inverse: Let a be a non-zero element of the ring of quater
nions. Then let f3 = afN(a), so that af3 = aafN(a) = N(a)/N(a) = 1.
For an identity, we notice that 1 + Oi + Oj + Ok corresponds to the identity
matrix, and hence is a multiplicative identity. Finally, quaternion multipli
cation inherits its associativity from that of matrix multiplication. D

It is natural to ask under what conditions multiplication is commutative,
or what the center of the group of non-zero quaternions looks like.

Theorem 2: The quaternion a is central if and only if a is a real number.

Proof: It will be helpful to show that all real numbers are in the center
first. Let r = r + Oi + Oj + Ok be a real number. Then

r = (~ ~) = r (~ ~) = ri,

where I is the identity matrix. We know that real numbers commute with
matrices, and that for any matrix A, AI =I A, so that r I the commutes with
A, which means that real numbers are contained in the center.

Now, we must show that if an element is in the center, it is a real number.
Let a= a+ bi + cj + dk be in the center. Then a must commute with every
element of the quaternions. In particular, we know that

az = za,

aJ = Ja,

8

and
ak = ka.

From the first equation, we have ai = ai+bii+cji+dki = -b+ai-dj+ck,
and ia = ai+ibi+icj+idk = ai+bii+cij+dik = -b+ai-dj+ck. We can
perform this middle step since a, b, c and d are real numbers. Equating the
two gives us d = -d and c = -c, so that c = d = 0. Next, we stipulate that
aj = ja. This gives us aj = aj + bij + cjj + dkj = -c- di + aj + bk, and
ja = ja + jbi + jcj + jdk = -c + di + aj- bk. Equating these two gives us
that d = -d and b = -b, so that b = d = 0. Using the third restriction gives
us that b = c = 0. From this, we know that a is of the form a+ Oi + Oj + Ok,
and hence is a real number. 0

For our purposes, we will be interested in a homomorphic image of a sub
ring of H - the quaternions with rational coefficients - called Hp, where p
is a prime.

Definition: Let p be an odd prime. Then a is an element of Hp if and
only if a= a(+ bi + cj + dk, for some a, b, c, dE Zp, where (is defined as
(1 + i + j + k) /2, and Zp is the ring of integers modulo p.

For convenience, we identify a(+ bi + cj + dk with (a, b, c, d). Addition
is then defined in the obvious way, so that (a, b, c, d) + (a', b', d, d') = (a +
a', b + b', c + d, d + d'), with the components reduced modulo p. If we follow
the rules for quaternion multiplication, denoted x, it is a matter of simple
computation to show that

(a, b, c, d) x (a', b', c', d') = (-aa'- 2bb'- 2cd- 2dd'- a'(b + c +d)- a(b' + d + d'),

aa' + bb' + cd + dd' + a'(b +c)+ a(b' + d') + cd'- dd,

aa' + bb' + cd + dd' + a'(c +d)+ a(b' +d)+ b'd- bd',

aa' + bb' + cd + dd' + a'(b +d)+ a(d + d') + bd- b'c).

Lemma: If a E Hp then a E Hp.

Proof: Let a E Hp. Then a = (a, b, c, d) for some a,b,c, and d E Zp.
Then a = a(+ bi + cj + dk = a/2 + (a/2 + b)i + (a/2 + c)j + (a/2 + d)k,

9

so a= a/2- (al2 + b)i- (al2 + c)j- (al2 + d)k =a(+ (-b- a)i + (-c
a)j + (-d- a)k =(a, -b- a, -c- a, -d- a) E HP.0.

The norm of an element in Hp is defined the same way it is for the
quaternions: N(a) = aa. So, if a= (a,b,c,d), then

N(a) N((a,b,c,d))

- N(a(1 + i + j + k)l2 + bi + cj + dk)

- N(al2 + (b + af2)i + (c + al2)j + (d + al2)k)

- (a/2)2 + (b + a/2? + (c + al2? + (d + al2)2

- a2 I 4 + b2 + ab + a2 I 4 + c2 + ac + a2 I 4 + d2 + ad + a2 I 4

_ a2 + b2 + c2 + d2 + a(b + c +d).

Theorem 3: In Hp, a is a zero-divisor if and only if N(a) = 0.

Proof: Let a be a zero-divisor, but with N(a) =f:. 0. Then there exists
a f3 =f:. 0 such that af3 = 0. We know that there exists a k > 0 such that
N(a)k = 1 in Zp. This means that (aa)k = 1 in Zp, so that akak = 1 in Hp.
Then {3 = 1{3 = akakf3 = akak-1(af3) = akak-10 = 0, a contradiction.

Let N(a) = 0. Then aa = N(a) = 0, so a is a zero-divisor. D

IV. Some Traditional Generators
Over the years, many different types of PRNGs have been suggested and

analyzed for their cryptographic properties. One of the more interesting gen
erators is the linear feedback shift register, or LFSR. Some researchers, Bruce
Schneier for one, do not recommend their use. On the other hand, he reports
that LFSRs are currently used in the US military's field ciphers (8].

An LFSR consists of n cells which each hold one bit. We will denote
their contents by b0 , b1, .•. , bn_1• The next-state function is determined by
n keyed constants eo, c1, ... , cn_1. In order to go from one state to the next,
we set the new bn-1 equal to L:j,:-J bici mod 2, and the new bi equal to the
old bi+l for j = 0, 1, ... , n- 2. The output is then b0 •

It is clear that this generator can be stuck in a very short loop. If each
of the bi 's is zero, then the state will not be changed by application of the

10

next-state function. On the other hand, if we initialize the LFSR to some
non-zero state, and if we choose our c/s so that xn + I:j,:J Cjxi is a primitive,
irreducible polynomial in x, then the LFSR will loop through all 2n - 1
nonzero states before returning to the original state. In addition, the output
sequence has some desirable properties:

• Of the 2n - 1 outputs, we will have almost an even number of zeros
and ones (2n-l versus 2n-l- 1)

• Every string of outputs n bits long will occur exactly once, with the
exception of the all-zero string.

Countless ways have been devised to combine multiple LFSRs to pro
duce more complicated outputs. As a consequence, we talk about the linear
complexity of a system of LFSRs. The linear complexity is the length of
the shortest single LFSR necessary to replicate the output of the system. It
turns out that if n is the linear complexity of our generator, then with 2n
consecutive output bits, we can break the generator. The method is based
on the fact that the first n bits to come out form the initial state of the gen
erator, which give us a0 . We then set up n linear equations for the feedback
coefficients c0 , c1 , ••• , Cn-17 which define Is· This set of equations can easily
be solved by Gaussian elimination or by the Berlekamp-Massey algorithm
[6]. Berlekamp-Massey takes advantage of the special form of the equations
to more efficiently solve for the coefficients. Gaussian elimination requires
O(n3 /3) operations compared to O(n2) for Berlekamp-Massey. In either case,
the 2n bits needed is very short compared to the period of 2n - 1 of the gen
erator.

The 1/p generator is another PRNG that has very good output sequences,
but which also is broken without much difficulty. If we choose a prime p, we
can produce a sequence of b-ary digits by expanding 1/p in some base b. This
sequence will have the property that every sequence of fewer than logbp digits
will occur in every period, and a sequence of logbp will occur at most once.
In their paper [2], Blum, Blum, and Shub describe a method to efficiently
recover p given only logb(2p2) consecutive output digits.

Despite the ease with which the previous generators can be broken, there
do exist random number generators that are very difficult to break. These

11

generally have one of the famous" hard" cryptography problems at their core.
We can design generators whose difficulty in breaking is based on factoring,
discrete logs, or quadratic residuosity. The "power generator" has its next
state function given by xi+l = xf mod N. If we take d = 2 and N = pq, for
p and q primes both congruent to 3 mod 4, then we have the BBS generator,
which is considered one of the most secure PRNGs. In their paper [2], Blum,
Blum, and Shub argue that an ability to predict the parity of next output
given the previous output, with success any better than flipping a fair coin,
can be used to guess quadratic residuosity. A similar CSPRNG has the form

where g is a primitive element of ZN. This generator draws its strength from
the difficulty of taking discrete logarithms. These last two generators have
something else in common, in addition to their security. They both require
exponentiation, and are therefore rather slow to implement.

Steven Wolfram devised a family of generators based on Cellular Au
tomata [8]. In some sense, they are similar to LFSRs, since they too are
composed of a number of cells which each hold a bit. However, the next-state
function is very different. Then registers are updated in parallel, according
to a constant rule, which can be key-dependent. One of the rules suggested
by Wolfram updates each cell by

i+l - i XOR (i OR i) ak - ak-1 ak ak+l '

where the subscripts are taken modulo n, and the superscripts emphasize
that the cells are updated in parallel. The output is taken to be the sequen
tial states of one of the cells. There is a paper [1] which purports to show
that the outputs of cellular automata are equivalent to those of LFSRs. This
is surprising, given that one may make the next-state equations as non-linear
as one likes. For some reason, the paper seems to consider only certain rules,
all of which are linear.

V. Some Non-Commutative Generators
The motivation behind looking at non-commutative versions of estab

lished PRN Gs is that one hopes to be able to use the existing theory to
analyze the properties of a generator, while at the same time making the

12

generators more resistant to attack. For example, an obvious adaptation of
the linear congruence generator has the form

where a, b, c E Hp. If we then try to break the generator in the same manner
as we did earlier, we can set up the equation a(x1 - x0)b = (x2 - xi). The
beauty is that we are prevented from solving for either a or b in closed form,
as we were able to do so simply in the commutative case. This does not mean
that it is impossible to solve for a and b- we will discuss a simple technique
later in the paper- but it is encouraging that we have transformed the most
trivially-broken of all PRNGs into something far from trivial.

As we said above, in addition to requiring a CSPRNG to be difficult to
predict, we also require that the output have "good statistics". Since our
sequences are pseudorandom, there exist statistical tests that will be able to
distinguish between any of the sequences we produce and sequences coming
from uniform random distributions. Instead of trying to design statistical
tests to defeat the generators we created, we set down two benchmark tests
that should give us some indication for how good the generators are. We
chose p = 7, so that all of the generators we tested produced output in the
form of a string of elements of Z7 • The first test looks at the distribution
of symbols, and the second test examines the spacing between consecutive
appearances of each symbol. For example, one of the things we count is the
number of times consecutive fives are separated by three non-fives. The re
sults of these two tests are compared to what we would expect if the numbers
were drawn randomly from a uniform distribution. So, for the first test, we
compare the distribution produced by the generator to a uniform distribu
tion, and for the second test we compare the distribution of spacings to a
geometric distribution.

One of the immediate problems of trying to create non-commutative gen
erators from the PRNGs discussed above is that the theory that has been
developed is not always readily adaptable to the non-commutative case. For
instance, we know that for an LFSR to have full period, the feedback poly
nomial must be irreducible and primitive. It is understood how to satisfy
this when the polynomial is in Z2[x], but what happens when we take the

13

coefficients from Hp?

There is also a dearth of information regarding methods of producing
general solutions to even low order equations. This would suggest promise
for generators like

xi+l = axibxic + dxie + j,
whose commutative counterparts are cryptographically weak. Similarly, we
can foil the Berlekamp-Massey algorithm by mixing left and right multipliers
in our non-commutative LFSR.

VI. What Are We Able to Say About These Generators?
Multiplying elements in HP is a computationally more expensive opera

tion than multiplying integers. Since speed of implementation is certainly one
criterion by which to judge CSPRNGs, we limited ourselves to using as few
multiplication operations as we could. For this reason, the non-commutative
generators we concentrated on were:

• a linear congruence generator

• a two-term LFSR generator

• a five-cell cellular automata generator.

Of these three, the only one to show "good statistics" on a consistent basis
was the cellular automata generator.

The non-commutative Linear Congruence Generator has the next-state
function given by xi+l = axib + c, where neither a nor b is a zero-divisor. For
the first two generators, we "tapped" the sequence using fo(a, b, c, d) = c as
the output of the PRNG output. That is, the output digit is the coefficient
of j. The output of a typical run of seven hundred iterations can be summa
rized as:

14

output digit number of occurences
0 116
1 116
2 116
3 58
4 117
5 59
6 118

Worse than this is the spacing between outputs. For each output digit
(across the top), the column below it shows the distribution of spacing of
sequential occurences of that digit. So the first number under 2, for exam-
ple, shows how often a 2 appeared immediately following the appearance of
another 2.

II
0 1 2 3 4 5 6

0 58 58 0 0 0 0 0
1 0 0 58 0 0 0 59
2 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 116 1 0
6 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0
8 0 1 0 0 0 0 0
9 0 0 57 0 0 0 58
10 58 57 0 0 0 0 0
11 0 0 0 57 0 58 0
12 0 0 0 0 0 0 0
> 12 0 0 1 1 0 0 0

If we look down column four, the LCG never produced two fours in a row,
nor were there ever two fours separated by one non-four. In fact, with one
exception, every time the LCG output a four, the next four appeared exactly
six iterations later. It is clear that this in no way resembles the geometric
distribution to which we are comparing it.

15

For the non-commutative LFSR, we used the next-state equation

Xi+l = axi + xib,

where again neither a nor b is a zero-divisor. The results for this generator
were not good either. A typical output of the symbol frequencies for seven
hundred iterations is

output digit number of occurences
0 300
1 66
2 67
3 68
4 65
5 67
6 67

and for the spacing is:

II
0 1 2 3 4 5 6

0 66 0 0 17 16 0 0
1 68 0 17 0 0 17 0
2 166 17 0 17 16 0 17
3 0 0 0 0 0 0 0
4 0 16 0 0 0 0 17
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0
9 0 0 16 17 16 17 0
10 0 0 0 0 0 0 0
11 0 0 0 57 0 0 0
12 0 0 0 0 0 0 0

> 12 0 33 34 16 16 33 33

For our non-commutative Cellular Automata, we used five cells, and the

16

next-state function was given by:

Because this next-state function involves only multiplication, it is important
that the cells not contain zero-divisors. In every instance we looked at where
one of the cells initially contained a zero-divisor, the generator quickly de
generated to the fixed point of a1 = a2 = aa = a4 = a5 = (0, 0, 0, 0).

Because of this, we need more information about the zero-divisors. Specif
ically, we have two questions: how many zero-divisors are there, and how are
the different elements of Zp distributed among the components of the zero
divisors? Knowing the answer to the first question would allow us to deter
mine the size of the phase-space, while knowing the answer to the second one
would let us know more about the population from which these numbers are
coming. We know there are p4 elements in Hp and there are just as many of
the form (0, b, c, d) as there are (1, b, c, d). This is why, for the LFSR and the
LCG, we compare the sequence of output digits to a uniform random distri
bution. But for theCA, excluding the zero-divisors may change the "mother
population". We can still use the same two statistical tests, but we have to
be careful - the distribution of occurences may no longer be uniform, which
would also affect the gap distribution.

To answer the first question, we recall that the zero-divisors have norm
congruent to zero. So to find the number of zero-divisors, we must count the
number of solutions to N(a, b, c, d) = a2 +b2+c2+~+a(b+c+d) = 0 mod p,
with a, b, c, dE Zp. We conjecture that there are p3 + p2

- p solutions to this
equation. Through an exhaustive count, this has been verified for p ~ 67. In
addition, it has shown to be true for the p = 1 mod 4 case [3]. It is worth
noting that we can show that there are as many solutions to this equation
as there are solutions to w2 + x2 + y2 + z2 = 0 mod p, with w, x, y, z E Zp,
which is likely easier to prove.

Theorem 4: The set of solutions (a, b, c, d) E Hp for the equation
a 2 + b2 + c2 + ~ + a(b + c + d) = 0 mod p has the same cardinality as
the set of solutions for w2 + x2 + y2 + z2 = 0.

17

Proof: Let w, x, y, z E Zp be a solution to w2 + x2 + y2 + z2 = 0 mod p.
Then we set a= 2w, b = x-w, c = y-w, d = z-w, so that a2 +b2 +c2+~+
a(b+c+d) = 4w2 +x2 -2wx+w2+y2 -2wy+w2+z2 -2wz+w2+2w(x
w+y-w+z-w) = 7w2+x2+y2+z2-2w(x+y+z)+2w(x+y+z-3w) =
w2 + x2 + y2 + z2 = 0.

Since this mapping is one-to-one and onto, the sets have the same number
of elements. D

We have verified that our conjecture is correct for p = 7, so we know
that each cell can take on any of p4 - p3 - p2 + p different states. The five
cell CA with p = 7 will have about 3.3 x 1013 possible states. For larger
values of p the correction due to eliminating the zero-divisors becomes less
and less significant, so that the total number of five-cell states approaches p20 •

As for the second question, we note that if (a, b, c, d) is a solution to
N(a,b,c,d) = 0, then N(ga,gb,gc,gd) = (ga)2 + (gb)2 + (gc)2 + (gd)2 +
ga(gb + gc + gd) = g2(a2 + b2 + 2 + ~ + a(b + c +d)) = g2(0) = 0 mod p
is also a solution, for any g E Zp. In particular, if we have a zero-divisor
(a, b, c, d), with, say b =f:. 0, then b will generate the additive group of Zp, so
that if we let g take on the values 1, 2, ... ,p- 1, we will have p- 1 zero
divisors, and the digits 1, 2 ... ,p- 1 will each appear once in the second
position. Because of this, the non-zero elements of Zp will be uniformly dis
tributed as coefficients in the group of units.

Since this argument does not extend to the appearance of zeros as co
efficients of zero-divisors, we choose to ignore them whenever they are the
output digit of the CA generator, so that we can compare the remaining
digits to a random uniform distribution. This has the added advantage that
we are now considering an even number of output symbols, so that there is
an obvious way to map to Z2, which was lacking when the output symbols
were all p elements of Zp·

With this out of the way, we can analyze the output of a CA generator.
For a run of 1400 iterations, with the output digit taken as the j coefficient,
there were 1172 non-zero outputs (zero was the output digit 228 times):

18

output digit number of occurences expected number of occurences
1 198 195.33
2 193 195.33
3 208 195.33
4 186 195.33
5 204 195.33
6 183 195.33

The chi-squared sum for this is 2.49488, which corresponds to a p-value
of approximately .22.

For the spacing: Ill 2 3 4 5 6

0 33 27 34 28 41 28 30.500
1 28 34 31 22 26 29 25.417
2 26 19 24 23 32 17 21.181
3 16 18 21 28 24 24 17.650
4 13 15 17 16 8 12 14.709
5 16 15 14 12 10 10 12.257
6 17 11 17 10 11 11 10.214
7 8 7 9 6 10 7 8.512
8 10 7 9 5 12 5 7.093
9 5 9 1 6 5 7 5.911
10 1 6 4 4 2 3 4.926
11 0 6 6 2 3 6 4.105
12 4 3 5 3 2 2 3.421
13 0 2 5 1 0 3 2.851
> 14 21 14 11 20 18 19 14.253

The last column represents the expected values for the spacing of the six
column. That is, if these numbers were truly random, we would expect to
see adjacent sixes 30.5 times, while we observed them 28 times.

These produce the following chi-squared values:
Chi-squared for 1 spacing is 12.31882
Chi-squared for 2 spacing is 15.00070

19

Chi-squared for 3 spacing is 14.71301
Chi-squared for 4 spacing is 4.06404
Chi-squared for 5 spacing is 11.16476
Chi-squared for 6 spacing is 14.76778

The p-values for these range between .005 and .6.

As we stated earlier, having good statistics is only one requirement of
a CSPRNG. A CSPRNG must also have cycles with long periods. For the
generators we examined, we could not make any a priori statements about
the lengths of the arcs. Because the LCG and the LFSR performs so poorly
on the statistical tests, we did not even investigate their arc lengths or cy
cle periods. However, we used Ritter's technique a number of times for the
CA generator, and were surprised by the results. The cycles we observed
all seemed to have period 144. As for the arc lengths, there were instances
where the generator completed five thousand iterations without entering a
cycle.

VII. Breaking a Non-Commutative Generator
As we stated earlier, the non-commutivity of the reconstruction equations

is a hindrance to their solutions, but this difficulty is not insurmountable.
To illustrate one technique to break a generator, we will look at the non
commutative LFSR. Recall that this generator is defined by

Let us suppose that we have access to x0, x11 and x2, which are equal
to (x0,1, x0,2, x0,3, x0,4), (xl,b x1,2, x1,3, x1,4), and (x2,1, x2,2, x2,3, x2,4), respec
tively. Then, if we write a as (a1, a2, a3, a4) and b as (b1, b2, b3, b4), then we
can set up eight linear equations in the eight unknowns bi and ai. The first
equation would set the (coefficient of X1 equal to the (coefficient of axo+xob,
and would look like:

X1,1 = a1xo,1 - (a2 + a3 + a4)xo,1 - b1xo,1

(b2 + b3 + b4)xo,1- 2a2xo,2- 2b2xo,2- 2a3xo,3

20

2b3xo,3 - 2a4xo,4 - 2b4xo,4

a1(xo,2 + xo,3 + xo,4)- b1(xo,2 + xo,3 + xo,4)·

The remaining seven equations would give us enough to be able to solve
for a and b. Knowledge of these gives us the next-state equation, which would
allow us to reconstruct the output in its entirety.

While an adaptation of this method of attack can be employed against
any of the generators we considered, it loses its efficacy when used against the
Cellular Automata generator. The reason for this is that the CA generator
is non-linear, which makes the equations far more difficult to solve simulta
neously. In fact, given the values of the five cells of a state, the computer
algebra package Mathematica was unable to solve for the previous state, even
after twelve hours of running! This would suggest promise for the CA gen
erator as a one-way function, in addition to its qualities as a CSPRNG.

VIII. Conclusion
While we examined only a sampling of generators, it is clear that the non

commutative versions are not always superior to their commutative cousins.
There is one notable exception, the CA generator. It produced good statis
tics, and breaking it seems to be difficult even with p = 7 and five cells.
A larger value of p and more cells could only make it more secure. Also,
while these generators may be somewhat slow in software, there is hardware
support for 4 x 4 matrix multiplication, which could be used to multiply
elements of Hp.

Acknowledgements
I would like to thank Dr. Greenfield for countless hours spent in dis

cussion, of this subject and others, and for his sound advice throughout the
entire process.

References

[1] Bardell, Paul, Analysis of cellular automata used as pseudorandom pat
tern generators, 1990 International Test Conference Proceedings, 762-

21

768.

[2] Blum, Blum, and Shub, A Simple Unpredictable Pseudo-Random Num
ber Generator, SIAM Journal of Computing, Volume 15, Number 2,
May 1986, 364-383.

[3] Greenfield, Gary, personal communication, March 1996.

[4] Hillman and Alexanderson, A First Undergraduate Course in Abstract
Algebra, 3rd Edition, Wadsworth Publishing Company, Belmont Cali
fornia, 1983.

[5] Knuth, Donald, The Art of Computer Programming, Addison-Wesley,
Reading Mass, 1973.

[6] Lidl and Niederreiter, Finite Fields, Addison-Wesley Publishing Com
pany, Reading, Mass, 1983.

[7] Ritter, Terry, Efficient Generation of Cryptographic Confusion Se
quences, Cryptologia, Volume 15, Number 2, pages.

[8] Schneier, Bruce, Applied Cryptography, John Wiley and Sons, Inc., New
York, 1994.

22

	The use of non-commutative algebra in cryptographically secure pseudo-random number generators
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

