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Abstract 

This thesis considers a variation of the 3x + 1, or Collatz, Problem involv-

ing a function we call the Conway function. The Conway function is defined 

by letting C3 (n) = 2k for n = 3k and C3 (n) = 4k± 1 for n = 3k±1, where n 

is an integer. The iterates of this function generate a few 'short' cycles, but 

' the structural dynamics are otherwise unknown. We investigate properties 

of the Conway function and other related functions. We also discuss the pos­

sibility of using the Conway function to generate keys for cryptographic use 

based on a fast, efficient binary implemenation of the function. Questions 

related to the conjectured tree-like structure of the 3x + 1 Problem and to 

other decidable tree-like structures are also considered. 
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1 Introduction 

The 3x + 1 Problem began as a mathematical question conceived by Lothar 

Collatz while he was a student at the University of Hamburg: Does the 

sequence 

{ 
an/2 if an is even 

an+l = f 3an + 1 i an is odd 

yield a tree-like structure [7]? In other words, for any initial positive integer 

a1 , is there a positive integer n such that an = 1. The 3x + 1 Conjecture 

is that there exists such an n for every a1 [2, 4, 9, 11, 12]. The tree-like 

structure that would be produced is the directed graph satisfying an ---+ an+l 

for each integer an (see Figure 1) [7]. Were the 3x+1 Problem not to produce 

a tree-like structure, then some cycle other than ( 4 2 1) would exist. Thus a 

restatement of the 3x + 1 Problem is: Does a cycle other than (4 2 1) exist? 

The 3x + 1 Problem is generally known as the Collatz Problem, but 

due to the many people who have studied it, it can also be found in the 

literature under the titles Syracuse, Kakutani, Hasse, and Ulam [5, 9]. One 

would be hard pressed to find an article on the topic that doesn't mention 

the famous comment by Paul Erdos, "Mathematics may not yet be ready 

for such problems" [5, 6, 7, 9]. For efficiency the 3x + 1 Problem is often 

rewritten in the form 

{ 
an/2 if an is even 

an+l = (3an + 1)/2 if an is odd. 

When viewed this way, the sequence described by the 3x+ 1 Problem is easily 
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Figure 1: This directed graph shows the conjectured tree-like structure re­
lated to the 3x + 1 Problem. 
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implementable on a computer (3] by observing that 

As of February 7, 2006, the 3x + 1 Conjecture has been verified for all 

a1 < 261 by Oliveira e Silva (11], and has been independently verified by 

Roosendaal for all a1 < 413(250) (12]. Proposed proofs of the conjecture have 

been posted online by Scharer (12], who offers money to anyone who can find 

a mistake in his proofs. Eliahou has shown that for b > 0, c ~ 0, and k 

either 301994 or 85137581, any cycle whose smallest element is larger than 

240 ~ust have length 17087915b + kc (7]. As of September 2003, Halbeisen 

and Hungerbiihler had taken into consideration Oliveira e Silva's verfication 

of the conjecture up to 3(250) and shown that for any nontrival cycle whose 

minimum is greater than 3(250 ), the cycle length must be at least 630 000 000 

(7]. 

Many generalizations and related problems have arisen over the years. 

The 'qx + 1' Problem asks similar questions about the sequence 

{ 
an/2 if an is even 

an+l = qan + 1 if an is odd 

for q = 2m+ 1 > 3 [7]. Crandall has conjectured that this sequence always 

contains an a1 such that 1 is not in the orbit of a1 [7]. For instance the cycle 

(13 33 83) occurs for q = 5 (7]. Others have considered more far reaching 

generalizations of the sequence such as 

a _ { an/P if plan 
n+l - qan + r otherwise 
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and focused on finding p, q, and r such that the problem is solvable [7]. 

The 3x + 1 Conjecture has also motivated other conjectures. For example, 

if the 3x + 1 Conjecture is true, then the much more technical Weakened 

3x + 1 Conjecture is true [10], and therefore the Wild Numbers Conjecture 

formulated by Lagarias is true [10]. 

The generalization we wished to consider was formulated by Conway who 

first proposed defining a sequence using a system of equations of the form 

for 0,~ i < p where b0 , c0 , ... , bp- 1 , Cp-1 are rational constants chosen such 

that an E .Z for all n [4]. 

The main focus of this thesis is on an explicit instance of Conway's vari­

ation of the 3x + 1 Problem that yields an iterative function, that is also 

a permutation on the integers, that we call the Conway Function. This in­

stance was, according to Richard Guy, introduced by Conway at the 1972 

Number Theory Conference [8], although it does not appear in the paper 

submitted by Conway to that conference [4]. The analagous question is how 

many cycles and infinite chains are produced by the Conway function 

3n f-7 2n, 

3n ± 1 f-7 4n ± 1. 

In the forward direction (i.e., 3n --t 2n, 3n + 1 --t 4n + 1, 3n- 1 --t 4n- 1), 

this function can be seen as an instance of Conway's generalization using 
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p = 3 and the following choices for constants: 

c0 = 0 

c1 = _1. 
3 

C - 1 2-3 

The known cycles -starting with 1, 2, 3, 4, and 44 - are (1), (2 3), 

(4 57 9 6), and (44 59 79 105 70 93 62 83 111 74 99 66). However, starting 

with 8 and proceeding either forwards or backwards, no cycle seems to form. 

More specific questions then arise: Will the iterations of 8 ever form a cycle? 

If 8 forms an infinite chain, are there other integers that form other infinite 

chains? Are there finitely or infinitely many infinite chains? What other 

cycles exist? It is interesting to note that, according to Lagarias, in a journal 

dated July 1, 1932, Collatz investigated the problem 

{ 

~n ifn=O(mod3) 
T(n) = in- t if n = 1 (mod 3) 

3n + 3 if n = 2 (mod 3) 

posing questions about the cycle structure of this permutation [9]. This is, 

of course, the same variation of the 3x + 1 Problem introduced by Conway. 

The objective of [4] was to prove an undecidability result. Conway showed 

that there is no general purpose algorithm that given any system and given 

any n can determine if n belongs to a cycle. 

This thesis investigates Conway's variation of the 3x + 1 Problem and 

other Conway systems. It is organized as follows. In Section 2, we discuss 

known cycles for the Conway Problem and other related functions. Section 

5 



3 offers some proofs of elementary facts pertaining to the Conway Prob­

lem. Section 4 discusses a bit implementation of the Conway function for 

the purpose of developing a pseudorandom number generator (PRNG), and 

Secion 5 gives results from tests of randomness our proposed PRNG. Based 

on Collatz's original question, Section 6 investigates Conway systems that 

yield decidable tree-like structures. 

2 The Existence of Cycles Problem 

Definition 2.1. Let C3 (n) be the Conway function defined by 

{ 
2k if n = 3k 

C3 (n) = 4k ± 1 if n = 3k ± 1. 

If m > 0 is an integer, let f(m) ( n) be the m-fold composition of f, (! o 

· · · o f) ( n). A cycle of length m for an integer valued function f is a sequence 

of the form n, f(n), j<2)(n), ... f(m)(n) such that f(m)(n) = n. The cycle is 

written in the form (n f(n) f(2)(n) f(m-l)(n)). 

A Java program was written to search for small cycles produced by iter­

ating C3(n). More precisely, we searched for cycles with length less than 100 

whose smallest element was less than 240. It was unnecessary to consider 

any integer n such that n < 0 because C3 (n) is an odd function (see Section 

3). Thus if {2, 3) is a cycle, then ( -2, -3) is also a cycle. If at any point 

we encountered a t such that C~t) ( n) equalled n, then the cycle containing 

n would be output and the program next considered n + 1. If after 100 it­

erations of C3{n) it was determined that n was not in a cycle of length less 
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if n % 3 == 0 { 
C3(n) := (n/3)*2 } 

else if n % 3 == 3 { 
C3(n) ((n-1)/3)*4 + 1 } 

else { 
C3 (n) (n + 1/3) *4 - 1 } 

Figure 2: Pseudocode implementation used to search for small cycles of 
C3(n). 

than 100, then the program next considered n+ 1. Figure 2 gives pseudocode 

for our implementation of 0 3 (n). After running our program no cycles were 

found other than those containing 1, 2, 4, and 44: (1), (2 3), (4 57 9 6), and 

(44 5~ 79 105 70 93 62 83 111 74 99 66). 

Definition 2.2. Define the 'reverse' Conway function C;(n) to be 

c- (n) = { 2k if n = 3k 
3 4k =t= 1 if n = 3k ± 1. 

A similar program was written for 'reverse' Conway function as was writ-

ten for the Conway function. The cycles found by that program are as follows: 

(1 - 1), (2 59 6 4 3), (7), (14 21), {28 35 49 63 42), and one cycle of length 

94 (see Appendix A). 

Definition 2.3. Define Cq(n) to be the 'generalized' Conway function for 

odd q > 1 by letting 

{ 
illk . if n = qk 

Cq(n) = (q + l)k + £ if n = qk + £, for 0 < 1£1 :::; .ry. 
Java programs were also written to search for the small cycles of the 

generalized Conway function for q = 5, 7, 9, 11, 13, and 15. For q = 5, the 
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small cycles are as follows: (1), (2), (3 4 5), (6 7 810), (12 14 17 20 12), and 

(36 43 52 62 74 89 107 128 154 185 111 133 160 96 15 69 83 100 60). For 

q = 7, the small cycles are as follows: (1), (2), (3), (4 56 7), (40 46 53 61 70), 

plus two cycles of length 21, and one cycle of length 83 (see Appendix A). 

For the small cycles for q = 9, 11, 13, and 15 see Appendix A. 

Proposition 2.1. For each q = 2m+ 1, m :2: 1, there are always at least 

(q- 1)/2 singleton cycles for Cq(n) and a cycle of length (q + 1)/2 that 

contains q. 

Proof. Ifn = q(O)+efor (q+1)/2 >f.> 0, then n is mapped to (q+1)(0)+f = 

n, and there are ( q - 1) /2 possibilites for this occurence. Thus there are at 

least (q- 1)/2 singleton cycles. Consider (q + 1)/2 = (2q- (q- 1))/2 = 

q(1)- (q- 1)/2 which maps to (q + 1)(1)- (q- 1)/2 = q- (q- 1)/2 + 1. 

This, in turn, maps to q- (q- 1)/2 + 2. By finite induction we can now 

iterate to q- (q- 1)/2 + (q- 1)/2 = q. Since q maps to (q + 1)/2, we have 

produced a cycle of the form ((q + 1)/2, (q + 1)/2 + 1, ... , q) which contains 

q and has length (q + 1)/2. 0 

Definition 2.4. The stopping time {7, 9, 11, 13} of positive integer n, T(n), 

is the least positive integer such that 

ct(n))(n) < n. 

If no such integer exists, T(n) = oo. 

For the Conway Function, C3 (n), multiple cycles exist. The least element 

in each cycle has infinite stopping time, but for those positive integers, n, 
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where the cycle structure is unknown T(n) may be finite or infinite. For 

example, the cycle or chain containing 8 can never contain a negative integer 

(due to the fact that C3 is an odd function- See Section 3), and integers 0 

through 7 occur in other cycles, thus, since C3 is 1-1 (see Section 3), C~t) (8) 

will never be less than 8 for any t and T(8) = oo. On the other hand, 

C3 (12) = 8 so T(12) = 1 even though 12 has the same undetermined cycle 

status. The next positive integer for which it is unknown whether it belongs 

to an infinite chain or cycle is 10 (9 is in a known cycle), and C~3)(8) = 10. If 

the sequence containing 8 is a cycle, then 10 has finite, though large, stopping 

time. But if the sequence containing 8 is an infinite chain, then 10 has infinite 

stopping time. 

Definition 2.5. Define the 'ratio' function, starting with n, R(i) (n) for the 

Conway function c3 ( n) by letting R(O) ( n) = n and 

Terras [13] suggests calculations using (1/2)x and (3/2)x in place of 

(l/2)x and (3/2)x+(1/2) can give numerical estimates ofTn(x), where Tn(x) 

is the modified version of the function used for the 3x + 1 Problem defined 

by 

{ 
x/2 x = 0 (mod 2) 

Tn(x) = (3x + 1)/2 x = 1 (mod 2). 

Because of Terras' results, it is natural to consider the corresponding ratio 

function R(i) for the Conway function C 3 • 

9 



In order to determine how closely R(i) (n) follows C~i) (n), the ratio R(i) (n) /C~i) (n) 

was considered. For a known cycle with length x, the values R(x)(n)/C~x)(n) 

are the same for every n in that cycle. This is due to the fact that if x1 is 

equal to the number of times elements are mapped to 2/3, and x2 is equal to 

the number of times elements are mapped to 4/3 in the cycle, then 

which' is independent of n. If we choose an n such that C~y) (n) requires y 

multiplications by 2/3, then the ratio R(i)(n)/C(i)(n) remains equal to 1 until 

i > y. 

The 'infinite chains' containing 8 and 14 were also investigated; these two 

values are conjectured not to be in the same cycle or chain. After 100 itera­

tions, R(i)(8)/C~i)(8) converged approximately to 0.9754, and R(i)(14)/C~i)(14) 

converged approximately to 1.0037. We have no clear explanation why both 

seem to converge or why R(i)(14)/C~i)(14) appeared to converge to a value 

closer to 1. But since C~100)(8) = 11908, and 0~100)(14) = 648077, it is quite 

possible that the magnitude of the value has to do with this discrepancy, and 

also (since both magnitudes are large) why both appear to converge. 

Proposition 2.2. The following algebraic identities hold: 
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(2) If C3(n) = 2k and C3(m) = 4j + 1, then C3(n + m) = 2C3(n) + C3(m), 

and C3(nm) = mC3(n). 

(3) If C3(n) = 2k and C3(m) = 4j -1, then C3(n + m) = 2C3(n) + C3(m), 

and C3(nm) = mC3(n). 

(4) IfC3(n) = 4k+1 and C3(m) = 4j+1, then C3(n+m) = C3(n)+C3(m)+ 

1, and C3(nm) = m(C3(n) -1) + C3(m) = n(C3(m)- 1) + C3(n). 

(5) If C3(n) = 4k + 1 and C3(m) = 4j- 1, then C3(n + m) = ~C3(n) + 

~C3 (m), and C3(nm) = m(C3(n) -1) +C3(m) = n(C3(m) + 1) -C3(n). 

(6) IfC3(n) = 4k-1 and C3(m) = 4j+1, then C3(n+m) = C3(n)+C3(m)-

1, and C3(nm) = m(C3(n) + 1)- C3(m) = n(C3(m) + 1)- C3(n). 

Proof. We give the flavor of the proof by verifying (1) and (2); the other 

cases follow similarly. 

(1) If C3(n) = 2k and C3(m) = 2j, write n = 3k and m = 3j. We have 

n + m = 3(k + j) and nm = 3(3kj), so C3 (n + m) = 2(k + j) = 2k + 

2j = C3(n) + C3(m), and C3(nm) = 2(3kj) = (3k){2j) = (3j){2k) = 

mC3(n) = nC3(m). 

(2) If C3(n) = 2k and C3(m) = 4j + 1 write n = 3k and m = 3j + 1. From 

n + m = 3(k + j) + 1 and nm = 3k(3j + 1), we obtain C3(n + m) = 

11 



L__ __ 

4(k+j)+1 = 4k+4j+1 = 2C3 (n)+C3 (m) and C3 (nm) = 2k(3j+1) = 

mC3(n). 

3 Some Proofs of Elementary Facts 

Theorem 3.1. Cq(n) is an odd function. 

Proof. For n E Z let n = qk +f., where 0 ::::; 1£1 ::::; ~: 

Case 1. If f.= 0, then -n = q( -k). Thus 

Cq(-n) = Cq(q(-k)) 

= 
q+1_k 

2 

= -Cq(n). 

Case 2. If f.=!= 0, then -n = q( -k) -f. Thus 

Cq( -n) - Cq(q( -k) -f) 

(q + 1)( -k)- f. 

-((q + 1)k +f) 

- -Cq(n). 

12 
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Theorem 3.2. The function Cq(n) is one-to-one. 

Proof. For n1, n2 E Z d suppose n1 = qk1 +£1, n2 = qk2+f2, where k1, k2 E Z 

and 0 ~ l£1, £2l ~ ~- There are three cases to consider. 

Case 1. Suppose £1 = £2 = 0, and Cq(n1) = Cq(n2). Then Cq(qk1) = 

Cq(qk2) implies ((q + 1)/2)k1 = ((q + 1)/2)k2. Thus k1 = k2 and 

Case 2. Suppose £1 i= 0, £2 i= 0, and Cq(n1) = Cq(n2). Then Cq(qk1 + 

£1) = Cq(qk2 + £2) implies (q + 1)kl + £1 = (q + 1)k2 + £2. Thus 

{1 = £2 mod (q + 1) which implies £1 = £2 since 0 < l£1, £2l < (q + 1). 

Therefore (q + 1)k1 = (q + 1)k2 implies k1 = k2 , and thus n1 = n2. 

Case 3. Without loss of generality suppose £1 i= 0, £2 = 0, and Cq(n1) = 

Cq(n2)· Then Cq(qk1 + £1) = Cq(qk2) implies (q + 1)k1 + £1 = ((q + 

1)/2)k2. Thus £1 = 0 mod ((q + 1)/2). But, by assumption, 0 < l£1 1 < 

( q + 1) /2. This contradiction completes the proof of this case. 

0 

Theorem 3.3. The function Cq(n) is onto. 

Proof. For every n E Z, n = 0, 1, ... or q mod (q + 1). Since q is odd, 

2l(q + 1). Again, there are three cases to consider 

Case 1. If n = 0 mod (q + 1) or n = (q + 1)/2 mod (q + 1) then n = 
((q + l)/2)k for some k E Z. This shows n = Cq(qk). 
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Case 2. If n = £ mod (q + 1) for 0 < £ < (q + 1)/2, then n = (q + 1)k + f 

for some k E Z. Therefore n = Cq(qk + £). 

Case 3. If n - £ mod (q + 1) for (q + 1)/2 < £ < (q + 1) then n = 

(q + 1)k +£for some k E Z. Thus n = (q + 1)(k + 1) + £- (q + 1) with 

-(q + 1)/2 < £- (q + 1) < 0. This gives n = Cq(q(k + 1) + £- (q + 1)). 

0 

Theorem 3.4. For q > 3, Cq(x) does not yield a 2-cycle. 

Proof. Suppose n produces the 2-cycle n t-+ Cq(n) t-+ Cq(Cq(n)) = n. 

Case 1. If q { n and q { Cq(n) then n ::; Cq(n) ::; Cq(Cq(n)) so either 

n-=/= Cq(Cq(n)) or n = Cq(n) = Cq(Cq(n)) which is a 1-cycle. 

Case 3. Since a 2 cycle can be written as (a b) or (b a), without loss of 

generality suppose q {nand qiCq(n). We compute 

and consider n represented as 

q-1 
n = qk + £, with 0 < 1£1 ::; -

2
-. 
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If n = Cq(Cq(n)), then 

qk+f = (q;1) Cq~n) 

= ( q; 1) Cq(q~ + £) 

- ( q; 1) (q + 1Jk + £ 

= 
(q + 1)2k + (q + 1)£ 

2q 

Thus 

2q2k + 2qf = (q + 1)2k + (q + 1)£ 

- (q2 + 2q + 1)k + (q + 1)£ 

- q2k+2qk+k+qf+f. 

This implies q2k- 2qk- k = £- qf and k(q2
- 2q- 1) = (1- q)£. Thus 

Notice that since q ~ 5, q+ 1 = lq+ 11 and lq2 -111 > lq
2
;

11. Therefore 

2lkl < 
11- qllq + 11 
lq2 - 2q -11 

11- q21 
lq2 - 2q- 11 

lq2 -11 
q2- 2q -11 

lq2 -11 
< 

lq2 - 2(5) - 11 

= 

lq2 -11 
= 

lq2 - 111 

15 



2 

This shows lkl < 1. Since k E Z, k = 0. This implies that n = f which 

sasys Cq(n) = f, where 0 < f < q. The fact that qiCq(n) provides a 

contradiction and completes the proof. 

D 

In view of the preceding proof we are led to make the following conjecture. 

One reason this conjecture is important is because it tells us that an algebraic 

proof about the nonexistence of cycles of length t > 2 must consider qt cases! 

The Remainder Conjecture. For any sequence of remainders r0 , r 1, • • • r m 

such that 0 ~ lril < (q + 1)/2, there exists ann such that n = qko + r0 for 

some k0 and k1, ... km such that C~(n) = qki + ri for 0 < i ~ m. 

We prove the following special cases of the Remainder Conjecture, ri = 0 

for all i and ri - f, 0 < 1£1 ~ (q- 1)/2, for all i. 

Proposition 3.1. For ri · 0 for all i, the Remainder Conjecture is true. 

Proof. Let r0 , r 1, ... rt-l = 0. Consider n = qt. Since n = 0 (mod q), 

ro = 0. Now, 

c:(n) 
cg(n) 

wqt = (~) qt-l = 0 (mod q) ::} rl = 0, 

(~ ) 2 
qt-2 = 0 (mod q) ::} r2 = 0, 

c~- 1 (n) - (~ )t-l q = 0 (mod q) ::} Tt-l = 0. 

16 
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Proposition 3.2. For ri = £, 0 < 1£1 :::; (q- 1)/2, for all i, the Remainder 

Conjecture is true. 

Proof. Let ro, r1, ... Tt-l = £ for some £ 0 < 1£1 < (q- 1)/2. Consider 

n = qt + £. Since n =£(mod q), r 0 = £. Now, 

= (q+ 1)qt-1 +£=£(mod q) 
= (q + 1)2qt-2 + £ = f (mod q) 

_ (q+1)t-1q+£=£(modq) :::} Tt-l = £. 
D 

4 A Fast, Efficient Implementation of C3 ( n) 
using Bit Operations 

Many cryptographic algorithms require a key consisting of a short sequence 

of random bits [14]. A simple example is the one-time pad cryptographic 

system, where a random bit sequence is first generated and then added bit 

by bit to the binary message meant to be sent [14]. The Blum-Blum-Shub 

(BBS) pseudorandom bit generator is the gold standard for pseudorandom 

bit generators for cryptographic purposes, but the calculations involved are 

slow [14]. We are interested in determining if the Conway function C3 (n) can 

provide an equally good but faster, more efficient bit generator. 

A binary implementation of C3(n) was developed to examine the possibil­

ity that this function could serve as a short, or "burst," binary pseudorandom 

number generator {PRNG) for purposes such as cryptographic key genera­

tion. Bostwick [3] divised a binary implementation of the Collatz function 
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using a cellular automaton. In order for the Conway function, 0 3 ( n), to be 

implemented using efficient binary operators, a method for dividing by 3 in 

binary must be found. Artzy et al. [1] have proposed a method for fast divi-

sion of binary numbers by constant divisors. Their general purpose method 

was altered to specifically handle the case of division by 3, and their proof 

was adapted to show that the division by 3 algorithm was correct. 

Algorithm 4.1. A Division by 3 Algorithm Using Bit Operations 

[1] 

Using two f.-bit registers R and T, and setting kt = max{flog2(P.)- 11, 0}, 

if R is divisible by 3, then R/3 can be obtained by the algorithm in Figure 3. 

for j = 1 to kt { 
T := R « 2i 
R := R + T} 

R : = twos complement of R 

Figure 3: Bit operation division by 3 algorithm. 

The following proof of the Division by 3 Algorithm was modelled after the 

proofin [1]. 

For bit length f. E N and x E Z2t let 

kt =max { flog2 (P.) - 11, 0}, 

kt 

Tt = IT ( 22
; + 1) , and 

i=l 
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Observe that h(x) computes the result of the division by 3 algorithm. The 

proof requires the following lemmas. 

Lemma 4.1. 2kt+1 2: e. 

Proof. Let X E N satisfy 2x-l < e ~ 2x. Since kt =X -1, 2kt+l = 2x 2: e. 0 

2kt+l Lemma 4.2. 3Tt = 2 - 1. 

Proof. This proof is by induction on kt. For kt = 1, 

2kt+l Suppose 3Tt = 2 - 1 for kt = k. For kt = k + 1, 

k+l 

3Tt = II ( 22
i + 1) 

i=l 

k 

- II ( 22i + 1) ( 22k+l + 1) 
i=l 

= ( 22
k+

1 
- 1) ( 22

H
1 + 1) by hypothesis 

= 22"+2 -1 

Thus by induction 3Tt = 22"t+l - 1. 0 

Theorem 4.1. If x = 3q E Z 2t, then h(x) = q, i.e., the division by 3 

algorithm correctly divides by 3 when x is divisible by 3. 
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Proof. 

h(3q) - - Tt3q (mod 2£) 

- ( 22kt+
1

- 1) q (mod 2£) 

-(-1)q (mod 2£) 

- q 

The second equality follows from Lemma 4.2 and the third from Lemma 4.1 

D 

Once a method for dividing by 3 was finalized, a method to determine 

if a binary number was congruent to 0, 1, or 2 (mod 3) was implemented. 

Pseudocode describing this method for a binary integer R with f bits as input 

can be found in Figure 4. The reason this method works is based on the fact 

that 2k = 1(mod 3) if k ~ 0 is even, and 2k = 2(mod 3) if k > 0 is odd. 

int divisibility(R) { 
int p := -1; 
int sum := 0; 
for i := 1 to f { 

p := 0 - p 

sum : = (sum + (p * ith LSB of R) 'l. 3 } 
return sum } 

Figure 4: Method used to determine the congruence class mod 3 of a positive 
integer represented in binary. [Note: LSB stands for least significant bit.] 

When methods for dividing by 3 and determining the divisibility of a bi­

nary number were completed, the method describing C3(n) could be imple-
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mented. For an £-bit binary number R, the pseudocode in Figure 5 outlines 

the C3 {n) calculation. 

int d = divisibility(R) 
if d == 1 { 

R := R - 1 } 
else if d == 2 { 

R := R + 1 } 
di videBy3 (R) 

if d == 1 { 
R << 2 //multiply by 4 
R := R + 1 } 

else if d == 2 { 
R << 2 //multiply by 4 
R R- 1} 

else { 
R << 1 } //multiply by 2 

Figure 5: C3 (n) pseudocode for an integer n represented in binary form. 

5 Tests of Randomness 

Tests of randomness were performed based on the values of the least signifi­

cant bit (LSB) of the binary integers obtained from a sequence of iterations 

of our C3 {n) binary implementation. We note that in order for the binary 

implemenation to actually be used as a PRNG key generator, the Remainder 

Conjecture is assumed true, and we assume that infinite chains exist. Our 

generator would be especially unique and unusual because the probability of 

obtaining a zero is 1/3 and the probability of obtaining a one is 2/3 as we 

now prove. 
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Theorem 5.1. With assumptions as above, in any arbitrary pseudorandomly 

generated sequence using the fucntion C3 ( n) as a generator, there is a 1/3 

probability that a 0 will occur in the least significant bit of the output, and a 

2/3 probability that a 1 will occur in the least significant bit of the output. 

Proof. The probability that a randomly selected integer has remainder 0 

modulo 3 is 1/3. The probability that a randomly selected integer has re­

mainder 1 or 2 modulo 3 is 2/3. Thus the probability that a randomly 

selected integer n maps to 2k = O(mod 2) for some k is 1/3, and the proba­

bility that n maps to 4k ± 1 = 1(mod 2) for some k is 2/3. In other words, 

the expectation is that in any "run" determined by iterating the c3 ( n) func­

tion, the empirical probability of a LSB being 0 is 1/3, and the empirical 

probability of a resulting LSB being 1 is 2/3. 0 

Using a randomly generated 128-bit binary seed, x iterations of the C3 (n) 

binary implementation were used to create an equivalent length bit string, 

b1b2 •.• bx, by extracting the least significant bit after each iteration. These 

bit strings were then tested using the following tests: 

• Frequencies of Zeros and Ones Distribution Test: From sequences of 

b1b2 .•. bn of length n = 600, the frequencies of zeros and ones were 

calculated. From three samples of size 600 we obtained 401, 404, and 

405 ones. The respective tests for the proportion of ones gave ob­

served levels of significance of .928, .723, and .6672 (z = 0.087, 0.346, 

0.433). Therefore, we did not find any statistical evidence to indicate 
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that "short" randomly generated sequences would not fit the expected 

proportioned frequencies. 

• Bit Sequences of Length Two Distribution Test: From sequences of 

b1 b2 ••• b2n of length 2n, by taking bits two at a time we obtained sam­

ples of the form x1, x2 , ... , Xn where each Xi was either 00, 01, 10, 11. 

A Chi-Square Goodness of Fit Test using probabilities 1/9, 2/9, 2/9, 

and 4/9 respectively for these four possibilities was performed. From 

three samples of size n = 540 we obtained observed levels of significance 

.116, .329, and .549 (x2 = 5.913, 3.438, 2.113). Thus, we did not find 

any statistical evidence to indicate that "short" randomly generated 

sequences would not fit our theoretical distribution. 

• Overlapping Sequences of Length Four Distribution Test: Similarly, 

from a bit sequence b1b2 ••• bn+3 of length n+3 we obtained a sample of 

n overlapping bit sequences of length four by setting Xi = bibi+l bi+2bi+3 • 

A Chi-Square Goodness of Fit Test was performed using proportions 

1/81, 2/9, 4/9, 8/9, and 16/81 for those sequences with zero, one, 

two, three, and four ones respectively. Three samples of size n = 1543 

produced observed levels of significance .921, .209, and .015 (x2 = 

8.063, 19.114, 29.254). In only one instance did a "short" randomly 

generated sequence fail match the hypothesized distribution. For that 

sample the sequences 1001 and 1010 were under-represented. 
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• Runs of Zeros Distribution Test: From a bit string b1 b2 ••• bn we let 

x1, x2, X3, X4 be the number of distinct isolated substrings with 1, 2, 

3, and 4 consecutive zeros. Since the probability of obtaining a run of 

zeros with k + 1 consecutive zeros is one-third as likely as obtaining 

a run with k consecutive zeros, we performed a Chi-Square Goodness 

of Fit Test using the ratios 27 : 9 : 3 : 1. Using x1, x2 , x3 , x 4 as the 

observed cell counts, fr.om three random sequences of length n = 1024 

we obtained samples of size 207, 222, and 228 which yielded observed 

levels of significance .896, .909, and .596 (x2 = .601, .543, 1.890). In 

no case was there statistical evidence to indicate that runs of zeros 

from "short" randomly generated sequences did not fit these predicted 

ratios. 

6 Tree Structures for Conway Systems 

One of the questions posed by Collatz about the 3x + 1 Problem was whether 

or not it formed a tree-like structure (see Figure 1). The answer to this 

question rests on the validity of the 3x + 1 Conjecture. 

We were motivated to consider other tree structures by a mistakenly 

written reverse Conway function that we will call the 'Reverse 3' function or 

V(n). It is defined as 

{ 
2k ifn = 3k 

V ( n) = 3k =f 1 if n = 3k ± 1. 

This function creates cycles of the form (3k- 1 3k + 1) and finite chains of 
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the form 

so every even number belongs to a chain {see Figure 6). 

i f 
2 t+ 4 5 t+ 7 

27 
t 
18 
t 
12 15 
t t 
8++10 

Figure 6: The 'tree' structure of the reverse 3 function V(n). 

Since the structure of the Reverse 3 function is decidable, we were in­

terested in finding other examples of functions in which the cycle dynamics 
' 

could be determined. First, other rearrangements of the the terms 3n, 4n+ 1, 

4n -1 of the Conway function were considered. An example of one of the five 

possible variants of the Conway function C3{n) we considered is described by 

3n 1---t 4n - 1 

3n + 1 1---t 2n 

3n - 1 1---t 4n + 1. 

Every one of the five rearrangements of the Conway function showed similar 

dynamics to the original Conway function: a few short cycles and seqeuences 

with presumed chain-like properties. 

The next system of equations we considered was defined by letting p > 2 

be prime and letting 

U(n) = { nfp if pin 
in if n = i{mod p). 
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This system obeys the rules for Conway's generalization of the 3x+ 1 Problem 

by letting bo = 1/p, bi = i for 0 < i < p, and ci = 0 for 0 ~ i < p. The 

dynamics of this system seems to be decidable, at least for small p. For p = 3 

or 5, the system is structured as an infinite number of finite chains that each 

iterate to an integer congruent to 1 modulo p which then cycles with itself 

(see Figures 7 and 8). 

k = l(mod3) k = 2(mod3) 

3mk 3mk 

t t 
3m-lk 3m-lk 

t t 

-i -i 
k k 
C) t 

2k 
C) 

Figure 7: 'Tree' structure for U(n) with p = 3, showing the two types of 
finite chains that descend to cycles of length one, i.e., loops. 

When p = 7, however,. the only finite chains are those that eventually 

reach 1 or p- 1(mod p) (see Figure 9). It appears that infinite chains also 

occur whenever p > 7. 
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k = l(mod5) k = 2(mod5) k = 3(mod5) k = 4(mod5) 

smk smk smk smk 

+ + + + 
sm-lk sm-lk sm-lk sm-lk 

+ + + + 
i i i i 
k k k k 
() + + + 

2k 3k 4k 

+ + () 

Bk 12k 
() () 

Figure 8: 'Tree' structure for U(n) with p = 5. 

k = l(mod7) k = 2(mod7) k = 3(mod7) k = 4(mod7) k = 5(mod7) k = l(mod7) 

7mk 7mk 7mk 7mk 7mk 7mk 

+ + + + + + 
7m-lk 7m-lk 7m-lk 7m-lk 7m-lk 7m-lk 

+ + + + + + 
.i i .i .i .i .i 
k k k k k k 
() + + + + + 

2k 3k 4k 5k 6k 

+ + + + () 

Bk 6k Bk 20k 

+ + + + 
16k 24k 32k 40k 

+ + + + 
64k 48k 64k 160k 

+ + + + 

Figure 9: 'Tree' structure for U(n) with p = 7. 
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7 Conclusions 

In view of our work, Erdos would still probably say mathematics may not 

be ready for problems like these. We were unable to find any new cycles 

for the Conway Function C3 (n), but we were able to show that for Cq(n) 

with q > 3, no cycles of length 2 exist. If the Remainder Conjecture is true, 

then determining how many cycles Conway's function C3 ( n) provides will 

probably be just as hard as settling the 3x + 1 Conjecture, since determining 

whether Cq(n) has cycles of length t requires qt cases. 

Discovering other Conway systems that have decidable tree-like struc-

tures may provide insight into the structure and dynamics of other systems 

including the Conway function. Both the Reverse 3 function V(n) and the 

' function U(n) with p = 3, 5, 7 had deciable tree structures. Future research 

could look into other functions with decidable structure as well as continuing 

to explore the structure of Conway's function C3 (n). 

With further research and testing, our binary implementation of Conway's 

function may provide an easy to implement and efficient key generator. Our 

generator has already passed several statistical tests, and with additional 

testing may prove to be of further interest. Given these possibilities, we 

believe iterated sequence problems are likely to continue to be of interest for 

many years to come. 
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Appendix A: Some Additional Examples of Small 
Cycles of C3(n) and Cq(n) 

c:;(n) 

C7 (n) 

C9 (n) 

(142 187 247 327 218 293 393 262 347 465 310 411 274 363 242 325 
431 577 767 1025 1369 1823 2433 1622 2165 2889 1926 1284 856 
1139 1521 1014 676 899 1201 1599 1066 1419 946 1259 1681 2239 
2983 3975 2650 3531 2354 3141 2094 1396 1859 2481 1654 2203 
2935 3911 5217 3478 4635 3090 2060 2749 3663 2442 1628 
2173 2895 1930 2571 1714 2283 1522 2027 2705 3609 2406 1604 
2141 2857 3807 2538 1692 1128 752 1005 670 891 594 396 264 
176 237 158 213) 

(20 23 26 30 34 39 45 51 58 66 75 86 98 56 32 37 42 24 27 31 35) 
(8 9 10 11 13 15 17 19 22 25 29 33 38 43 49 28 16 18 21 12 14) 
(68 78 89 102 117 134 153 175 100 114 130 149 170 194 222 254 290 

331 378 216 247 282 322 184 210 120 137 157 179 205 234 267 305 
349 399 228 261 298 341 390 446 510 583 666 761 870 994 568 649 
7 42 424 485 554 633 723 826 4 72 539 308 176 201 230 263 301 172 
197 225 257 294 168 96 110 126 72 82 94 107 122 139 159 182 104 
119) 

(1) (2) (3) (4) (56 7 8 9) (10 1112 13 14 16 18) 
(15 17 19 21 23 26 29 32 36 20 22 24 27) 
(60 67 74 82 91 101 112 124 138 153 85 94 104 116 129 143 159 177 197 

219 243 135 75 83 92 102 113 126 70 78 87 97 108) 
(110 122 136 151 168 187 208 231 257 286 318 353 392 436 484 538 598 

664 738 410 456 507 563 626 696 773 859 954 530 589 654 727 808 
898 998 1109 1232 1369 1521 845 939 1043 1159 1288 1431 795 883 
981 545 606 673 748 831 923 1026 570 633 703 781 868 964 1071 595 
661 734 816 907 1008 560 622 691 768 853 948 1053 585 325 361 401 
446 496 551 612 340 378 210 233 259 288 160 178 198) 
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Cn(n) 
(1) (2) (3) (4) (5) (6 7 8 9 10 11) (24 26 28 31 34 37 40 44) 
(48 52 57 62 68 74 81 88) (54 59 64 70 76 83 91 99) 
(96 105 115 125 136 148 161 176) 
(114 124 135 147 160 175 191 208 227 248 271 296 323 352 192 209) 
(126 137 149 163 178 194 212 231) 
(180 196 214 233 254 277 302 329 359 392 428 467 509 555 605 330) 
(186 203 221 241 263 287 313 341) 
(203 221 241 263 287 313 341 186) 

c13(n) 
(1) (2) (3) (4) (5) (6) (7 8 9 10 11 12 13) 
(14 15 16 17 18 19 20 22 24 26) (21 23 25 27 29 31 33 36 39) 
(28 30 32 34 37 40 43 46 50 54 58 62 67 72 78 42 45 48 52) 
(35 38 41 44 47 51 55 59 64 69 74 80 86 93 100 108 116 125 135 145 

156 84 90 97 104 56 60 65) 
(238 256 276 297 320 345 372 401 432 465 501 540 582 627 675 727 783 

843 908 978 1053 567 611 329 354 381 410 442) 

C1s(n) 

L_ ___ _ 

(1) (2) (3) (4) (5) (6) (7) (8 9 10 11 12 13 14 15) 
(16 17 18 19 20 21 22 23 25 27 29 31 33 35 37 39 42 45 24 26 28 30) 
(32 34 36 38 41 44 47 50 53 57 61 65 69 74 79 84 90 48 51 54 58 62 66 

70 75 40 43 46 49 52 55 59 63 67 71 76 81 86 92 98 105 56 60) 
(176 188 201 214 228 243 259 276 294 314 335 357 381 406 433 462 493 

526 561 598 638 681 726 774 826 881 940 1003 1070 1141 1217 1298 
1385 1477 1575 840 448 478 510 272 290 309 330) 
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