University of Richmond

UR Scholarship Repository

Honors Theses Student Research

4-22-2005

Ecological niching in an interactive simulation

Ryan T. Webb
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

b Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation
Webb, Ryan T., "Ecological niching in an interactive simulation" (2005). Honors Theses. 494.
https://scholarship.richmond.edu/honors-theses/494

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/494?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

F RICHMOND LIBRARIES

\\\\\\\\\\\\\\\N\\\\\\\\\\\\\\l\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Ecological Niching in an Interactive Simulation

Ryan T. Webb
Honors thesis?
Department of Mathematics & Computer Science
University of Richmond

April 22, 2005

1Under the direction of Dr. Gary R. Greenfield

Mot

\

Lo t,‘?q

Abstract

Our goal is to create a simulation platform for the study of ecological nich-
ing that can be extended 1o suit the needs of biological research. Ecological
niching and the acéompanying evolutionary process of speciation are diffi-
cult to observe in situ, which makes them prime candidates for study via the
methods of computer simulation. To this end, we have created an interactive,
real-time ecosystem simulation based on the standard predator/prey interac-
tion model, in which interacting populations of organisms exhibit swarming
behavior. We hope to provide the basic simulation components necessary to
bring about niching and speciation, that may be extended for the purposes

of experimentation.

The signatures below, by the thesis advisor, a departmental reader, and
the honors coordinator for computer science, certify that this thesis, prepared

by Ryan Webb, has been approved, as to style and content.

M@.MM

(advisor)

IH et

(reader)

(M Lhad

(honors committee representative)

1 Introduction

The phenomenon of speciation in ecological systems is among the most stud-
ied and debated topics in evolutionary biology. There is no complete agree-
ment on the set of ecological conditions necessary for the emergence of a new
species, though several modes of speciation have been proposed. The most
traditionally accepted mode is allopatric speciation, whereby a new species
may arise in an ecological system when a physical barrier is introduced into
a population of a particular species. This physical barrier has the effect of
splitting the population into multiple subpopulations. A second mode of
speciation, parapatric speciation, may occur when a subpopulation migrates
to a new ecological space. Implicit in both of these modes of speciation is
the concept of an ecological niche. In the broadest terms, an ecological niche
is the relational situation of a population within an ecosystem. To refine the
idea, a niche includes how a population reacts to and affects the resources
and competing organisms in its environment as well as the physical space
that the population occupies.

The emergence of ecological niches has been a difficult phenomenon to
observe in situ. As with all evolutionary processes, the development of niche
species takes place over such a long period of time that it is impossible to
observe it in a controlled environment. For this reason, the process of eco-
logical niching is a prime candidate for study via the methods of computer

simulation. A computer simulation that models an ecological space and the

phenotypic variations within would benefit greatly from real-time visualiza-
tion. Furthermore, to extend the metaphor of a virtual laboratory, it is
useful to include interactive controls to the simulation that allow real-time
alteration of the environment. The objective of our current work is to de-
velop a platform for the study of ecological niching that may be adapted and
extended to suit the needs of biological research.

The proposed platform bears resemblance to other recent platforms for
ecological simulation, such as Echo [3] and Gecko [1]. Like these ecology
simulators, our work is intended to be a general-purpose simulator that will
serve as a platform for experimentation. Unlike Echo and Gecko, however,
our work focuses on swarm dynamics in & three-dimensional space and the
evolution of niche species. We have developed a set of rules that bring about
niching and speciation in a qualitatively observable way. The ability to gen-
eralize in terms of phenotypic traits and fitness function selection were built
into our model from the ground up, and interactive controls provide the level

of direct user interaction necessary to perform real-time experimentation.

2 Background

Simulated ecosystems in Artificial Life traditionally consist of multiple au-
tonomous agents competing for resources in a shared space. One of the
earliest examples of such an ecosystem is Thomas Ray’s Tierra [4]. In Ray’s
model, artificial organisms are conceptualized as assembly language programs

that compete for CPU time and space in the computer’s physical memory.

Using a genetic algorithm, Ray was able to evolve several different “species”
of artificial organisms over multiple executions of the Tierra simulator. Ray
differentiated between these species on the basis of their behavior. The three
most common emergent species were parasites, which preempt the CPU time
of other creatures, hyper-parasites, which preempt the CPU time of parasites,
and hyper hyper parasite cheaters, which preempt the CPU time of hyper
parasites. Speciation in Tierra occurs through the random mutation of bits
in an organisms machine language fepresentation. Because this speciation
occurs in a shared space, it is appropriately classified as sympatric speciation.
Ray’s simulation does not include a real-time visualization, as its execution
is not intended to be observable in real time. A particular difficulty with
Tierra is the fact that in order to obtain ény useful data about the evolved
organisms, they must be disassembled from their machine language instruc-
tions and then exhaustively analyzed. There is no sense of evolution based
on transparent, observable phenotypic changes.

Another important example of a simulated ecosystem is Larry Yeager’s
PolyWorld [11]. Conceived as a “real-world” ecology simulator, PolyWorld
models all of the principal components of a real, living ecosystem. The
simulation features biologically motivated genetics, simple physiology and
metabolism, artificial neural networks, a visual perception mechanism, and
a suite of ecologically based primitive behaviors. The organisms of Poly-
World interact in a two-dimensional landscape, sharing and competing for

resources. The landscape may be marked by impassable barriers, which can

create niches necessary for speciation. As in Tierra, “species” in PolyWorld
are differentiated based on common group behaviors. Though each run of the
simulator produced somewhat different results, certain species were recurrent
across multiple runs. The organisms of the first such recurrent species were
dubbed “frenetic joggers” by Yeager. These organisms constantly ran across
the landscape at full speed, always wanting to eat and mate. Another recur-
rent species constantly ran around the edges of the landscape. Speciation in
PolyWorld occurs by both allopatric and sympatric means. Unlike Tierra,
PolyWorld features a real:time visualization system that represents organ-
isms as solid-colored, two-dimensional polygons on a flat landscape. The
overwhelming complexity of the Poly World simulation makes it an impracti-
cal platform for experimentation, however.

Visualization systems for artificial ecosystems that involve large numbers
of simulated organisms typically follow the model of Poly World, representing
the environment as a flat, two-dimensional surface. Other examples of this
type of visualization system include Gaia [2] and Darwin Pond [10]. When
dealing with a three-dimensional simulated ecosystem, it is useful to have
a cohesion mechanism of some sort that will allow organisms of a similar
species to move about in tight clusters. This makes the phenotypic similar-
ities within a species more visually apparent as well as accentuating unique
group behavior.

It is to this end that we chose to base our models of organism move-

ment and interaction on the three standard flocking rules described by Craig

Reynolds in his 1987 SIGGRAPH paper “Flocks, Herds, and Schools: A Dis-
tributed Behavioral Model.” These rules include flock centering (cohesion),
velocity matching (alignment), and collision avoidance (separation). The
first of these rules, cohesion, is intended to maintain a certain level of clus-
tering between organisms in a flock. The second rule, alignment, models the
tendencies of flocking organisms to travel in the same direction. The third
rule, separation, attempts to maintain a certain amount of distance between
neighboring flock mates within a cluster. When all of these rules are working
simultaneously, they have-been shown to produce results that qualitatively
resemble impromptu flocking behavior [5]. Reynolds’ flocking rules are the
most effective mechanisms for managing large populations of artificial organ-
isms in the artificial life literature, and the ability to implement them in a
real-time context makes them ideal for our work.

Along with visualization systems, artificial ecosystem simulators often in-
clude interactive controls to allow for real-time manipulation of the simulated
environment. One example of such a simulator is Darwin Pond [10]. Follow-
ing Sims’ work on evolving artificial organisms interactively [6], the artificial
ecosystem modeled by Darwin Pond reacts to user interaction and interven-
tion in the evolution of segmented organisms called “swimmers,” that move
about in a virtual primordial soup competing for food and reproducing. In-
teractive controls are provided that allow a user to modify the ecosystem
in real time by adding food, erasing food, adding random swimmers, killing

swimmers, and altering the genome of a particular swimmer. The various

controls provided alter the environment in such a way that their effects are
immediately observable. For instance, if the user adds a large cluster of food
to a somewhat remote area of the primordial soup, many swimmers will be
drawn to the area. The swimmers will consume the food and proceed to re-
produce. Interactive controls of this sort promote the metaphor of a virtual
laboratory that supports interactions that are impractical in a real-world
laboratory setting.

The line between the virtual laboratory and the real world becomes some-
what blurred in the A-Volve installation by Sommerer and Mignonneau [8].
The artificial ecosystem of A-Volve evolves in response to user interactions
with the real world, as users design virtual organisms on a touch-pad and
introduce them into a virtual environment that is projected onto a pool of
water. These organisms mate and fight with each other and also respond to
user interactions with the water. By moving his or her hand through the
water, a user may attempt to guide the movement of a creature in order to
protect it from other creatures or to bring it into direct contact with other
creatures. Creatures survive contingent upon their ability to reach a target
in a certain amount of time, which is contingent upon the form of their user
designed body. The most fit creatures will consistently behave as predators,

feeding on the energy of less fit creatures.

3 Design Goals

In order to design a general-purpose simulation for the study of ecological
niching, it is important to make simplicity the top priority. Within the
context of our simulation, this simplicity has been realized at multiple lev-
els of design. It is important to build simplicity into the system from the
ground up, beginning with the most fundamental unit of simulation. In this
case, the fundamental unit in question is the simulated organism. For the
purposes of experimentation, it is necessary to create an organism with a
relatively simple genome. Unlike the organisms of Tierra, whose genomes
are composed of ma’chine language code that must be disassembled and ex-
haustively analyzed, we propose a design for organisms with a small number
of biologically-motivated genes that are expressed as easily-observed, phe-
notypic traits. In our design, speciation is expressed through variations in
these phenotypic traits. It is desirable to enable the easy selection of a phe-
notypic trait on which to base simulated evolution; that is, the trait by which
speciation will be expressed.

The next fundamental unit of simulation is the swarm itself. The inherent
simplicity and elegance of Reynolds’ flocking rules provide a platform for
swarm behavior that is both easy to implement and highly extensible. The
basic swarm model can be expanded upon to ﬁrovide custom behaviors by
specifying new rules that can be implemented in much the same way that the

cohesion, alignment, and separation rules are implemented. In the interests of

flexibility, it is also important to allow the alteration of certain parameters of
the swarm, including swarm size, swarm light orientation, and the weighting
of various swarm behaviors and flocking rules. Each of these parameters
should be easily accessible and mutable at run time.

Another important simulation unit is the realization of environmental re-
sources. In the context of our work, environmental resources are realized
as spotlights from which organisms draw energy by flying within the pro-
jected cone of light. For the interest of experimentation and flexibility, it is
desirable to be able to modify many of the parameters of the spotlights as
well. This may include, but is not limited to, spotlight orientation, intensity,
and opening angle. The desire to receive real-time feedback from changes in
each of these parameters provides one motivation for including interactive
controls.

Another motivation for the inclusion of interactive controls is the desire
to create the illusion of working in a virtual laboratory. While it is impos-
sible to observe the entire process of speciation in a controlled environment,
such as a laboratory, it is possible to simulate an ecosystem with specific
boundaries. This enables a user of the simulation to view anything and
everything that occurs within the borders of the artificial ecosystem. The
inclusion of interactive controls for real-time user interaction allows for the
transparent manipulation of underlying data structures and frees the user
from unnecessary concern for the implementation. This does, however, re-

quire the inclusion of a real-time visualization system. As with any real-time

visualization system, the primary concerns for our work are clarity of image
and speed of visual update. Both goals may be addressed by maintaining
a strict adherance to simplicity. The physical structure of organisms must
be both distinctive and simple, allowing them to be easily distinguished and
drawn quickly. The same rules must apply to the physical structure of the
landscape and to the visual representation of spotlights.

As a final concern for the creation of a virtual laboratory metaphor, it
must be easy to obtain quantitative data about the behavioral, genotypic,
and phenotypic traits exhibited by the organisms. This quantitative data
should take the form of output statistics that are dumped to a data file
when the simulation terminates. This quantitative data will be an invaluable

supplement to the qualitative data provided by the real-time visualization.

4 Implementation

4.1 The Visualization System

The first step in the implementation of our design was the development of a
framework for real-time visualization. In keeping with the flexible nature of
the platform approach, we chose graphics and windowing libraries that are
both widely-supported and compatible across many platforms: OpenGL and
GLUT. There are native implementations of OpenGL for all major platforms
and it is supported in hardware by many video card vendors. GLUT hides
the internals of complex windowing APIs like Windows, X-Windows, and

MacOS X, making it easier to initialize a window frame for viewing and

basic GUI components for interactivity. We found GLUT somewhat limiting
in its selection of interactive controls, a problem that was addressed much
later in development.

The basic components of our visualization system include an orthographic
viewing volume, a stationary camera, and a grid of polygons representing a
“stage” area. All graphics are drawn in double-buffered mode, and the ma-
jority of drawn objects are lit. The main simulation loop is implemented as
a procedure that is passed as a function pointer to the GLUT idle callback,
which invokes the procedure whenever windowing events are not being re-
ceived. The result is a constant, real-time update of the all of the ecosystem
components, that are then drawn onscreen by a separate routine.

Another important component of the visualization system is the mesh
class, which encapsulates stored vertices, normals, and faces,- as well as the
methods necessary to draw them onscreen. This class is primarily used to
store geometric descriptions of organism models, which are represented as
vertext lists. By allowing models to be stored as vertex lists, we maintain
a level of flexibility that enables the geometric structure of organisms ‘to be

altered quickly and simply in code.

4.2 Environmental Resources
4.2.1 The light Class

Environmental resources in our simulation are realized as spotlights, and

each spotlight is inhabited by a swarm of organisms. The spotlight inhab-

10

ited by the predator population is red, and the spotlight inhabited by the
prey population is green. Spotlights are implemented as a special case of the
light class. An object of type 1ight is instantiated by passing a value corre-
sponding to one of the enumerated light sources provided by OpenGL to the
constructor. The newly-instantiated spotlight object may then be modified
to exhibit a subset of the properties of a standard OpenGL light. The muta-
ble properties of a light include its position, color, orientation, intensity, its
status as a positional or directional source, its status as a spotlight or normal
light, and its spot cutoff angle. When a change is made to one or more of
these properties, a call must be made to the setup() method of the 1light
class in order for the changes to take effect.

The visualization of spotlights is divided into two components. The first
visualization component is based on calls to the native OpenGL lighting
system. OpenGL provides calls to initialize a positional light source that
behaves like a spotlight, but since light itself is invisible, the existence of a
spotlight is only evident when an object passes beneath it. For the purposes
of our simulation, it is necessary to visualize the “cone” of the spotlight, so
another visualization component is required.

The cone of the spotlight is generated dynamically as a triangular mesh,
based on the orientation of the light. Beginning with the vector o = (0, -1, 0),
representing the default orientation vector, the vector is rotated about the
z-axis by the spot cutoff angle « using a standard rotation matrix. It is then

rotated counter-clockwise about the y-axis in increments of ten degrees until

11

class light
{
public:
light (GLenum gll);

void setup();
void on();
void off{();
void draw{);

GLfloat x, vy, z;

GLfloat pitch, yaw, roll;
GLfXoat color([3];

GLfloat intensity;

bool positional;

bool spot;

GLfloat spot_cutoff;

vector get_direction{);
bool light _is_on{();

private:
vector direction;
bool is_on;
GLenum gl _light;
GLfloat fan[LIGHT CONE_SEGS] [3]:

Y

Figure 1: light class declaration

12

reaching 360 degrees. After each rotation, the vector is rotated once again
to account for the orientation of the light. The orientation is represented by
pitch (p), yaw (7), and roll (v) angles, which are stored in Euler angle form.
Standard rotation matrices are used to compute an orientation vector from
these angles, as demonstrated below, where R = R, - R, - R, is the matrix

composed from the three rotation matrices:

cosp —sinp 0 cos(y) 0 sin(y)
R,=|sinp cosp 0| R,= 0 1 0
0 0 1 —sin(y) 0 cos(y)
1 0 0

R,=1]0 cos(v) —sin(v)
0 sin(v) cos(v)

After the vector is rotated by R, producing the vector c, the intersection of
the stage and the line emanating from the light source in the direction of ¢
is calculated. The calculated intersection points and the position of the light
source form the set of vertices that define the cone mesh.

This mesh is generated when the call to setup() is made after the orien-
tation is altered. The mesh is stored as a private data member of the 1ight
instance and is drawn by the draw() method of the 1light class. The cone is
rendered as a solid-colored, semi-transparent mesh with the OpenGL light-
ing system disabled. The transparency of the light is directly related to the
light’s intensity value; the lower the light’s intensity, the more transparent it

will be rendered.

13

4.2.2 Calculating the Intersection of Spotlights

In order to support competition between predator and prey swarms, both
swarms must seek to inhabit a common space. In our simulation, this com-
mon space is the intersection of the two spotlights. In order for the predator
and prey swarms to seek this intersection, it must first be calculated. The
initial step in this calculation is to find the “shortest distance line” between
the two center lines of the spotlights. Given the equation of the center line
of the red spotlight (L,) and the equation of the center line of the green
spotlight (L,), we must find a point along each line such that the distance
between the two poiﬁts is minimal. Let (s) be a point along the parametric
representation of the line L,, and let R(¢) be a point along the paramet-
ric representation of the line L,. Also, let [, and o, be the position and
orientation vector of the green spotlight, and let /. and o, be the position
and orientation vector of the red spotlight. Finally, let w(s,t) be a vector

between points on the two lines. Then,

L, is Q(s) =l + so,, Ly is R(t) =14+ tog, and

w(s,t) = Q(s) — R(¢) .

Unless the two lines are parallel, they are closest at unique points Q(s.)
and R(t.) for which w attains its minimum length; also, the vector w, =
w(s, t.) is uniquely perpendicular to both o, and o,, which is equivalent to

satisfying the equations o, - w, = 0 and o, - w, = 0. These equations may

14

be solved by substituting w, = Q(s;) — R(s.) = wWo + $:0, — .04, where

wo = Qo — Rp into each equation to obtain the simultaneous linear equations

(0r - 0,)8c — (0, - 0,)t, = —0, - Wo
(0g - 0)sc — (0g - Og)t, = —04 - Wo

Letting @ = 0, - 0, b = 0, - 04, ¢ = 04 - 04, d = 0, - Wy, and e = 0, - Wy,

we solve for s; and {, as

be — cd ae — bd
So = fy = ——eres

ac — b? ac — b?

The line segment connecting Q(s;) and R(t.) is the unique shortest dis-
tance segment between L, and L,. If the length of this segment is less than
the sum of the radii of the spotlight cones about the center points Q(s.)
and R(t.), then the cones interesect, and the midpoint of the segment is the

center point C' of the intersection volume.

4.3 Swarms and Artificial Organisms

4.3.1 The organism Class

The organism class encapsulates all of the functionality of individual artificial
organisms. This includes the organism’s genome, which consists of its size
(a scaling variable) and its field of view. The class also contains members
for storing the pitch, yaw, and roll of individual organisms, as well as their
position, velocity vector, and the maximum distance within which they will
seek a viable mate. The genome consists of only two genes, and only the

size gene is variable. The size gene is expressed phenotypically by scaling

15

class organism

{
public:

organism(GLfloat ox, GLfloat oy, GLfloat oz, mesh *om);
void draw();
vector pos;
vector vel;
GLfloat fov;
GLfloat mate_range;
GLfloat pitch, yaw, roll;
GLfloat size;

organism *next;
organism *prev;

GLfloat fitness;

private:
void compute py{):
mesh *org mesh;

}: ’

Figure 2: organism class declaration

the geometric representation of an organism by its size member. The size
member is also used in the calculation of the fitness of an organism, which is

described in section 4.4.
4.3.2 Implementation of Flocking Rules

The flock, prey-flock, and pred_flock classes encapsulate the function-
ality for the basic flock, the prey flock F,, and the predator flock F,, re-
spectively. Most importantly, these classes provide an implementation of
Reynolds’ flocking rules. The flock class functions as a base class for the
prey-flock and pred-flock classes and implements the basic flocking rules,

cohesion, alignment, and separation. These rules are invoked every time the

16

class flock
{

public:
flock(int s, int cx, int cy, int cz, mesh *om);
void update();
void draw();
void set_max_velocity(GLfloat mv);
protected:
void avoid_world(organism *o);
organism *first;
mesh *flock mesh;
int size;
GLfloat max_vel;
}i

-

Figure 3: flock class declaration

update () method of the flock class is called. The flock class exhibits the

impromptu flocking behavior typical of standard swarms.

b

The derived classes prey.flock and pred.flock extend the basic Reynolds
rules to provide more specific behavior. The expanded rule set consists of

the following:
e Cohesion
e Alignment
e Separation
e Tendency toward native light source
e Tendency to stay within native light cone

e Tendency toward the intersection of two lights

17

The contribution of each rule to an individual organism’s behavior is
realized as a vector of a specified magnitude, pointing in an appropriate
direction. The final “velocity” vector is a linear combination of the vectors
produced by each of the rules listed above. The term “velocity vector” is
used in this context because “direction vector” is an inadequate term. The
vector produced by the linear combination contains both a heading and a
magnitude for the organism’s next movement. It is not merely a unit vector,
but a linear combination of several scaled vectors.

The cohesion rule is implemented by first calculating the center of mass
M(Fj) of the flock Fj, which is the average position of individual flock or-
ganisms. A difference vector is then calculated between the flock’s center of
mass and the position P(O;) of the organism O;, where O; is a member of
the flock F;. This difference vector is normalized and scaled by a positive
constant k;, whose value is dependent on the type of flock performing the

update operation. This produces the cohesion vector c:

M(Fy) — P(0))
'[M(F;) - P(O:)]

The alignment rule is implemented in a similar fashion. First, an average

C(Oi) =k

velocity vector v(F}) for the flock is calculated. This velocity vector is then
normalized and scaled by a positive constant ks, producing the alignment

vector a:

18

N
200 = k)

The separation rule is implemented by first seeking the nearest flockmate
N(O;) of O;. A difference vector is then calculated between the position of
O; and the position of N(O;). This vector is normalized and scaled by a
negative constant k3 in order to influence the movement of the organism in
a direction away from its closest flockmate. This produces the separation

vector s:

P(N(0y)) — P(0y)
|P(N(0:)) — P(Oy)]

' S(Oi) = k‘3

The tendency of an organism to move toward its native light source is
based on the idea that energy levels near a light source are higher than
energy levels far away. Thus, an organism seeks the light source in order
to draw more energy, thus gaining greater “fitness.” We will return to the
idea of fitness in a later section. The vector toward the native light source is
computed by finding the difference vector between the position P(L,) of the
native light source L, and the position of O;. This vector is normalized and

scaled by a positive constaht k4, producing the vector n:

|P(Ls) — P(O:)]

The tendency of an organism to stay within its native light cone models

n(Oi) = k4

the desire of an artificial organism to remain under the spotlight in order to

19

acquire fitness. This rule is only invoked when an organism strays outside of
its native light cone. In order to determine whether an organism is within
its native light cone or not, the in_cone() function (expressed symbolically
as in(0;, L)) is invoked. This function projects the current position of an
organism onto two planes that contain the origin point T'(L,) of the native
spotlight and are parallel to the yz-plane and to the xy-plane, respectively,
producing points P, and P». Angles 8 and ¢ are then computed. These are
the angles between each of the projected points and the line L; created by
the intersection of the two planes, using the origin of the native light as a
reference point. The computed angles are then tested to determine whether
or not they lie within the spot cutoff range with respect to the pitch and roll
angles of the native spot light. If the computed angles do lie within the spot
cutoff range, then the organism is inside the spotlight cone. Otherwise, the
organism is not within the spotlight cone, and the function returns false. If
the organism is not within the cone, a difference vector is calculated between
the organism’s current position and the closest point Q(L,) on the center
line of the native spotlight. This difference vector is normalized and scaled

by a positive constant ks, producing the vector I:

i) = n)—P(0) i .
k5%(%;))‘j§b‘iﬁ if in(0;, L,) =0

When the two spotlights intersect and the center of intersection is calcu-
lated, the organisms of both the predator swarm and the prey swarm have

a tendency to move toward the intersection. This models the desire of the

20

L

Figure 4: Diagram of an organism well in front of the spotlight cone

predator organisms to inhabit common space with the prey organisms and
models the desire of the prey organisms to maximize their fitness by inhab-
iting two spotlights at once. A difference vector is calculated between the
center of the intersection C' and the position of the organism O;. This differ-
ence vector is normalized and scaled by a positive constant kg, thus producing

the vector i;

C — P(0y)
|IC—P(O;)]

Prey organisms follow another rule in addition to the six rules common

i(0:) = ke

to both predator and prey populations: prey organisms must avoid preda-
tor organisms at all costs. This rule is implemented by finding the closest

predator organism R(O;) to the prey organism O;. If the predator is within

21

the prey organism’s field of view, a difference vector is calculated between
predator organism and the prey organism. This vector is normalized and
scaled by a negative constant k7 in order to influence the movement of the

prey away from the predator. This produces the vector f:

0 if O; € F,
f(o"):{ ky BBOMPO) if 0, ¢ F, -
TIP(R(0:)))~P(0y)] P= Ty

Once these vectors have been calculated, they are combined with a scaled
version of the current velocity vector v/(O;), to account for inertia. The re-
sulting linear combination is normalized and scaled by a maximum magni-
tude m if the magnitude of the combination is greater than or equal to m.
This allows the speed of individual organisms to be effectively capped. The

resulting velocity vector v(O;) is computed by letting:

t(O,) = VI(O,') + C(O,) + a(Oi) -+ S(O,’) + D(Oz) + 1(0,) + i(O,) + f(O,) ,

and setting
t(0;) if [6(0)] < m

4.3.3 Visual Representation of Swarms

Swarms are visualized by drawing the ‘current position and heading of each
of the swarm organisms onscreen. The heading (or direction) of an organism
is computed as pitch, p(O;), and yaw, ¥(O;), angles for each organism O;.

These angles are extracted from the velocity vector of O; using the following

22

formulas,

(0;) = — tan™? (vy(0;)) ,
’ 02 1 va (02

(0s) = tany ' (v2(0;), v.(O;)

where v;(0;), vy(0;), and v,(0O;) are the z, y, and 2z components of the
velocity vector of O;, respectively.

When the draw() method of the organism class is invoked, the organism
is first translated to its correct position within the three-dimensional space
using glTranslatef (). It, is then rotated by its yaw and pitch angles using
glRotatef (). Lastly, it is scaled by its size attribute using glScalef ()

and drawn onscreen.

4.4 Reproduction and Evolution
4.4.1 Calculating Fitness

As previously mentioned, prey organisms primarily gain “fitness” by drawing
energy from the spotlights. An organism’s fitness is calculated by adding this
energy component to two reward components: a reward based on proximity
to the intersection and a reward based on the size of an organism and its
proximity to the native light source. An organism O; may gain fitness only
when it resides within the cone of its native spotlight. Energy gained from
the “native” spotlight is based on the organisms size, its distance from the
light, and the intensity of the light. The intensity of light passing through

a particular point is attenuated by the distance of the point from the light

23

source. This energy-factor, e,(0;), is calculated as

en(0:) = s(oi>d—(fg5 ,

where s(0;) is the size of organism O, I, is the intensity of its native spot-
light, and d(O;) is the distance of organism O; from its native spotlight.

An organism gains an additional reward based on its proximity to the
intersection of the spotlights. This reward is calculated by first finding the
distance of the organism from the edge of a sphere of radius R about the
center C of the intersection volume. The radius of the sphere is calculated
by testing sample points within the intersection volume to determine if they
lie within both the red cone and the green cone. These points are passed to
the in_cone() function, and the point P, of greatest distance from C that
lies within both cones is used to determine the value of R. The radius R is

computed as

R=k|C — Pl ,

where k is a constant such that 0 < k < 1.

In order to support a gradual fall-off of reward values as an organism
moves farther away from C, the reward factor r.(0;) is calculated as a de-
caying exponential expression, factoring in the distance of an organism O;
from C. The reward factor r.(O;) is calculated as follows: let M be the
maximum reward value, €(O;) the distance of organism O; from C, and k;

and k, constants. Then

24

Figure 5: Fitness calculation

M
[14+ k(R +€(0;))] Hrelt

TC(O,') =

An organism is also rewarded based on its size and proximity to the native
light source. This factor r,(0;) is calculated as follows: let s(0;) denote the
size of organism O;, and d(O;) the distance of organism O; from the native
light source:

d(0;)

Tn(oi) = m -

Once all of the energy factors have been calculated, they are added to-

gether and the sum is added to the old fitness value f'(O;) of O;, generating

the new fitness value f(O;).

25

f(Oz) = f’(Oz) + en(Oi) + TC(O,;) + rn(O,-)
4.4.2 Reproduction

Once fitness values have been calculated for all of the organisms in the prey
population, the population may be culled and repopulated. The is done by
the cull_and_repopulate() method of the prey_flock class. When this
method is invoked, a mating pool is generated that includes all of the prey
organisms in the current population except the two least fit. This effectively
excludes the two least fit organisms from the reproduction process. Each
organism in the mating pool is then given an opportunity to mate with an-
other nearby organism by searching for viable mates within a predetermined
radius. If the organism is unable to locate a viable mate, its search radius is
increased, and the organism is allowed to search again. This continues until
the organism locates at least one viable mate. Once the organism has located
viable mates, it selects one at random and produces a single offspring.

The offspring houses the genome of its randomly selected dominant par-
ent, and the size gene may be mutated randomly so that the offspring is
slightly larger or slightly smaller than its dominant parent. The offspring or-
ganism is given an initial position that is slightly displaced from the position
of its mother.

Once all of the organisms in the mating pool have been given an opportu-

nity to mate, two additional organisms from the pool are selected at random,

26

and both are allowed to select a mate and to produce an additional offspring.
This is done to offset the discarding of the two least fit organisms. Every

round of mating completely replaces the existing prey population.

4.5 System Parameters

The majority of system parameters in our simulation are stored in the file
global.h. This provides an accessible interface for important parameters
that control the behavior of the various system components, like flocking rules
and spotlight behavior. This consolidation of system parameters facilitates
easy system manipulation for the purposes of experimentation and helps to

achieve the design goal of flexibility.

4.6 Interface Controls

As mentioned in section 4.1, the GLUT library provides a very limited se-
lection of user interface components. In order to accomplish our goals of
flexibility and transparency, it is necessary to provide interface controls that
are easy to manipulate and correspond in some intuitive way to the simula-
tion components that they modify. To this end, we chose to incorporate the
GLUI library of user interface components into our simulation. The GLUI
library provides several useful interface controls, including buttons, check
boxes, radio buttons, spinners, and arcballs.

The spotlight intensity and spotlight cutoff angles can be adjusted in real

time by clicking on the appropriate spinner component. The values for each

27

#define FLOCK_ALIGNMENT WEIGHT 0.03f
#define FLOCK_COHESTON WEIGHT 0.03f
#define FLOCK_SEPARATION WEIGHT -0.08f

#define FLOCK_ INERTIA WEIGHT 0.4f
#define FLOCK_LIGHT BOUNCE 0.2f
#define FLOCK_MIN DISTRANGE 0.0f
#define FLOCK_MAX DISTRANGE 3.0f
#define FLOCK_MIN VELRANGE 1.0f
#define FLOCK MAX VELRANGE 2.0f
#define FLOCK_MIN ORGSIZE 0.5f
#define FLOCK _MAX ORGSIZE 1.0f
#define FLOCK MIN FLOCKSIZE 1
#define FLOCK MAX FLOCKSIZE 200

#define PREY ALIGNMENT WEIGHT 0.03f

#define PREY COHESTION WEIGHT 0.03f
#define PREY SEPARATION WEIGHT -0.08f
$define PREY INERTIA WEIGHT 0.45f
#define PREY INTERSECTION WEIGHT 0.05f
#define PREY TOLIGHT WEIGHT 0.05f
#define PREY TOCONE WEIGHT 0.35f
#define PREY PREDATOR AVOID -0.25¢
#define PREY MAX MUTATION 0.1f
#define PREY MAX DISPLACEMENT 0.1f
#define PREY MATE RANGE INC 0.1f

#define PRED_ALIGNMENT WEIGHT 0.00f

#define PRED COHESION WEIGHT 0.00f
#define PRED SEPARATION WEIGHT -0.08f
#define PRED INERTIA WEIGHT 0.4f
#define PRED INTERSECTION WEIGHT 0.07f
#define PRED TOLIGHT WEIGHT 0.05f
#define PRED TOCONE WEIGHT 0.35f

Figure 6: A sampling of system parameters related to flocking rules

28

are bounded, and these bounds may be altered by modifying the appropriate
system parameters in global.h. Each iteration of the main simulation loop
checks the floating point values associated with each spinner and updates the
spotlight objects accordingly.

The orientation of spotlights may be altered by adjusting the three-
dimensional arcball associated with each. It was necessary to reverse en-
gineer the arcball component somewhat for use in our simulation, as the
output generated by an arcball is a three-dimensional rotation matrix, but
the orientation of our spotlights is based on Euler angles. The desired be-

havior can be achieved by using the following formulas
p= tangl(——Rgl, R23) and

V= —tan;l(R33, Ru) ,

where p is the pitch angle and v is the yaw angle. These angles are then
passed to the appropriate spotlight as orientation angles, and the spotlight

cone is generated when setup() is called.

5 Development and Testing

The first stage of simulation development consisted of the creation of a vi-
sualization framework, as the simulation itself is inextricably tied to visu-
alization. The initial visualization framework consisted of a single window
with an orthographic viewing volume, a single wash light, and a “stage” area

composed of two triangles, which were stored in an early version of the mesh

29

class. An orthographic viewing volume was selected in order to allow each
visual component to have equal “weight”, as a perspective-projected volume
would tend to obscure size differentiation among organism. The early mesh
class consisted of no more than a vertex, normal, and triangle list and a single
method for drawing the mesh onscreen.

The next step of development was the addition of OpenGL calls to ini-
tialize the lighting system. It was at this point, however, that we noticed
a problem with the previous “stage” configuration: an OpenGL spotlight
does not project well onto a 1;ectangle composed of two triangles as OpenGL
lighting calculations aré performed per vertex. The realization of this slight
oversight led to a complete revamping of the stage component. Instead of
representing the stage as a rectangle composed of two triangles, we chose
to represent it as a mesh of hundreds of smaller quadrangles. This led to
a substantial increase in the number of rendered vertices, but increased the
definition of the spotlight projection. The resolution of the stage had to
be adjusted later in development to compensate for slower performance on
lower-end machines than the development machine.

The next simulation component to be added was an initial attempt at a
swarming species. An initial “draft” of the organism class was developed,
which consisted of member variables to store the organism’s position, and
heading, as well as a pointer to an instance of the mesh class storing the
physical structure description. A draw() method was included to translate

the geometric representation of an organism to its current position and then

30

to draw it on screen. The swarm rules were based on a somewhat naive
implementation of the basic Reynolds’ rules. While cohesion and alignment
vectors were calculated similarly to current simulation, the separation rule
proved to be problematic. In the initial implementation, organisms exhibited
a A“springing” behavior when attempting to avoid neighboring organisms. Es-
sentially, an organism would backtrack along its current heading vector until
well out of the way of any other organisms. Since this behavior is not evident
in any natural swarms, we had to reconsider the swarming implementation.
This reconsideration was left on the cutting room floor, however, for some
number of weeks. An additional problem with the initial swarm implemen-
tation was the physical structure of the organisms themselves. Organisms
resembled small, flying, oblong structures, which seemed somewhat inappro-
priate for our purposes. The problem of appropriate physical representation
of organisms recurred throughout many phases of simulation development.

The initial attempt at creating a swarming species brought to our at-
tention the necessity of creating a bounding volume for our physical space,
as some organisms within the swarm tended to stray outside of the viewing
volume. This problem was quickly remedied by adding bounds checking to
the swarm routine.

The next phase of simulation development focused on creating a more
robust lighting component. The previous attempt at lighting relied exclu-
sively on calls to the OpenGL lighting system, which is somewhat limiting

in regard to the visualization of light sources themselves. Though light it--

31

self is invisible, it was necessary, for our purposes, to visualize the cone of a
spotlight. Furthermore, it was desired, in the interests of flexibility, to encap-
sulate the abstract concept of a “light” within a C++ class, of which many
instances may be created. It was at this stage of development that the first
version of the light class was written, adding support for spotlight cone vi-
sualization and the easy instantiation and initialization of light sources. The
implementation of this early version of the light class progressed with very
few problems, and the current version resembles the early version in most
respects. ’

Once an early version’ of the light class was completed, we resumed the
development of a more robust swarming algorithm. In a lesson learned from
the development of the light class, we decided to encapsulate the abstract
idea of a “swarm” within its own C++ class. This contributed to the overall
flexibility of our platform by allowing swarms to be instantiated and initial-
ized easily, while hiding the complexity of the internal implementation. A
new and somewhat different approach to the swarming algorithm was im-
plemented and is presented in section 4.3.2. This algorithm produces the
impromptu flocking behavior necessary to qualify a population of organisms
as a swarm. Some adjustment of scaling constants was required to insure
that organisms flock in tight formations. This implementation of the stan-
dard swarm rules remains relatively unchanged in our current simulation.

The next phase of the implementation was to satisfy the requirement

that organisms remain within their native spotlight. The initial attempt to

32

implement this rule resulted in a clustering of organisms along the center
line of the native spotlight. This was the result of a constant force applied
to an organism in the direction of this center line. As this is in no way
representative of “flocking” behavior, a new approach was needed. The next
approach that was attempted proved to be mostly successful, but with one
exception: organisms tended to fly out of the “top” of the cone. That is,
upon reaching the apex of the spotlight cone, organisms did not turn around
in order to stay inside the cone but instead flew through the apex. This
was remedied by applying a positive force in the direction of the spotlight
orientation vector once an organism reaches the cone apex. The resulting
implementation proved to be successful and is documented in section 4.3.2.
Initially, however, the in_cone() function was included as a method of the
flock class. As development progressed, we realized that the simulation
would be better served by defining the in_cone() function at the global
scope, as it is also used by the intersection test for spotlights.

Once a more robust flocking algorithm was developed, we set about
adding interactive controls to the simulation. Initial investigations into the
controls provided by GLUT found the library lacking, so a search for an al-
ternative library was begun. We came across GLUI rather quickly, but no
pre-compiled libraries existed. Fortunately, a Visual C++ workspace was
included in the source code package for the library, which we managed to
compile and add to our project after only a few unsuccessful attempts. One

benefit of the GLUI package is that it is compiled as a static library, which

33

eliminates additional software-requirement overhead in the form of a Win-
dows DLL, which proved to be most convenient for demonstration purposes.
An unfortunate disadvantage of the GLUI system is that it does not integrate
well within the existing OpenGL framework. GLUI is an object oriented GUI
toolkit, whereas OpenGL is implemented as a procedural state machine. This
posed no practical problem for implementation, but does make the code a
little more difficult to read and less intuitively grasped. We decided to make
use of the spinner components and arcballs as described in section 4.6. It
proved to be quite simple to integrate these interface components into the
current GLUT-based framework, after only a bit of initial confusion about
how to register the GLUI components with the GLUT windowing callbacks.

The problem of determining the intersection of spotlights was considered
next and proved to be substantially more difficult. We researched various
methods, but our primary goal was to find a closed-form mathematical so-
lution for calculating the center of the intersection, as opposed to relying on
computer approximation. It might have been very simple to use the existing
in_cone() function to test sample points throughout the three-dimensional
space and to take an average of the sample points that lie within both cones.
However, the solution we chose provides an exact intersection point with rela-
tively little computational overhead; in fact, the complexity of the algorithm
itself is O(1).

Once the solution was chosen, implementation was a relatively straight-

forward process. The only degenerate cases we had to consider were those

34

instances when the intersection of the spotlights is below the “stage” area
and when the shortest distance line between the two spotlight center line lies
above the apex of the two cones. After testing for these cases and excluding
them, implementation proceeded with little difficulty. The problem of finding
the intersection of two cones is twofold, however: finding the center of the
intersection and determining the bounds of the intersection volume. Due to
time constraints, we chose to simply approximate this volume with a sphere
using the method described in section 4.4.1.

The next step of simulation development was the implementation of mech-
anisms for reproduction and simulated evolution. This included both the
calculation of fitness for individual organisms and the reproduction process.
We worked with a few different fitness functioﬁs, one based only on the en-
ergy component contributed by the native light, one based on the energy
component and the reward term for proximity to the intersection, and one
based von éll three of the terms described in section 4.4.1. In conjunction
with a simple, though naive, reproduction mechanism, each function gave us
varying degrees of success. The most successful of the three, however, was
the calculation based on three terms.

The first attempt at an implementation of the reproduction process re-
sulted in permitting organisms in thé mating pool to reproduce with any
other organism in the mating pool, regardless of proximity. This effectively
allowed organisms to mate with other organisms on the opposite side of the

spotlight intersection. While logically this is inappropriate, it nonetheless

35

resulted in successful niche creation and speciation. It was preferable, how-
ever, to only allow organisms to mate with other organisms in close proximity.
This proved to be an error-prone process, however, as “close proximity” in
our simulation is a relative term. Organisms may be separated by a spotlight
cone intersection or not, or the cone may disappear completely, causing the
organisms to disperse throughout the three-dimensional space. Choosing a
proximity value too small could result in an infinite loop, as an organism
is repeatedly allowed to search for mates in a range where there are none.
Choosing a proximity value too large may result in mating across the inter-
section of spotlights. Thus, a more flexible mating routine was developed,

allowing the organism to search for a mate within a variable range.

6 Results

Though‘the lengthy development of the simulation left us with little time
to develop a full suite of experiments with which to test our platform, early
results show that the simulation is performing as expected. When the spot-
lights are crossed and an intersection is created, the prey swarm consistently
splits into two tightly-clustered sub-swarms on either side of the intersec-
tion. After many repopulation steps, the two sub-swarms begin to diverge in
terms of organism sizes. After many generations, the two populations exhibit
markedly different organism sizes. Organisms above the intersection tend to
be very small in relation to organisms below the intersection. Organisms

below the intersection tended to grow larger by comparison as well.

36

Figure 7: A screenshot of the simulation when spotlights intersect

It is worth noting that the simulation produces the most convincing re-
sults when the population above the intersection is initially much larger than
the population below. This is due to the fact that organisms above the inter-
section tend to die off more quickly than organisms below. Organisms above
the intersection have less room to move about and tend to stray outside of
the spotlight cone more frequently. An organism accumulates no additional

fitness when it strays outside of the spotlight cone and is thus more likely

37

Figure 8: A screenshot of the intersection with divergent organism sizes

38

to be excluded from the reproduction process. After many generations, this
results in a greater distribution of prey organisms in the lower half of the
spotlight cone, as more organisms from the lower half are selected at random
during the reproduction process to compensate for the loss of the two least
fit.

Occasionally, an organism from the subswarm below the intersection will
migrate across the intersection, despite the abundance of predators, to the
top of the cone. This is largely due to the tendency of organisms to move
toward the source of their native spotlight. While this migration poses little
problem for the speciation process (larger organisms tend to die off quickly
above the intersection), one can easily slow the flow of migration down by
enlarging the spotlight cutoff angle of the red spotlight, thus allowing the
predators to cover a larger volume. This, in turn, gives a prey organism less

freedom to move around the prey swarm.

7 Conclusions and Future Work

There are many opportunities for expansion within our simulation frame-
work, some small, others quite substantial. First on this list of expansions,
because we were unable to implement due to time constraints, is an extension
of an organism’s genome to include a gene that influences its speed. That
is, as the organism grows smaller, it is enabled to move about more quickly,
and as it grows larger, it is forced to move more slowly.

Another potential modification would be to allow the user to specify a

39

distribution curve of organism sizes. Presently organism sizes are deter-
mined based on a uniform distribution. However, interactive controls could
be added to allow the user to adjust the distribution curve in real-time and
adjust organism sizes accordingly. For practical purposes it would only be
useful to adjust the distribution curve at the beginning of the simulation,
but adding a control of this sort would vastly increase user control and yield
a wider variety of results.

It may be useful in certain experimentation scenarios to introduce multi-
ple prey populations. In such a’ scenario, allowing the populations to inter-
breed within a shared niche, adjusting the visual representation of offspring
to demonstrate this interbreeding, could be indicative of a sort of sympatric
speciation. However, the interbreeding mechanism that this requires does
not presently exist. Currently, our model supports only the allopatric model
of speciation, and breeding within a single population. It would be useful to
expand the platform to incorporate multiple speciation models.

We conclude, based on early indications, that our platform provides the
basic rule set and components necessary for the development of new niches
and, by extension, new niche species. As a platform for experimentation as
extension, we believe it shows great promise. We believe we have achieved
our goals of simplicity, flexibility, and transparency, and hope that future

work will find the platform robust and highly extensible.

40

References

[1] G. Booth, Gecko: a continuous 2D world for ecological modeling, Art:-
ficial Life 8, 1997, 147-163.

[2] N. Gracias, H. Pereira, J. Lima, and A. Rosa, An artificial life environ-

ment for ecological systems simulation, Artificial Life V, 1996, 124-133.

[3] P. T. Hraber, T. Jones, and S. Forrest, The ecology of Echo, Artificial
Life 3, 1997, 165-190

[4] T. S. Ray, An approach to the synthesis of life, Alife II Conference
Proceedings, 1990, 371-408.

[5] C. W. Reynolds, Flocks, herds, and schools: a distributed behavioral
model, Computer Graphics, Annual Conference Proceedings, 1987, ACM
SIGGRAPH, 1987, 25-34.

[6] K. Sims, Virtual creatures, Computer Graphics, Annual Conference Pro-

ceedings, 1994, ACM SIGGRAPH, 1994, 15-23.

[7] C. Sommerer and L. Mignonneau (eds.), Art @ Science, Springer Verlag,
1998.

[8] C. Sommerer and L. Mignonneau, A-Volve — an evolutionary artificial
life environment, Artificial Life V Conference Proceedings, 1998, 167—
175.

41

[9] C. Sommerer and L. Mignonneau, Life spacies, Siggraph ’99 Conference

Abstracts and Applications, 1999, 170.

[10] J. Ventrella, Attractiveness vs. efficiency - how mate preference affects
locomotion in the evolution of artificial swimming organisms, Artificial
Life VI, C. Adami et al (ed.), MIT Press, Cambridge, MA, 1998, 178-
186.

[11] L. Yeager, Computational genetics, physiology, metabolism, neural sys-
tems, learning, vision, and behavior or PolyWorld: life in a new context,

Alife III Conference Proceedings, 1992, 263-298.

42

	Ecological niching in an interactive simulation
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 43
	Page 44
	Page 45
	Page 46

