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Abstract 

In this paper, a classification of the closed ideals of the Little Oh Lipschitz 

class of functions on the interval [O,lJ is provided. The technique used to 

classify the ideals of the class of continuous functions is modified and applied 

to the Little Oh Lipschitz class. It is shown that every ideal of these two 

classes has the form I = {f : fiE = 0} for some closed set E ~ [0, 1]. Fur

thermore, it is demonstrated that the same technique cannot be successfully 

applied to the classification of the closed ideals of the Big Oh Lipschitz class. 
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IDEALS OF THE LIPSCHITZ CLASSES 

KONSTANTIN KULEV 

ABSTRACT. In this paper, a classification of the closed ideals of the Little Oh Lipschitz 

class offunctions on the interval [0,1] is provided. The technique used to classify the ideals 

of the class of continuous functions is modified and applied to the Little Oh Lipschitz class. 
I 

It is shown that every ideal of these two classes has the form I= {! : /IE = 0} for some 

closed set E ~ [0, 1]. Furthermore, it is demonstrated that the same technique cannot be 

successfully applied to the classification of the closed ideals of the Big Oh Lipschitz class. 

1. INTRODUCTION 

In this paper we provide a complete classification of the closed ideals of the Lipschitz 

classes of functions. To classify the closed ideals of a certain set means to give a specific 

form which each closed ideal has; for example, as we will see, each closed ideal I of the set 

C[O, 1) of continuous functions is of the form I = {f E C[O, 1) : fiE = 0} for some closed 

set E ~ [0, 1]. That is, given any ideal I of C[O, 1], there exists a closed set E such that 

I= {f E C[O, 1) : fiE= 0}. 

Section 2 introduces some definitions from the areas of real analysis .and abstract algebra, 

while Section 3 provides the necessary definitions and ideas from topology. In Section 4 we 

consider the Whitney theorem, which provides a complete classification of the closed ideals of 

the m-times continuously differentiable functions. We prove an "easy" case of the theorem, 

thus formalizing the above classification of the closed ideals of the continuous fmictions on 

the interval [0, 1). In Section 5 we classify the ideals of the Little Oh Lipschitz class using the 

method applied in Section 4, with suitable modifications. Throughout the proof the reader 

should observe the sharp distinction between the Big Oh and Little Oh Lipschitz classes in 

order to understand the difficulties that arise when the same proof technique is applied in 

an attempt to classify the closed ideals of the Big Oh Lipschitz class. 

2. PRELIMINARIES 

First we shall define the classes of functions that we work with throughout this paper. 

We shall use the conventional notation Cm[o, 1) to denote the class of m-times continuously 

differentiable functions, i.e. the functions whose first m derivatives exist on the open interval 

(0, 1) and are continuous on the closed interval [0, 1]. A class of slightly "smoother" than 

1 



2 KONSTANTIN KULEV 

the continuous functions, yet not necessarily differentiable functions is the Lipschitz class, 

which is defined in the following manner: 

Definition 2.1. Given a real number 0 < a < 1, we say that a function f : [0, 1] ---+ JR. 

belongs to the Lipschitz class Aa if there exists a constant C > 0 such that 

(2.1) sup lf(x)- f(y)l <C. 
x#y lx - Yla -

The number a is called the exponent. We only consider values of a such that 0 <a < 1, 

since allowing a = 1 creates certain difficulties when we introduce the Little Oh and Big 

Oh Lipschitz classes. For a > 1, a simple application of the Mean Value Theorem shows 

that Aa consists only of the constant functions. For our investigations in this paper we 

need to introduce a special subset of the Lipschitz class, the Little Oh Lipschitz class. For 

convenience, we shall call the Lipschitz class Aa the Big Oh Lipschitz class. 

Definition 2.2. A function f belongs to the Big Oh Lipschitz class Aa if lf(x)- f(y)l = 

O(lx- Yla) for all x, y E [0, 1), which is equivalent to {2.1) for some constant C. 
A function f belongs to the Little Oh Lipschitz class Aa if lf(x)- /(y)l = o(lx- Yla) for 

all x, y E [0, 1], which is equivalent to 

(2.2) lim sup lf(x)- f(y)l = 0. 
6--+00<Ix-yl<c5 lx- Yla 

It is clear that Aa is contained in, but not equal to Aa, as the following example illustrates: 

Example: Consider the function f(x) = xa. Clearly f E Aa, but we can show that f rJ. Aa. 

Indeed, if we restrict y = 0, we make the supremum in equation (2.2) smaller than (or 

possibly equal to) the original one, so 

1
. lf(x)- f(y)l > 

1
. lf(x)- f(O)I 

1m sup 1m sup 
6--+0o<lx-yl<c5 lx- Yla - 6--+0o<lx-OI<c5 lx- Ola 

=lim sup lxal = 1 =/; 0. 
o--+O O<lxl<c5 lx Ia 

Therefore equation (2.2) does not hold and f rJ. Aa. 

Lemma 2.3. Iff E C1[0, 1), then f E Aa· 

Proof. Let f E C 1 [0, 1], i.e. and let f be a function whose derivative exists and is continuous 

on (0, 1). Then, by the Mean Value Theorem, for each x,y E [0, 1], lf(x)- f(y)l = Mlx-yl, 

where M = SUPce[o,t]IJ'(c)l. Therefore 

1
. lf(x)- f(y)l 

1
. Mix- Yl 

1m sup I = 1m sup 
6--+0o<lx-yl<c5 lx- Y a 6--+0o<lx-yl<c5 lx- Yla 
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=lim sup Mix- Yll-a = 0, 
6-+0 O<lx-yl<6 

since a< 1. Therefore f E Aa (and certainly f E Aa)· 0 

3 

Next we provide the definitions of some basic abstract algebra notions which play a pivotal 

role in this paper. These can be found in any introductory text in abstract algebra (see, 

e.g., [2]). First we define a ring; however, since the full rigorous definition is rather long and 

will be omitted here, the next definition is more succinct and provides only an explanation 

of what a commutative ring is. 

Definition 2.4. If R is a set on which two binary operations are defined {usually called 

addition and multiplication), then R is called a commutative ring with respect to these 

operations if it has the closure property (i.e. a, b E R implies that a+ b, a · b E R); if the 

associative, commutative and distributive laws hold; if there is an additive identity; and if 

every element in R has a unique additive inverse. 

Examples: The set of all integers Z under ordinary addition and multiplication, the set 

of m-times continuously differentiable functions cm[o, 1], and the Big Oh and Little Oh 

Lipschitz classes Aa and Aa under function addition and function multiplication are some 

examples of commutative rings. We shall prove that Aa and Aa are indeed closed under 

addition and multiplication. 

Theorem 2.5. The Big Oh and Little Oh Lipschitz classes are closed under function addi

tion and multiplication. That is, 

(1) If f,g E Aa, then f + g,f · g E Aa. 
(2) If f,g E Aa, then f + g,f · g E >.a. 

Proof. (1) We have that 

lf(x)- f(y)l < C 
sup I I J x"#y X- Y a -

and sup lg(x)- g(y)l < C 
x"#y lx- Yla - 9

' 

where C1 and C9 are constants. Then 

I(!+ g)(x)- (! + g)(y)l lf(x)- f(y) + g(x)- g(y)l 
~~~ lx- Yla = ~~~ lx- Yla 

<sup lf(x)- f(y)l +sup lg(x)- g(y)l < C + C 
- x::Fy lx- Yla x"#y lx- Yla - J 9

' 

which is a constant. Therefore f + g E Aa. 

Also 
sup I(!· g)(x)- (! · g)(y)l =sup lf(x)g(x)- f(y)g(y)l 

x::Fy lx- Yla x"#y lx- Yla 
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lf(x)(g(x)- g(y) + g(y))- f(y)g(y)l lf(x)(g(x)- g(y)) + g(y)(f(x)- f(y))l 
=sup =sup 

x"#y lx - Y Ia x"#y lx - Y Ia 

<sup lf(x)llg(x)- g(y)l +sup lg(y)llf(x)- f(y)l 
- x"#y lx- Yla x"#y lx- Yla 

::; sup M!lj(x) jc!'(y)l +sup Mglf(x) -/(y)l ::; MJCg + MgCf, 
x~ x-y x~ x-y 

which is a constant. (Here we have used the fact that f(x) and g(y) are bounded by the 

constants M1 and M9 respectively on the interval [0, 1], since they both are continuous 

functions.) Therefore f · g E Aa. 

( 2) Analogously, we have that 

lim sup lf(x)- f(y)l = 0 and lim sup lg(x)- g(y)l = 0. 
8--+0o<lx-yl<c5 lx- Yla 8--+0o<lx-yl<c5 lx- Yla 

Then 

1
. I(!+ g)(x)- (! + g)(y)l 

1
. lf(x)- f(y) + g(x)- g(y)l 

1m sup = 1m sup 
8--+0o<lx-yl<c5 lx- Yla 8--+0o<lx-yl<c5 lx- Yla 

<lim sup lf(x)- f(y)l +lim sup lg(x)- g(y)l = 0 + 0 = 0. 
- c5--+0o<lx-yl<c5 lx- Yla 8--+0o<lx-yl<c5 lx- Yla 

Therefore f + g E A a. 

For f · g we again use the same technique as in (1) to obtain 

1
. I(!· g)(x)- (! · g)(y)l < 
1m sup 

8--+0o<lx-yl<c5 lx- Yla -

Therefore f · g E Aa· 0 

The definition of an ideal follows next. 

Definition 2.6. Let R be a commutative ring. A non-empty subset I of R is called an ideal 

of R if 

(1) a± bE I for all a, bE I and 

(2) r · a E I for all a E I and r E R. 
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Examples: Since /Z is a commutative ring, consider its subset I = {n E /Z : n is even }. 

Clearly I is an ideal, since it satisfies the above definition; specifically, I is closed under 

addition and subtraction and for any r E /Z and a E I, r ·a E I. 
As another example consider the commutative ring R = C[O, 1] under function addition 

and multiplication and its subset I= {f E C[O, 1] : /(0) = 0}. Again I is an ideal, since it 

is closed under addition and subtraction and for any g E C[O, 1] and f E I, g · f E I. 
Here we also define a subring and give the motivation for investigating only ideals in this 

paper as opposed to subrings, which may seem more natural to consider. 

Definition 2. 7. Let R be a commutative ring. A non-empty subsetS of R is called a subring 

of R if and only if 

(1) a+ b E S and a· b E S for all a, b E S and 

(2) if a E S, then -a E S for all a E S. 

Examples: Clearly every ideal is a subring, therefore all the examples above apply here as 

well. The converse, however, is not true and is easily illustrated by considering the constant 

functions as a subset of the commutative ring R = C[O, 1]. That subset is a subring, but not 

an ideal of C[O, 1]. 

Easy examples can illustrate that the subrings cannot be subject to any classification 

similar to the one for the ideals, since they are a larger set that contains the ideals. That 

is why the restriction of considering only the ideals makes the classification possible. In the 

next section we will have the necessary definitions allowing us to explain why we focus only 

on closed ideals. Before we conclude this section and go on to the topological background 

for our results, we will introduce two theorems that will be used later. The first one is 

the well-known Weierstrass M-test, which guarantees the uniform convergence of a series of 

continuous functions that are bounded by constants, whose series converges. 

Theorem 2.8. (Weierstrass M-test): Let gn be a continuous function on [0, 1] for Vn E N. 

If l9n(x)l < Mn for Vx and E~=t Mn < oo, then E~1 gn converges uniformly, and therefore 

is continuous. 

A proof of the Weierstrass M-test can be found on p. 339 of [1]. 

The second theorem allows the term by term differentiation of a uniformly convergent 

series of continuous functions, provided that all terms have continuous derivatives and that 

the series of derivatives converges uniformly. 

Theorem 2.9. Let {fn} be a sequence of continuously differentiable functions on the interval 

[0, 1] and let h(x) = E~=t fn(x) and g(x) = E~=l f~(x). If lf~(x)l < Mn and IJ~(x)l < M~ 
{Mn and M~ are constants for all n}, where both E~=l Mn and E~=l M~ converge, then h(x) 

is a continuous function on [0, 1], differentiable on (0, 1) and its derivative is g(x). 
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A proof of this theorem can also be found in [1). 

3. TOPOLOGY 

In this section we place a topology on A01 and ..\01 • We introduce the idea of a metric 

space and a metric associated with it, which allows us to define notions such as open and 

closed sets, Cauchy sequences and completeness of classes of functions. Thus we can use 

these concepts in a similar way as they are used with, say, the real numbers. 

Definition 3.1. Given a set S and a function p : S X S --+ JR+, (S, p) is called a metric 

space with respect to the metric p if all of the following hold: 

(1) p(x,y) 2::0 
(2) p(x, y) = 0 if and only if x = y 

(3) p(x,y) = p(y,x) 

(4) p(x,z) :5 p(x,y) + p(y,z) 

for all x, y, z E S. 

Examples: A quite simple example is the set of complex numbers C, which is a metric space 

with respect to the metric p(x,y) = lx- y!, since 

(1) lx-yl2::0 
(2) lx- Yl = 0 if and only if x = y 

(3) lx- Yl = IY- xl 
(4) lx- zl :5 lx- Yl + IY- zl by the triangle inequality 

for all x,y,z E C. 

Another example, which is not as trivial as the previous one, and is more relevant to the 

specifics of our paper, is cm[o, 1). To define a suitable metric, we let 

m 

II/II = L sup I f(k)(x) I 
k=O xE[O,l) 

for any f E cm[o, 1]. (We have used the symbol J(i) to denote the ith derivative of the 

function f.) Since J(k) is continuous on [0, 1] for VO :5 k :5 m, then it is bounded, so all the 

suprema above exist. Now we define a metric on cm[o, 1) by d(f,g) = II!- gil and we state 

that explicitly: 

Definition 3.2. Given any two functions J,g E Cm[o, 1), define the metric associated with 

them to be 
m 

d(f,g) = L sup I j(k)(x)- g<k>(x) I· 
k=O xe[O,l) 



LIPSCHITZ CLASSES 7 

It is an easy exercise to demonstrate that d(f, g) satisfies all the conditions of Definition 3.1, 

so it is indeed a metric for cm[o, 1]. 
We note that in the special case m = 0 the metric becomes simply d(f,g) = llf- gil = 

SUPxe[o,l] lf(x)- g(x)l. 

It was crucial for lf(x)- g(x)l to be bounded on [0, 1] for the supremum in the metric of 

C[O, 1] to exist. Since 
lf(x)- f(y)l 

lx- Ylcr 
is always bounded for Acr and .Acr, it is natural to propose a metric in the following manner. 

First let 
llfll =sup lf(x)- f(y)l. 

x::f:.y lx- Ylcr 
Then define the metric by 

(f ) - II!- II - IU(x)- f(y))- (g(x)- g(y))l 
p 'g - g - sup I I . 

x::f:.y X- Y cr 

However, it is easy to see that p(f,g) cannot be a metric, since it does not satisfy condition 

(2) of Definition 3.1. Indeed, if we let g = 0 and f = 1, then f =f. g and still p(f,g) = 0, 

contradicting condition (2). In order to correct for this problem, we define the metric in the 

following way: 

Definition 3.3. Given any two functions j, g E Acr (or ..\0 respectively), the metric associ

ated with them is given by 

d(f,g) = sup lf(x)- g(x)l +sup ( l(f(x)- f(y))- (g(x)- g(y))l ) . 
xE(O,l] x::f:.y lx- Ylcr 

We will often denote d(f,g) = llf- gllcr· 

Using basic properties of suprema, it can be readily shown that d(f,g), as defined above, 

satisfies the conditions of Definition 3.1 and therefore is a metric on Acr (respectively .Acr)· 

Next we define the notions of open and closed sets. 

Definition 3.4. Given a metric space (S, p) with x E S and r E lR fixed such that r > 0, the 

set 

B(x;r) ={yES: p(x,y) < r} 

is called the open ball of radius r around x, while the set 

B(x;r) ={yES: p(x,y) ~ r} 

is called the closed ball of radius r around x. 

Definition 3.5. Given a metric space (S,p), the set G C S is called an open set if, given 

any x E G, there exists an fx > 0, such that B(x; fx) C G. 
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Definition 3.6. Given a metric space ( S, p), the set F C S is called a closed set if S\F is 

open. 

Definition 3. 7. Let A C S, where (S, p) is a metric space. Then the closure of A, cl(A), is 

defined by cl(A) = n{F ::>A: F is closed}. 

The following theorem is well-known and we state it here without proof: 

Theorem 3.8. A set A is closed if and only if A= cl(A). 

Next we consider sequences and completeness. 

Definition 3.9. If {xn} is a sequence in a given metric space (S,p), then {xn} converges 

to x E S, i.e. limn-+oo Xn = x if for every f > 0, 3N E N, such that p(x, Xn) < f whenever 

n;=:::N. 

Example: If S = C, then z = limn-+oo Zn means that for every f > 0, 3N EN, such that 

lz- znl < f whenever n;:::: N. 

The concept of a convergent sequence can be used to show that a set is closed in the 

following way: 

Theorem 3.10. A set F C (S,p) is closed if and only if, for each sequence {xn} in F with 

limn-+oo Xn = X, we have X E F. 

Since this is a well-known theorem from topology, we omit its proof here. (See [3] for a 

proof.) 

Definition 3.11. A sequence {xn} in (S,p) is called a Cauchy sequence ij, 'Vf > 0, 3N EN, 

such that p(xn, Xm) < f, 'Vn, m;:::: N. 

There is a relation between convergent sequences and Cauchy sequences and it is as follows: 

Theorem 3.12. If a sequence {xn} in a metric space (S,p) converges, then it is a Cauchy 

sequence, i.e. limn-+ooXn = x implies that { Xn} is Cauchy. 

Proof. Let f > 0 be given and choose N > 0: p(xn,x) < ~' 'Vn ~ N. Then 'Vm,n > N, 

f f 
p(xn,Xm) ~ p(xn,x) + p(xm,x) < 2 + 2 = f, 

which shows the existence of the required N E N. 0 

While a Cauchy sequence in a metric space is not necessarily convergent, there are some 

metric spaces in which all Cauchy sequences converge. This leads us to the following defini

tion: 

Definition 3.13. A metric space (S, p) for which every Cauchy sequence converges is called 

complete. 
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Examples: Simple examples of complete metric spaces include .IR and .IR2 , if the metric is 

defined as the distance between two points. However, consider (S,p) = (.IR\{O},d(x,y) = 

lx- yl). Although it is a metric space, it does not have the completeness property, since the 

Cauchy sequence Xn = ~ does not converge to a point in .IR\ {0}. 
The choice of metric is crucial for completeness, as illustrated by the following example: 

Example: Let S = C[O, 1] and let 

dt(f,g) = r lf(x)- g(x)ldx and d2(f,g) = sup lf(x)- g(x)l, 
Jo xE[O,l] 

both of which are metrics on S. It can be shown that (S, d1) is not complete, while (S, d2 ) 

is complete. In fact, for any m, cm[o, 1) is well-known to be a complete metric space under 

the metric d2 • 

It is also true that Aa and >.a are complete metric spaces under the metric defined in 

Definition 3.3. We shall prove this fact, for which we need the following lemmas: 

Lemma 3.14. If {fn} is a Cauchy sequence in Aa, then supn llfnlla ::; M < +oo. 

Proof. Since fn is Cauchy, if we choose t: = 1, it follows that 3N such that for all m, n ~ N, 

llfn-fmlla::; 1. Then Vn ~ N, llfnlla = llfn-JN+JNIIa::; llfn-JNIIa+IIJNIIa < 1+IIJNIIa• 

Now let C = maXt<n<N llfnlla· Then let M = max{ C, 1 + li!Nlla}· It follows that 

supn llfnlla ::; M and the proof is complete. D 

Lemma 3.15. If {fn} is a Cauchy sequence in Aa, then there exists a function f E Aa such 

that fn(x) converges to f(x) pointwise. 

Proof. First we show that such a function does exist and then we demonstrate that it is a 

Aa function. Fix Xo E [0, 1). Then 

lfn(xo)- fm(xo)l::; sup lfn(x)- fm(x)l < llfn- fmlla· 
xe[O,l] 

by Definition 3.3. Since fn is Cauchy, it follows that llfn- !mila -+ 0 when m, n -+ +oo. 

Therefore lfn(xo) - fm(xo)l -+ 0, and {fn(xo)} is a Cauchy sequence of real numbers, so 

there exists a real number J(xo) to which that sequence converges. So fn(x 0 ) -+ J(x0 ) as 

n-+ oo. 

Now we have to show that f E Aa. Let xo, Yo E [0, 1) and Xo =f. Yo· Because of the 

pointwise convergence that we just demonstrated, 

lf(xo)- f(yo)l 1. ( lfn(xo)- fn(Yo)l ) < ( lfn(xo)- fn(Yo)l ) = 1m sup 
lxo- Yola n-+oo lxo- Yola - n lxo- Yola 
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by Definition 3.3 and Lemma 3.14, where M is a constant, independent of x0 and Yo· There-

fore 
sup ( lf(xo)- /(:o)l )~ M < +oo .. 

xo::f.Yo lxo- Yo! 
Therefore, by Definition 2.2 f E Aa. D 

Theorem 3.16. The Big Oh Lipschitz class Aa is a complete metric space with respect to 

the metric in Definition 3.3. 

Proof. According to Definition 3.13 we have to show that every Cauchy sequence {/n} in Aa 

converges to a function f E Aa under the Lipschitz metric. So let {/n} ~ Aa be a Cauchy 

sequence, i.e. 11/n- /mila~ 0. We need to show that 3/ E Aa such that fn ~fin the Aa 

metric, i.e. 11/n - fila ~ 0. 
Let f be the function from Lemma 3.15 and let x', x, y E [0, 1] be such that x =f. y. Then 

by Lemma 3.15 

lfn(x')- f(x')l + l(fn(x)- /(~))- ((n(Y)- J(y))l 
X -y a 

= 2~ ( lfn(x')- fm(x')l + l(fn(x)- fm(~~ ~ Y(,:n(Y)- fm(Y))I )~ 2~ 11/n- /mil, 

SO 11/n- /II ~ lim 11/n- /mil· m-+oo 

Since fn is Cauchy in the Big Oh Lipschitz class Aa, then 11/n- /mila ~ 0. Therefore Aa is 

a complete metric space. D 

Now it is not difficult to show that Aa is also a complete metric space. 

Theorem 3.17. The Little Oh Lipschitz class A a is a complete metric space with respect to 

the metric in Definition 3.3. 

Proof. Again we have to show that every Cauchy sequence {/n} in Aa converges to a function 

f E Aa under the Lipschitz metric. So let {/n} ~ Aa be a Cauchy sequence. We need to 

show that 3/ E Aa such that fn ~fin the Aa metric, i.e. 11/n- fila~ 0. 

Since fn E Aa for Vn, it is certainly true that fn E Aa for Vn. By Theorem 3.16 the given 

sequence converges to a function f E Aa. We will prove that f E Aa. Indeed, we have 

IJ(x)- f(y)l _ IJ(x)- fn(x) + fn(x)- f(y) + fn(Y)- fn(Y)I 
lx- Yla - lx- Yla 

< l(f(x)- fn(x))- (f(y)- fn(Y))I + lfn(x)- fn(Y)I 
- lx- Yla lx- Yla 

< l(f(x)- fn(x))- (f(y)- fn(Y))I + lfn(x)- fn(Y)I 
-~~~ !x-yla lx-yla 

<II/_ f II + lfn(x)- fn(Y)I 
- n a lx- Yla ' 
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since sup l(f(x)- fn(x))- (f(y)- fn(Y))I = ( *) 
x¢y lx- Yla 

is only one part of the metric II/- fnlla· Since llfn- fila -+ 0, given any E > 0, we choose 

an n large enough, so that 

llfn- fila~ f 

and then 
(*) ~ f + lfn(x)- fn(Y)I . 

. lx-yla 

Now take the liiTI.5-+o sup0 <1x-yl<c5 of the last expression. Since fn E ,\a for Vn, the second 

part equals zero, so the limit equals f. But E was chosen arbitrarily, therefore that limit 

equals zero. 

Therefore we have 
lim sup lf(x)- J(y)l = 0, 
6-+0 o<lx-yl<6 lx- Yla 

which means that indeed f E ,\a· D 

We should emphasize here that the completeness properties of C[O, 1], Aa, and ,\a are of 

crucial importance for our investigations in this paper, since they guarantee that the closure 

of any subset of these three classes of functions belongs to the same class. 

4. IDEALS OF CONTINUOUS FUNCTIONS 

In this section we consider the Whitney Theorem (see (4]) for the ideals of the class of m

times continuously differentiable functions em [0, 1]. Since in this paper we are only interested 

in classifying the ideals of the class of continuous functions, we prove only a specific case of 

that theorem, namely when m = 0. 

Before we state the Whitney theorem, we define a certain set J E cm(o, 1]. Again, we use 

the symbol J(i) to denote the ith derivative of the function f. 

Definition 4.1. Let Eo ~ Et ~ · · · ~ Em be closed sets m the interval {0,1}. Define 

J(E0 , E1 , ••• , Em) ~ cm[o, 1] to be the following set: 

J(E0,E~, ... ,Em) = {f E cm(0,1): f(i)IEk = O,k = 0,1,2, ... ,m,Vi,O < i < k}. 

In particular, J(E) = {f E C[O, 1) :fiE = 0}. 

Remark: We note here that J is a closed set in cm(o, 1). The proof requires the use of the 

Leibnitz formula 
n 

(f "gt = L J<i)g(n-j) ( J)' 
i=O 

and we will not present it here, since it is rather tedious and since we refer to the Whitney 

theorem here only to provide the general background for our results. 
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Theorem 4.2. {Whitney) Given any closed ideal I~ cm[o, 1], there exist closed sets Eo ~ 

Et ~ · · · ~Em, such that I= J(Eo, Et, ... , Em), where J is the set in Definition 4.1. 

As we explained above, it is beyond the scope of this paper to present a proof of Whitney's 

theorem. The only reason we mention it here is its significance as a more general result of 

the theorem we are going to prove in this section. Before we proceed, however, we explain 

exactly where the complexity of its proof lies. 

Let I be any closed ideal in cm[o, 1]. It is sufficient to show that there exist closed sets 

Eo~ Et ~···~Em, such that 

(1) I~ J(Eo, Et, ... , Em) 

(2) J(Eo, Et, ... , Em) ~ I 

Let 

Eo= {x: f(x) = O,VJ E I}, 

Et = {x: f(x) = 0, J'(x) = 0, VJ E 1}, 

and in general 

E k = {X : f(i) (X) = 0' 0 :5 i :5 k' v f E I}' 

for all k such that 0 :5 k :5 m. 

Part (1) is not difficult to show. First we note that, since Ek is closed for all k such 

that 0 < k :5 m. Indeed, for any such k, Ek is the intersection of the following sets 

Ao,At, ... ,Ak: Ao = n,eif-1 ({0}), At= n,eiU')-1 ({0}), A2 = n,eiU")-1 ({0}), ... , 
Ak = n/eiU(k))-1 ( {0} ), which, in turn, are intersections of closed sets, since f E em' so 

(J(k)}-1 ( {0}) is closed for all f. 
Now iff E I, it follows that !lEo = 0, !lEt = 0 and !'lEt = 0, etc., so by Definition 4.1, 

f E J(E0 , Et, ... , Em)· Therefore I ~ J(Eo, Et, ... , Em)· Finally, it is obvious that Eo ~ 

Et ~ · · · ~ Em, so part (1) follows. 

It is the proof of part (2) that is much more involved in this general case and is out of 

the scope of our investigations. That is why we only consider the special case m = 0 of the 

Whitney theorem, for which the proof of part (2) is not as complicated. 

We state the special case m = 0 separately to emphasize that it is the main theorem of 

this section. 

Theorem 4.3. Given any closed ideal I ~ C[O, 1], there exists a closed set E such that 

I= J(E), where J(E) is the set in Definition 4.1. 

We will show that given any closed ideal I~ C[O, 1], the set 

E = {x: f(x) = 0, VJ E I} 

is such that I= J(E). 
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Before we present the proof of Theorem 4.3, we shall prove several lemmas, for which we 

need the following important definitions: 

Definition 4.4. The support of a function f : lR -+ lR is defined to be the closure of the set, 

on which f is non-zero, i.e. supp(f) = cl({x: f(x) =f. 0}). 

Example: For instance, if f(x) = xn for n = 1, 2, ... on [0, 1], then supp(f) = cl((O; 1]) = 
[0; 1]. 

Definition 4.5. Given a set A~ [0, 1], we define the distance function v : [0, 1] -+ lR to be 

v(x) = dist(x,A) = infa{lx- al: a E A} for every x E [0, 1]. 

Lemma 4.6. Let A be a subset of [0, 1], and let v( x) = dist( x, A). Then v( x) is nonnegative 

and continuous on [0, 1]. 

Proof. It is clear that v(x) ~ 0, since for any x E [0, 1], v(x) is the greatest lower bound of 

a set of nonnegative numbers lx- al. 

Since A is closed, [0, 1]\A must be open, so it can be written as countable disjoint union 

of open intervals {see Theorem 10.1.9 on p.350 of [1]), i.e. [0,1]\A = U~=1 (an,bn)· To 

establish the continuity of v(x ), for every open interval {an, bn) in [0, 1]\A, define the function 

Vn(x) = dist(x, [0, 1]\{an, bn)). Clearly 

{4.1) 

if X E [0, an] U [bn, 1], 

if X E {an, (an+ bn)/2), 

if X E {{an+ bn)/2, bn)· 

Therefore vn(x) is continuous, since it is continuous at the three joining points and its 

four segments are straight lines. 

Now v(x) = E~=l vn(x). We have that vn(x) E C[O, 1] and lvn(x)l < (bn- an)/2 \lx {since 

vn(x) has its maximum at the midpoint of [an, bn] and Vn((an + bn)/2) = (bn- an)/2). Since 

~ bn - an < ! L{[O 1]) = ! 
LJ 2 - 2 ' 2' n=l 

where L{[O, 1]) = 1 denotes the length of the interval [0, 1], all the conditions of the Weier

strass M-Test (Theorem 2.8) are satisfied, and therefore v(x) is continuous. 0 

Now we define a subset J0 (E) of the set J(E) by 

{4.2) J0 (E) = {g E C[O, 1] : g = 0 on an open neighborhood of E}. 

Indeed, it is clear that J0 (E) S";;; J(E). 
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Lemma 4.7. Let Jo(E) be the set defined in equation ( 4.2) and let I be the closed ideal 

given in Theorem 4.3. Then cl(J0 (E)) ~ I, where the closure is taken with respect to the 

metric on the class of continuous functions from Definition 3.2. 

Proof. Let g E Jo(E), i.e. g E C[O, 1] and g = 0 on an open neighborhood of E. If we show 

that g E I, we will have J0 (E) ~ I, but since I is closed, by Theorem 3.8, we must have 

cl(Jo(E)) ~ I. 

We now show that g E I. Notice that supp(g) n E = 0. To convince ourselves of the 

validity of the last statement, assume that U is the open neighborhood of E, on which 

g = 0 and that there is a point Xo E supp(g) n E. Certainly Xo E u (since Xo E E), so 

by Definition 3.5 there exists an open ball B(x0 , r) C U. But then g = 0 on B(x0 , r) and 

therefore Xo rt supp(g). So indeed supp(g) n E = 0. 
Next we will construct a function w E I such that w = 1 on supp(g). Then we will have 

g = gw E I, since I is an ideal of C[O, 1]. 

Since supp(g) n E = 0, given any x E supp(g ), x Ft E, so there exists a function h E I such 

that h(x) # 0. Since h is continuous, h(x) -:j; 0 on an open neighborhood Gx,h of x. Then 

the set {Gx,h : x E supp(g)} is an open cover for supp(g). But supp(g) is compact (since it 

is closed and bounded), therefore there exists a finite subcover 

containing supp(g). The functions ht, h2 , ••• , hn E I and they do not vanish simultaneously 

at any point of supp(g). (If they did vanish at some x0 E supp(g), then x0 Ft Q, so g would 

not be a subcover for supp(g).) Notice that hi E I and, since I is an ideal, ht E I for all 

i such that 0 :5 i :5 n and therefore, the continuous function u = h~ + h~ + · · · + h~ E I. 

Therefore u E I and u # 0 for all x E supp(g), so note that if u(x) = 0 then x Ft supp(g), 

since then the functions ht, h2, ••• , hn vanish simultaneously at x. 

Now we will define a non-negative function v E C[O, 1] such that 

(1) v = 0 on supp(g) and 

(2) v(x) # 0 whenever u(x) = 0. 

Let v(x) = dist(x,supp(g)). By Lemma4.6, v(x) ~ O,'v'x and is continuous. In addition, 

for any x E supp(g), we have that dist(x,supp(g)) = 0, so v(x) = 0 on supp(g). Finally, as 

noted above, u(x) = 0 implies x Ft supp(g), so v(x) # 0. Thus the function v(x) satisfies all 

conditions that we wanted imposed on it. 

Now it is easy to see that the function 1/(u + v) E C[O, 1], since u + v # 0 (u and v are 

never equal to zero simultaneously). Therefore, since u E I, we have uf(u + v) E I. Now 

let w = uf(u + v). If x E supp(g), then v(x) = 0 and u(x) # 0, so w(x) = 1. Therefore, 

g = wg E I since I is an ideal, and this completes the proof of the lemma. D 



LIPSCHITZ CLASSES 15 

Lemma 4.8. Let f E C[O, 1]. For all x E IR, define f+(x) = max[f(x), 0] and f_(x) = 

min[f(x),O]. Then f = f+ + f- and both f+ and f- are continuous. 

Proof. First we notice that for any given x: 

If f(x) < 0, then f+(x) = max[f(x), 0] = 0 and f_(x) = min[f(x), 0] = f(x). 

If f(x) > 0, then f+(x) = max[f(x), 0] = f(x) and f_(x) = min[f(x), 0] = 0. 

If f(x) = 0, then f+(x) = max[f(x), 0] = 0 and f_(x) = min[f(x), 0] = 0. 

In any case, f = f+ + f-· 
To show that the two functions are continuous, we notice that 

(4.3) f ( ) _ f(x) + lf(x)l h"l f ( ) _ f(x) -lf(x)l +x-
2 

,wte_x-
2 

. 

Since 1/1 is continuous whenever f is continuous (this follows from a simple application 

of the backward triangle inequality), we have that both f+ and f- are continuous, since 

f E C[O, 1]. 0 

Given a function f E C[O, 1], we define the following sequence of continuous functions 

{Fn}, for n EN: 
1 1 

Fn = (!+- -)+ + U- + -)_. 
n n 

Lemma 4.9. Iff E J(E), then Fn E Jo(E), \In EN. 

Proof. By several applications of Lemma 4.8, it follows that Fn is continuous. Now for every 

n EN define the open set En = {x: - 2~ < f(x) < 2~}. Clearly E ~En, since f E J(E). 

We claim that Fn = 0 on En. Indeed, for any x E En we have 

f+(x) < 2~ ===> f+(x)- ~ < 0, and 

J_(x) > - 2
1
n ===> J_(x) + ~ > 0, so 

Fn(x) = (f+(x)- ~)+ + (J_(x) + ~)- = 0 + 0 = 0. 
Therefore Fn = 0 on En, which means that for every n, Fn = 0 on a neighborhood En of 

E, so Fn E Jo(E). 0 

Lemma 4.10. If {Fn} is the sequence defined above, then limn-+oo Fn = f in C[O, 1]. 

Proof. We will show that (!+ - ~)+ --+ f+ and U- + ~)- --+ f- in the C[O, 1] metric as 

n --+ oo. Then, by the triangle inequality it will follow that Fn--+ f+ + f- = f as n --+ oo. 

We will only prove the first part, i.e. that (!+- ~)+ --+ f+, since the second part can be 

shown in an analogous way. Since f + ~ 0, assume that f > 0 to show (! - ~ )+ --+ f in 

C[O, 1]. We have 

_ ~ x = {f(x)- ~ if f(x)- ~ > 0, 
(! n)+() o iff(x)-~::;o. 

Case 1: If xis such that f(x)- ~ > 0, then I(!.- ~)+(x)- f(x)l = IJ(x)- ~- f(x)l = ~· 
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Case 2: If xis such that f(x)- * :50, then I{!- *)+(x)- f(x)l = IO- f(x)l = lf(x)l = 
J(x) < *· 

In either case I{!- *)+(x)- f(x)l :5 *'therefore as n--. oo, (!-*)+--.fin the metric 
of C[O, 1]. D 

Now we are able to present the proof of our main theorem in this section: 

Proof of Theorem 4.3. Analogously to Theorem 4.2, let I be any closed ideal in C[O, 1]. 

It is sufficient to show that there exists a closed set E, such that 

(1) I~ J(E), and 

(2) J(E) ~I 

Let E = {x: f(x) = O,VJ E I}. 
Part (1) is again quite obvious. E = {x: f(x) = O,VJ E I}= n1e1 f-1 ({0}), so E 

is the intersection of closed sets, therefore it must be a closed set itself. Furthermore, by 

Definition 4.1, J(E) = {/ E C[O, 1] : /IE = 0}, so for any f E I, fiE = 0 and therefore 

f E J(E). Thus f E I implies f E J(E), or I~ J(E). 
Now it remains to show part (2), namely that J(E) ~ I. We will proceed as follows. 

Consider the set J0 (E) = {g E C[O, 1] : g = 0 on an open neighborhood of E}. By 

Lemma 4.7 it follows that 

(4.4) cl(Jo(E)) ~I, 

where the closure is taken with respect to the norm on the class of continuous functions. 

Now we will show that 

(4.5) J(E) ~ cl(Jo(E)), 

and then from (4.4) and (4.5) above it will follow that J(E) ~I, which is exactly what we 

need to prove. So we proceed to show that indeed J(E) ~ cl(Jo(E)). 
Let f E J(E) and consider the sequence of continuous functions {Fn}, defined by 

1 1 
Fn = (!+-- )+ + U- +-)-for n EN. 

n n 

By Lemma 4.9 Fn E J0 (E), Vn E N and by Lemma 4.10 Fn --. f in C[O, 1]. Therefore 

f E cl(J0 (E)), so J(E) ~ cl(J0(E)). Therefore J(E) ~I, and the proof is complete. D 

5. IDEALS OF THE LIPSCHITZ CLASSES 

In this section we show that the classification of Section 4 applies to the functions of the 

Little Oh Lipschitz class Aa as well. We state th.e analog of Theorem 4.3 for .Aa: 
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Theorem 5.1. Given any closed ideal I in the Little Oh Lipschitz class Aa, there exists a 

closed set E, such that I= J(E), where J(E) = {/ E Aa: fiE= 0}. 

Rather than writing out the entire proof of Theorem 5.1, we shall focus our attention 

on those specific parts of the argument of Section 4 that do not follow directly if C[O, 1] is 

substituted by Aa, while only referring to Section 4 whenever the argument there applies to 

the Little Oh Lipschitz class in a straightforward manner. 

Proof of Theorem 5.1. The first difficulty with the method applied in the previous section 

is that the distance function v(x ), in Definition 4.5, does not seem to belong to the Little 

Oh Lipschitz class, so it cannot be used in the same way as before. Therefore, in the proof 

of the following lemma we define a new function v and show that v E Aa. 

Lemma 5.2. Given a closed set A ~ [0, 1], there exists a function v E Aa, such that 

v-1 ( {0}) =A, i.e v = 0 only on A and nowhere else. 

Proof. First consider the function f : lR --... IR, defined by 

(5.1) 
. { 1 1 e- (z-a)2 - (z-b)2 for X E [0 1]\A 

J(x) = ' ' 
0 otherwise, 

where a < x < b. The maximum off is achieved at the midpoint of the interval x = (a+ b) /2 

and 

(
b+a) 8 8 J -2- = e -(b-a)2 ===} J(x):::; e -(b-a)2 'Vx. 

We now define a sequence of functions {fn(x)} by 

where, as before, U~=1 (an, bn) = [0, 1]\A, so 0 :::; an, bn :::; 1 and an < bn for all n. An easy 

computation using L'Hopital's Rule shows that fn E C 00
• 

8 

We showed above that fn(x) is bounded bye (bn-anl
2

, which is a constant for all n, so we 

have 

lfn(x)l =I e -(z-!n)2-(z-~n)21:::; I e (bn~an)2 I= Mn, Vx. 

First, we will use the Weierstrass M-test to show that the series 2::::~= 1 fn(x) is a continuous 

function on [0,1], so we need to show that 2::::~= 1 Mn is finite. Indeed, since ex > x for all 

x > 1 it follows that e-x< l/x and therefore 

8 ( bn - an) 2 < bn - an 
e- (bn-an)2 < 8 . - 8 ' 
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since bn - an :::; 1. Therefore for all n 

8 b -a Mn = e (bn-an>:z < n n 
8 

since E~(bn- an) :::; 1. So the sum En=l Mn is bounded and therefore by the Weierstrass 

M-test (Theorem 2.8) the series E~=l fn(x) is a continuous function. 

Now we compute the derivative of fn(x) to get 

IJ'(x)l=( 2 + 2 )e-(z~a):z-( ... ~b)2. 
n (x- an)3 (x- bn)3 

Let Bn = max{n2,supxe(an,bn) IJ~(x)l} and let M~ = 1/B~. Then \/x E IR, 

IM~J~(x)l:::; M~IIJ~(x)ll:::; M~Bn = B\Bn = B
1 

:::; ~· 
n n n 

Therefore E~=I M~f~ ( x) converges uniformly. 

Define the function v(x) = E~=I M~fn(x). We have that 

8 1 8 1 IM' f (x)l < M' e (bn-an)2 < -e (bn-an)2 :::; -4, 
n n - n - n4 n 

and E~=I ,;. converges. Therefore, by Theorem 2.9, vis differentiable on the interval (0,1). 

But by Lemma 2.3 it follows that v E Aa. 
It is also clear that v is identically equal to zero only on A and nowhere else, therefore it 

satisfies all the conditions imposed on it. 0 

Now, using the function v(x) from Lemma 5.2, we can prove the analog of Lemma 4.7. 

We present the proof of the lemma in its entirety, in spite of the fact that it is completely 

analogous to the one in the previous section. 

Lemma 5.3. Let J0 (E) = {g E Aa : g = 0 on an open neighborhood of E}. Then 

cl(J0 (E)) ~ I, where the closure is taken with respect to the norm on the Little Oh Lip

schitz class. 

Proof. Again, it is clear that Jo(E) ~ J(E). Let g E Jo(E), i.e. g E Aa and g = 0 on an 

open neighborhood of E. If we show that g E I, we will have Jo(E) ~ I, but since I is 

closed, we must have cl(J0(E)) ~I. 
We now show that g E I. Again, notice that supp(g)nE = 0. We will construct a function 

wE I such that w = 1 on supp(g). Then we will have g = gw E I, since I is an ideal of Aa. 

Since supp(g) n E = 0, given any x E supp(g), x rf. E, so there exists a function h E I 
such that h( x) =f. 0. Since h E Aa and therefore is continuous, h( x) =f. 0 on a neighborhood 

Gx,h of x. Then the set { Gx,h : x E supp(g)} is an open cover for supp(g). But supp(g) is 

compact (since it is closed and bounded), therefore there exists a finite subcover 
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containing supp(9). The functions h1 , h2 , ••• , hn E I and they do not vanish simultaneously 

at any point of supp(9). (If they did vanish at some x0 E supp(9), then x0 ¢ y, so g would 

not be a subcover for supp(9).) Notice that hi E I and, since I is an ideal, h~ E I for all i 

such that 1 ~ i ~ n and therefore, u = h~ + h~ + · · · + h! is a Little Oh Lipschitz function 
that belongs to I. Therefore u E I and u =F 0 for all x E supp(9), so note that if u(x) = 0 

then x ¢ supp(9), since then the functions ht, h2 , ••• , hn vanish simultaneously at x. 

Now we will define a non-negative function v E Aa such that 

(1) v = 0 on supp(9) and 

(2) v(x) =F 0 whenever u(x) = 0. 

Let v be the function in Lemma 5.2, and let A= supp(9). By Lemma 5.2, v(x) 2:: 0, Vx 
and v(x) E Aa. In addition, for any x E supp(9), v(x) = 0. Finally, as noted above, u(x) = 0 

implies x ¢ supp(9), so v( x) =F 0. Thus the function v( x) satisfies all conditions that we 

wanted imposed on it. 

Now it is easy to see that the function 1/(u + v) E Aa, since u + v =F 0 (u and v are 

never equal to zero simultaneously). Therefore, since u E I, we have uf(u + v) E I. Now 

let w = uf(u + v). If x E supp(9), then v(x) = 0 and u(x) =F 0, so w(x) = 1. Therefore 

9 = w9 E I since I is an ideal, and this completes the proof of the lemma. 0 

The next step is the analog of Lemma 4.8, the proof of which is the same as in the previous 

section. We only need to use the following fact: 

Lemma 5.4. Iff E Aa, then l/1 E Aa. 

Proof. From the backward triangle inequality 1111 - 191 ~~ If- 91 and from the fact that 

f E Aa, we have 

llfl(x) -lfl(Y) I < lf(x)- f(y)l 
lx-yla - lx-yla ' 

therefore 

lim sup IIJI(x) -1/I(Y) I <lim sup lf(x)- f(y)l = 0. 
5-+0o<lx-yl<c5 lx- Yla - 5--+00<Ix-yl<c5 lx- yja 

Since the first limit above cannot be negative, it follows that it equals zero. Therefore 

1/1 E Aa• 0 

Now in a similar fashion as before, given a function f E Aa, we define the following 

sequence of Little Oh Lipschitz functions {Fn}, for n EN: 

1 1 
Fn = (!+- -)+ + U- + -)_. 

n n 

Note that by equation (4.3) and Lemma 5.4, Fn E Aa, Vn. 

Lemma 5.5. Iff E J(E), then Fn E Jo(E), Vn-E N. 
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The proof is strictly analogous to the proof of Lemma 4.9, since f is still a continuous 

function in this case. 

The proof of the following lemma, however, is not analogous to the corresponding proof 

in Section 4. Before we present the new proof, we need to establish the following fact: 

Lemma 5.6. Let {an} be a sequence of numbers with the following property: Given any 

subsequence {an~;} of {an}, there exists a further subsequence {ankm}, which converges to 

zero. Then an~ 0. 

Proof. Suppose that a sequence {an} has the given property, but does not converge to zero. 

Then there exists a subsequence {I an~; I} bounded away from zero. But by hypothesis, there 

exists a further subsequence { ankm} that converges to zero and this is a contradiction. 0 

Remark: Note that if a function g E ;\,0 then lg(x)-g(y)l = o(lx-yla) and so the function 

H(x,y) = lx-y!<> ' 
{ 

lg(x)-g(y)l if X "!- Y 

0 if X= y 

is continuous on [0, 1]. Note that this is not true when g E Aa. 

Now we are ready to prove the analogous lemma: 

Lemma 5.7. If {Fn} is the sequence defined above, then limn--+oo Fn =fin Aa. 

Proof. Similarly to the parallel proof of the previous section, we will show that(!+-~)+~ 

f+ and U- + ~)- ~ f- as n ~ oo. Then it will follow that Fn ~ f+ + f- = f as n ~ oo. 

Again, we will only prove the first part, i.e. that (!+- ~)+ ~ f+, since the second part can 

be shown in an analogous way. Since f+;:::: 0, assume that f;:::: 0 to show fn = (!- ~)+ ~ f 

in Aa. 
First we note that fn = (!- ~)+ = max[O,f- ~] = ~(J(x)- ~ + lf(x)- ~1), so 

(!- ~)+ E Aa. 
To show that fn ~fin the Aa metric, we recall that 

llfn- Jll>.a = sup lfn(x)- f(x)l +sup I(Jn(x)- f(x))- (:n(Y)- f(y))l. 
xe[O,l] x::f;y lx- Yl 

We have already demonstrated that the first part of the above metric supxe[o,t]lfn(x)

f(x)l converges to zero as n ~ oo (see Lemma 4.10). It remains to show that the second 

part, namely 
sup l(fn(x)- f(x))- (:n(Y)- f(y))l =sup(*) 
x-:f:.y lx- Yl #y 

also converges to zero as n ~ oo. 

This time we consider four different ca.Ses for (x, y ). So let 

1 1 
A(n) = {(x,y): f(x)- ;. ;:::: O,f(y)-;;:::: 0}, 
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1 1 
B(n) = {(x,y): f(x)-- :5 O,J(y)-- :50}, 

n n 

1 1 
C(n) = {(x,y): f(x)-- ~ O,J(y)-- :50}, 

n n 

1 1 
D(n) = {(x, y) : J(x)-- :50, J(y)-- ~ 0}. 

n n 
Since 

sup(*)= sup (*), 
x¢y x¢y 

AUBUCUD 

it suffices to show that each of the four suprema converges to zero as n ~ oo. Since there is 

a symmetry between C and D, we only need to consider three cases, for A, B and C only: 

Case 1: On A(n), x andy are such that f(x)-~ ~ 0 and f(y)-~ > 0, so fn(x) = J(x)-~ 

and fn(Y) = f(y)- ~· Then it follows that 

sup l(fn(x)- f(x))- (fn(Y)- f(y))l = l(f(x)- ~- f(x))- (f(y)- ~- f(y))l = O. 
A(n) lx- Yla lx- Yla · 

Case 2: On B(n), x and y are such that f(x)- ~ :5 0 and f(y)- ~ :5 0, so fn(x) = 

fn(Y) = 0. Then by the remark preceding this lemma it follows that 

sup l(fn(x)- f(x))- Un(Y)- f(y))l =sup IJ(x)- f(y)l = IJ(xn)- f(Yn)l = (**), 
B(n) lx- Yla B(n) lx- Yla lxn- Ynla 

for some (xn,Yn) E B(n), since B(n) is compact and f E Aa. Given any subsequence 

{xn,. - Yn,.}, either lxn,. - Yn,.l ~ 0, in which case (**) ~ 0, or there exists a further 

subsequence lxn,.m - Yn,.m I ~ 8 > 0, i.e. bounded away from zero. But then ( **) still goes to 

zero, smce 

So by Lemma5.7 supB(n)(**) ~ 0. 

Case 3: On C(n), x andy are such that f(x)-~ ~ 0 and J(y)-~ :50, so fn(x) = f(x)-~ 

and fn(Y) = 0. Then again by the remark above it follows that 

l(fn(x)- f(x))- Un(Y)- f(y))l 1- f(x)- (f(y)- ~- f(n)l 
~ =~ = 
C(n) lx- Yla C(n) lx- Yla 

_ IJ(x)- ~~ _ IJ(xn)- ~~ _ (* * *) 
-sup - I - , 

C(n) lx- Yla lxn- Yn a 

for some (xn,Yn) E C(n). Note that 

lf(x)- ~~ < lf(x)- f(y)l 
lx- Yla - ·1x- Yla . 
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Now let { Xn,. - Yn,.} be any subsequence. Then either lxn,. - Yn,. I ---+ 0, in which case we 

have SUPc(n) ( * * *) ---+ 0, or there exists a further subsequence lxn,.m - Xn,.m I ~ 8 > 0, i.e. 
bounded away from zero. But then 

_1_ + _1_ 

sup(* * *) ::::; nkm nkm ---+ 0. 
C(n) 8 

Therefore in any case the supremum approaches zero, so it follows that {!- ~)+ ---+ f as 

n---+ oo, and this completes the proof. D 

Now that we have shown that all the analogous lemmas (with the adjustments we have 

made), still hold for the Little Oh Lipschitz class Acn the central theorem of this section 

follows in precisely the same way as before, so we can consider its proof complete. D 

As the reader might have observed, at several critical points in this paper we have used the 

fact that Aa (as opposed to A a) has been the class of functions under consideration. We do 

not see how to overcome these serious difficulties in the attempt to classify the closed ideals 

of the Big Oh Lipschitz class. In fact, this leads to the conjecture that our main theorem 

{Theorem 5.1) is false for Aa. 
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