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Abstract

In this paper, the topics of symmetric designs and difference sets are dis-
cussed both separately and in relation to cach other. Then an approach to
MacFarland Diflerence Sets using the theory behind homomorphisms from
groups into the complex nmunbers is introduced. This method is contrasted
with the method of finding this type of difference set used by E.S. Lander in

his book Syimmetric Designs: An Algebraic Approach.
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1 Symmetric Designs

1.1 Definitions

Definition 1.1 An incidence structure consists of a set of points P and a

set of blocks B, along with some relation of incidence.

This definition is extremely general, and one finds that incidence structures
appear in all branches of mathematics. A symmietric design is a specific type

of incidence structure, and it is to these designs that this chapter is devoted.

Definition 1.2 A symumetric (v, h, A) design is an incidence structure with
the following propertics: (1) There are v points. (i1) There are v blocks.
(iii) Any block is incident with k points. (iv) Any point is incident with k
blocks. (v) Any two blocks are incident with N points. (vi) Any two points
are incident with N blocks. Note that k> A, so that degenerate cases are
excluded. The order of a symmetric design is n = k — X. The order is an

important paramcter (sce Theorem 4.1).
The following are simple examples of symmetric desigus:

Example 1.1 "]’lu: Fano Plane (on the following page) is a symmetric design
with parameters (7.3,1). Notice that the 7 points are the numbers 1-7, while
the blocks are the six lines together with the circle. There are clearly 3 points
on cach "linc.” and cach point is on exactly 3 lines. Also any two “lines”
have one point e common, while any two points can be found together on

1
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Example 1.2 Let the set of points P be the sizteen squares in the diagram
below. To cach point is associated a block — the block consists of the siz
points in the same row or column as that point (so the point is not actually

in its associated blocl:). This is « symmetrie (16,6,2) design.

XX XX XX
X X X
X X XX XX

X X

X

X X

X X

X

X X

XX

X

X X

From symmetric designs one can form an incidence matrix. This matrix

is a useful way to deseribe the design.
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Definition 1.3 The incidence matrix of a symmetric (v,k,X) design is the
v X v matriz whose rows are indexed by the blocks and whose columns are in-
dexed by the points. If a point is incident with a block, then the corresponding

entry has a 1. Otherwisc, the position has a 0.

Note that for such an incidence matrix A, AAT = (k — A + A\J where I
is the identity matrix and J is the square matrix with entries of 1 in every
position.

The incidence matrix for the Fano Plane is the matrix shown below.

1011000
0101 0 0
001011

0001011
1000101
11700010
0110001

Certain relationships between the parameters of a symmetric design al-

ways exist. The following lemma reveals them.

Lemma 1.1 For any symmetric (v,k,\) design, the following two restric-
tions always apply:

(i) (0 = DA = k(k = 1),

(ii) k2 —vh =k -\



Proof: To prove (i) let p’ be any point in the design and count the number of
pairs (p, B), where p is a point other than p' and B is a block incident with
both p and p’. If we sum over the points, there are (v — 1) points other than
p and cach is incident with a block to which p’ is incident A times. If we sum
over the blocks, p' is on & blocks, while there are (k — 1) points other than p’
on cach block. The number of pairs must be the same, so (v—1)A = k(k~1).
(ii) is just an algebraic rearrangement of the first, but is written in a useful

fashion. O

1.2 Automorphisms of a Symmetric Design

Definition 1.4 An antomorphism of a symmnetric design is an isormorphism
of the design onto itsclf, so that it permutes the blocks to blocks and points

to points while preserving incidence.

The collection of all the automorphisms of a symmietric design forms a group
under function composition. This collection is the full automorphism group
for the symmetric design.  Any subgroup of this full automorphism group
is called an automorphisin group for the symmetric design. The following

defines an important type of automorphism group.

Definition 1.5 A regular automorphism group for a symmetric (v, k, A) de-
sign s an automorphism group which for any two points p,p’ of the design
contain a unique group clement g so that gp = /. The size of this automor-

phism group must hence be of size v.



For example, for the symmetric (16, 6,2) design of Example 1.2, Z4, X Z4 is a

regular automorphism group.

2 Difference Sets

Symmetric designs have a direct relationship to difference scts, the subject

of this chapter.

Definition 2.1 Let G be a group of order v. A (v, k, A)-difference set in G

is a subsel D of order I such that the list of "differences”
ay~! with x,y € D

contains cvery nonidentity clement of G exactly N times. Note that k> X to
exclude trivial diffcrence scts. The order of the difference set is n =k — A,

analogous to the symmetric design.

Example 2.1 The set {1,2,4} in the additive group of integers modulo 7

forms a (7.3.1)-difference sct. Notice:
1-2=6;1—-4d=4,2-1=1;2-4=5;4-1=3;,4-2=2.

As onc wmight suspect. there does caist a relationship between this example

and the symmetric (7.3,1) design (Fano Plane) of chapter 1.

Example 2.2 The set {(0,1),(0,2),(0,3),(1,0),(2,0),(3,0)} is a (16,6,2)-

differcnce sct in the group Zy x Zy. We can use this difference set (along with
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its translations. which also will be difference sets in Zy x Z4) to generate the
symmetric (16, 6,2) design of example 1.2. Notice that we can also find the
following (16,6.2)-difference sets in other groups: in G =Zg X Zy we have
D = {(2,0),(6,0),(1,1),(3,1),(5,0),(3,0)}; in G =Z4 x Zy X Zy we have
D = {(0,1,0),(0,0,1),(0,1,1),(1,0,0),(2,0,0),(3,0,0)}; and in G =23 we
have D = {(0.0,0,1),(0,0,1,0),(0,0,1,1),(1,0,0,0),(0,1,0,0),(1,1,0,0)}.
(Note that these are not the ouly difference sets in these groups.) These
three diffcrence scts are not cquivalent to the design in Example 1.2 because
the group of which they are in is not a regular automorphism group for that
design. But in general, scveral growps of the same order may have difference

sets with the same purameters.

The following theorem reveals that symmetric designs with regular automor-

phism groups and difference sets can be treated as the same notion.

Theorem 2.1 Let D be a (v, k,\)-difference set in a group G. Form an
wncidence structure Iy (the development of D) with the points being the group

elements in G and the blocks being the left translates of D,
gD = {gx|x € D} Vg € G.

Then I is a symmetric (v,h,N) design.  Also, left multiplication by G on
points induces a reqular automorphism group of Ip.
Proof: I, clearly has ¢ points, since the points are the elements of G.

Also, I has ¢ blocks since the blocks are the translates of the difference
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set, one cach for cach different group clement in G. In addition, there are k
points on a block since the difference set has & elements. To see that every
point will be on £ blocks, let h € G and D = {dy,ds,...,d,}. Then h will
be in cach left translation of, call it gD, for ¢ € G whenever g = hd;! for
i = 1 to k. Notice that each g = hd;? yiclds a different translation gD so
that there are exactly £ blocks which contain any given point.

Now to show that any two distinet blocks contain A points in common,
let gD and D (g # 1) be any two left translations of the difference set D,
so gD and hD are distinct blocks of the incidence structure. Let x,y € D.

We want the mimber of solutions (@, y) to the equation
ga = hy.

This value is the same as the munber of points in common between gD and
hD. Multiplication on the right by ¢! and on the left by y~! yields the
equation

y b =g

Notice that g~/ is a unique fixed number in G, and not equal to the identity

since g # h. In the list of "differences” ay~! of the difference set D, every
non-identity element is contained exactly A times by definition. So there are
A solutions (. y) which fit the equation g = hy, so that any two distinct
blocks contain exactly A points in common.

Now to sce that any two points are on A blocks let g1, 92 € G. g1, 92 € gD

for some g € G il and ouly if there exists dy, dy € D so that gy = gdy and g, =

7



gds. We know by definition that the number gy g, has exactly A solutions

dydy*. We also know that g, = gd, for a unique g € G. So we have:
g3'g = d3'd.
Substitution for g; yiclds:
—1 _ -1
gy gdy = d3 dy.

g2 = gdy.

Since there are A solutions d3'd;, and we get a distinct gD for cach solu-
tion, we find that any two points are on A blocks. Therefore, the incidence
structure I is a symmetric (v,k,A) design. O

For example, look at the difference set D = {1,2,4} in Z7 of Example
2.1. We can form the Fano Plane of Example 1.1 by making the blocks
be the left trauslations of D: {g + D | g € Z7}, so there are 7 translations
({1,2,4},{2,3,5}, {3.4,6}, ctc.). Note that these do correspond to the blocks
("lines”) of the Fano Plane, while the clements of Z7 correspond to the points
of the design (where 0 — 7). A point is on a block if it is in that translation.
With this construction, the symmetric (7,3,1) design is generated. A similar
argument shows that the (16.6,2) difference set in Z4 x Z4 can be used to
generate the symmetric (16, 6,2) design of example 1.2,

The following Theorem shows that we can also view a symmetric (v, &k, A)
design D with a regular antomorphism group G as the development of a

(v, &, A)-difference set in G. To form the difference set choose some point 2.
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VY g € G identify the point gag with the clement g, so that 2 is the identity
element. (Notice that anv point can be chosen as the xg, but once the choice
is made it serves as the identity element and the identification of the sect is
completely determined.) With this identification, the elements of G incident

with any block of D form a difference set in G. Hence the following result:

Theorem 2.2 Let Iy be a symmetric (v,k,\) design with a reqular auto-

morphism group G such that wg € Iy, For any block B of Ip, the set
Dy = {y € Glgxo € B}

is a (v, k,\)-difference set in B. The development of Dp s isomorphic to

D.

Proof: Clearly there are ¢ elements in the group G because there are v points
in the design. Dy consists of all ¢ € G so that gay = x; for some z; in the
block B. But cach block contains k distinct points, so there are k elements
gi € G so that gig = a; (for ¢ =1 to k). Thus Dy contains & clements.

Now obscrve a set Dy and a translation D, (for dist;inctAblocks B and
B'). Since G is the regular automorphism group of the design, we know
Dp = (I])I” for some a € G. DBy definition, B and B’ have A points in
common, so there are A points /i; (for i = 1 to k) such that for g, h; € Dy
and I; € D’,,,

gy = ahjrg or a = _(/hi_l.



Since cach group clement @ € G (a # identity) yields a translation of the
block B, aud any two blocks have A points in comumon, cach a can be pro-
duced A times by the list of “differences” ay~! for x,y € D = Dp. Thus the
set Dy is a (v, k, A)—difference set. O

With this coustruction, we can treat symmetric designs with regular au-

tomorphism groups and difference sets interchangeably.

3 A Diflicult Approach to MacFarland Dif-
ference Sets

In his book Symmetric Designs: An Algebraic Approach, E.S. Lander de-

scribes the following method of finding a specific type of difference set known
as a MacFarland Difference Set. Using this method one can produce (for any
prime power ¢ = pl) a (¢ g+ -+ g+ 2), ¢+ F g+ 1), ¢ +

f(d+1)

~oo 4 g+ 1)) difference set in (Z,) x I, where I{ is any group with

order (¢4 +--- +q+2).
3.1 Affine Geometries

In order to produce the theorem necessary to construct the difference set we

need some discussion of affine geometries and designs.

Definition 3.1 An affine geometry, denoted AG(m,q), consists of the fol-
lowing: the points arc the clements in the m-dimensional vector space over

F, where q is o power of a prime and the blocks are the translates of the
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hyperplanes (or (in — 1)— dimensional subspaces).

The following lemma yvields the number of hyperplanes which exist for an
m-dimensional vector space over F,. This result will be nsed in proving the

main theorem in Chapter 5.

Lemma 3.1 For an m-dimensional vector space V- over Fy there are exactly
(@ —=1)/(q=1) = ¢" '+ ¢ 24 - +q+1 hyperplanes ((m—~1)—dimensional

subspaces).

Proof: We completely determine a subspace by chosiug an ordered basis from
the elements of V. Tor our first clement, we can choose any of the non-zero
elements of V, so there are ¢™ — 1 possibilitics. For the second choice we
must choose an clement not in the I-dimensional subspace of the first choice,
so we have ¢ — ¢ choices. For the third element, we can pick from any of the
elements not in the 2-dimensional space spanned by the first two elements,
so thiere are ¢™ ~ ¢* choices. We continue to choose like this until for the last
((m — 1)—=th) clement, for which we have ¢™ — ¢"~2 choices. So the total

number of ways we can form a basis for a hyperplane is:

mo__ (m—2)

m m m 2
(" =" = g" =q7) (g™ =777,
But within cach hyperplane there are different bases for the space. For
the first choice we can choose any non-zero clement in the hyperplane, so
there are ¢™=Y — 1 choices. The next choice can be any clement of the

hyperplanc not in the I-dimensional subspace defined by the first, so there
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are ¢\~ — ¢ possibilitics. We continue to choose until the final element for

which there are "= — ¢"=2) options, so that for any hyperplane there are
("D = D)™™ = q) - (g0 = ¢
ways to construct the basis. So the total number of hyperplanes in V is:
N = (=1 =" =)+ (" =" D=1 D =) (D= D)
Now we can simplify algebraically:
N = [l = DA = )

[((Inl—(l)((l"'—q?)' . ((m (m—~7) ]/[ (m—1)__ 1(1:0.—])_(1)___ (q(m—l)__q(m—fi))]
= [(¢" = D/(a"" (g = 1)) x
[(ala™ D=1 (ald" " =q]) -+ - (alg" =g DI gD =1) (g™ =g) - (gD =)

Now cancellation yields:
N = g = 1/ g = 1)) = (" = /(g = 1)

___(1-111—-l+ m— + +(]+1

Affine geometries are an example of an affine design, which is what we

will use to produce the MacFarland Difference Sets.
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Definition 3.2 An affine (v,k, \) design is a design for which there exist
integers s and i such that the blocks can be placed into ”parallel classes” of
size s with the following propertics: (i) blocks in the same parallel class are

disjoint; (i) blocks in different parallel classes meet in p points.

Note that an affine design is not a symmetric design, as the number of blocks
and the number of points in an affine design are not the same. v is the
number of points, A is the nmmmber of points per block, and A is the number
of blocks which contain any two points. The number of blocks we call b, and
the number of blocks which contain a point we call . For an affine design the

restraints on the parameters given by the following lemma must be satisfied.

Lemma 3.2 For an affine design, (i) s = v/k and (i) p = v/s* = k?/v.

Proof: To show (1), notice that each parallel class of an affine design contains
all the points of the desigu. The blocks of the parallel classes are disjoint,
so the munber of blocks in cach parallel class is s = (number of points)/
(number of points on cach block)=v/k.

To show (ii), let B he any fixed block in the affine design. -Now I count in
two ways the number of pairs (&, B') where B’ is a block other than B and
@ is a point on both B and B'. There are k points on B, and each of these
points is on » blocks, or (r — 1) blocks other than B. So there are k(r — 1)
pairs. Alternatively, there are (0 — s) blocks in a distinct parallel class from

B, while cach of these blocks share p points with B. So there are (b — s)u

13



pairs. We then have
o= [k(r = D}/ - o

But cach point is in cach parallel class exactly once, and each point is on
r blocks, so there are r parallel classes, and cach consists of s blocks. So

b = rs, so substitution for b and & = v/s yields:
p=[kr-1]/lrs—s]=k/s=v/s* =k*[v. DO
The following is a simple example of an affine design.

Example 3.1 AG(2,3) is the affine geometry whose points are the elernents
of Z%. The blocks B are the 4 I-dimensional subspaces of this group and their

cosets. The following shows the design construction with parallel classes P:
Py By = {(0,0),(1,0),(2,0)}; Bi2=1{(0,1),(1,1),(2,1)}; B13 = {(0,2),(1,2),(2,2)}

Py B2.I = {(0,0),(1, 1)‘(2’2)}; Dyy = {(011)’(112)7(270)}; 'BQ.:I == {(1?0)1(2’1)7(0:2)}
P3: Dy, = {((),U),((), 1),(0,2)}; Byo = {(1,0),(1,1),(1,2)}; B33 = {(2,0),(2,1),(2,2)}
Py DBy, = {((),()),(1,2),(2, 1)}; By = {(1,0),((),1),(2,2)}; Bys = {(2,0),(0,2),(1,1)}

So we have v = 9 points, b = 12 blocks, k = 3 points on a block, r = 4 blocks
! ) )

which contain cach point, and X = 1 block which contains any two points. The

parallel classes are of size s = 3 (one class for ecach 1-dimensional subspace),

and any two blocks in distinct parallel classes meet in p = 1 points.
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3.2 The Theorem Behind the Constructio’n

The material presented in the previous scctions provides the basis for the
following theorem, which can be used to form symmetric designs which are

analogous to the MacFarland Difference Sets.

Theorem 3.1 Let there be an affine design with parameters v,b, 1, k, and X.

Then there crists a symmetric (v*, k%, N*) design, where
e = (r+4 1o, K" =kr, and \* = k.

Proof: Let £ be the affine design. The blocks are placed into parallel classes
of size s blocks each. The munber of parallel classes is, then, b/s = b/(v/k) =
bk /v = r. Denote these parallel classes by I, Iy, ... I1,.. Let the points be
Pl s Po. To cacly parallel class [1), we associate a v X v matrix M), = (mf‘j)
by the rule: mf-’j = 1 if p; and p; lie on some block in 1T}, or mf.‘j = () otherwise.
First notice that the matrix points are indexed by the points of the affine
design while the rows are indexed by the blocks. Now we make the following
three obscrvations about A4, (i) M), = (1\/[,1)7‘, since incidence is reflexive;
(ii) M, AT = kM, since the blocks are the rows (to see this, and any distinct
blocks are disjoint in a parallel ¢lass so that the off-diagonal entries are 0,
while any row contains & 1’s (because there are k points per block) so the dot
product of a row with itself is &; (iil) MM = jJ for g # h, since cach entry
consists of a row representing a block of I, dotted with a column representing

a block of IT;, == cach time the blocks share a point a contribution of 1 to

-
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the entry sum is added, and this happens p times since any two blocks in
different parallel classes share ¢ points (Recall that J is the square matrix
with 1 in each position). Now also notice that
T

Z M,=(r—-MNI+AJ,

=1
since cach point is on » blocks so the diagonal positions must have an entry
of r, while any two distinct points are on XA blocks so that the off-diagonal

positions must have an eutry of A. Combining this fact with (ii) above yiclds:

(MM = k(r = )T + kX
I

=1

Now we construct the (r+ 1)o x (r + 1)v matrix L by

0 M, My --- M, Lo

;\[,. 0 .f\’./[ v 1\’[,.__1 Ll

L = . : = :
A /] ./"’[2 ./\’13 v 0 L,.

where cach L; is a v X (r+1)v matrix. Now using the information above shows
that L;L}' = {r = 1)yJ ({for i # j) since any row of L; represents r blocks of
the design, aud cach row is mmltiplied with 7 blocks represented in L; each
of which is in a different parallel class from the block it is dotted with; this is
by construction of L as the parallel classes are never matched up in distinct
L;. Now we have that MM = pJ for g # h, and r + 1 separate block
products in the overall dot product, but two of these involve 0’s so that the
total is (1 — 1)y, Also we have L;LT = k(r — AT + kAJ; this comes directly

from the statement S5 _ (M, M) = k(r — \)T + kMJ, since L; LT is exactly

16



this calculation. Finally we can substitute (r — 1)p = (r — 1)k*/v = k/], so
we get

LLT = k(r — M) + kM.
If we recall the definition of incidence matrices, we find that L is the incidence

matrix of the desired symmetric design, O

3.3 Using the Design Theory to Get MacFarland Dif-
ference Sets
If we apply the preceding theorem to the affine design AG(d + 1, ¢) we can

construct the desirved difference scts.

Theorem 3.2 Lct G be an abelian group with order ¢+ (¢* + ¢~ ' + -+ +
q+2), where ¢ = pl is a power of a prime p. Then if G contains a subgroup
isomorphic to Z,7"V then G has a (¢ (gt +- +q+2), ¢ gt + -+ g+

1),¢4q + -+ + ¢ + 1))-difference set D.

Proof: The method of construction is a direct application of Theorem 3.1.
The rows and cohununs of the parallel-class matrices are indexed by the group
elements in AG(d+1.¢); these elements are simply the elements in the vector
space V = F(;H”‘. Since translation by any vector v € V preserves the parallel
classes, the matrices My, ..., M, are cach left unaltered if we permute the
rows and colnmns according to translation by v (this mecans that we send
the column indexed by the clement 2 to the column indexed by z + v, and

likewise for rows). Thus the translation group 7" of V acts as a regular group
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permuting the rows and columns of the matrices M; and preserving each of
them. Note that if ¢ = p/ for a prime p, then T = (Z,,)f(dﬂ).

Now assume that in forming the matrix L we use the group multiplication
table of the group I, with order » + 1. The group K has a regular action
on the rows and columus of L. For an clement k € K, send the row in
the position indexed by g € K to the position indexed by gk and send the
column indexed by /i € I to the position indexed by k=1h; this preserves
the multiplication table since gh = ghk='h. Now the rows and colnmns of
the incidence matrix are indexed by the ordered pairs (v, k) where v € V
and & € I{. If we combine the action of T and K, we find that T x K acts
regularly on the rows and columnns of the matrix L, thus preserving it. The
symmetric design can thus be viewed as a difference set in T x K. Therefore,

for a prime power ¢ = p/, we can find a
@+ g+ 2,0+ g+ 1), T+ g+ D)=

difference set in (Z,,)‘”‘H"” x IV, where K is a group of order (¢¢+- - +¢+2).
a

By this method we can find for ¢ = 3 and d = 1 a (45, 12;3)—(liﬂb1'011cc
set in (Z3)° x Z5 (here N = Zy aud T’ = (Z;;)2) and for g =4 and d =1 we
can identify a (96,20, 4)—difference set in (Z5)° x Zy (where K = Zy x Z4
and T = (2, x Z,)7).

One can improve this result by a modification so that a difference set can

be found in any group G which contains in its center a subgroup isomorphic
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toT = (Z,,)f(’lﬂ), such that G/T = K. Using this method we will also find

another (96, 20, 4)~difference set, now in (Z~2)3 X 4 X Z3.
3.4 An Example

Example 3.2 The following process produces a (96,20, 4)— difference set in
(Z5)° x Zs. T is the additive subgroup isomorphic to F2 = (Zy x Z3)* (let
Fy={0,1,0,a+1}), so K is the group Zg = Zy X Zy. The matriz L is given
by

0 l\f} Z\’fg ]\ff; .]\/[4 ]\/[5
M, 5 0 M 1 ]\12 M. 3 ]\’[4
My My 0 M, M, M;
My My M; 0 M, M
A‘{Q 1\[; ./7\/[4 M, 5 0 M 1
My My, M; My My 0

where the M; are the matrices defined by the parallel classes of the affine
design: cach parallel class consists of a 1-dimensional subgroup of FE ulong
with the cosets of that subgroup. Note that the five subgroups (hyperplances)

are.

(1) (0,0),(0,1),(0,a),(0,a +1)
(2) (0,0),(1,0),(a,0),(a +1,0)
(3) (0,0),(1,1),(e,q), (@ +1,a+1)
(4) (0,0),(1,0), (,a +1),(a+1,1)

(5) (0,0),(1,a+1),(a,1),(a+1,a)
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For the first subgroup along with the cosets we have the following parallel

class matriz M,. Note that cach other parallel class has such a matriz.

(0,0) 1111000000000000
(0,1) 111100000000000°0
(0,0) 111100000000000¢0
(0,a + 1) 111100000000000¢0
(1,0) 000011110000000°0
(1,1) 000011110000000°0
(1,0) 000011110000000°0

o= (Latl) 000011110000000°0

! (,0) 000000600111 10000¢0
(ar, 1) 00000000111 10000
(v, ) 000000001111000°0
(o, + 1) 000000001111000°0
(a+1,0) 0 0000000000011 11
(v +1,1) 0 0000000000011 11
(v +1,0) 0000000000001 111

(@+1l.a+1) \0 0000000000011 11

Note that the row and coluwmn indexes are the same. Now since Fy = Zy X Zy
as additive groups, let 0 = (0,0),1 = (1,0),a = 0,1),a +1 = (1,1) to
change the clements into Z) X Zy Also, Zg = Zy X Z3, so we map from Zg into
ZoX Z3 by 0 — (0,0),1 — (1,2),2 — (0,1),3 - (1,0),4 — (0,2),5 — (1,1).
When we finish constructing L (the incidence matriz for the design, a 96 X 96
matriz), we can then pull the following (96, 20, 4)— difference sct in Z3 X Z3

(from any of the rows will result such a difference set):
{(0,0,0,0,1,2).(1,0,1,1,1, 2),(0,1,1,0, 1,2),(1,1,0,1,1,2),(0,0,0,0,0, 1)

(1,0,0,1,0,1).(0,1,1,1,0,1),(1,1,1,0,0,1),(0,0,0,0,1,0), (1,0, 1,0, 1,0)
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(0,1,0,1,1,0),(1,1,1,1,1,0),(0,0,0,0,0,2),(1,0,0,0,0,2),(0,1,0,0,0, 2)

(1,1,0,0,0,2),(0,0,0,0,1,1),(0,0,1,0,1,1),(0,0,0,1,1,1),(0,0,1,1,1, 1)}.

4 Homomorphisms from an Abelian Group
to the Complex Numbers

4.1 Defining the Group of Homomorphisms from G —
C
Lemma 4.1 For an abelian group G of order v, there exist v homomor-

phisms from G into the compler numbers under multiplication.

Proof: From the propertics of homomorphisms, we know the identity, e, of
G must be mapped to 1, the identity of C under multiplication. Now let g

be a generator of G which is of order n. Then notice that:
[o(9)]" = é(g") = ¢(e) =1

Thercfore, ¢(g) must he an nth root of unity. The order of an abelian group
is the product of the orders of clements in a generating sct, and since for
each generator of order m there are m choices for an mth root of unity, then

the number of automorphisms from G to C is the order of G. O

Example 4.1 As a simple example, in the group Zy X Zs, (1,0) can be sent
to +1, -1, i, or -i while (0,1) can be sent to +1 or -1. Once we determine

where to send these two generators of the group, we have determined the ho-
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momorphism. So there are 8 homomorphisms of this group into the complex

numbers.

Theorem 4.1 Let G be an abelian group of order v. Then the set of ho-
momorphisms {¢ : G — C|¢ is a homomorphism } forms a group under

multiplication.

Proof: ¢y(y) = 1 V¢ € G is an identity clement for the set under multi-
plication. Associativity is inlierited from multiplication in C. So if the sect

contains inverses, then it is a group. Define
¢~'(g) = 87" )i
this is possible since G is a group and contains all its inverses. Notice that
$(9)0™'(9) = Slg)dlg™") = dlyg™") = dle) = 1 =o(9), Vg€G.

Now to show that ¢! is a homomorphism from G to C, let g1,9» € G. Then
7 (g91)e™ (12) = dlgr (g5 ) = dor' s ) = de " ™) = 07 (o g2)

Thercfore, if ¢ is a homomorphism from G to C, then our ¢! is a homo-
morphism from G to C so that ¢¢™' = ¢y. So the set is a group. O
We also note that ¢! = ¢. This fact is crucial in proving the lemmas and

theorems that follow. It is true because for any group G, [¢(g)| =1V g € G.

So Q% = ¢y.
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4.2 Properties of the Homomorphism Group

In this section we will collect a few of the properties of the group of homo-
morphisms introduced above. In order to prove the lemmas that follow we

need the following proposttion.
Proposition 4.1 The sum of the nith roots of unity forn > 1 is 0.

Proof: The nth roots of unity are solutions to the equation 2" —1 = 0. Let o

2 —1
yoe, " So

be an nth root of unity, then the nth roots of unity are 1, o, o
the sum of the nth roots of unity is 1+a+a?+- - -+a™! = (1-a")/(1—a) = 0

since o™ = 1. 0

Lemma 4.2 Let G be a group of order v. If ¢ is not the identity homomor-

phism (cquivalent to saying & is nontrivial), then T e ¢(g) = 0.

Proof: Let 1 € G so that ¢(h) # 1. Such an h exists since ¢ is nontrivial. We
know that / will generate a unique cyclic subgroup in G, call it (k). Observe
that:

> dlg) = (1) + S(h%) + -+ + G(h"),

ye(l)
where n is the order of 1t in G. Now since ¢(1*) = ¢(e) = 1, then ¢(h) must

be an nth root of unity. Now ¢(/i) may not be a primitive nth root of unity,
so let it be a primitive mth root of unity where m|n (note that m # 1 since
#(h) # 1). So continuing from the equation above we have:

S b(g) = ([BUD) + ()] +- -+ o)™ + ([ 4+ -+ [ )+ -

ge{l)
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F([e" ™™ -+ B

Notice that if 1n = n then we stop after the first parenthesis, or if n = 2m
we stop after the sccond set. Now since [¢(1)]™ = 1, the equation simplifies
to:
= (n/m)[¢(h) + ¢*(h) +--- + ¢™(h))]

Now we have a constant times the mth roots of unity. But the sum of the
mth roots of unity (m # 1) is 0 by Proposition 4.1, so we now have:

> ¢lg) = (n/m)(0) = 0.

gE(h)
Every g € G is in some coset of (h). Let a{h) be one such coset (a € G). We

have

Yo odlg) =Y olag) =Y ¢la)é(g)

g€all) GEM) ge(h)
= ¢(a) Z ¢(g) = ¢(a)(0) =0
g&(h)

Now we can break up G into the cosets of (h):

200 =2 s+ X g+ + D Hg)=0+0+--4+0=0,

geG g&l) g€ar{h) g€ar(h)

Note that by LaGrange’s Theorem k = v/n. O

Lemma 4.3 For an abelian group G of order v with identity e and homo-
morphism group ® = {¢ : G — C|¢ is a homomorphism }, ¥ 4ece ¢le) = v

and Yyeo $lg) =0Vg € G, g#ec.
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Proof: We know ¢(c) = 1V ¢ € ®, so we have Y ycq dle) = Lyeo 1 =
v. Solet g € G, g # e. Choose some ¢, such that ¢,(g) # 1. Such a
homomorphism cxists because otherwise g would have to be of order 1 in G,
and hence the identity, but g # e. Now let (¢,) be the cyclic subgroup of &
generated by ¢,. We have, then,
S Blg) = dy(9) + 9ig) + - + 8 (9),
$€{dy)

where n is the order of ¢, in ®. Since ¢j(g) = ¢o(g) = 1, ¢y(g) must be an
nth root of unity. Then we know ¢, is a primitive mth root of unity for m|n,
and that m # 1 since then ¢, = 1. We Lave then:

S ¢0) = (Bo(@)]' + @y (@) +- -+ Sy (D)™ )H (o)™ 4+ Hg ()™ +
$E{¢y)

+([¢y((/)]n~m+l +-F [be(!/)]n)

Notice that if n = m we stop after the first parenthesis or if n = 2m we stop

m

after the sccond set. Now since [¢,(g)]" = 1, this equation simplifics to:

”/7”)[¢J( )+¢g( g) + "'+¢gm(f/)]-

So we have a constant times the mth roots of unity. But the sum of the mth

roots of unity (1 # 1) is 0 by Proposition 4.1, so we now have:

> ¢(g) = (n/m)(0) = 0.

$E(Py)
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We know every ¢ € @ is in a unique coset of (¢,). Let a(¢,) be onc such

coset (a € ¢). We have:

Yo odlg)= Y alg)d(g) =alg) Y. #(g) = a(g)(0) =0.

pEa{dhy) HE(dg) $E(dg)

Now we break up @ into the coscts of {(¢,):

Ydlg)= > )+ > g+ + Y g)=04+0+---+0=0.
ped PE(Dy) dEay (¢y) P€ar(dg)

Note that k =v/n. O

4.3 Extending the Homomorphism Group to the Group
Ring Z/G]
It is possible to extend a homomorphism ¢ € @ from ¢ : G — C to d) :

Z[G] — C. This is very usclul in defining difference sets.

Definition 4.1 Let G be a group. Then define ¢(T e a99) = Tgec tg®(9)-

Note that ay € Z.

With this definition ¢ : Z[G] — C is a homomorphism, since if we have sets
A=Y ,cqaand B =Y b, it is clear that (A+B) = ¢(A)+¢(B). I point
out that this is abusive notation to write these sets of elements as sums in
this manner. With this definition we can prove the following lemma which

is instrumental in proving our main theorems.

Lemma 4.4 (Fourier Inversion Formula) Let G be a group of order v
with homomorphism group ® into the complex numbers. If A = ¥ e ay9,

then ay, = (1/17) Eyep O A)P(N1).
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Proof: First I simplify 3_4cq ¢(A)@(N).

S d(AGR) =3 (Y agg)dh) = SIS ané(g)]eh).

Pcd PeEd  gi€G PEP gi€G

Now we can separate I from the sum of other group elements in G:

=) and(h)(h) + Z Y ag;¢(gi)$(_h7

PED ¢€® gi€q, gi#h
= a, Z S()P(h) + ay Z Z $(g:h ™)
¢ed 9€D g;€G, gi#h

Now in the first addend, since |{¢(g)| = 1 for every ¢ € @ and g € G, we can
simplify qﬁ(lz)g(—]ﬁ = 1. In the second addend, we see that the element g,-l.L’l
will be a non-identity clement since g; # h. So by lemma 4.3, we find that
2obcd &(g:h™*) = 0. So the equation simplifies to:
= Z 14+ a, Z O0=a,wv+0=auv.
HED 9i€G, gi#h

So in this string of cqualitics we have Yyco #(A)p(h) = apv. Thercfore,

an = (1/v) Tyes $(A)$(1). O
4.4 Main Homomorphism Theorem

The above lemma gives us what we need in order to prove the following

theorem, which is at the heart of this method to identify difference scts.

Theorem 4.2 D is a difference sct of k elements in G (of order v) if and

only if |¢(D)| = /n for every nontrivial homomorphism (V ¢ € ¢, ¢ # ¢).

(3]
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Proof: First recall that n = k—A. For the difference set D, write D = 3 4ep d.
For example we can write the (7,3,1) difference set {1,2,4} as D = a! + 2% +
&, The group G =Z; can then be written as G = 1+z! +22 423+ 425 +25.
Note that 1 = identity clement. Now by definition of a difference sct, if we
take D (with paramcters (v,&,)) and multiply by DY (D1 is not the
inverse of D in Z[G], but the sum of inverses of elements in D written as
a polynomial), we get cach non-identity element A times and the identity

element £ times. So we have the following relationship:
DDEY = (k= M1+ )G,

Notice that 1 =identity and G is the group written as a polynomial as in the
Z7 example above.
(=) Let D be a difference set, and let ¢ be a nontrivial homomorphism.

We have
|¢(DDEY)| = |8[(k=A)1+AG]] = |¢[(k=M1]+d(AG)| = |¢[(k—=)1+A&(G)]]

But we know that ¢(G) = ¥ ,cc #(g) = 0 for any nontrivial homomorphism

¢ by lemma 4.2, So substitution yields:
= J6l(k — A1)+ A©O)] = I6[(k = MLl = [& ~ Alle(1)|
But ¢(1) =1, V ¢ € ¢ so we have:
k= A1) =k = Al =n
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So now we have the equality |¢(DD(V)| = n, so observe:

n = |¢(DDV)| = |¢(D)||p(D)] = |¢(D)|[¢(D)] = [¢(D)/°.

Thercfore, [¢(D)| = /1.

(<) Let |¢(D)] = /nV ¢ # ¢o. If we can show that DDV = (k=A)1+)G,
then D is a difference set. Using the Fourier Inversion Formula, I need to

show that for the sct DDV, a; =k and a; = A, ¥ g € G such that g # 1.

a = (1/v) 3 ¢(DDDG() = (1/0)[go(DDEV) + 3 ¢(DD))
ped dFdo
There are k - k differences DDV, and ¢o(g) = 1V g, so ¢o(DDV) = k2.

We also know that for all nontrivial homomorphisms ¢, that [¢(D)| = /n,

so $(DDY) = ¢(D)p(D) = n. With these substitutions we get:

a; = (/WK + > n
$#do
There arc v — 1 nontrivial homomorphisms, and n = k — A, so we get:
ay = (1) + (k=N -1)] = (1/v)[k?* + kv — vA ~ k + )]
Finally, we can use lemma 1.1 to substitute for vA:
a = (1) +hkv =k +k-A-k+ A =Fk

Now we solve for a,, g # 1.

a, = (1/v) 3 ¢(DDD)@(g) = (1/)[¢o(DD)golg) + Zj (k= Né(9)]
PpeD dFdo
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We know ¢o(g) = 1 and ¢o(DD(~V) = k? as above, so we have:

1, = (1) + (k= 3) Y 0
PFdo

But Y y24 P(9) = Lseo #(g) — #0(g). Since g # 1 we can use lemma 4.3 to

substitute Ygeq ¢(g) = 0, while ¢o(g) = 1. So we have:
ay = (/)2 + (k = N)(=1)] = (1/v)[k2 + A = ]
Now we use lemina 1.1 to substitute for £ and get:
ag= (/) A +Ek=A+ A=k =A.

So we have that DD = (K — A1 + AG, so D is a difference set. O

5 The Homomorphism Approach to Mac-
Farland Difference Sets

With the results from the last chapter, we can now tackle the problem pre-
sented in chapter 3 in a simpler fashion. The following theorem is the main

result.

Theorem 5.1 Let G be an abelian group with order ¢**1(q¢ + ' + -+ +
q + 2), where q is a prime. Then if G contains in its center a subgroup
isomorphic to Z,**, then G has a (Y g+ +aq+ 2), ¢ (g + -+ q+

1), ¢ (¢t + -+ + q + 1))-difference set D.
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Proof: First notice that n = k — A = ¢?¢. Let T be the subgroup isomorphic
to Z,*'. Then let K = G/T so that K is of order (%4 +q+2), so now list
the elements of K: K = {ko, k1,... ,kr}, where r = ¢t +--+4+q+1. Now \;'c
know there are 7 = (¢ —=1)/(¢—1) = ¢*+---+q+1 hyperplanes of z, M,
so let them be Hy,..., H,. Now we form a set D = kyH UkoHoU--- Uk, H,.
Now let ¢ be any nontrivial homomorphism from G to C. First assume ¢ is

trivial on T, so that it must be nontrivial on K.

r

16(D)] = "'“i kiHy)| = |§;¢<k,~m>t = 3 G(H:) (k)

i=]1
Now we know that ¢ is trivial on T, so that it is trivial on cacli of the
hyperplanes H;. The hyperplanes are just the d-dimensional subspaces of T,

so their size is q¢. Thus, |¢(H;)| = |H| = ¢°. So we get then:

S 6k = 3 6tk ~ otk

1=0

But I__ #(k;) = 0 by lemma 4.2, so that we get
_10) = (k)] = 'lg(ko)] = ¢“(1) = ¢ = VL.
Now assume that ¢ is nontrivial on T.
6LD)] = I3 k)| = | Llot k)

Now we have ¢ : T — C, which is nontrivial. T has order ¢4t!, while the
size of ¢(T') in C is ¢ by construction. Therefore the kernel of ¢, call it H, is

a subgroup of T of order g = ¢* so it is actually onc of the hyperplanes.
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Since the size of the kernel is ¢¢ and ¢ is nontrivial on T', ¢ must be nontrivial
on all hyperplanes other than H,. So we have:

| D _[¢(H)d(k)]l = [o(Ho)p(ke) + D [o(Hi)o(k:)|

i=1 i=1,i#e
Since ¢ is nontrivial on all other hyperplanes H;, we know that 3¢y, ¢(h) =
0 by Lemma 4.2. So that Yi_,[¢(H:))é(k:)] = Ticy ¢(ki)[Zhen, ¢(h)] =
Y1 @(k:)(0) = 0. So we have that:

= |(He)p(ke) + 3 [d(H:)p(k:)]| = [$(He)p(ke )|

i=1,i#e

Now since ¢ is trivial on H, and |H,| = ¢¢, we have:
= ¢’|¢(ko)] = " = V.

So for D = kyHyUkyHoU- - - Uk, H,, we have |¢(D)| = v/n for any nontrivial

homomorphism ¢. Thus, by Theorem 4.2, D is a difference set in G. O

This theorem applies also for ¢ a power of a prime, but the proof is omitted.

We have the following examples.

Example 5.1 Using this method we can quickly find a (16,6,2)—difference
set in G = Z4 X Z4. G contains a subgroup isomorphic to Za X Za, namcly
the subgroup T = {(0,0),(0,2),(2,0),(2,2)}. The hyperplanes are the I-
dimensional subgroups of T: {(0,2)), {(2,0)) and ((2,2)). The group K =
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G/T is(0,0)+T, (0,1)+T, (1,0)+T, and (1,1)+T. Then we can form the
difference set D by D = kyHiUky HyUks Hs = (1,0)+{(0,2))U(0, 1)+((2,0))U
(2,0) + {(2,2)). Notice that (2,0) is an element of T so that in I, (2,0) &
(0,0). So our difference set is D = {(0,1),(0,2),(0,3),(1,0),(2,0),(3,0)}.

Example 5.2 We also can use this method to find a (16,6, 2)—difference
set in G = Zg X Zy. G contains in its center a subgroup isomorphic to Zo X
Zo, namely the subgroup T = {(0,0),(4,0),(0,1),(4,1)}. The hyperplanes
are the I1-dimensional subgroups of T: ((4,0)), ((0,1)) and ((4,1)). The
group K = G/T is (0,0) + T, (1,0)+ T, (2,0)+ T, and (3,0) +T. Then
we can form the difference set D by D = kiHy U koHy U k3Hy = (0,0) +
((4,0)) U (1,0) + ((0,1)) U (2,0) + ((4,1)). So our difference set is D =
{(0,0),(4,0),(1,0),(1,1),(2,0), (6,1)}.

Now this brings us to our main cxample, the (96,20, 4)—difference set
in Z4 X Zg X Z3. In scction 3 we found a similar difference set in Z:;’ X 23
using the method of affine geometries and matrices. This example was less
complicated than the following one. Yet this new process is far simpler to
work with. Notice that this example is for a power of a prime (4); so this

method does work for powers of primes as well.

Example 5.3 We are looking for a (96,20,4)—difference set in G = Z4 X
Z3 x Z3 so that in the construction with Theorem 5.1 ¢ = 4 (note thut

o

Fy =2 Zyx Zy) and d = 1. G has a subgroup whick is isomorphic to F} =

33



(Zy x Z5)?, call it T = ((2,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0)).

The five hyperplanes of F} & (Zy X Z2)2 are:
Hl = {(07 01 0? 0’ 0)7 (07 07 11 070): (0>07 Oa 1; 0)’ (Oa Oa 1, 1, 0)}

H, = {(0,0,0,0,0),(2,0,0,0,0),(0,1,0,0,0),(2,1,0,0,0)}
H;3 = {(0,0,0,0,0),(2,0,1,0,0),(0,1,0,1,0),(2,1,1,1,0)}
H, = {(0,0,0,0,0),(2,0,0,1,0),(0,1,1,1,0),(2,1,1,0,0)}
Hs = {(0,0,0,0,0),(2,0,1,1,0),(0,1,1,0,0),(2,1,0,1,0)}

Now we know K = G|T = Zy X Z3, so the list of elements in K is I =
{(0,0,0,0,0),(0,0,0,0,1),(0,0,0,0,2),(1,0,0,0,0),(1,0,0,0, 1),(1,0,0,0,2)}.
Then we can form the difference set D = ki HyUkyHoUks HyUki HyUks Hy =

= {(0’ 0’ 0, 0’ 1)) (0’ 0’ 170, 1)7 (07 07 0’ 1’ 1)? (0’ 0’ ]‘) 1, 1), (0’ 0’ 05 07 2)’

(2,0,0,0,2),(0,1,0,0,2),(2,1,0,0,2),(1,0,0,0,0),(3,0,1,0,0),
(17 170’ 170),(37 1, l’ 1’ )7 (1707 0’ 07 1)7(370707 1’ 1)’(15 1? 1) 1‘) 1)’
(3,1,1,0,1),(1,0,0,0,2),(3,0,1,1,2),(1,1,1,0,2),(3,1,0,1,2)}.

This is the difference set we want.
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