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Abstract

Harmonic Function Theory is a field of differential mathematics that has both
many theoretical constructs and physical connections, as well as its store of
classical problems.

One such problem is the Dirichlet Problem. While the proof of the ex-
istence of a solution is well-founded on basic theory, and general methods
for polynomial solutions have been well studied, much ground is still yet to
be overturned. In this paper we focus on the examination, properties and
computation methods and limitations, of solutions for rational boundary
functions.

Anotuer area that we shall study is the properties and generalizations of
the zero sets of harmonic functions. Our study in this area has shown that
these zero sets satisfy many strict criteria. Many familiar or simple curves do
not satisfy such criteria themselves. In this paper we will present the criteria

and how it is so restrictive.



This paper is part of the requirements for honors in mathematics. The
signatures below, by the advisor, a departmental reader, and a representative
of the departmental honors committee, demonstrate that Ronald A. Walker

has met all the requirements needed to receive honors in mathematics.

Lo a AT (e

(advisor)

Sz Ay
4

(reader)

%/MA/A/ML_/

(A
(honors committee representative)



1

A real-valued function u is harmonic on the open set €} in the complex plane C

Problems in Harmonic Function Theory

Ronald A. Walker
April 23, 1998

Abstract

Harmonic Function Theory is a field of differential mathematics that
has both many theoretical constructs and physical connections, as well as
its store of classical problems.

One such problem is the Dirichlet Problem. While the proof of the
existence of a solution is well-founded on basic theory, general methods
for finding solutions are not extensively studied. Previously methods for
solutions with polynomial boundary functions have been well studied,
much ground is still yet to be overturned. In this paper we focus on the
examination, properties and computation methods of solutions for rational
boundary functions.

Another area that we shall study is the properties and generalizations
of the zero sets of harmonic functions. Our study in this area has shown
that these zero sets satisfy many strict criteria. Many familiar or simple
curves Jo not satisfy such criteria themselves. In this paper we will present

the crit.ria and how it is so restrictive.

Introduction

if u € C%(Q) and

The differential operator A is called the Laplacian. Harmonic functions have

physical significance in relation to several physical phenomena such as heat flow,

Au = Uzz + uyy, =0.

electromagnetism, waves, elasticity, and fluid flow.



One classical problem in this area is the Dirichlet Problemn: Given a real-
valued continuous function f defined on the unit circle S = {(z,y) : 2 +y? = 1}
find a real-valued continuous function u defined on the closed unit disk, B =
{(z,y) : 22 + y* < 1}, such that

b.ou(z,y) = f(z,y) Y(z,¥) €S
2. u(z,y) is harmonic on B = {(z,y) : 2° + y* < 1}

There is always an unique solution (See Section 3), but finding the solution for a
specific f is not always possible. Axler and Ramey have developed a method for
finding the solution for polynomial boundary conditions in n variables. We have
developed a method that finds the solution for rational functions in 2 variables.

Now we define the zero set of function to be the set of all points where the
function is zero. A second problem in the study of harmonic functions is the
following: Given a harmonic function on the plane, what are the characteristics
of the function’s zero set, or given an arbitrary set, can there be found an
eutire harmonic function that is zero on and only on the given set? By the
characteristics of harmonic functions on the plane and their relation to entire
functions on C, such sets must be a union of smooth, non-looping curves. This
property plus a host of others makes the set of possible zero curves a distinct
and very exclusive set.

2 Preliminaries

Harmonic functions have several properties that are of value in our investigation.

The first of these is the Mean-Value Property.

Theorem 2.1 (The Mean-Value Property) If u is harmonic on B(a,r)
then

|dd]
u(a) = ula +r() —. 1
@=§ uasrlD 1)
Essentially Theorem 2.1 states that u(a) equals the average of the value of
u over any sphere centered at a. Another property of Harmonic Functions is

the Maximun Principle.



Theorem 2.2 (The Maximum Principle) Given a real-valued harmonic
function u on @ bounded domain Q, such that u is continuous on Q, then u

assumes tts mazimum and mintmum values on OS2,

A harmonic function can never have a local maximum or local minimum.
Thereby any maxima or minina must occur on the boundary, as stated in the
previous property. Now when the domain of a harmonic function is the entire
plane, it becomes unbounded since it can have neither a maximmum or minimumn
in the plane, unless the function is constant. This is expressed by the next

property.

Theorem 2.3 (Liouville’s Theorem) A function that is positive and har-

monic on the plane is constant.

The above property is similar to that used for holomorphic functions. In
fact there are many similarities between their properties. In the definition of a
harmonic function we demanded that © € C?(2) and that Au = 0. As it turns
out u € C>(1).

Theorem 2.4 [f u is harmonic on Q then u is infinitely differentiable on (1.

3 The Dirichlet Problem

3.1 The Poisson Integral

In theory the solution to the Dirichlet Problem with the boundary Iunction f

(which must be real-valued on S) involves the Poisson integral, which is given

below.
|d¢|
Plfl(z) = P(z, —, z€B. 2
NE =g PeOsOG, e 2
_ 1z
P(Z7 <) - |Z _ <|2 (3)

Then define the function « on B as follows
w2 { PG izeB
f(2) ifze S

The function u meets all the criteria to solve the Dirichlet Problem. By

certain classical estimates on P[f] one can show that u is continuous on B.



Clearly u equals f on S. Now a calculation shows that AP(z, ¢) = 490P(z,¢) =
0 with respect to z. So by differentiation under the integral sign one can show
that AP{f] = 0 and thus u is harmonic on B. Now this solution is also unique,
by the following reasoning. Given an v that is also a solution for the boundary
condition f, then v(z) — u(z) is harmonic and a solution for the boundary
condition 0. Then by the Maximum Principle, v(z) — u(z) = 0. Therefore the

solution to the Dirichlet Problem for f exists, and is unique, equaling P(f].

3.2 The Schwarz Integral

By a result from complex analysis there exists a more general forin of the Poisson
Integral. This formula is known as the Schwarz Integral, and is given as follows;

For a function g, which is real-valued and continuous on S.

=L C+z9(C)
“ﬂ“*"%aﬂblc—zc &, zeB )

The Poisson Integral is then just the real part of the Schwarz Integral, as
stated in the following theorem.

Theorem 3.1 If u is defined and continuous on S then
Plg)(z) = Re(S[g)(2))- (5)
Proof

By a slight alteration of (4),
1
Sl = g0 14

g1 §— 200 2w
Now taking the real part of both sides (Note that g is real-valued.) one arrives
™ ¢ Jd¢)
+ z ¢
Re(S[gl(2)) = f Re ( ) —. 6
Sl = g Re (g2 ) 90 5 )

Now by a calculation

C+z (C—zz2+20—2C |¢> = |22 + 2i Im(=()

(-2 (€-2(-2 G
In the integrzal, [} =1, so
C+z\ _1-|z2
Re (<~Z> =T = P(z,(). (7)

Thus substituting (7) into (6) yields (5) completing the proof.



3.3 Rational Functions

With polynomial data, it was shown by Axler and Ramey that the Dirichlet
solution is a polynomial as well. It would be nice if an analogous result carried
over to rational functions. Now we can cowmpute the Poisson Integral via the
Schwarz Integral. Assume the function ¢ is rational in terms of the complex
variable z. Thus ¢ is a meromorphic function (analytic with the exception
of some poles). This means we can compute S{g] using residue theory from
complex analysis. By this pathway, we shall see that S{g] will be rational. First
we need the following lemma that show that the residues are rational.

Definitions: Let g be a rational function of z. Then

Wy = {r||r| < 1and g(z) has a pole at z =r} (8)
mg(r) = the order of the pole of g(z) at z=1r (9)
ng(r)
cen = 3 m [252 (50 =7y (10)
Lemma 3.2 If g is a rational function of z, then for a firedr € Wy and z # r,
mg(r)—1
y(() . —Crk
Res( ir) = k};‘g G (11)

Proof

If r € W, and z # r then by a Laurent series argument,

J(() _ 1 dmg(r)——l g(()( —_ r mg(r)
Re S( T) gl_.),- [(mg(r) - 1)! dcmg(r)~—1 ( (~z )}

mg{r) — 1
mg(r)—1 k k dmg —1-k -1
= L e i (7))

(mg(r) ~ 1) dck (Q(C)(C )mg(r)) Cmy(r)—l—k Z—¢

x
I
o



mg(r)—1
_ 1 (my(r) =1 - k)!
- Z [k!(mg(r) ~1-k) kL cr (11_3} ( (z = ()ma(7)k )]

k=0
mg(r)—1
- P ol )~k

e

a
Lemma 3.3 Suppose g is a rational function of z, and r € W, then
J(C) mg(r)—1 i

Re S( ) } m J(Z) -(—Z_——Ty':_;m (12)

k=0

Proof

We shall show that the limit equals the residue. First take the Laurent series

of g(z) around r.
o0

9(z)= > ajz-r) (13)

J=—mgy(r)

Through the standard definitions of the coefficients in (13),

_ 1 9(¢)
= o 7{ C-rpt %

where C is a positively oriented, closed contour, such that int(C) "W, = {r}.
Now by using residues,

1 d (mg(r)+7)
_ my(r) — 3
B h [(mg(r) + F)dCma(r)+i) (Q(C)(C ) )] h ('T'"‘g(f)“'

Through substitution of coefficients into (13) and adjustment of indices we derive
the following.

mg(r)—1 ok 0o -1 c )
—Cp, _ 1 rmg(r)+j
9(2)+ 3 (z — r)yman—k — > CempmiEmr) = (z _gr)—j
k=0 j=—mg(r) j=—mg(r)

=]
= Z(ermg(r)+j(z - T)J .

j=0



Now by taking the limit of both sides as z approaches r,

mg(r)—1
—Cr k

}Eg_ g(z) + Z (z — 7-)‘mg(")—k = Cromg(r)- (14)
k=0

Computation of our original residue in (12) yields the following equality.

RES(-C‘(](TC)’, T‘) = Cromy(r): (15)

Combining (15) with (14) completes the proof.

Theorem 3.4 If g(z) is a rational function of z with no poles on S, then S[g](z)

is a rational function of z with no poles on B.

Proof

Using partial fractions, (4) can be restated as follows.

1 =5 - dC~ '
Slol(z) 2mi .%ml:] (—=z “ 2mi }[{CI=1 ¢ “

Notice that the first termn can be computed using residues and that the

second termn is constant with respect to z.

sl =2 ¥ Res(ZLir)-q,

reW,u{z}
_ 1 99
g = 5 f{qﬂ C dc. (16)

Now when z ¢ W,

Slg](z) = 2g{z) + 2 Z Res(g—(Q-; T) — ag.

reEW,

Now using Lemma 3.2

Slglz) =29(2) =2 S —zk | _q,. (17)



Clearly S[g](z) is rational with respect to z, Vz € B\Wj,. Now if z;, € W, then

Slgl(zr) = 2Res(<g£C‘)Z JzZe) + 2 Z (ReS(L(Q_; 7-)) — ay

rEW {20} G

mg(r)—1 -
—_ 1 -~y —__"I‘, —_
—:IE{.‘, 2g(z) -2 Z z (z_r)mg(r)—k ag.
rew, k=0

Using the above equation and (17) the following is true.

Slgl(zr) = lin Slg)(2)

Thus S[g](z) is a rational function with no poles on B.

Now we desire to carry this result over to functions of z and y. So now we
express this in a closely related corollary.

Corollary 3.5 Given a real-valued rational function, f, in terms of z and y,
that is defined on S. Then P[f](z,y) is rational in terms of z and y.

Proof

Let the function h be defined as
z+1 -1
=5, (18)

Notice that on S, h{z + iy) = (z,y). Thus on §, (f o h)(z + iy) = f(z,y).
Therefore (f o h) is real-valued and the following equality holds.

hiz) =(

P(f](z,y) = P[f o h](z + iy) = Re(S[f o k](z + iy)) (19)

Since f is rational in = and y and h is rational in z, it follows that (f o h)(z) is

rational in z. By Theorem 3.4, S[f o h](z) is rational in terms of z. Clearly it
follows that Re(S[g](z + iy)) is rational in terms of z and y. Thus it follows by
(19) that P[f] is a rational function of z and y.



3.4 Computational Implementation

Now given a function f in terms of z and y, then what is an eflicient manner to
compute P[f]? We inplemented a computational method in Mathematica.
First we need to define a function that will compute S{g](z), given g. We
factor g into rational form, {:—, where p(z) and q(z) are polynomials in z. To use
residues we must compute the poles of g, which are the zeros of q. Note below

that we are given our function g as an expression exp in terms of a variable var.

g=Together [exp];

qz=Solve[Denominator[g]==0,var];

If the zeros of ¢ are unsolvable in Mathematica, then the poles of g cannot be
found and therefore the Schwarz Integral cannot be computed through residues.
This is a limitation found in Mathematica 2.0 and earlier versions. Mathematica
3.0 uses symbolic algebraic numbers to represent the roots of ¢, allowing us to do
complete symbolic computation. Thus here we do a check to see if Mathematica
has successfully found the roots..

If [HasRoots[qz]l, Module[ {ag,s,w={},comfact},
seyment of code discussed nezt

1,
Block[{},
Message[Dirichlet: :denominator];
{111

When the zeros of q are found, then we compute W,, the set of z such that
g(z) =0and |z| < 1.

qz=Rts{qz,var];
Dol[w=Join[w,If[N[Abs{(qz[[1]11)]1<1,{q=z[[i11},{3}]],
{i,1,Length(qz]}];

Note w represents the set W, with multiplicity of zeros being counted. Now
for the sake of later simplification we generate the polynomial comfact which
has all the zeros, with multiplicity, given by W,. Note that comfact divides g.
Furthermore we now convert w into the true set representation of W,.



comfact=Product [(var-w[[i]]),{i,1,Length[w]}];

w=Union[w];

Thus S[g](z) is now readily computable. Calculation can be simplified by
using a variant of the Schwarz integral S*[g] .

mg(r)-1

. T _ cr,my(r)
ST lolz) = lim |9 = >0 | X o rmm (20)
reW, k=0
Taillexp_,var_,r_]:=Normal[Series[exp,{var,r,-1}]1]
Tails[exp_,var_,rs_]:=Sum[Taillexp,var,rs[[i]]],

{i,1,Length[rs]}]

sstar=g-Tails[g,z,w];

However the above expression isn’t quite the appropriate form. For notice
in the definition of S* that the limit is taken. However notice that the only
trouble spots are at the poles of g. But §* doesn’t have any poles within B.
Therefore the factors in the denominator that cause the poles in g, must cancel
out with factors in the numerator. We force this computational simplification
by dividing the numerator and denominator by comfact.

DoToBeth[f_,rat_] :=f[Numeratoxr[rat]]/f [Denominator[ratl]

sstar=Together[sstar]
sstar=Together [Simplify[
DoToBoth[(Apart{#/comfact])&,sstar]]l];

Computation of S*[¢g](z) appears to be just as strenuous as for S[g], with
the exception of the a, term. Now applying Theorem 2.1 to the computation
of a4 in (16) one arrives with the following.

ag = 57[g](0) (21)
Thus the final computation to yield the Schwarz Integral is
Slgl(z) = 25*[g)(=) - S*[4](0)

ag=sstar/.{z->0};
sch=Simplify[2*sstar-ag];

10



Now below is a condensation of the previously discussed code into a Math-

ematica function defining SchwarzIntegral.

Dirichlet::denominator = "Denominator of generated

fraction is unfactorable"

SchwarzIntegrallexp_,var_]:=Module[{g,qz},

g=Together[Apart[expl];

qz=Solve[Denominator [g]==0,var];

If [HasRoots[qz], Module[ {ag,s,w={},comfact},
qz=Rts[qz,var];
Do[w=Join[w,If [N[Abs((qz[[1]1]1)1]<1,{qz[[1]1]},{}]11,

{i,1,Lengthlqz]}];

comfact=Product[(var-w[[i]]),{i,1,Length[w]}];
w=Union[w];
s=5implify[g-Tails[g,var,w]];
s=Together [Apart [Together([s]]];
s=Together[Simplify[DoToBoth[(Apart[#/comfact~2])&,s]]];
ag=s/.{var->0};
Simplify[2+s-ag]

Block[{},
Message[Dirichlet: :denominator];
{311
]

Note that intermediate products are simnplified using the Simplfy, Together,
and Apart comimands in order to bring about a simpler final answer. Also notice
DoToBoth[(Apart[#/comfact“2])&,é].[nvkhng numerator and dencminator
by comfact~2, is done to help cancel all the factors of comfact tLat are present
in the numerator and denominator. Note mathematical correctness is not af-
fected.

With a function now defined to compute the Schwarz Integral, the compu-
tation of Dirichlet solution with boundary function f is rather straightforward.
Noticing (19), the first thing needed is a computation of g = f o h.

R2toC{f_,z_]:=f[(272+1)/(22),(2"2-1)/ (2I*2)]

11



g=R2toC[f,z];
Now we must compute S[g](z).
sg=SchwarzIntegrallg,z];

We now compute Re(S[gl(z+1iy)) to complete the calculation of the Dirichlet

solution.
ans=(Block[{z=(Global‘x+I Global‘y)},sg+Conjugatelsgll)/2;

We then siinplify the answer and return it to the user. In all the Mathematica
code can be condensed into the following lines.

Dirichlet[f_]:=Module[{sg},
sg=SchwarzIntegral [R2toC[f,z],z];
ExpandDenominator[Together [ (Block[
{z=(Global‘x+I Global‘y)}, sg+Conjugatelsgll)/21]

3.5 Examples of Solutions for Rational Boundary Func-
tions

Now we present some examples of computation of Dirichlet solutions. The
simplest rational function that one readily compute the Dirichlet solution for is
flz,y) = -ﬁ‘ﬁ- Clearly we can justify that u = 1 is the Dirichlet solution. Our
Mathematica program quickly computes this solution, as all groups of z? + y?
that appear, end up being simplied in R2toC[f_,z_] as if they were replaced
by 1.

Inf3]:= fx_,y_1:=1/(x"2+y~2)"10

Inf}]:= Dirichlet[f]

Outff]=1

The next function we would consider would be the reciprocal of a monomial,
as it is the simplest non-trivial example. So we consider f(z,y) = :12'

Inf5]:= flx_,y_1:=1/(x+2)

Inf6]:= Dirichlet[f]

Outf6]= (-(3*%x72) - 2xSqrt[3]*x~2 - 3*y~2 - 2xSqrt[3]*y~2 +

26*Sqrt[3] + 45)/

12



(3*Sqrt[3]*x~2 + 6%x"2 + 24%Sqrt[3]*x + 42+x +
3%Sqrt [3]1*y~2 + 6%y~2 + 45%Sqrt[31 + 78)
And verifying the answer
In[7]:= Simplify[Laplacian[%]]
Outf7]=0
Inf8]:= Simplity 44/ . {y~2->1-x"2}]
Out[8]= 1/ (2+x)

Expressed in a more elegant way the above computation says that

—3z% — 2v/322% — 3y — 2/3y? + 26v3 + 45

Plfli{z,y) =
)z 3322 + 622 + 24v/3z + 42z + 3v/3y? + 6y2 + 45/3 + 78

And in a rearranged form we get

—(3 + 2v3)(2? + y?) + 45 + 26v/3

PUIEY) = (373 @2 142) + 78 + 45V3 + (42 + 24v3)2

And if one now substitutes in 1 for z2 + y2, one can verify through a little
bit of work that the above function equals 7.

4 Zero Sets of Harmonic Functions

Definitions :

We shall always assume that « is a nonconstant, real-valued Larmonic func-

tion on C, and that f is a corresponding holomorphic function such that Re(f) =
u.

Given u, we define its zero set to be
Z(u) = {z:u(z) = 0} =u"'({0}) (22)

4.1 General Characteristics

The zero sets of harmonic functions compose an interesting set. With exception
to the constant functions, the zero set of a harmonic function is a set of curves.
These zero curves of harmonic functions have several characteristics that set
them apart from curves in general. First we shall show that the zero set of a

non-constant harmonic function can be aptly named the zero curves.

13



Theorem 4.1 Z(u) is locally expressible by an infinitely differentiable curve

with the only cxceptions are a set of isolated points where uy = u,, = 0.
Proof

Since u is harmonic on the plane and non-constant, Z{u) is non-empty, by
Theoremn 2.3. All points in Z(u) must fall into one of the following cases.
Case 1: u,p) #0.

Since u, is continuous and u,(p) # 0,
e > 0, s.t. Vz € B(p,€),uy(z) #0.

By the Implicit Function Theorem Z(u) is defined in the neighborhood B(p,¢)
by a function, y = g(z), with the derivative

dy  —u,

dx Uy

Notice by Theorein 2.4 that the above equation is infinitely differentiable in
the neighbornood B(p,e). Thus Vp € Z(u), s.t. u,(p) # 0, Z(u) is expressible
locally by an infinitely differentiable curve.

Case 2: u.(p) # 0.

By a similar argument in Case 1,
Je > 0, s.t. Vz € B(p,€),uz(z) #0.

Again by the Implicit Function Theorem Z(u) is defined in the neighborhood
B(p, €) by a function, y = g(x), with the derivative

dr  ~u,

dy  ug
Notice by a similar argument presented in Case 1, Vp € Z(u), s.t. uz(p) #
0, Z(u) is expressible locally by an infinitely differentiable curve.
Case 3: uz(p) = uy(p) = 0.
There exists an entire function, f, such that u(z, y) = Re(f(x +1iy)). By the
Cauchy Riemann equations, uz(p) = uy,(p) = 0, if and only if f'(p) = 0. Since
f' is entire, its zeros are isolated. Thus

Vp € Z(u), s.t. uz(p) = uy(p) = 0,3¢, Az € B(p,e)\p, uz(2) = uy(z) = 0.

Thus points which do not have a unique locally defined (infinitely differentiable)
curve for Z(u) are isolated.

14



The points in the zero set where f' = 0 are currently left with no further
description. As we shall see, they are cross-points of infinite differentiable curves
and have other special properties. But first we’ll explore several other properties
of the zero curves of a harmonic function.

Theorem 4.2 Z(u) has no endpoints.
Proof

Assume for the purpose of contradiction that Z(u) had an endpoint, p. Then
on any sufficiently small circle, 8B., around p with radius g, there would exist
only one point, p, in the set Z(u) N 0B, and thus u(p;) = 0. By continuity of
u, the rest of the points in 8B, must be postive {or negative). But by Theorem
2.1, this means u(p) > 0 (or < 0), contradicting that u(p) = 0. Thus Z(u) has
no endpoints.

Theorem 4.3 Z(u) forms no closed loops.

Proof

Assume for the purpose of contradiction that Z(u) forms a closed loop.
Therefore the interior of the loop is a bounded, open set and thus by Theorem
2.2, the the function u = 0 for all points in the interior of the loop. Since the
interior of the closed loop forms an open set on which v = 0, then u = 0 on the

entire plane, contradicting that u is non-constant. Thus Z(u) form no closed
loops.

These properties further restricts which curves may be zero curves of a har-
monic function.



2 X"2 + ¥y'2 = 1

2
1.2 1.5
1 1
0.5 0.5
0 0
0.5 -0.5
o o
1.8 1.8
"2 1.5 -t -0.5 0 0.5 1 1.5 2 -2

(1) is unallowable for it has an endpoint (Theorem 4.2). (2) is unallowable for it forms a closed

loop (Theorem 4.3).

4,2 Cross Points

The cross points of the zero curves of harmonic functions have various proper-
ties. We can see these properties in the simple cases, which will later aid us in
production of a proof.

Theorem 4.4 Z(Re(a(z — z)™)), m > 1,a # 0, is composed of m lines (2m
rays) that 7intersect” at equal angles of .

Proof

Let © = Re{a(z—25)™), m # 0,a # 0. Define z in terms of polar coordinates
around zg.

z=zo+re?, r>00<6<2n.

Now substitute in the definition of z into u = 0 to achieve the solution for all
z € Z(u) in terms of r and 6.

Re(la‘rmeiarg(a)+mi0) =0.
After a calculation the previous equation implies
cos(mé + arg(a)) = 0.

Solution of the above equation yields

P 2arg(a) 4 k_‘/r’ l'arg(a) 3 _1_“
2m m 0 2

IA

k< ’r&(a)—l} + 2m.
T 2
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There are 2m solutions for 8, independent of r. Notice there are no restrictions
on r. Thus Z(u) is a set of 2m rays originating at zp. By the polar coordinate
solution one can also tell that they are at equal angles of I, thus each ray has
an corresponding ray at an angle of w. Thus the 2m rays are truly m lines that

intersect at zo with equal angles.

We see cross points are related to the order of the zero of the holomorphic

function at that point. We generalize this for all cross points.

Theorem 4.5 Given that p € Z(Re(f)), the following are equivalent:
1. There are m incident curves at p.
2. Vk<m =1, f®)(p) =0 and f™(p) £0.

3. There are exactly 2m "rays” in Z(Re(f)) with origin p which intersect

with equal angles of T-.
Proof

2. = 1. and 3.
Let p € Z(Re(f)). Then

Im,m>1, st. Ve<m—1,fF(p) =0 and f™(p) £0.

If in = 1 then f'(p) # 0, and thus by the Implicit Function Theorem, there
exists one and only one curve in Z(Re(f)) passing through p. And since it is
locally differentiable the measure of the angles between the two "rays” is .
If m > 1 then we use the following reasoning. The Taylor series of f around

p gives

o0

f@=GE=p)" ampslz =Y, ag £0.
j=0

Notice that in a sufficiently small neighborhood of p that
f(2) = ao(z — p)™.

It follows that
Z(Re(f)) = Z(Re(ao(z — p)™))-

17



Thus for all in > 1, since g # 0, we know the nature of Z(Re(ag(z — p)™)) by
Theoremn 4.4. Thus we can conclude that the nature of Z(Re(f)) around p is
the same, in that it has m incident curves or 2m “rays” with equal intersection
angles of .

1. = 2.

Assume for the sake of contradiction there is a counterexample. Thus there
isa f and a p € Z(Re(f)) with m curves incident upon p and that m does not

satisfy 2. However since f is entire and nonconstant,
In, st.Ve<n—1,f%(p)=0and f™(p) £0.

Since 2. implies 1., this means that Z(Re(f)) has n incident curves upon p.
Therefore n = m, but this means m satisfies 2., thus contradiction and thus
there is no counterexample.

3. = 1

Each "ray” has a corresponding "ray” that is n angles away. Thus the angle
measure between these two "rays” is m7- =, which is a straight angle. Thus

each pair of opposite "rays” forms a "line” or curve, thus there are m curves
incident upun p.

Corollary 4.6 A cross point occurs at p € Z(Re(f)) if and only if f'(p) = 0.
Proof

A cross point occurs at p if and only if there are m,m > 2 curves incident
upon p. Then by Theorem 4.5, sincel <m -1, f'(p) =0.

The above theoremn provides a strict guideline for all cross points. A cross
point must always be composed of curves intersecting at equal angles. This also

states that there are no crosspoints in Z(Re(f)) which have an odd number of
"rays”.
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N y*2 = 3 x*2

2
1.5 18
! 1
0.5 0.8
o 0
0.8 -0.%
o1 1
-1.8 -1.%
1.5 -1 -0.5 0 0.5 1 1.5 2 -2 Tt T T e T T T
. y = Squt [Abs(x}) 5 x*3 - 3xy*2 = 0
5 1.8
1 1
2.3 0.5
9 0
(S -0.5%
1 -1
. -1.5
- 1.5 -1 -0.5 0 0.5 1 1.5 2 -2 1.5 -1 -0.5 o 0.5 1 1% 2

(3) is unallowable as it has only an odd number of rays. (4) and (5) are unallowable as both

do not have equal angles between curves. (6) is Z{Re(z%)) and satisfies Theorem 4.5.

In fact there is one more corollary of interest which we now demonstrate.
Corollary 4.7 Z(u) is the union of one or more C™ curves.
Proof

Using Theorem 4.1, we see that in any neighborhood of any p € Z(u)
not containing one of the cross points (where u; = u, = 0), that Z(u) is
expressible as the union of one (or more non-intersecting) C'*> curves. Now we
need to show that this is true for any cross point within some neighborhood.
Now there is a function f such that u = Re(f). We know that near p, f =
am{z —p)™, and thus their zero sets have similar natures. By Theorem 4.4 we
see that Z(Re(f)) is similarly a union of m curves, each which are composed of
2 infinitely differentiable ”rays”, which adjoin with equal derivatives at p. This
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shows that Z(u) is the union of n C! curves in the neighborhood of p. It can be
further worked out that Z(u) is the union of m C* curves in the neighborhood
of p, and thus Z(u) is globally a union of C™ curves.

Another argument can be developed to show that Z(u) must be a union of
analytic curves. The eliminates many contours and curves that by ovr previous

criteria would not have excluded.

y = x Absfx]
2
1.%
1
9.%
0
-0.%
-1
1.%
2
-2 -1 0 1 2

(7) is unallowable since the second and greater derivatives are not defined and continuous at

the origin (Corollary 4.7).

Now Z(u) is expressible as the union of one or more C* curves, we provide
some definitions here for later use.
Definitions:

n(Z(u

)
Zwy = |J Tiw). (23)
j=1 ~

[j(u) € Z(u) is a distinct C™ curve in the plane with no endpeints.
n(Z(u)) is the number of distinct C™ curves in Z(u).

4.3 Zero Curves at oo

Another distinguishing characteristic of harmonic zero sets, is their behavior in

the neighborhood of the point at co. Previous theorems have shown that zeros
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curves cannot end or forin loops in the plane. Thus it makes sense that they
must be incident upon or "end” at oo.

Theorem 4.8 Vj < n(Z(u)),I'j(u) is incident upon oo from both ends.

Proof

We will show that given an I';(u) and a direction along that curve that we
will encounter the point at oo in following the curve in that direction. Given
an arbitrary [';(u) and a direction to follow along it then choose a point p that
is on the curve and is not a cross point. Note that at p, I';j(u) forms part (or
all) of the boundary for a connected region R where u > 0 (and also for one
where u < 0). Note this region’s boundary is in Z(u). Note that by Theorem
4.3, that R cannot be bounded. Thus the boundary of R is incident upon the
point at co. Now following I'j(u) from p we must follow along the boundary
of R until it hits a cross point or until it reaches the point at oco. If the latter
is true then we are done for this particular I';(u) and this particular direction.
Thus we need to consider what happens when I';(u) encounters a cross point.

By Theoremm 4.5 we see that I';(u) has a corresponding curve to follow
through the cross point. Note that I';(u) is no longer following along the bound-
ary for regiou R, but is now following the boundary for R;, which is another
region where u is positive. Again the previous argument holds that I';(u) must
encounter a cross point or the point at 0o. Again we only need to continue if a
cross point was encountered.

By repeating this argument inductively we see that if I'j(u) meets only a
finite number of cross points, then after meeting those points it will have to
follow the boundary of some region where u is positive to the point at co. Note
that by Theorem 4.2 that the curve must continue and not have an endpoint.
Thus the only remaining case is if I';(u) encounters an infinite rumber of cross
points. But cross points must accumulate at oo (since u = Re(f), and f' =0
at the cross points). Thus the curve must be incident on the point at co.

Hence for all j, I';(u) in incident upon oo from both directions of the curve.

O

This is important because the point at oo provides us a way with ”counting”
curves.
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Corollary 4.9 There are n(Z(u)) curves, 2n(Z(u)) "rays”, incident upon the

point at oo.
Proof

There are, by definition, exactly n{Z(u)) curves in Z(u). By Theorem 4.8
each one is incident upon oo once and only once from both ends, thus the
corollary holds.

The point at co has characteristics similar to those of the cross points. Com-
parison to corresponding holomorphic functions is key in the study of the curves’
behavior around co. When there is a pole at oo (when f is a polynomial), then

the behavior near co is exactly the same as near a cross point.

Lemma 4.10 Z(Re(az™™)), where m > 1, is composed of 2m rays incident

upon z = 0 with angles .
Proof
Define z in polar coordinates.
z=re?, r>0,0<8<2n
Then the solution for Z(Re(az™™)) is
cos(—ml + arg{a)) =0

This the follewing solution in polar coordinates.

9= 2argla) — + _k_7r_’ 1 arg(a) <k< 1 arg(a) +om.
2m m 2 T 2 T

Just as in Theorem 4.4, we see that this means that the zero set is composed of
m lines (minus the point at the origin) all incident upon the origin and having
equal angles of 7.

Theorem 4.11 If f has a pole of order m at the point at co, then there are m

curves, 2m "rays”, incident upon the point at 0o, or more simply n(Z(Re(f))) =
m.
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Proof

If f has a pole of order m at the point at co, then f has the following form.

m

f2).=) a2
3j=0

Note that in a close enough neighborhood of the point at oo,

f(2) = apz™.
The behavior of f(z) around the point at co then correlates to the behavior of
f(%) around 0. Thus

f(%) amz .

Now by Lemina 4.10, we now know that the behavior corresponds to m incident
curves. Now by Corollary 4.9 this proves that n(Z{Re(f))) = m.

However if f has an essential singularity at co, then such a nice property
doesn’t exist However zero curves for such a f can be distinguished from
the zero curves for functions with a pole at infinity. We will now develop a

description of this characteristic, but we will need to use the following lemma.

Lemma 4.12 Given a differentiable curve v(t) = (y1(t), ¥2(t)), with the prop-

erties that Re(f(v(t))) = 0, for all t € [a,b], and that f(y(a)) = f(y(b)), then
there ezists a ¢ such that there is a cross point in Z(Re(f)) at y(c)

Proof
Define f = u + iv. Notice that since u is constantly zero along the curve
that d
=7 () =0, te(aDb). (24)
Now define g{t) = v(y(t)). Then g(a) = g(b). Now by the Mean-Value Theorem,
Jc € (a,b), s.t. ¢g'(c) = 0.

Therefore by the above equation and (24), at t = ¢,

vz (V)M + vy (¥)72 = 0.
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uz (V)1 +uy(v)rs = 0.

Since 7 is a differentiable curve, (7], v%) # (0,0). Therefore by linear algebra,
at v(c),
UzUy = UyUz.

Then by the Cauchy-Riemann equations
(uz)? + (uy)? = 0.

So at ¥(c), uz = uy = 0 and thus f'(y(¢)) = 0. Therefore by Corollary 4.6
there must be a cross point at y(c).

Theorem 4.13 If f has an essential singularity at the point at 0o, then
n(Z(Re(f))) = oo.

Proof

For the purpose of contradiction, assumne that there is a f that has an es-
sential singularity at the point at oo so that n(Z(Re(f)) = M, where M is a
finite number. Then there are M zero curves incident upon the point at oo.
Now by the Great Picard Theorem, there is an infinite number of points in any
neighborhood of co where the value of f is 0 (or i). Now by the Pigeonhole
Principle there must be a I’y such that contains an infinite number of the points
where f is 0 (or 7). Enumerate these points as z;, in order of occurance as one

starts at some point in 'y and heads toward the point at oo along T.
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Now by Lemma 4.12 between each pair of consecutive points, z; and zj4.1,
there is a cross point in Z(Re(f)), involving ['x being intersected by at least the
curve I'y;. Note by Theorem 4.3 that the following statement must hold true.

Ya,b, s.t. a £ b, ky # k.
Now if we examine n{Z(Re(f))), we arrive with the following.
WZRe(f) > Hi €N : Ty =i € Nk} = IN]| = o0

Therefore contradiction, and thus the theorem is proven.

Now one should also note that the converses to the above theorems also
hold true, and now we can prove both, with most the work already done in the
previous theorems.

Theorem 4.14 If n(Z(Re(f))) = m, where m is finite, then f has a pole of
order m at the point at oo (i.e. f is a polynomial of degree m.)

Proof

Assume for the sake of contradiction that f did not have a pole of order m at
the point at . Since f is non-constant it cannot have a removable singularity
there. Suppuse that there was a pole of order i, n # m at the point at oo, then
by Theorem 4.11, n(Z(Re(f))) = n. But this implies that n = m. Thus the
only remaining choice is that f has an essential singularity at the point at oo.
Thus by Theorem 4.13, n(Z(Re(f))) = oo. Thus contradiction

Theorem 4.15 Ifn(Z(Re(f))) = oo, then f has an essential singularity at the
point at oo.

Proof

Assume for the sake of contradiction, that f didn’t have a essential singu-
larity at the point at oo. Thus f must have a pole of some finite order m
at the point at oo, as f is non-constant. By Theorem 4.11 this means that
n(Z(Re(f))) = m. Thus contradiction, and this completes the proof.
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Now with these theorems many classes of curves can be excluded from being
considered the zero set of a harmonic function. Functions which have a finite

number of lines approaching the point at oo must have equiangular asymptotes.

2 Yy = %72 at infinaty

1
L5 0.75
1 0.5
0.5 0,25
0 0
-1.5 -0.25
1 -0.5
5 -0.7%
-1

R S T B 0 75-0.5-0.25 0 0 25 0.5 0 75 1

¥r2 - 3 x"2 =1 at infinity

1

5 0.7%

1 0.5

s .25

2 [

s -0.25

1 -0.5

1 -0 75
IR O R S S M N S T B} T T o s 025 0 025 05 075 1
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Re (z"3+272)=0 at infinity

: 2
5 1.5
1 1
0.5 0.5
a 0
-2.5 0.5
t -1
1.5 -1.5
Tt TS S -e.s 0 0.5 1 1.5 2 ETTITTO S s 0s 1 1
10 Re (E"z) 0.4 at wnfinity
75 0.3
5 0.2
.5 0.1
b [
R -0,1
5 -0.2
A -0.3
A -5 -2.5 0 2.5 5 7.t 10 O TTT T 0T 0 01 0.2 03 0.4

(8) and (9) are unallowable as the angles of their asymptotes (at oo) are not equal. (10) is
valid, and demonstrates the properties at oo, (Theorem 4.11), and the properties of a cross point

(Theorem 4.4). (11) is also valid and demonstrates Theorem 4.13.

4.4 Exclusiveness of Equations

The set of zero sets of harmonic functions is indeed a very restrictive one. As we
have seen many simplé candidates are quickly eliminated by the many properties
that zero curves of harmonic functions satisfy. We now turn from a geometric
examination to a more algebraic examination. If we give the zero set as the zero
set of some function g, .the question is, does there exist a harmonic function
with the same zero set as g. If Ag = 0, then the answer is clearly "yes”. If
Ag # 0, then the answer is undetermined. For example, 2%y, zy?, and zy all
have the same zerc set, yet the first two functions are not harmonic while the
third is. Notice by Theorem 4.14, that if there is a harmonic polynomial u,

27



such that Z(u) = Z(g), then the degree of u must be n{Z(g)). So if we put the
restriction on g that deg(g) = n{Z(g)), and then Ag # 0 is a suificient fact to
eliminate Z(g) as a zero set of a harmonic function.

Before proving the above statement though, we will prove what yields to be

a strong theorem for our purposes. First we put forth the following lemma.

Lemma 4.16 Given a polynomial p in x and y of degree m.

m om-—i

y) =YY aijp)aiy’. (25)

i=0 j=0

There exists a function hlp, 11,b], which is a polynomial of degree m in z, such
that p and hip, p,b) are equal on the line y = pz + b, that is p(z,pz + D) =
hip, i, b](2).

Proof

m m-—i

plz,pz +b) = Z Z (ai j(p)z* (pz + b)7)
=0 j=0
m m-—i J
=X (wp)xlz ( ! ) () 19" >
0 j=0 . k=0

11

3 l
e [0
M- Mf
/a'\ M‘~
ii /;\

S 5
T /—\
~—

\/ ¥,

?{'

" >r
< %
§ e

~——

= Z dk (p7 i, b)xk
k=0

where di(p, 11, b) is defined as follows

di (p, 11, ) ZZam ,(p)< Z )u"‘ibj‘k. (26)

1=0 j=k

Let hlp, 1, b] = ¥y di(p, 1, b)z* and the proof is finished.
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Now that we have worked out the above calculation we generate the following
theorein.

Theorem 4.17 Let f and g be functions of x and y with degree m with Z(f) =
Z(y). If there exists m parallel ines indexed as L;, so thatVj, 1 < j < m, that
|L; N Z(f)| = m, then g = cf where ¢ is a constant.

Proof

First we consider the case that the lines are not vertical. Then all the lines
have the same slope which we define to be p. The lines can be indexed as
L; = L(b;) = {(z,y) : y = pz + b;}. Now for any b such that |£; N Z(f)| = m,
then define the point (z;,y;) as the ith zero point in £(b)NZ(f). Choose (z',y")
to be an element of L(b)\Z(f). Define

¢ = 2V
f@y')

By Lemma .16 h[f,u,b)(z,y) = f(z,y) , and similarly for 4. Putting this
equation for tke m points (z;,y:) and the point (x’,y’) gives

1 2 .oz do(f,p,0) fe'y')
1 z - -'Ein dl(f,p'vb) 0
1 2o --- 2P d2(fmd) | = 0
1 zp - -'17;7,: dm(fy 1y b) 0

Note the above square matrix is a Vandermonde matrix. Since z’, and z;,
for all 7, are distinct, the matrix above is invertible. Hence

-1

do(g, 1, ) 1 2 - zm 9(z',y")
dl(gauvb) 1z --- ;1;;" 0
d2 (g7 M, b) = 1 T2 P zgl 0
dyn (9, M, b) 1 z, --- zm 0
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1 2 ... gm f(zl,yl)

T z 0
—- 1 29 --- 2P 0 ch
1 z, - 2n 0
dO(fa H, b)
di(f, 1, 0)

= daf, 1, b)

dm (fa »U'v b)
Hence for all j and k, di(g, i1, b;) = cp,di(f, pt,b;). Now using (26), we have
that for all j that

m

(lm(f, My bJ) = Z ("i.m—i(f)/l.m—i.

=0
So for any j and j', dm(f,1t,0;5) = dm(f, 11, b;) (and similiarly d,,(g,p,b;5) =
(g, 1,05);. Now

dy (g, 11, b;) - dim(g, 1, b1)

ey, = = = Cp,-
i dm(fa Hy b]) dm(fa Hy bl) h
Let us define ¢ = ¢p,. Then for all k,
dk(gnu'?bj) =Cdk(fa.u'abj)' (27)

It remains to show that a; ;(g) = ca; ;(f), for all i and j. We will prove this
using induction. Our induction statement on n is that the statement a; ;(g) =
ca;j(f) is true for all ¢ and j such that 0 < ¢ < n and 0 < j < m —i. The basis
case for n = 0 holds clearly as there are no i such that 0 < i < 0. Now assume
the statement is true for n = k. Notice by (27) and (26) that

0= dk(ga :uvb) - Cdk(f1ll,b)

(ai,-i(g) — cai,j—i(f)) ( ;:z ) uk“'b"“’“]

= Z [(ak,j-k(9) = cakj—x (£))VF ]
j=k

J
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-1 m s s o
+z& 2 (ai;-i(g) — caij-i(f)) < ;c_: ) uk—’bj_k] :
=0 )=k -

By our induction hypothesis, a;;(g) — ca; j;(f) = 0 for all i and j such that

0<i<kand0<j<m-—i. Sothe second summation equals zero, and so

m—k

> (ak j(g) — car ()Y = 0.

7=0

Now the above is true for bj, for all j such that 1 < j <m —k+ 1. Setting this

up in matrix form we get

1 b ce pmek ako(g) — caro(f) 0
N aalg) —cara(f) | |0
1 byogtr o b;’,::’ki+1 rm—k(9) — ¢ m—r(f) 0

The above matrix is a Vandermonde matrix and hence invertible since all b;
are distinct. Thus ag j(g) — cax j(f) = 0 for all j such that 0 < 5 < m — k.
Therefore the induction statement holds for n = k + 1. By finite mnduction the
statement, u, ;{g) = cai;{f), is proven for all ¢ and j such that 4,5 > 0 and
i + j < m. Therefore g(z,y) = cf(z,y).

Now in the case that the parallel lines used are vertical, then apply the above

proof to f(y.x) and g{y, =), using horizontal lines.

From this we develop two corollaries relating to the zero sets of harmonic
functions.

Corollary 4.18 Given an harmonic polynomial u of degree m. Then any poly-
nomial p of degree m such that Z(p) = Z(u), is equal to a non-zero multiple of
u.

Proof

Since Z(u) has m asymptotes, choose a line through the origin that is not
parallel to any of the asymptotes. This line is of the form {(z,y) : Az+ By = 0}.
Now there exists a D such that for all d > D, that the line £(d) = {(z,y) :
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Az + By = d} has mn intersection points with Z(p). Hence we can choose m
parallel lines that satisfy the condition for Theorein- 4.17. Thus p = cu.

Corollary 4.19 Given a polynomial p of degree m with m lines in Z(p) incident
upon oo (or m asymptotes), then there exists a harmonic function u such that
Z(u) = Z(p) if and only if Ap= 0.

Proof

If Ap =0 then p is a harmonic function.
If there exists a harmonic function u, such that Z(p) = Z(u) then by Corol-

lary 4.18, p = cu. Since u is harmonic, Ap = cAu = 0.

Now an alternative way to attempt to show the above corollaries is directly
through the Hilbert-Nullstellensatz Theorem. Through this theorem we can
say that there must exist numbers m,n > 1 and polynomials r and s such
that p™ = ru and u™ = sp. However it is not clear how having the degree of
u and p beins equal implies that m and n equal 1 (and therefore that r and
s are constaunt). Plus the fact that u is harmonic is not used in any of this
construction. Thus this method doesn’t seem to yield the above corollaries.

Most of previous work has examined the properties of zero sets in two di-
mensions. Oune question is do these translate into higher dimensions. With
the utility of complex numbers now unavailable. With the exception of cross
points and cross lines, the Implicit Function Theorem will hold that the zero
sets in any dimension are locally infinitely differentiable hypersurfaces. General
properties of harmonic functions were used to prove Theorem 4.2 and Theorem
4.3, so these hold for any dimension. Examination of cross-points requires se-
vere alteration. Most importantly we can no longer say that a zero set is union
of one or more infinitely differentiable hypersurfaces. In fact there are defi-
nite counter-examples to this. However at cross points, cross lines, etc., where
the zero set is locally a union of infinitely differentiable hypersurfaces, we can
show that certain principles of symmetry must exist. By the Schwarz Reflection

Principle, the zero set but be locally symmetric about each surface at the cross
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point. Many of the properties may exist at all cross points but either a different
condition is needed other than "equal angles”, or an appropriate definition of
angle measure needs to be used.
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