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Abstract

A communication game combines traditional n-person game theory with
graph theory. The result is a model of a bargaining situation where com-
munication is restricted. The game’s multilinear extension (MLE), a poly-
nomial that summarizes the solutions of the game, is well known for the case
where the graph is a tree or simple cycle. This paper simplifies the compu-
tation of MLE of the communication game in the case when the graph is a
series of simple cycles. The results are then applied to studying the power of
each Canadian province in passing an amendment to the constitution, tak-
ing geographic location into account. Finally, we discuss simplifications of
the computation of the MLE in the case of the complete graph and make

conjectures about the coefficients in the MLE.
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1. Cooperative Game Theory Background

A communication game combines traditional n-person game theory with
graph theory. The result is a model of a bargaining situation where commu-
nication is restricted. When studying cooperative games we are interested in
all the possible coalitions that may form and how each coalition affects the
power of a player in the entire game. [[5] and [6] include a more thorough
treatment of cooperative game theory].

Definition: A game, (N,v), in characteristic form, is a finite set N =
{1,2,...,n} of players along with a real valued set function v : 2N 5 R,
defined for all subsets S C N with v()) = 0. For convenience, we
assume throughout this paper that the underlying game (N, v) is zero-
normalized; i.e. v({i}) =0 for alli € N.

The characteristic function, v, completely defines the game and so we may
refer to any game by v. We will focus our study of cooperative games on
the set of simple games in which some coalitions ”win” while others "lose”.
Consider the following two examples of simple games:

Definition: Majority Rules Game:

1 if (S| >3
v($) = { 0 otherwise
The majority rules game defines the game where a coalition wins (value
1) if it has a majority of the players and it loses (value 0) otherwise.

Example: A committee has 7 members, denoted by the set N = {1,2,3,4,5,6,7}.
A decision will be made if a majority of the committee members agree
on an outcome. The value of the coalition S = {1,3,7} under the
majority rules game is v(S) = v(1,3,7) = 0, because the coalition
does not have a majority of the players. The value of the coalitition
S'=1{2,4,5,6} is v(S') = v(2,4,5,6) = L.



Definition: Unanimity Game:

1 fSCT
ns(T) = { 0 otherwise
A unanimity game, denoted by ug, defines a special subset S such that a
coalition wins if and only if it contains all of this special subset S.

Example: Recall the seven committee members in the previous example
and suppose that in order to make a decision players 1,2,3, and 4 must
be in agreement. So, we can define the special subset of players S =
{1,2,3,4}. Then us({1,3,5}) = 0, since {1,3,5} does not contain S,
where as 1g({1,2,3,4,5}) = L.

Unanimity games are very important in the study of cooperative games
because these games form a basis for all other games. In other words, any
cooperative game may be written as a linear combination of unanimity games.

The characteristic function v is a set function. The unique multilinear
polynomial associated with the set function v provides one efficient method
to study cooperative games.

Definition: A characteristic vector, (z,, 29, ..., 2, ), for a set S is defined
as
{ 1 ifieS
T; =

0 otherwise

Example: Let S = {1,3,4},n = 4.
Then the characteristic vector is (1,0,1,1).

Definition: The Multilinear Extension (MLE) of a game is a function
f(z1,xa, ..., x,) such that if (1, 2, ..., Y» ) is the characteristic vector for
a set then f(y1,¥s, ...y Yn) = v(S).



To simplify the terms in the following theorems and examples we will use
the following notation:

Notation:
Xs = H;esgvm"

Example: Xjo4 = 712914

The MLE has the form

Z ASJ ’S

SCN

where Ag represents the coefficient of the term X in the MLE. The following
theorem shows how to compute the coefficients, Ag.

Theorem 1.1 (Owen, 1992): Given a game, v, the coefficients of the
MLE(v) can be computed as follows:

Ag= Y (=1)¥-Ty(T)
TCS

Example: Consider the majority rules game on 4 players, (n = 4). The
coefficients can be computed in the following way,

Aqgq = v(134) — v(13) — v(14) — v(34) + v(1) + v(3) + v(4) = 1

Ap=v(12) —v(1) —v(2) =0

similarly
Agazg = —3

In general, for the majority rules game on 4 players,

MLE(v) = 2z1%9%3 + 122%4 + 217374 + L2734 — 3T12223%4



Definition: A player i is called a dummy player for a game v
if o(T U {i}) = v(T) for all T.

Theorem 1.2: If player ¢ is a dummy player, then Ag = 0,V: € S. That
is, the dummy player contributes nothing to the game.

Proof: Let S be a set of arcs containing arc ¢.

Ag = X:(wl)'SHTI v(T), by definition.
TCS

Ag= Y. (=1)S-Thy(T) + > (—1)S1-171

TCS,ieT TCS,igT

Ag= Y (=LY U i) 4 (=0T,
TC(S~1)

Since ¢ is a dummy arc, v(T'U¢) — v(T) = 0 for all T'.
Note if T = @, v(d U 7) — v(B) = 0, since v(i) = 0.
So Ag =0.0

We have seen how to derive the MLE from the characteristic function.
Note that we can also use the MLE, f(z1,29,...,2,), to determine the value
of any coalition S, by simply plugging the characteristic vector of S into f.

As shown above, the MLE contains all of the information that is given
by the characteristic function of a game and allows us to manipulate this
information in many ways. We are primarily interested in solutions to the
game. In particular, we want to assess the power of the individual players.
The Shapley value and the Banzaaf values represent two of several examples
of such power indices [5]. Throughout this paper, we consider the Shapley
value.



Definition: The Shapley value, ®(v), of a game v is defined by
$i(v) = D2 (s) [u(S) —v(S — {i})]
Slies
(s=1)(n-=s)!
n!

where s = |S| and y(s) =

Example: In a majority rules game of three players, the winning coalitions
are {1,2},{1,3},{2,3},{1,2,3}. Each player is contained in 3 winning
coalitions, 2 of size 2 and one of size 3, so each player has the same
Shapley value, namely 31‘-

The following theorem from [4] describes how to compute the Shapley
value from the MLE of a game.

Theorem 1.3: The Shapley value for player ¢ in game v can be computed
using the MLE as follows:

Ar
(I’,'(’U) = —
e T
forall: € N.

Example: Consider again the majority rules game on three players. First
we determine the MLE of the game to be as follows:

MLE(v) = —=2x12923 + 2179 + 2173 + ToT3

Then we find the Shapley values:

9 1 1 ]
o Tf i li0=2 =123
b=yt t0=31=1



2. Graph Theory Background

In this section, we discuss some graph theory concepts necessary for our
analysis later. For more details, see Roberts [5].

Definition: A graph is a pair (N, A), where N is a set of vertices and A
is a set of arcs joining pairs of vertices. An arc is said to be incident
with each of the vertices it joins.

Definition: A path between 2 vertices p and ¢ is a sequence of vertices
P =Dp1,P2,...,Ppr = ¢ such that there is an arc between p; and p;; for
1=1,2,...,I{ - 1.

Definition: Two vertices are said to be connected if there is a path be-
tween them. A set of vertices is connected if every pair of vertices in
the set is connected. A graph is said to be connected if the set of all
vertices, the components of the graph, are maximal connected sets of
vertices, i.e. S is a component if S is connected and if S C T and T
is connected, then S =T.

Definition: A simple cycle is a connected graph where exactly two arcs
are incident with each vertex.

Definition: A tree is a connected graph with no cycles.

Definition: A series of simple cycles is a graph consisting of simple
cycle(s) and tree(s) where at most one vertex in any simple cycle can
be connected to a vertex not in the cycle.

Example: Series of simple cycles graph:



Defintion: The extreme points of a tree P, E(P), is the set of all vertices
in P that are incident with exactly one arc.

Notation: Let G be a graph. The set of vertices and arcs of G are denoted
vert(G) and arc(G) respectively.



3. The Arc Game

Thus far, we have studied games defined by a characteristic function and
represented by a unique multilinear extension. Now suppose we impose a
graph on the situation, where the vertices of the graph represent the players
and the lines between the players represent arcs or lines of communication.

This new way of studying the cooperative situation defined by the original
game allows us to restrict communication between any two players. Now we
can define a new game, the arc game, which incorporates the communication
restrictions imposed by the graph on the game.

Definition: Given an original game (N,v) on n players and a graph G =
(N, A) with the same n vertices and let T C A = arc(G), then the
Arc Game (A,V4) is a game with player set A = arc(G) defined in
coalition form as follows:

v (T)= Y v(G).

C;eC(T)

where C(T) is the set of components of 7.

We are now interested in studying solutions to the arc game. In the pre-
vious examples, we have been interested in the power indices of the players,
determined by the Shapley value. Now we will compute the multilinear ex-
tension in terms of the arcs of communication as opposed to the players of
the game. From this new multilinear extension we can compute the Shapley
value of the arc game, which will allow us to compare the relative power of
the arcs. We can also determine a new index of power for the players, called
the position value, by using the Shapley value of the arc game. This value
was defined in [1].



Definition: The position value, 7(N,v, A) € R", is given by

1
mi(N,v, A) = Z §<I>G(A,7“’N) Vie N
a€A;

where A; is the set of arcs in A incident with player 7 and ®, is the
Shapley value for arc a in the arc game.

Example: Let G be the graph shown below. Let ug be the arc game on
the graph G, with underlying unanimity game pgs.

2

Let L = {a,c,e}. Note this coalition divides the graph into three
subcomponents.

2

Recall that for the original game, p,, that a coalition has value 1 if the
coalition completely contains S and 0 otherwise. Now we can compute

9



the value of this coalition in the game from the following computation:

pis(ace) = v(134) + v(2) + v(56)
= 0+0+40
=0

Next let L = {cd} and notice how this coalition divides the graph into
four components as shown below.

1

2

We now compute the value of this coalition and compare it to the value
of the first coalition.

wis(ed) = v(1) + v(2) + v(345) + v(6)
0+0+1+0
1

Above, we calculated the value of two different coalitions for the unanim-
ity game psk on the graph, G. In order to find the multilinear extension for
the arc game on this graph we need to calculate the value for every possi-
ble coalition and then use Theorem 1.1 to determine the coefficient of each
term of the MLE. Since there were six players (n = 6) there are 63 possible
coalitions. The following theorem not only defines the terms in the MLE
with a non-zero coefficient, but also shows how to compute the coefficient in
another way.

10



Theorem 3.1 (Hoke): Let S C N = vert(G) with the size of S > 2.
Define

>(S) = {T; C GI|T; is a tree, S C vert(T}), and E(T}) € S}

We call the members of 3°(S) minimal trees. Then the MLE for uf is

given by
MLE(“?) = Z Xarc(T;) - Z Xarc(T,-)Uarc(Tj)
T;€¥(s) T:Ti€3(s)
K+1
..+ (—1) E AX'arc(T,-l Ware(T;, J..Uare(T, )
7‘1'1 17‘l'2 v'--,nk

+ (=1)" Xare(Ty Juare(T2)U...Uare(To)

Example: Let G be the graph in the last example. First we must determine
the minimal trees of our game on the graph G above. By the definition
above, a minimal tree must contain all of S and the endpoints of the
tree must be contained in S. Since S = {3,5}, we can see from the
graph that X4 is the minimal tree. The MLE(u4) = X. X4

The MLE for any unanimity game on a tree is actually very simple. Since
a tree is connected, there is only one minimal tree on the graph that contains
all the elements of S and whose endpoints are contained in S. Borm, Owen
and Tijs stated this result in [1].

Notation: We will denote the coefficent of the term Xg in the arc MLE as
Is.

Theorem 3.2 (Owen, Borm,Tijs): Let G be a tree with the arc set A.
Let 3 Arzr be the MLE for pug.
The coefficient of the term X of the MLE (ug) is:

r, = > Apg, where E(L') CT C L' if L' is connected
I=Yo otherwise

where L is the set of arcs and L' is the set of vertices incident with at
least one arc in L.

11



Next, we look at the case when the graph is a simple cycle.

Definition: Let P), P, ..., Py be the set of all paths containing S with both

extreme points in S. Arc(F;) is the set of all arcs that connect 2 vertices
in P;.
Note: I = the size of S.

Theorem 3.3 (Mitchell): Let G be a simple cycle.
The MLE for ;¢ can be expressed as

-'\'arc( P) + -X—m'c( Ps) + ...+ -'\'arc(P,\-) - (I{ - 1)-‘\'(”'6(6')

Example: Let G be a simple cycle.
Let S = {1,5} with the player set N = {1,2,...,6}
Note: K =2,n=606

So arc(Py) = abed,arc(Py) = ef
By theorem 3.3

MLE = -\'arc( P) + ‘X'(H‘L‘(Pg) - (2 - 1)-'\’(”‘0(6')

TapTeliy + Tl — TaTpT T yTel g

From the two previous theorems, we can easily compute the MLE for the
arc game on graphs which are either trees or simple cycles. Next we will
consider what happens to the MLE when a tree (T) and one simple cycle (C)
are connected at one vertex (v), as in the graph below:

12



The MLE for this type of graph depends on the location of the set of
vertices, S. In particular, the set of vertices lies either (1) entirely on the
tree, (2) entirely on the simple cycle, or (3) on both the cycle and the tree.
We compute the MLE for each of the three cases as follows:

Case 1: The vertices of S lie entirely on the tree.
Notice that in this case, the vertices and arcs on the cycle are dummy
players and arcs, respectively. By Theorem 1.2, the coefficient in the
MLE for any term containing an arc on the cycle will be zero. Thus,
we need to consider only the coalitions of arcs on the tree. This reduces
the graph to a tree, so we can apply Theorem 3.2 to compute the MLE
for the arc game.

Case 2: The vertices of S lie entirely on the simple cycle.
In this case, the vertices and arcs on the cycle are dummy players and
arcs respectively. This reduces the graph to a simple cycle, for which
Theorem 1.2 can be applied to compute the arc MLE.

Case 3: The vertices of S lie both on the tree and the simple cycle.

We will define v to be the vertex that lies both on the cycle, i.e. v =
vert(T) N vert(C). Recall from Theorem 3.1, that the terms in the
MLE are unions of the minimal trees on the graph which contain all of
S and whose extreme points are in S. In this case, S lies on the tree
and on the simple cycle, therefore each minimal tree must contain v.
The following theorem simplifies the minimal trees and the MLE for
Case 3.

Theorem 3.4: Let G be a graph with a series of simple cycles which
consists of exactly one simple cycle, C, and one tree, T, with v =
vert(C) Nwvert(T).

Let S be a set of vertices such that S N {vert(C) — {v}} # 0§ and
S N {vert(T) — {v}} #0.

Then the MLE for the arc game on a set S is

MLE(N?) = E Xarc(T.') - (I\, - 1)Xarc(T1 Ware(T2 )U...Uare(Ty)
Ti€) (9)

14



Where 3(S) = {T; | T; is a tree, S C T; and E(T;) € S}

Note that the size of 3(S) = I, where I{ = |S N {vert(C) - {v}}| +1.

Next, we will consider a graph with exactly two simple cycles connected
by a tree. Again, the MLE depends on the vertices in S. There are four
distinct cases concerning the vertices of S for this graph, a series of simple
cycles. The arc MLE for the cases I, II, and III are described above. Case
IV is when the vertices of S lie on the tree and both cycles. The following
theorem simplifies the MLE for this case.

Theorem 3.5: Let G be a series of simple cycles with exactly two cycles,
C; and (s, connected by one tree T.

Let v; = vert(Cy) N Vert(T) and vy = vert(Cy) Nvert(T). Let S C
vert(G) be a set of vertices such that SN {vert(Cy) — v;} # 0 and
SN {vert(Cy) — va} # 0.

Let I(; = |S N {vert(C;) — v;}| + 1 for i =1,2.

To compute the coefficients for the MLE(u4), we only need to consider
the following sets of vertices.

1) P\, Py,..., Py,, the simple paths on cycle C}
such that {S U {v;}} Nvert(C;) C P; and E(P;) C SU {w1} Vi.

2) Q1,Q,...,Qr,, the simple paths on cycle Cy
such that {S U {va}} Nwert(Cz) C Q; and E(Q;) € SU {v2} V j.

3) R, the subgraph of T such that S Nwvert(T) € Rand E(R) C
{SU {’Ul,vg}}.

14



Thus the MLE for the arc game can be expressed as follows:

Ky K
MLE(1d) = > Xare(Purug;)

i=1 j=1
Ky

—(I"Q - 1) z Xarc(P;URUCz)
i=1
k2

—(I(l - 1) Z-’ arc(C1URUQ;)
i=1

—(1 = I — K3 + K1 I5) Xare(cyuRUC:)

Proof of Theorem 4.4:

Y(S)={P,URUQ;} Vi= {1,2,....,IG},7 = {1,2,..., K},

because S Nvert(Cy) # @ and SN vert(Cy) # 0.

So | L(S)| = I 1.

Let T; € Z(S), I= {1,2, e ,I(l.[i’z}.

Note that the union of any two Py, is C; and the union of any two Qjis 18
Co.

SoT;, UT;, U...UT;, for I > 2 will be of one of the following forms:

(1) P,URUC(C,
(11) CiURUQ);
(iii) C, URU C;

From Theorem 4.1 we can write the MLE

K1 K2

MLE(IJ?) = Z Xarc(T;)
i=1

K
+ Z Ai/Yarc(P,-UrUCz)

i=1
K

+ Y BiXare(c10r0Q;)

i=1

+DXarc(C1URUC'2)-

15



To compute A;, we consider unions of minimal trees in the form P;,U RU Q);,

with ¢ fixed. There are (’;2
etc.

So i = (=1)((5)) + (DTN £+ (D)) = -G - 1),

Similarly, B; = —(I; — 1).

) double unions of this form, (’2;2) triple unions,

To find D, note that ug(C;URUC,) = 1. So by the characteristic vector
and the definition of MLE, the coeflicients of each term of the MLE must
sumtol. Thus D=1-I -+ K. O

16



4. An Application:
The Canadian Government and Constitution:

Canada’s history is full of disputes over how to amend the constitution.
For example, one way to amend the constitution would be to gain the ap-
proval of a majority of the ten provinces. Another example is the Victorian
amendment which was proposed in the 1970’s. The Victorian rule requires
a positive vote from (i) both Ontario and Quebec, (ii) at least two of the
four Atlantic provinces, and (iii) British Columbia and at least one Prairie
province or all three Prairie Provinces. The current rule requires a positive
vote from seven out of the ten provinces, including Ontario and/or Quebec.
Game theory gives us a way to compare these proposals by assigning an index
of power to each of the provinces under each of the different rules. Table 4.2
gives the Shapley value for each province under each of these rules.

Now suppose we want to consider the prospect that neighboring provinces
are more likely to agree on a constitutional issue than two non-neighboring
provinces. In other words, how would geographical location influence the
power of the provinces? We can model this new situation as a graph, where
the vertices are the provinces and two vertices are connected if the provinces
share a geographical border. Since the graph shown below is the union of
one cycle and one tree, we can apply Theorem 3.3 to describe the power of
each province under the current rule with geographical location taken into
account.




Table 4.1: Coefficients of Terms in the Arc MLE
I || O] f]ef| def | cdef | bedef | abedef |

0 1
g 1 -1
J 1 -1
gh 1 -1 0
i 1 -1 0
ghi 1 -1 0 0
jih 1 -1 0 0
gj 1 -2 1
ghj 1 -2 1 0
gij 1 -2 1 0
ghij -3 3 0 0

In order to solve the Canadian example, we need the original MLE for
the Canadian game. Note that the smallest winning coaltition contains seven
players. After determining the terms and coefficients in the original MLE,
we grouped all of the terms who had equivalent minimal trees. Notice that
if the terms or coalitions share the same minimal tree then they have the
same arc MLE. Then we summed the original coefficients of the terms with
the same arc MLE, which determined the coeflicients of the terms in the arc
MLE. Table 4.1 summarizes these coefficients.

To determine the power of each arc, we computed the Shapley values.
Then we determined the position value of the players from the Shapley val-
ues. The power indices of the players under the rules mentioned above are

displayed in Table 4.2.

18



Table 4.2: Population and Power Indices of Provinces Under Dif-
ferent Rules

II l i power indices of provinces under different rules |

Province Population | Simple | Current | Victorian | Current with Graph
Brit. Columbia 0.120 0.10 0.092 0.1250 0.0029
Alberta 0.090 0.10 0.092 0.0417 0.0119
Saskatchewan 0.036 0.10 0.092 0.0417 0.0267
Manitoba 0.040 0.10 0.092 0.0417 0.1547
Ontario 0.369 0.10 0.130 0.3155 0.2738
Quebec 0.253 0.10 0.130 0.3155 0.2738
New Brunswick 0.027 0.10 0.092 0.0298 0.1726
Prince Ed. Isl. 0.025 0.10 0.092 0.0298 0.1904
New Foundland 0.021 0.10 0.092 0.0298 0.0238
Nova Scotia 0.033 0.10 0.092 0.0298 0.1904

Note that the last column indicates that the power indices determined
by the position value under the current rule with the graph imposed appear
most correlated to the population.

19



5. The Complete Graph

Why study the complete graph?

Consider the arc game on the complete graph, denoted by K,. I, has
n players and all (’2‘) possible edges. Notice that this cooperative game does
not restrict any communication between the players. Why would we want to
study such a game? Recall that the Shapley Value of the arc game returns
a power index for the edges in the graph. By computing the Shapley value
of the arc game on a complete graph, we can determine the most and the
least important lines of communication. Also, the position values for the
original players computed from the Shapley values of the arc game on I,
are different from the Shapley value of the players in the original commu-
nication game. The result is a new index of power for all coalitional games [1].

Complexity of the Complete Graph

In order to determine the desired power indices we must compute the
MLE for the unanimity games on the complete graph. Theorem 3.1 shows
that we can write the MLE in terms of the unions of the minimal paths on
the graph. When the graph contains several cycles, however, the determina-
tion of these minimal paths grows increasingly more difficult.

In the complete graph with n vertices, there are (’2’) edges; hence there

are 2(3) coalitions of edges and terms in the MLE whose coefficients must be
computed. The number of possible coalitions, or terms in the MLE, grows
exponentially, thus for n > 5 the computations are unreasonable by hand.
Dr. Kathy Hoke has designed a Mathematica program which carries out
these computations (see Appendix A). The output of the program includes
the terms in the MLE with non-zero coeflicients. We used the program to
compute the MLE for the unanimity games, u4, on the complete graph with
n = 3,4, and 5, however the speed of the program prohibits any further
computations of the entire MLE for n > 6.

20



Symmetric Advantages

When studying the output of the program for n = 4 and 5, the symme-
try found within the edges on the complete graph provided a natural way to
group the non-zero terms in the MLE. We attempted to classify the terms in
the MLE using the following definitions.

Definition: Counsider the unanimity game p?. An in arc is an arc whose
adjacent vertices are both in the special set s. A between arc is defined
as one which touches only one vertex in s with a vertex not in s. An
out arc is an arc whose adjacent vertices are not in s.

Each term in the MLE is a combination of in arcs, out arcs, and/or
between arcs. The terms which contain only in edges clearly had different
coefficients than other terms. We detected that the coefficient of the term in
the MLE depended on exactly how many ¢n, between, and out edges were in
the set, which is difficult to compute for a reasonable n.

Coefficient of Last Term

The coefficient of the last term of the MLE contains the most interesting
pattern. The last term takes complete advantage of the symmetry of the
complete graph. Manipulation of the Mathematica program led to the suc-
cessful computation of the last term in the MLE for the unanimity games on
the complete graph when n = 6. An interesting pattern emerged from these
coefficients. This pattern is shown and generalized in the Table 5.1. Note
the last column of the Table 5.1 includes our conjectures for the graph with
n vertices.

Conjecture 5.1: Given the unanimity game pd on n players, the coeffi-
cient of the last term in the MLE can be computed from the following

equation:

[(all) = £(|s| = 1) * (n — 2)!

where s is any special set of edges defined by .
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Table 5.1: Coeflicients of Last Term in the Arc MLE
| [n=3|n=4[n=5|n=¢6] n=n |

wih -1 -2 6 24 + (n-2)!
Wihs -2 -4 12 48 4+ 2(n-2)!
K34 - - 18 72 + 3(n-2)!
/ifl2345 - - - 96 + 4(n-2)!

uy - - - - £ (s-D)0-2)!

Another interesting approach to the study of the coefficient of the last
term in the arc MLE on the complete graph with n players is to consider the
set of winning coalitions that were winning on the graph with n — 1 play-
ers, separately from the set of winning coalitions on the graph that were not
winning on the n — 1 player graph. In other words, let v, be a vertex not
in s and divide the set of winning coalitions on the n player graph into the
following two groups:

o (i) all the sets of edges that would still be winning if we removed v, and
all the edges connecting it and

o (ii) all the sets of edges that would not be winning when we remove v, and
all of its adjacent edges.

The following theorem represents an attempt to simplify the computation
of the last coefficients in the MLE for the arc unanimity games.

Theorem 5.1: Given the unanimity game p2 on n players, the coefficient
of the last term in the arc MLE can be computed by considering only
the sets W of edges such that v, € vert(W) and if v, and its edges are
removed from W, then W loses.

Proof 5.1: Let TV} be the number of winning arc sets of size k on the graph
with n vertices. Let ['g(A) be the coefficient of the last term in the
MLE(u4), where A is the set of all arcs in the graph G. Then,

) .
rg(4) = Y (-1 *wp
k=1

—~
w3
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The set of edges that are winning if v, and its edges are removed has
the form:

(winning set of edges fromK,_;)U(J edges adjacent towv, ) J=0,1,...,n—1

The number of these sets can be written as:

ne1{n—1
(')

In order to determine the value that these sets contribute to the coeffi-
cient of the last term in the MLE we must alternatively sum the number
of winning sets of each size of this type. We simplify this computation
in the following way:

)n—l

5 Z (=1)(3)~rDpyn-t (n ; 1)

k=1 7=0

—~
w3

—~~
e

) n n-l n -
= Z (—1)(?)_("')1/1/[}*1 ;} (_1)—-./( J l)

k=1
Notice that the second summation in the expression above is simply
the alternating sum of binomial coefficients, which is identically equal
to zero. So,

=0

Therefore, to compute the coefficient of the last term in the arc MLE,
we need only consider the set of arcs who 'need’ player n to be winning.
]
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The following theorem, known as the minimal spanning tree theorem, will
help to determine which coalititions are winning on n but not winning on
n-— 1.

Theorem 5.2: (Minimal Spanning Tree) A graph with n vertices and at

least (’2’;;) edges, must be connected.

Hence, we need only compute the number of winning coalititions of size
k, such that 1 < £ < (";1) + 2, that were not winning on the graph with
n — 1 vertices.

Symmetric Shapley Values

Ultimately, we are interested in the Shapley value of the arcs in the com-
plete graph. Again, the symmetry in the graph led to interesting patterns in
the Shapley value. We found that there exist at most three different Shapley
values among the players in any p? on the complete graph. These three
power indices for the edges are directly determined by the position of the arc
as either in, out, or between.

Note that on the complete graph for the game, pZ, where |s| = 2, there is
only one in arc. Computing the Shapley value for the in arc for small values
of n led us to the following conjecture:

Conjecture 5.2: Given pu7', where |s| = 2 and ¢ is the in arc,

2
di(p) = =

n
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6. Further Study

The MLE(p8) has been simplified in the cases when the graph is a tree,
simple cycle, and series of simple cycles. The communication game applies
to an infinite number of graphs. One interesting approach, however, would
be to determine a practical application, form the corresponding graph, and
apply the appropriate communication game. This may lead to interesting
generalizations of the communication game on various graphs, as well as
more practical applications.

The study of the simplification of the MLE on the complete graph pro-
vides another interesting direction for further research. In Section 5, we
reduced the number of terms we needed to consider; however, the remain-
ing terms in the MLE proved difficult to determine. Although the complete
graph requires exponential computations, its symmetry offers many advan-
tages and may hold the key to future work.
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| Appendix A

B Arc MLE Algorithm:

<<DiscreteMath'Combinatorica:‘
n'="% (*number of vertices in graph¥*)
1l = 10 (*number of arcs in graph, n choose 2%*)
=ToUnorderedPairs[K[n]]
Dolkk=Binomial[l, k] ; s=RandomKSubset [m, k] :
.Do[coeff=0;
ss=NextKSubset [m, s] ; s=s8;
Do[ii=Binomiall[k,i];t=RandomKSubset [ss,i];
Do[tt=NextKSubset([ss,t];t=tt;
tt=Append[tt, {4,4}]);tt=Append([tt, {5,5}];
g=FromUnorderedPairs[tt];
gl=gl[[1]];
g2=gl.gl;g3=g2.gl;gd=g3.91;
gg=gl+g2+g3+g4;
If[gglll,2]]gg[(2,3]1]1gg[[3,4]1]1!=0,
coeff=coeff+(-1)*(k-i)],
(*for mu_s, s8={1,2,3,4}*)
{n,ii}],
{i,k}1;
If[coeff!=0,s88>>>games;coeff>>>games],
{i,kk}l],
{k,1}]
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B Coefficient of Last Term Algorithm:

<<DiscreteMath'Combinatorica‘
n = 4 (*number of vertices in graph¥*)
l = 6 (*number of arcs in graph, n choose 2*)
ss=ToUnorderedPairs[K[n]];
k=1; “
coeff2=0;
coeffl=0;
8=88;
Do[ii=Binomial [k, i];t=RandomKSubset[ss,i];
Do [tt=NextKSubset [ss,t];t=tt;
tt=Append[tt, {4,4}]:
g=FromUnorderedPairs[tt]:;
gl=g[[1]];
g2=gl.gl;g3=g2.g91;
gg=gl+g2+g3;
If[ggl[1,2]]!=0,
coeff2=coeff2+(—1)A(k-i)],
(*for mu_s, s={1,2}*)
If[ggll1l,2]1gg9l([2,3]1]1!=0,
coeffl=coeffl+(-1)*(k-1)];
(*for mu_s, s={1,2,3}%*)
{n,ii}],
{ilk}];
Print[ss];Print [coeffl] ;Print[coeff2];
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