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Abstract

Difference sets are mathematical structures which arise in algebra and com-
binatorics, with applications in coding theory. The fundamental question
is when and how one can construct difference sets. This largely expository .
paper looks at standard construction methods and describes recent findings
that resulted in new families of difference sets. This paper provides explicit
examples of difference sets that arise from the recent constructions. By gain-
ing a thorough understanding of these new techniques, it may be possible to
generalize the results to find additional new families of difference sets. The
paper also introduces partial and relative difference sets and discusses how
the three types of difference sets relate to other combinatorial structures such

as block designs‘ and certain strongly regular graphs.
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1 Introduction

We introduce difference sets by showing their connections to mathematical
designs. We describe known construction techniques and examine recent
results that produced new families of difference sets. In Section 2, we in-
troduce incidence structures, balanced incomplete block designs, and sym-
metric designs. In Section 3, we define difference sets and show how they
relate to designs through the development of a difference set. Some tools
from character theory are explained in Section 4, and the results presented
therein are used for the balance of the paper. We focus on existence and
construction methods in Section 5: We explain the group ring equation and
McFarland’s construction. An equivalence between partial difference sets and
certain strongly regular graphs is presented in Section 6. The equivalence
is important because it allows new results in one area to be applied to the
other areas. We describe Hadamard matrices, designs, and difference sets in
Section 7. The recent results of Wilson and Xiang are examined in Section
8. Section 9 shows how Chen built on Wilson and Xiang’s results to form a

new family of difference sets known as generalized Hadamard difference sets.

2 Designs

Problems in combinatorics often involve arranging objects into a given num-
ber of sets, with various constraints governing how the objects are assigned

to the sets. Incidence systems are the combinatorial structures that formalize



this problem. Design theory is an area of discrete mathematics that is fun-
damentally concerned with questions relating to such incidence structures.
Design theory has applications in Communications, Engineering, Optimiza-
tion, Statistical Planning, Computer Science, and Signal Processing [1].

We begin this section with a general definition of an incidence structure.

Definition 2.1 [1] Anincidence structure is an ordered triple (V, B, I) where

V and B are two disjoint sets and I is a binary relation between V and B.

In general, we call the elements of V' points and call the elements of B
blocks. The relation I can be interpreted as a set of ordered pairs (p, B)
where point p is then said to be incident with block B. Alternatively, say
that point p lies on the block B. Therefore, incidence structures are arrays of
points (or objects) and blocks, along with an incidence relation that describes
which points belong to which blocks.

Our first example of an incidence structure will prove important for the

balance of this paper.

Example 2.1 LetV ={0,1,2,3,4,5,6} be the set of points and B={{0, 1, 3},
{1,2,4}, {2,3,5}, {3,4,6}, {4,5,0}, {5,6,1}, {6,0,2}} be the set of seven

blocks. The incidence relation I is membership in a block.

While incidence structures are the building blocks for many combinatorial

problems, imposing additional constraints on the points and blocks usually



yields more interesting results. One of the fundamental incidence systems is

the balanced incomplete block design.

Definition 2.2 A balanced incomplete block design (BIBD) is an arrange-
ment of v distinct points into b blocks such that each block contains ezactly k
distinct points, each point occurs in exactly r different blocks. Furthermore,

every pair of distinct points occurs together in ezactly A blocks.

Clearly, the incidence structure in Example 2.1 is also a BIBD with pa-
rametersv =7,b="7,k =3, r = 3, A = 1. There are seven points and seven
blocks. Each block contains three points. Each point lies in exactly three
blocks. Every pair of points is found in exactly one block. For example, the
pair of points 0 and 1 is found only in the first block.

This example is commonly known the Fano plane drawn in Figure 1. In
this interpretation, V consists of the seven points labelled 0 through 6, and
B consists of the six straight lines together with the circle. This geometric
illustration clearly shows that each point is incident with three lines (where
the circle is interpreted as a “line”), and each line is incident with three

points.



Figure 1.

In a BIBD (b,v,r, k, ), bk = vr and r(k—1)=A(v—1). BIBD’s are called
symmetric (v, k, A)-designs when v = b and k£ = r. The Fano plane represents

a symmetric design.

3 Difference sets

Difference sets are mathematical structures that are closely related to sym-

metric designs.



Definition 3.1 Let G be an additive group of orderv. A k-subset D C G isa
(v, k, X)-difference set if the set differences {dy —dy = g | d;,ds € D, and g €
G} contains each non-identity element g € G ezxactly A times and contains

the identity element g = 0 ezactly k times.

An analogous definition exists for multiplicative groups. Clearly, A(v —
1) = k(k — 1), and to avoid trivial difference sets, we require that 1 < k <

v—1.

Example 3.1 The 3-set {1,2,4} in Z; forms a (7,3, 1)-difference set. To see
that this indeed forms a difference set, we write out the differences explicitly.

2-1=1,4-2=2,4-1=3,1-4=4,2-4=5,1-2=6

The above example is related to the symmetric (7, 3, 1)-design represented
by the Fano plane of Figure 1. The difference set D is equivalent to one of the
blocks in this design. In general, any block of a symmetric (v, k, A)-design is

a (v, k, \)-difference set in the group consisting of the points of the design.
Example 3.2 The 15-set
{(1,1),(2,2),(3,3), (4,4), (5,5),

0,1),(0,2),(0,3),(0,4), (0,5),

(1,0),(2,0),(3,0), (4,0),(5,0)}

is a (36, 15, 6)-difference set in Zg X Zg.



Example 3.3 Let G be the group of order 21 defined by a® = b" = 1, and
a~'ba = b*. Then the set {a,a?,b,1? b} is a (21,5, 1)-difference set.

Example 3.3 above shows that GG need not be abelian, however this paper

will focus on difference sets in abelian groups.

3.1 The Development of D

The concept of the development of a difference set is fundamental for under-

standing the connection between difference sets and symmetric designs.

Definition 3.2 Let G be a group of order v. For any subset S C G, and for
any g € G, we denote the translate, or shift, of S by g as S+g= {z+g|z €
S}.

In other words, the translate of a subset S is obtained by adding a par-

ticular element of the group G to each element in S.

Definition 3.3 [1] Let G be any finite group and D be a non-empty subset of
G. Then, the incidence structure devD = (G, B, €) with B = {D+z : z € G}

and € the set membership relation is called the development of D.

Obviously, devD = dev(D +a) for any a € G. The development of D has
points that are elements of a group G, blocks that are the translates of D,

and the incidence relation is membership of a group element in a translate.



Example 3.4 Let G= Z7 and D = {1,2,4}. Choose g = 1, and look at the

translates of D. We list them beginning with D:
{1,2,4},{2,3,5},{3,4, 6}, {4,5,0}, {5,6,1}, {6,0,2}, {0, 1, 3}
This list is equal to the devD.

Notice that the dev(D) in Example 3.4 is equivalent to the design in
Example 2.1 which is represented by the Fano plane of Figure 1. We have seen
that the line in the Fano plane containing points {1,2,4} forms a difference
set. Now, we see that the other lines are the translates of this difference set,
and it is easy to verify that each is a difference set. In fact, a subset D of a
group G is a difference set if and only if every translate of D is a difference
set. We can now view this symmetric (v, k, A)-design as the development of
D = {1,2,4} and it is clear that difference sets are the building blocks of
symmetric designs. In general, if the development of D forms a symmetric
(v, k, A)-design, then D is a (v, k, A)-difference set.

We note that using difference sets to represent symmetric designs is often
preferable due to the simplicity of required notation. Instead of listing each
block in a symmetric design, we need only give the group G and one block.

The reader can then take translates of the block to form the design.

4 Character Theory

Character theory is a branch of mathematics that has applications in finite

geometry, and its tools are particularly useful when working with difference
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sets.

Definition 4.1 A character x s a homomorphism from an additive abelian
group G of order m to the cyclotomic field Q(v), where v is an m-th root
of unity. The principal character xo is the homomorphism that maps all

elements to the identity.

Key results from character theory that are used when working with dif-
ference sets are stated below as theorems.

For any set A, let x(A) = Y qea Xx(a).

Theorem 4.1 Let A be some set in a group G. Then x(A) = 0 for all

nonprincipal characters if and only if A =G.

Let x(D) = Y 4ep x(d), where x(d) represents the complex conjugate of

x(d).

Theorem 4.2 For all nonprincipal characters x, |x(D)| = vk — X if and
only if D is a (v, k, \)-difference set.

Since x is a homomorphism, x(—g) = x(g), and thus it follows from the

above theorem that

XD)X(DTH| =k = A

when D is a difference set. For large examples, computing characters is much

quicker than other methods used to verify difference sets.



Example 4.1 The set D =<z*>Uz <y?>Uy < z?y? > is a (16,6,2)-
difference set in Zy x Zy = {z,y| z* = y* = zyz~ly~1 = 1}.

We must show that |x(DD™')| = k—\. If suffices to compute x({1, 72, z,
zy?y , T2y3}). Since x is a homomorphism, (x(z))* = x(z*) = 1. So,
and y must each get mapped to 1, -1, i, or —i. In other words, all x take

z — i and y — i*. We consider the following four cases.
1. 7 odd, k odd
2. 7 even, k odd
3. j odd, k even
4. j even, k even

We work through the first case. Suppose x(x) = i**! and x(y) = 1#™*1.

Consider the character sum over the first subgroup:

x(<#®>) = x(1)+ x(«?)

— 1+(i2n+1)2

= 1 +i4n+2
= 1-1
= 0.

Consider the character sum on the second coset:



X<y’ >) = x(=)+x(=y?)

_ 7;2n+1 +,L'2n+l(i2m+l)2
— ,[:2n+1(l + i4m+2)

= @1 -1)

= 0.
Finally, the character sum on the third coset yields:

x(y <z®?>) = x(y)+ x(z*°)
o ,[:2m+]+(i2n+1)2(i2m+1)2(i2m+1)

= P (-1)(-D)

— 21',2m+1
= =42

In total, we see that all characters in Case 1 will act on the set D =< 2% >
Uz <y?>Uy<z*y? > to give character sum with absolute value 2.
The other three cases are similar, but note that in Case 4 if z and y both

get mapped to 1, then this is the principal character, and the character sum

is | D|.

This example show that when considering a large set D, we can check
many characters at once by using cases. This method proves preferable for

sets D with large order.
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5 Constructing Difference Sets

Until this point, the examples of difference sets have been fairly simple, be-
cause with groups of such small order, brute force methods may produce
difference sets. However, when looking at groups of large order, it is neces-
sary to have organized methods for constructing difference sets. Recall the
fundamental question: When and how can we construct a difference set?
Methods exist for checking if a difference set can exist within a group and
for extracting the appropriate subset from the group. We now examine some
established methods, and we later describe recent results that uncover new

families of difference sets.
5.1 The group ring equation

The existence of a difference set is equivalent to the existence of a solution
to a certain algebraic equation in a group ring. Throughout this section, we
use the notation of [5] which is appropriate for abelian groups and highlights
the analogy with polynomials.

Let R be a commutative ring with unity and G be a finite abelian group,

written additively. The group ring R[G] consists of all formal sums

A= Z (ag27),

g€

where a, € R for each g € G. Note that z is simply a place holder. From
the identification of g € GG with a, € R, it follows that the elements of the

group ring are in one-to-one correspondence with mappings G — R.

11



Addition and scalar multiplication are defined in the natural way 5]

Z(ag:c-") + Z(ngg) = Z((ag + bg)wg),

e geG 9cG

e (a,29) = Z (cag)z9).

geG geG
Multiplication in the group ring R[G] is defined by [5]

> (ag2?) 3 (bya?) = 3( 3, ((anbw)s?).

9eG 9€G 9€G hth'=g
Example 5.1 Let G be the additive group Z,. The elements of the group
ring R[Z,] are the formal sums Y221 (r;z?) where ezponents are modulo v.
The group ring is therefore isomorphic to the factor ring R[z)/(z® — 1) of the

polynomial ring R[z].

When using group rings as a tool for difference sets, we are primarily
interested in group rings over the integers Z[G]. For a subset A C G, we
define an element A(z) of Z[G] by

A(z) = ) (z9).

geEA

Clearly, G(z) = ¥yeq(9). Alternatively, we write A(z) € Z[G] as

A(z) = 3_(ay2%),

geG

where ay = 0 when a, ¢ A, and a, = 1 otherwise. We now define A(z~!) by

A(z™") = Y (a,z79).

geG

12



Theorem 5.1 For a k-subset D of a group G of order v, D is a (v,k, A)-

difference set in G if and only if the equation
D(z)D(z7") = (k — A) + A\G()
has a solution in the group ring Z(G).

Example 5.2 We return to our familiar (7,8,1) difference set in Z;. We
will write out the factors of the group ring equation separately, and then
show that there is indeed a solution to this equation. We have, G = Z; and
D =1{1,2,4}.

D(z) = 2! + 2% + o*

Dz VY=z'+z24+27*=12%+ 2%+ 2% (ezponents modulo 7)

Clearly D(z)D(z7!) = 22°+ (20 + 2! + 22+ 2® + 2t +2° +2°%) = 24+ 1G(z). So,
D(z) satisfies the group ring equation, confirming our earlier computations

that {1,2,4} forms a (7,3, 1)-difference set in Z;.

This method is clearly more efficient than writing out a list of differences.
Choosing between the use of the group ring equation and the use of character

theory depends on the given problem.

5.2 Hyperplanes and Normal Subgroups

So far, we have focused on difference sets in cyclic or elementary abelian
groups. There are also construction methods and existence theorems specif-

ically for groups that are neither elementary abelian nor cyclic. We present

13



a family of difference sets due to R. McFarland, who proved their exis-
tence in 1973. McFarland difference set are constructed using cosets of hy-
perplanes of elementary abelian p-groups (groups which are isomorphic to
Zp X Zy X +++ X Zy). We will think of a hyperplane of an elementary abelian

group of order p?*! as a subgroup of order p?.

Theorem 5.2 [1] Let q be a prime power, r a natural number, and K any
group of order 1+ (¢"™' ~1)/(¢q—=1)=q¢ + ¢ ' +...+ g+ 2. Then there

exists a (v, k, A) difference set D where
v = ¢"K]|
k = ¢ (K|-1) and
A= ¢ -1)/(g-1)
in G = FEA(¢"™) x K, where EA(q"™) denotes the elementary abelian sub-

group of order ¢"+1.

Some examples of McFarland parameters are (16,6,2), (45,12,3), and
(441, 56, 7).

Lemma 5.1 Let G be a group with a normal elementary abelian subgroup
N = Zy X ZyX...X Zy where |N| =21, Then G/N has a (|G/N|,|G/N| -
1,|G/N| — 2)- difference set.

We will prove McFarland’s construction with the help of Lemma 5.1 for

the case where ¢ = 2. The proof generalizes for g equal to any prime power.

14



We now restate Theorem 5.2 with ¢ = 2, using the fact that EAQ2™) =

r+1
Z5+1,

Theorem 5.3 Let K be a group of order 27+! | and let NG be an elementary
abelian subgroup of order 2+, Then there exists a (2272, 92r+1 _or 227 - 9r)-

difference set D in G = Z3*! x K.

PROOF: We first remark that |G/N| = 27F1. Let K = {ki, ky, ..., kyr+1} s0
{kiN,EkaN, ..., kor+1 N} are the distinct cosets of N. Let {kiN, kN, ... kyrv1_ N}
be the cosets whose leaders we arbitrarily chose to form D = Z?:il-l k:H;,
where H; , for each i, denotes a hyperplane.

Performing group ring computations on D gives the following.

2r+lg v+l

D(z)D(z™") = > @ 3 ) Y @Y @)

hscH; =1 hs€H;

For notational convenience, let the group ring element 2 ohecH; zhs be repre-
sented by H;(z). We can break this into two pieces, the first piece deals with
the case i = j for i between 1 and 2"+! — 1, and the second piece deals with
the case 7 # j for ¢ between 1 and 2"+! — 1. In the first sum, we have taken
advantage of the fact that H;(z)H;(z~!) = |H;|H;(z). In the second sum, we
have used the fact that H;(z)H;(z) = 1| H;|N ().

D(z)D(z ') = |Hj 2T+Z_l kiH;(z)k: ' + J—gﬂ ZkiN(x)kj‘l.

i=1 i#j

15



Now, substituting for the given values and using the fact that N is normal,
we get:
PAREES!
D(@)D(z™')=2" ) Hi(z)+2"7') aia;'N(z).
i=1 i£j
Consider the first sum. By a counting argument, every non-identity el-

ement of NV appears in 2" — 1 hyperplanes, and so the first sum gives every
non-identity element of NV 2" — 1 times. Further, this sum gives the identity
element 27! — 1 times since the identity is contained in each hyperplane.
The first sum gives 2"{(2" — 1)(N — 1g) + (1¢)(2""' — 1)}, where 1 denotes
the identity element.

Now, consider the second sum. Since {k;N,k;N, ... kyr+1_;N} forms a
(2r+1, 27+ — 1,27+ — 2)difference set D' in G/N = {k,N,kyN, ... koyrs1N}
(by Lemma 5.1), k;k; 'N gives each element kN € G/N, (for k ¢ N since
i # j and inverses are unique), 2"t! — 2 times, using the multiplicative
definition of a difference set.

So, the second sum reduces to 2" 1(2" ! —2)(kyN + ko N+ + -+ kyr+1_1) N,
where k; ¢ N. Consider the union of these cosets. Since a disjoint union
of all cosets of normal subgroup is the whole group, and since this union is
lacking only the coset equivalent to NV, we are left with G \ N. The second
sum gives 277127 — 2)(G'\ N).

Putting the two sums together gives

2" N(z)—2"N(z)—2% +27 4221 — 9" 4 927 G(2) - 2% N (z) — 2" G(2) +2" N (z).

16



This reduces to:

22r+l — 227 + (22r . 2T)G(CE),

which is clearly equivalent to
(k= A) + A\G(z),

implying that D(z) satisfies the group ring equation. Thus D is a difference

set. (1

Now, we provide a character theory proof of Theorem 5.2 when ¢ is equal
to any prime.
PROOF: We again consider the group G = K x Z;*! where |K| = % +1.
There are 9% hyperplanes H;. Let

g™t

q—1
D= Y kH,
=1

Notice that one coset leader, kar:_xl_1+ . is not associated with a hyperplane.
Let x be a nonprincipal character and calculate x(D).
First, suppose that x is nonprincipal on Z;“. Then, we have the follow-

ing.
e Hy C Ker(y) for some specific hyperplane H;.
e x(H;) =0 for i # 7' by Theorem 4.1 since H; is itself a group.

o x(Hy) = |Hy| =q"

17



Calculating x(D) is now greatly simplified and we have

Ix(D)| = |x(ks)x(Hi)| = ¢"

Next, suppose that x is principal on Z;“ and nonprincipal on K. Then

r+1_

e
IX(D) =q" | > x(k)l=¢ I(—X(kgzl_l:_lﬂ))l =q
i=0 =

By Theorem 4.2, since

(D)l =" = /a*(IG| - 1) = ¢*(e* = 1)/(g - 1)
which is equal to vk — A, we have proven that D is a difference set. O

By applying a result of John Dillon, we see that McFarland difference sets

need not be inside EA(¢"*!) x K, but rather can be inside a group I' with

some normal subgroup N isomorphic to EA(q"*!) where Iil%jf =1+ 9%1:—1- .

The next example demonstrates the McFarland construction.

Example 5.3 Find a (16,6,2)-McFarland difference set in G = Z4 X Z,.

This group has a normal subgroup isomorphic to the elementary abelian
subgroup Zs X Zy, namely N =< (0,2),(2,0) >. Since N has order 2% = 4,
we will be looking for subgroups of order 2. Let’s explicitly write out all
possibilities.

H, =< (2,0) >= {(0,0), (2,0)}

18



H, =< (0,2) >= {(0,0),(0,2)}

H; =< (2,2) >={(0,0),(2,2)}
Since our goal is to construct a 6-set, we now attach a coset representative to
each of the three hyperplanes. One choice is to let D = ((0,0)+ < (2,0) >)
U ((L,0)+ < (0,2) >) U ((0,1)+ < (2,2) >). Of course, the coset

representative are chosen arbitrarily from the elements in G.

This method can be extended to construct difference sets with parame-
ters different from McFarland’s parameters. We follow essentially the same
procedure, but we attach a coset leader to the complement of a hyperplane in
addition to attaching coset leaders to the remaining hyperplanes. We work
through an example to demonstrate how this extension of the McFarland

construction works.

Example 5.4 Find a (86,15,6)-difference set in G = Zg X Zs.
The group G has a normal subgroup isomorphic to Z3 X Zz. Specifically,
N =< (0,2), (2,0) >. Hyperplanes of this group are subgroups of order 3.

We write out the four hyperplanes.
Hy =< (2,0) >={(0,0), (2,0), (4,0)}
H, =< (0,2) >={(0,0),(0,2), (0,4)}
H; =< (2,2) >={(0,0),(2,2), (4,4)}
H, =< (2,4) >={(0,0), (2,4), (4,2)}

19



Notice that we need a difference set with 15 elements, but we have only 12
elements in the above hyperplanes. We choose to take a coset of the comple-
ment of hyperplane Hy. Since N = Z, X Z,, the complement of H, has order
siz. The complement of order siz can be written as the union of two cosets of
H, since N can be written as the union of three distinct cosets of Hy. Thus,

one choice for D is
((2,0) + (((0,0)+ < (0,2) >) U ((4,0)+ < 0,2 >)))
U ((1,0)+ < (2,2) >)
U ((0,1)+ < (2,4) >)
U ((1,1)+ < (2,0) >)
Similaf techniques for finding the complement of a hyperplane in groups other

than Z3 X Zs are also known.

6 Partial Difference Sets and Strongly Reg-
ular Graphs

Definition 6.1 Let D be a subset of a group G. The subset D is a partial
difference set (or {1, \2}-difference set) if the differences x —y = v, for

z,y € D occur Ay times for v € D and Ay times forv € D, and v # 0.

Example 6.1 The set D = {1,4,9,3,12,10} is a (13,5, 2, 3)-partial differ-

ence set in Z3.

20



When A\; = Aq, a partial difference set reduces to an ordinary difference
set, which we have already shown to be related to other combinatorial struc-
tures such as BIBD’s and symmetric designs. We will now see that partial

difference sets are related to combinatorial structures known as graphs.

Definition 6.2 A graph is a set of points V and a set of edges E along with

an incidence relation between the points and edges.

We will call the points of a graph vertices. Edges begin and end at
vertices. The incidence relation is adjacency, which describes how the vertices
and edges are connected. The number of edges that are incident with a given
vertex is called the degree of the vertex. For our purposes, all graphs are

connected, which means that there are no isolated vertices.

Definition 6.3 A regular graph is a graph where each vertez has the same

degree, say T.

Definition 6.4 [5] A strongly regular graph with parameters (v,7, hy, hy) is
a reqular graph with v vertices of degree r, such that for any pair of adjacent
vertice$ z and y, there are exactly hy vertices adjacent to z and to y, and for
any pair of non-adjacent vertices, there are exactly hy vertices adjacent to x

and to y.

It is easy to see that a pentagon is a strongly regular graph with param-

eters (5,2,0,1). A more interesting (and quite famous) example of a strongly
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regular graph is the Peterson graph. This strongly regular graph has param-
eters (10,3,0,1).

Partial difference sets are related to ordinary difference sets in a manner
analogous to the way regular graphs are related to strongly regular graphs.

Furthermore, partial difference sets are equivalent to certain strongly regular

graphs (2].

7 Hadamard matrices, designs, and difference
sets

J. Hadamard (1865-1963) started a long line of research when he pondered
what could be done with matrices whose entries were real, with absolute
value at most one. The matrices that intrigued him naturally took his name,

and they have become building blocks for other combinatorial structures.

Definition 7.1 [1] A Hadamard matriz H,, is an m X m matriz with entries

chosen from {1,—1} such that
HHT =mlI,

and thus also

HTH =mlI.

For any given Hadamard matrix, there is an equivalent one for which
the first row and the first column consist entirely of +1’s, and this is known

as a normalized Hadamard difference set. Although there are many known
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construction methods for finding Hadamard matrices, the conjecture that a
Hadamard matrix of order m exists for all’n =0 (mod 4) remains open.
There is a continued interest in constructing Hadamard matrices because
of their applications in error-correcting codes. This important part of cod-
ing theory is concerned with transmitting data that passes through a noisy
channel.
Hadamard designs, defined below, are a family of symmetric designs that

have applications in coding theory and relate to difference sets.

Definition 7.2 [6] Let Hy, be a normalized Hadamard matriz. Delete the
first row and the first column. A Hadamard 2-design is constructed by letting
the rows of this matriz be the points, and letting each column define a block.
Each column defines a subset of the rows (points), namely those rows for
which there is a +1 in the column. Any pair of points is contained in exactly
k — 1 blocks and each block has size 2k — 1. A Hadamard 2-design is then a

symmetric (4k — 1,2k — 1,k — 1)-design.

Hadamard-Paley difference sets have the same parameters as these de-
signs. In certain groups, these difference sets are easily constructed using the

following theorem by Paley and Todd.

Theorem 7.1 [5] Let ¢ = 4n — 1 be a prime power. Then the set D of
non-zero squares in Fy is a (4n—1,2n—1,n—1)-Hadamard-Paley difference

set in the additive group of F.
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The existence of another family of Hadamard-Paley difference sets was

proved by Stanton and Sprott in 1958.

Theorem 7.2 [5] If ¢ and q+2 are both odd prime powers, then with 4n—1
= q(q +2), there ezists a (4n — 1,2n — 1,n — 1)-Hadamard-Paley difference

set in the additive group of the ring R = F; X Fys.

Recall that the above combinatorial structures are based on Hadamard
matrices that have the first row and column deleted. There is another group

of combinatorial structures based on “full order” Hadamard matrices.

Definition 7.3 A Hadamard difference set has parameters (4m?, 2m2—m, m?—

m).

There is a family of designs, presented in the theorem below, that has the
same parameters as Hadamard difference sets. We first define the incidence

matrix of a design.

Definition 7.4 Given an incidence structure (P,B,I), with v points and
k points per block, an incidence matrix N is the V by k matriz with rows
indezed by the points p of P, columns indezed by the blocks B of B, and the
entry N(p, B) = 1 if p is incident with B, and N(p, B) = 0 otherwise.

Theorem 7.3 [1] If a symmetric design with v =4(k — X) > 2k exists, then
it has parameters (4m2,2m? — m,m? —m), and its (1, 1)-incidence matriz

1s a Hadamard matriz.
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Recently there has been much research focusing on Hadamard difference
sets. Sections 8 and 9 present some of the new families of Hadamard differ-
ence sets, as well as the constructions used to form them.

Before we present the new construction techniques, we would like to stress
the importance of these new résults. The study of difference sets is compli-
cated by many facts. For example, Theorems 7.1 and 7.2 each identify a fam-
ily of Hadamard-Paley difference sets, but the constructions used in each case
turn out to be quite different. Discovering a family of (v, k, A)- difference sets
in one group G does not usually lead to the discovery of (v, k, A)-difference
sets in some other group I'. Even if a difference set with these parameters
can be found in I, it is probable that a different construction will be neces-
sary to form it. Furthermore, construction techniques change as the desired
parameters change. For example, the McFarland construction yields differ-
ence sets only with McFarland parameters. It is a bonus that the McFarland
construction can be extended by using complements of hyperplanes to pro-
duce difference sets with parameters different from McFarland’s parameters.
This extension makes the McFarland construction exceedingly interesting.
So far, we have introduced difference sets with McFarland, Hadamard-Paley,
and Hadamard parameters. In Section 9, we present a family of difference
sets with new parameters. Including this new family, there are only approx-
imately seven different classifications of difference set parameters. It is rare

and exciting when a new family of parameters is found.
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8 Wilson and Xiang

Wilson and Xiang recently announced results from their study of (4m?, 2m?—
m, m? — m)-Hadamard difference sets [6]. Problems in this area focus on the
study of which groups of order 4m? contain a Hadamard difference set. They
present a new construction producing a family of Hadamard difference sets
where m = 203b52¢1132021 72 p2p? | p? with a,b, ¢y, cg, c3 positive integers,
and with each p; a prime congruent to 3 modulo 4, for 1 < 7 < ¢. Their

construction relies on a clever choice of projective sets and spreads.

8.1 Projective Sets and Spreads

A projective geometry of dimension k — 1 and order ¢, which we denote by
PG(k — 1,q), is fundamentally connected to a £ dimensional vector space
over GF(q), which we denote by W = V*(q). The points of PG(k — 1,q)
are the 1-dimensional (linear) subspaces of V*(q), and so there are 91:,:—:—‘
projective points of PG(k — 1,q). The hyperplanes of PG(k — 1, q) are the
k — 1-dimensional subspaces of V¥(g). For more information on projective

geometries, please see [5].

Definition 8.1 A projective (n, k, hy, ha) set O is a proper, non-empty set
of n points of the projective space PG(k — 1,q) (where q is a power of prime
p) with the property that every hyperplane meets O in hy points or hy points.

Projective (n,k, hi, hy) sets are equivalent to certain strongly regular

graphs, which, as seen in Section 6, are also equivalent to partial difference
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sets.

Definition 8.2 A spread s a family of j-dimensional subspaces of a vector
space that partition the I1-dimensional subspaces, i.e. every I1-dimensional

subspace is contained in ezxactly one member of the family.

In other words, a spread is a family of j-dimensional subspaces such that
any two j-dimensional subspaces intersect only at the 0-subspace, but such
that their union is the entire k-dimensional vector space.

Let X3 = PG(3,p) denote projective 3-space over GF(p), where p is an
odd prime. A spread of X3 is any collection of p? + 1 pairwise disjoint lines

(2-subspaces) of X3 which partition the points (1-subspaces) of Xs.

Definition 8.3 A partial spread in X3 is a set of mutually non-intersecting

lines.

For convenience, Wilson and Xiang call a subset of ¥3 “type Q” if it is a

(p-1 4, (p—l)z, (ﬂﬁ;l)z) set.

projective (4(,,_1)) T

Wilson and Xiang’s fundamental theorem follows:

Theorem 8.1 [6] Assume that S = (L1, La,..., L2411} is a spread of 3.
If there exist two subsets Cy, Cy of type Q in T3 such that |Co N L;| = %—1,
1<i<s, and |CiNL;| = %1, (s+1) <j<2s, where s = 2-2-21“—1, then there
ezists a Hadamard difference set in H X (Z,)*, where H is either the Klein

4-group or the cyclic group of order 4.
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We state without proof that Cy = (L1 U LyU---U Lg)\ Cp and Cs =
(Lsi1 U Ly 5U---U Ly,) \ C; are also sets of type Q. Following Wilson and
Xiang, A is the partial spread formed by taking the union of any sz-l lines
from L¢iy, Lsya,. .., Les, and B is the partial spread formed by taking the
union of any 1’% lines from Ly, Ls, ..., Ls, where L; for 1 < i < s are the

lines that form the spread of 3. Define

Dy=Cy U A4,
D,=Cy U B,
Dy, =Cy U A
D3 =C; U B.

Corollary 8.1 Let K = {ko, k1, ko, ks3} be either group of order 4. Then
D = ko(V4(p) \D(]) U lel U k2D2 U k3D3
is a (4pt, 2p* — p?, p* — p?)-Hadamard difference set in H X (Z4)P.

The points in the sets used in Corollary 8.1 are written additively. In
general, changing from multiplicative to additive notation requires a chart.
For example, the conversion chart used for the case PG(3,5) is given at the
end of this section.

Notice that the construction in Corollary 8.1 is similar to the extension

of the McFarland construction which uses the complement of one hyperplane
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unioned with cosets of the remaining hyperplanes. (See Example 5.4.) Here,
the D;’s, for 0 < ¢ < 3 are analogous to the hyperplanes.

With the help of Theorem 8.1, in order to construct Hadamard difference
sets in H x Z;, where |H| = 4 and p a prime with p = 3 (mod 4), we
need only construct a spread in X3 and sets Cy, C; of type @ that satisfy
the technical requirements. Wilson and Xiang provide algorithms that work
only in special cases.

We will first present a construction for the special case where p is a prime
with p = 3 (mod 4). Let B be a primitive element of GF(p?). Here, we
interpret X3 by viewing GF'(p*) as a 4-dimensional vector space over G F(p).
In this context, the points of 33 can be represented by < 1 >, < 8 >, ...,
< BEPNEEN- 5 et [ = {< i >, < BV S < et S for
0 < ¢ < p*. The collection of “lines” S = {Lo, Ly, ..., L,2} forms a spread in

Y3. Appropriate sets Cy and C, are chosen as:
Co={<1> <> <>, .. <pret)-1y

Cl = {< [3 >, < ﬂf! >, < ﬂg > < /B(p2+1)(p+l)—3 >}

These sets are proved to be of type Q by uniform cyclotomy, and quick
counting will show that the other constraints are satisfied.

Wilson and Xiang also provide a method to construct sets of type @ in
Y3 = PG(3,p) for the special case p = 1 (mod 4). We will rely on X3’s
association with W = V*(p), the 4-dimensional vector space over GF(p).

The key to this construction depends on viewing W as 2-dimensional over
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GF(p?) x GF(p*). We will work through the construction for the case
PG(3,5).

Our first step in constructing a difference set in PG(3,5) is to find a
spread. As in the case above, v.ve begin by forming lines. Let Lo, = {0} X
GF(25) be a line, or two-dimensional subspace. For all d € GF(25), let
Lq = {(z,dz®)|z € GF(25)}. The set S = LooU{Lg}accr(zs) is a spread of
Y3 that consists of 26 lines with 25 points on each line. The points of the lines
L, are disjoint two-dimensional subspaces over GF'(5) and one-dimensional
subspaces over GF(25).

The next step is to construct sets Cp and C of type ). Wilson and Xiang

define a map T to facilitate the construction of these sets.

Let g be a primitive element of GF(25). Consider the action of the

2

mapping T = < g() ggz > on the points of ¥3, which we are viewing as

one-dimensional subspaces of GF(25) x GF(25), which in turn we viewed
as a vector space over GF'(5). Constructing sets of type @ depends on the
orbits of the action of T" on X3. These orbits fall into two categories.

In PG(3,p):

1. There are four short orbits, each of length (p + 1)/2. For PG(3,5),
choices for the representatives of these 4 orbits are (0,1), (0,9), (1,0),

and (g,0). Each short orbit clearly consists of points from Lg or L.
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2. There are 4(p+1) long orbits, each of length (p?—1)/4. Representatives

of these orbits are

(1,1),(1,9), (1, 6%, ..., (1, g7

(9,1),(9,9), (9,97, ..., (9, 9"

Each long orbit consists of (p + 1)/2 points of (p — 1)/2 lines from the
set {Ly4ld #0,d € GF(p?)}.

Continuing with the example PG (3, 5), we first write the elements of each
orbit so that each column consists of three points on some line Ly, d # 0,

d € GF(25). For the orbit of (1, g), we get:

(Lg) — (¢%9%)
(g%, 6°) — (%9")

(6*,9') = (¢"%4")

The first column consists of points on L, while the second column consists
of three points on the line Lys. For PG(3,5), we noticed that the orbit
represented by (1, g*) will consist of 3 projective points on Ly and 3 projective
points on Lgi+12. Recall that each such line contained 6 projective points.
We remark that orbits consist of combinations of “half-lines.”

Wilson and Xiang discovered by computer search that taking unions of

certain orbits forms projective sets Cy, C; in PG(3,5) of type Q.
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In PG(3,5), if g is a root of 22 + £ + 2 € GF(5)[x], then Cy consists of

orbits of
(1,9),(1,¢%,(1,9%),(1,9"),(9,1), (g, 9%, (1,0)

where the first six orbits are long, and the last orbit is short. Thus, Cy
consists of 39 projective points in X3.

We will write out all of the orbits, showing which lines contribute to each

orbit.
orbit (1, g): From L, : From Lgs
(1, 9) (9% %)
(9%, %) (¢°,9")
(9% 9'") (9% 9")
orbit (1, g%): From Ly : From Lgia
1,9% (9%, 9%
(9%, 9%%) (9°9%)
(9°,9") (9%, 9")
orbit (1, ¢°): From L From Lz
| (1,9°) (9% 9")
(9%,9°) (¢°, 9%
(9°,9") (9", 9%)
orbit (1,¢''):  From Lgu : From Lz
(1,9") (9%, 9°)
(9%,97) (9% 9°)
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(9% 9% (9", ")

orbit (g, 1): From Lgis : From L,
(9,1) (g° 9%)
(9°,9%) (", 9")
(¢°, ") (g, 9")
orbit (g, ¢°): From L : From Lgis
(9,9°) (¢° ¢°)
(9° 9% (9", 9%
(9°, 9% (9", 9%)
orbit (1,0): From Ly :
(1,0)
(%,0)
(¢*,0)

Note that the short orbit terminates after three elements because (¢°,0) =
(1,0) in projective space since g° is viewed additively as the scalar 2.

This table is useful for interpreting how the points and lines contribute
to Cy. Cp consists of points on lines Ly where i € {1, 2, 3,7, 9, 11, 13, 14,
15, 19, 21, 23} Lo.

C consists of points on lines L, where i € {4, 5, 6, 8, 10, 12, 16, 17, 18,
20, 22, 24=0} and Leo.
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This construction technique has relied on multiplicative computations
performed on the multiplicative group inside GF(25), but we now must make
use of the additive structure of the field since Corollary 8.1 uses the sets
D;, 0 <1 £ 3, written additively. Understanding the structure of the
resulting difference set requires understanding the relationship between the
multiplicative and additive groups inside GF(25). The conversion table at
the end of this section uses a primitive element g € G F(25) that satisfies z2+
z+2 = 0. In order to construct the difference set described in Corollary 8.1
for p = 5, we look at the 4(39) = 156 affine points in Z; that are associated
with the 39 projective points in Cp, and similarly for the 39 projective points
in each of C;, Cy, and Cj the 36 projective points in each of partial spreads A
and B. By examining the table at the end of this section, we note that there
are 4 constants in GF(25) when elements are viewed additively: ¢** = 1,
g% = 2, ¢g'®* = 3, and ¢g'2 = 4. We can essentially multiply each of the 39
projective points in Cy by each of the 4 constants to get 156 affine points.
We view the 39 projective points in each set C;, Cs, and Cj3 and the 36
projective points on each partial spread A and B in the same way. We now
see that each D;, 0 < ¢ < 3, consists of 300 affine points. Corollary 8.1
forms the difference set by taking the complement of Dy, which contains
(625 — 300) = 325 affine points, unioned with the remaining three D;’s, for
a total of 325 + 3(300) = 1225 affine points. Thus, as expected, we have

constructed a difference set with parameters (2500, 1225, 600).
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9 Chen

Chen recently introduced a construction method for finding (4m?,2m? —
m,m? —m) Hadamard difference sets in abelian groups of order 4m?, whose
Sylow p-subgroups are elementary abelian. Chen’s work is based on the
ideas set forth by Wilson and Xiang regarding spreads and subsets of type
. Above, we described how Wilson and Xiang used the orbits of a mapping
T to find sets of type (. Chen was able to generalize their results and provide
formulae for building these sets without the need for a mapping like T" or a

computer search. Instead, Chen forms projective sets of type @ from relative

3+4g
24+4g
24 3g

444g

1+3g

g°=4+3g

9" =4+g
gt =3+ 3g
g2 =4

g =4g

g =2+g
g =3+g
g =3+2¢

(¢ + 1,2, ¢, 1)-difference sets.

Chen’s spread in PG(3,q) is composed in the same way used by Wilson

and Xiang. Chen uses slightly differently notation, and we present it now
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since it is related to the notation used for the type @ sets that we explain

below.

For each d € GF(q?), let

Ly ={(8,dp) | B € GF(q*)"}
and define
Lo ={(0,8) | B € GF(¢*)"}
The collection of these 26 lines forms a spread in Ys.

9.1 Relative Difference Sets

This section presents some of the results related to relative difference sets

that are needed for the construction method in [3].

Definition 9.1 [8] Let G be a group and H a subgroup of G. A subset
R C G is called arelative (G/H, H, R, A)-difference set of G relative to H if
the differences r —r' = g for r,7' € R occur A times for g € G\ H and zero

times when ¢ is any nonidentity element in H.

There is an analogous group ring equation to check for the existence of

relative difference sets.

Theorem 9.1 A subset R C G is a relative (G/H, H, R, \)-difference set of

G relative to a subgroup H C G if and only if
R(z)R(z™") = |R| + MG\ H).
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When H = 1, the relative difference set is also a “ordinary” difference

set.

An alternative way to describe relative difference sets follows:
[gRNR| =) ifge G\ H

lgRNR| =0, if ge H\ {1}.

The construction techniques of Chen use relative difference sets and a

trace map [3].

Definition 9.2 The relative trace I'r,» : GF(q") — GF(q) the map defined

n-—1

by Trgn(a) =a+af4a? + -+ of
Theorem 9.2 [3]
R={a € GF(q")|Trgn/q(a) = 1}

is a relative (-‘1;_;11, q—1, "1, ¢"?)-difference set in GF(q")* relative to

GF(q)".

Following Chen, let S, denote the set of nonzero squares of GF(q) and

N, denote the set of nonsquares of GF'(q).
Theorem 9.3 /5]
R={a e GF(¢*)*/S; | Trp/(c) € Sg}
is a relative (g + 1,2, q, (g — 1)/2)-difference set in GF(¢*)*/S,.
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9.2 Chen’s Hadamard Construction

Chen defines m to be the natural surjection from GF(¢?)* to GF(¢%)*/S,.
Let X be the preimage of R in GF(q?)*, or in other words, X = {a €
GF(¢*)*|Try () € S;}. Chen defines X9 = 7' (gR) for every g € GF(q?)*,
and we can write X9 = {ga|a € X} for every g € GF(q*)*. The sets X
and X9 are used to construct sets X;, Xy, X3, and X, that form a spread in

GF(g?)".
X; = X-(XnX9),
X = X7—-(XnX9),
X3 = XﬂXg,

Xy = GF(A)T—(XUX)=GF(®)" - X, - Xo— Xa.

Chen defines projective ( ;’:q__ll)), 4, (q'41)2, (‘HZF) sets Cy, C;, C,, and Cj

using the sets X; as well as the sets of nonsquares and squares of GF(q?).

Let P € {Sp2, N2} and let Qg2 be the other choice. Set

Co = {(8,dB)|B€Sp,de X1} U
{(8,dB) | B € Np,d € X2} U
{(Oaﬂ) |ﬂ € Qq2}7

¢ = {(ﬁ,dﬂHﬁESq%dEXs} U

{(B8,dB) | B € Np,d € X4},
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C; = {(B,dP)|B € Np,de X} U
{(B,dB) | B € Spp,d € X5} U
{(0,8) | B € Ppg},

Cs = {(0,dB) | BE€ Nz, d € Xz} U

{(ﬂ3dﬂ) l IB € Sq2,d€ X4}

Recall that for each d € GF(¢?), Ly = {(3,dB) | B € GF(¢*)*}. Notice
that the above sets of type @ consist of subsets of projective points on these
lines. In fact, the way that Chen uses S and N,z means that each set of
type @ cousists of a collection of “half-lines.” Of course, we are reminded
that the orbits of the map T that were used to form the sets of type Q in
Section 8 also consisted of “half-lines.” Clearly, there is a connection between
Wilson and Xiang’s method that requires a mapping and a computer search
and Chen’s method that uses these explicit formulae. Understanding the
correspondence between the two methods is non-trivial.

Chen uses his spread and sets of type Q to construct new (4¢%, 2¢*—¢2, ¢*—
¢*)-Hadamard difference sets. Chen proves that his construction yields such
Hadamard difference sets by describing how to form the difference set, and
then applying character theory to the result. Let K = {ko, k1, ko, k3}, and let
V*(q) denote a 4-dimensional vector space over GF'(q). Similar to the Xiang-
Wilson construction, A is any union of 92—4"—1 lines from {L 241 UL, sy U

...U Lg41} and B is any union of of 9-27;-1 lines from {LI’L2""’L92_2'L1}'
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Again, define the following four sets:

Dy=CyU A,
D;=C U B,
Dy =ChU A,
D;=CsU B.

Corollary 9.1 The set
D= kg(v4(Q) - .D()) + kJ]Dl + ngg + k3D3
is a (4¢%,2¢® — ¢?,¢* — ¢*)-Hadamard difference set in G = K x V*4(q).

Again, notice that the construction for D is related to the extension of

the McFarland construction.

9.3 Chen’s Generalized Hadamard Difference Sets

The above results do more than produce a new family of Hadamard difference
sets: Chen was able to generalize his technique to produce (non-Hadamard)
difference sets with parameters (4m2’”";22%, m2"“(gﬂm2%2 + 1), (m* —

m2"‘1)%ﬂ), for m = ¢?, where ¢ is an odd prime power, and for m =
36t where t is a positive integer. Chen calls this new family generalized
Hadamard difference sets [3]. Notice that in the case n = 1, generalized

Hadamard difference sets reduce to “ordinary” Hadamard difference sets.
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Chen uses sets Dy, Dy, Ds, and D; and applies the above results in the
group G F(q*) rather than in GF(¢?) x GF(q?) .

Consider the vector space V"(¢*) = (GF(q*))*, which has 1{;:_;1‘ hyper-
planes. For each hyperplane H; in this vector space, look at the natural
surjection

®; 1 V™(¢*) = V™(¢*)/Hi = GF(¢").

In relation to Chen’s previous work, his sets D;, 0 < j < 3, are found
in GF(¢*). 1f we look at the pre-images ®;'(D;) for 1 < i < %ﬁ and
1<73<3, wegett= ﬂ:’;%ll subsets U;, Us, ..., U, of size -"—4"—"24&3 inside

vV (q*).

Theorem 9.4 Let K = {ky,ks,...,k;} wheret = |K| = ﬁf’]:n_——llz. Let Uy, be
sets obtained as described above. Then
m

D= kl(Vn((]2) - U]) + zkiUi

i=2

isa (4q2"g;2L_‘1—’, q2"‘1(3(%1——12+1), (q2"—q2"“l)ﬂz';—:lil)-genemlized Hadamard

difference set in the group G = K x V*(¢?).

This generalized Hadamard difference set contains a coset of the com-
plement of a hyperplane unioned with cosets of the remaining hyperplanes,
which again mimics the extension of the McFarland construction. We remark
that the sets U; play the same role in constructing generalized Hadamard dif-

ference sets that their images, the sets D;, play in constructing Hadamard
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difference sets. The generalized Hadamard difference sets are obtained by

lifting the pieces involved with Chen’s Hadamard construction.

10 Combinatorial Analysis

The majority of results surveyed in this paper are proved using character
theory. Looking at the recent Hadamard and generalized Hadamard con-
structions from a combinatorial view may prove beneficial. Combinatorial
analysis of the individual pieces that form the difference set may provide a
better understanding of the final results that character theory proves as a col-
lective unit. The goal is to fully comprehend why the construction method
works in order to generalize it. For example, it may be possible to use a
similar construction method to produce difference sets in groups other than
GF(q¢*) x GF(q?) or GF(q%).

Proving that Chen’s D is a difference set involves looking at D(z)D(z™!)
in order to check if D(z) satisfies the group ring equation. By the definition of
D, we see that this computation will involve pieces of the form D;(z)D;(z™")
and D;(z)D;(z~"). Our work involves combinatorial analysis of these pieces.

First we notice that by the nature of these sets, D;! = D;. We analyzed
the product

DyD, = (CoU A)(C1U B)

for the example in PG(3,5). From character theory, we know that this

product yields 144Z;. We were interested in obtaining a combinatorial proof
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using the component pieces AB, CyC,, CyB, and C; A.
Computing AB deals with multiplying full lines by full lines. Using the

group ring, we found that
AB = 36Z¢ - 36(0,0) — 64 — 6B.

Computing CyC) deals with multiplying half-lines by other distinct half-
lines. Here, we must introduce new notation. Recall that L consists of 6
projective points, and C;, for 0 < 7 < 3, consists of the union of halves of
these lines. We use l((ll) to denote the half of Ly that is found in C;, and we

use ¥ to denote the half of Ly that is not found in C;. We found that

CoC; = 169Z7 — 169(0,0) —

13(Lg U Ly U ... U Ly) —

13(Lyz U Lyg U ... U Lgs) —

IPL; fori € {0,1,...,12} —

(1)4(2) .

;717 for j € {13,14,...,25}.
The remaining two products are more difficult because they involve multi-
plying half-lines by full lines. Let A be the lines in {Li3, L14,- .., Las} that
were not chosen to be in A.

We found that
AC, = 7222 +72(0,0)+6A — 6(A) —
Lil? (where L; € A and I € A) —
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Ld{® (where L; € A and Y € 4)

An analogous result holds for BC.

The four individual products should combine to give 14422, but it is not
obvious how to manipulate the products for a clear comparison. In a recent
paper, Wilson and Xiang remark that it appears difficult to prove this result

in this manner [7]. This problem merits further investigation.
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