University of Richmond

UR Scholarship Repository

Honors Theses Student Research

4-23-1999

Shout with the largest Mob : toward a model for primitive
communication in mobile automata

Rebecca A. Weber
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

6‘ Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Weber, Rebecca A., "Shout with the largest Mob : toward a model for primitive communication in mobile
automata" (1999). Honors Theses. 495.

https://scholarship.richmond.edu/honors-theses/495

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/495?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

UNIVERSITY OF RICHMOND LIBRARIES H C\H.\C’H P‘Lh C,S/ COM[J U+C

LA T Scren

3082 00687 9034 { ’ e/\o

Shout With the Largest Mob: Toward a Model
for Primitive Communication in Mobile
Automata

Rebecca A. Weber
Honors thesis!
Department of Mathematics & Computer Science
University of Richmond

April 23, 1999

1Under the direction of Dr. Gary R. Greenfield

Abstract

We consider the problem of simulating communication between indepen-
dent, autonomous agents, or machines, using only local rules with no global
control over the agents’ behavior. First, we construct an algorithm by which
the machines will avoid collisions with each other and with boundaries or ob-
stacles. Noting that collision avoidance alone will not result in higher-level
behavior, and with the goal of creating agents which would self-organize, we
begin to develop a signalling system by which agents can communicate. This
leads to a new method for modeling agent motion in the plane. Through-
out, we are motivated by possible linkages between our agent models and the

biological realm.

This paper is part of the requirements for honors in mathematics. The
signatures below, by the advisor, a departmental reader, and a representative
of the departmental honors committee, demonstrate that Rebecca Weber has

met all the requirements needed to receive honors in mathematics.

)(LMKMMM

(adv1sor)

R 4

(reader)

Lx,,u)\@\

(honors committee representative)

1 Introduction

The theory of cellular automata has had a significant impact, as evidenced
by the continuing interest in John H. Conways’s game of “Life” [4] [7] [9]
[10].} From the point of view of the theory of computation and formal mod-
els, however, progress towards understanding the computational nature of
biological life, rather than the computations that can be performed via the
mechanics of the game of “Life,” has not proceeded at the pace one might
expect. Cellular automata can be used to simulate universal Turing ma-
chines, and the study of computation in connection to CA’s has been that
of how such computations can be represented. The study of computation in
connection to biological life must be at a higher level, where the mechanics
of computation are hidden, and the results of the computations are focused
upon.

Artificial Life, a field so named and promoted by Chris Langton [12],
proposes that the study of digital organisms may be used to investigate bio-
logical life. Research in robotics, communication, and other fields has been
rejuvenated with this new approach. There has been close to a decade of
Artificial Life research, and strong focus has been put on global behavior,
leading some to wonder if study of the underlying theory and rationale, in

other words, the formalism, has been outpaced.

In personal conversation with Professor Conway on November 13, 1998 we learned
first hand that Conway himself has grown weary of the heavy burden of fame inherited
from his invention.

We shall investigate the simplest of formal models for mobile digital or-
ganisms — swarm automata — which must cope with solving such elemen-
tary problems as avoiding collision and developing rudimentary signaling and
receiving capability. We are interested in a path of development that helps
to illuminate the computational processing required to solve such problems
and that demonstrates the integration of such traits into organisms. This is
an endeavor that requires great care. The most complete formal model we
are aware of [2] is seriously flawed.

The lack of formal models in the literature causes the question to arise
as to Whether or not formalism is a hindrance to producing results. Formal
models do require more time and attention to detail, and so results are often
slow in coming, but they allow the investigator complete control over every
parameter of the model. Thus, as a secondary goal, we would like to deter-
mine whether there is a reason to avoid strict formalism; that is, whether
there is some inherent limitation formalism imposes on models of high-level
behavior.

Throughout our investigation, we are motivated and guided by possible
connections to the biological world. We would like our model to be plausible
as a model of a natural system, even though at the outset we have no specific

system in mind.

2 Collision Avoidance on a Plane Tiled by
Squares

The departure point for this thesis is a paper by Adamatzky and Holland
[2] investigating excitation in systems of static agents and of mobile ones;
in other words, cellular automata and lattice swarm systems. The intent
of the model in [2] is clear, but the reader should be aware that there are
several misprints. Even after attempting to correct the misprints, however,
the formal model given seems incomplete and inconsistent, so it is not possible
to duplicate the results found thérein.

Adamatzky and Holland defined a lattice swarm system to be a collection
of Turing machines with two external tapes that they mutually share. Each
tape is two-dimensional, and each machine has two read-write heads, with
one head on each tape. One tape is for direction state and one is for excitation
state. On the direction state tape, the possible symbols are the eight compass
directions, a symbol indicating “collision,” and a “blank” symbol the tape
is presumably initialized with. The possible symbols on the excitation state
tape represent excitation, rest, and a refractory state. The resting state is
the default state; the excited state is induced by local conditions, and the
refractory state is a brief period of unresponsiveness following excitation.

Each machine executes a three-step sequence during each clock cycle. It
first reads the symbols on each tape in the squares on which its read-write

heads are placed, as well as the symbols on the neighboring squares. Based

on this information, a state change may or may not occur. The machine then
changes the position of each of its heads and writes a symbol on the square
at each head’s new position. The final position of each head and the internal
state of the machine are dependent on the current direction and excitation
state of the machine and its neighbors, as well as the value of an internal
timer. When the machine is in the rest or refractory state, its timer has a
value of zero. When the machine is initially excited, the timer is set to a
pre-chosen integer, the duration of excitation parameter. The timer value
decreases by one every time step, and when it becomes zero, the machine
changes state from the excited state to refractory state.

The motion of a machine’s heads is controlled by its direction state and
the occupancy of neighboring squares. The machine’s direction remains the
same unless it detects a possible collision, meaning a situation in which the
intended destination is occupied. If there is no collision, the machine moves
in the direction indicated by its intern.al state. In the case of a collision, the
machine changes direction according to a “deviation” function and moves
forward in the new direction if the new destination is not occupied. If the
new destination is occupied, as the original destination was, the machine
remains in its original space until the next time step.

Two deviation functions are considered in the paper, each of which gives
a set of directions from which the new direction of the machine is chosen

probabilistically, based on its current direction. The 7-deviation returns the

set containing the opposite direction and the directions 45 degrees to either
side of the opposite direction, so that North would return {South, Southeast,
Southwest}. There is equal probability of choosing any direction from this
set. The a-deviation returns the set containing the original direction and
the two directions 45 degrees to either side, as well as the two directions 90
degrees away from the original direction. The three former directions are
given more weight than the two latter, which were included solely to prevent
wall-following.

We now consider our modifications to the design in [2]. Because our model
strove for simplicity and was directed at following rather than simple group
dynamics, we did not adopt the probabilistic method of initiating direction
change. Our machines use only one read-write head and one two-dimensional
external tape. For visualization of motion dynamics we view the machine as
occupying a particular square on the tape itself, instead of just the read-write
head of the machine doing so. The formal model we next describe appears
in the Appendix as Model 1A.

Since the first task the machines must accomplish is collision avoidance,
it would be counter-productive for two machines to approach each other and
either freeze or attempt to pass through each other. A machine must also
not be disabled by a wall or other obstacle. To this end, each machine has
two internal states, of, and o%. The first, o}, is the internal directional

state at time ¢t. It can be any of the eight cardinal or diagonal directions,

either represented as letters for ease of interpretation (e.g. N, E, SW), or as
ordered pairs for ease of computation (e.g. (0, 1), (1, 0), (-1, -1)). The state
0% is the internal collision state at time ¢. It has two possible values, A as
the default, and # when the machine detects a possible collision. We call
the collision alert state, and say that a collision has been resolved when
the machines involved have turned sufficiently to have a destination which is
unoccupied and which, furthermore, no other machine has as its destination.

Each square of the external tape, which we think of as the environment
for the machine, has one symbol printed on it. Ordinarily that symbol is A,
but it can also be any of the directional symbols or special wall symbols. The
wall symbols are h, or (0, 3), for a horizontally-running boundary, and v, or
(3, 0), for a vertically-running boundary.

At initialization, the external tape square occupied by a machine has
written on it that machine’s current direction. At the beginning of each time
step, the machine uses (0, 0) to refer to the space it occupies. This simplifies
computation, as all coordinates are then relative to the square the machine
occupies. The machine’s destination square then has the same coordinates as
its direction state. The relative coordinates of the squares surrounding the
destination square can be added to the directions written on those squares to
get the destinations of the other machines occupying them. In this way one
machine can determine if another has the same destination. For example, let

machine A be the machine whose perspective we take, that is, the machine

which to us is at (0, 0). Moreover, let machine A be moving to the north,
so its direction state is (0, 1). Therefore (0, 1) are also the coordinates of
A’s destination square. Now let machine B be in the square with coordinates
(1, 1) in machine A’s coordinate system. Say that machine B is moving
northwest, so its direction state is (-1, 1). Machine A reads (-1, 1) written
on square (1, 1) and calculates that machine B’s destination is (0, 2), and
thus discovers that there is no danger of collision between the two machines.
If machine B’s direction were west, or (-1, 0), machine A would calculate B’s
destination as (0, 1), the same as its own, and would therefore go into the
collision alert state.

During each clock cycle, the machine executes a sequence of four steps.
First, it reads the symbol on the square it occupies and changes its internal
state. Second, it writes the “blank” symbol, A, on its current square. If
the machine is not in the collision alert state, its third step is to move to
its desired next square. Finally, it writes its new direction, o', on its new
position. The state change in the first step is governed by the destination
square and the squares surrounding it. If the machine does not detect a
possible collision, the new direction state is the same as the direction written
on the square the machine currently occupies. However, if there is another
machine occupying the destination square, or another machine with the same
destination square, the new collision state is #, and the machine’s new di-

rection state is 45 degrees counter-clockwise from that written on the square

it currently occupies. The machine also goes into the collision alert state if
the destination square is a wall, and changes its direction objective so that it
reflects off the wall as if it were a pool ball. That is, it turns 180 degrees if it
strikes the wall head-on, and 90 degrees if it strikes the wall at an angle. All
rotations are accounted for by a change of internal state, without motion on
the plane. Thus, turning effectively pauses the machine for one time step, or
for two time steps if the machine has reached a corner, since it reflects first
off one wall and then the other.

Since our model does not incorporate probabilistic direction change, as
long as machines are not colliding with each other, there are fixed “paths”
on which they move. On a space with a square boundary, the paths that
machines follow all eventually trace out rectangles, with sides parallel either
to the sides of the boundary, or to the diagonals connecting opposite corners
of the boundary. The non-degenerate rectangles, that is, those with four
distinct sides, all have edges parallel to the diagonals. All paths with sides
parallel to the edges of the boundary are lines, or degenerate rectangles,
a category into which diagonal paths running from corner to corner of the
space also fall. In a space whose boundary is not square, the paths may
be more complicated (Figure 1). There may, in fact, be no non-degenerate
rectangular paths, but degenerate paths will still exist.

When there is more than one machine occupying the plane, they may

collide multiple times before settling into steady paths. The possibilities we

must consider are that the paths could be distinct for each machine, the
machines may be on the same path, in a sense following each other, or there
may be a configuration which results in periodic collisions. We conjecture
that there is a finite number of collisions possible between two machines on
the plane, i.e., that there does not exist a configuration leading to periodic
collision. We were unable to prove this conjecture, but we did not find any
periodic configurations in our attempts. Using two machines on a 5 x 5
square, the largest number of collisions we found for any initial configuration

was Six.

3 Where Are You? The Need for Signaling

The next question we investigated was whether two machines could enter
into a following pattern when equipped with only the collision avoidance
algorithm. For following to occur, there would have to be one collision which
set the machines on the same path. There is a relatively small finite number
of collision configurations possible between two machines on the plane, so
we examined them all and found that only a head-on collision where two
machines were facing each other heading North-South or East-West, with one
empty square in between them, could potentially put two machines on the
same path (Figure 2). All other collisions, independent of the size or shape
of the boundary of the space they are in, were resolved with the machines

tracing out different non-diagonal paths, a diagonal path and a non-diagonal

path, or two distinct diagonal paths. We determined, though, that again
independently of the boundary of the space, the sought-for head-on collision
can occur only if the machines are already on the same path (Figure 3). That
is, the steps leading up to a North-South or East-West head-on collision all
occur on the same line as the collision. This is independent of the size and
shape of the space, because a machine on a horizontal or vertical line cannot
leave that line without invoking collision avoidance.

It is clear, then, that some form of communication between the ma-
chines is necessary if they are to appear to work in concert. Our goal has
been to keep that communication as simple as possible to preserve the non-
deterministic nature of the system, so we started with a simple “Here I Am”
call. The formal model was extended by giving beach machine a timer and an
additional internal state, and modifying the external tape so that it held two
symbols per square (Model 1B). The second tape symbol is the call symbol,
usually - (no call), but + when a machine within range is calling. The addi-
tional internal state distinguishes between two types of machines, one which
calls and one which listens. The idea is for the listener to freeze when it hears
a call, and not to resume motion until a fixed length of time has passed. The
caller, or emitter machine, has two calling states: on and off. The states are
controlled by the internal timer, which counts down from two to zero, and
then resets to two. The emitter machine is on when the timer is nonzero,

and off when the timer is zero. In the on state, it writes a + to every square

10

in its calling “neighborhood.” The listener, or receiver machine, also has two
states: paused and unpaused. Normally, the receiver machine is unpaused.
When the receiver reads a + on the square it occupies, it pauses and sets its
timer to a predetermined maximum value, which then decreases by one with
every time step until it is zero again. The receiver remains paused as long as
its timer is nonzero, and the timer is reset to the maximum value every time
the receiver reads a +.

Since the receiver is paused when in close proximity to the emitter, it is
probable this will affect the number of times the collision avoidance algorithm
is invoked. The emitter machine, of course, will be unchanged in its use of
collision avoidance, but the receiver machine, when paused, will not check
for potential collisions and thus will not turn. We discovered that some con-
figurations of two machines on a 5 x 5 square space had a decreased number
of collisions before resolution into a stable motion pattern, as compared to
resolution under Model 1A, and some had an increased number of collisions.
However, pausing did not cause following.

We next looked for a correlation between the direction of emitter move-
ment, the point of entrance of the receiver into the emit neighborhood, and
length of receiver pausing. For a 5 x 5 emit neighborhood centered at the
emitter and for a 3 x 3 emit neighborhood oriented “ahead” of the emitter,
in the direction of the its movement (Figure 4), there were no discernable

correlations (Table 1). The 3 x 3 emit neighborhood also highlighted the

11

inherent asymmetry of the square-tiled plane. An emitter moving North,
South, East, or West will emit to five squares adjacent to it, and to three
squares at a distance of two squares from it. An emitter moving Northeast,
Northwest, Southeast, or Southwest will emit to three adjacent squares and

to five squares which are two squares away from it.

4 Symmetry: Using a Plane Tiled by Hexagons

The plane tiled by squares is a convenient and seemingly natural environment
for our machines, with intuitive notation, but as we have seen it lacks parity
between a neighborhood oriented in a cardinal direction and one oriented
along a diagonal. To eliminate this problem and introduce symmetry, we
turn to the plane tiled in hexagons, which has fewer directions to choose
from, but no discrepancies between neighborhoods oriented in any of the
directions. The basic collision avoidance model needs little rﬁodiﬁcation to
be adapted to the “hex plane” (Model 2A).

The most significant change to the model is a notational one. Since there
is no standard way to abbreviate directions based on sixty degree incre-
ments, as there are compass points for directions based on forty-five degree
increments, and no simple way to use ordered pairs to denote locations, the
machines now operate on six-bit direction strings. Such a string will con-
sist of five ieros and a single one, with the position of the one denoting the

direction of intended movement as follows: down-right, right, up-right, up-

12

left, left, down-left. Thus the bitstrings 100000 and 000100 indicate opposite
directions, as do all pairs With ones three places apart. Since moving down-
right and then up-left, or any other sequence of two movements in opposite
directions, leaves a machine in the same place it started from, adding these
pairs must give 000000, a net effect of leaving the machine stationary. Lo-
cation on the plane is also indicated by strings. Each machine, as in Models
1A and 1B, uses relative coordinates, viewing itself in hex-tile 000000 at the
beginning of each time step. Location strings may have more than one po-
sition entry set to one, or entries set to values higher than one, to indicate
hex-tiles not immediately adjacent to the machine. The location strings are
interpreted as the result of the motion which would result from direction
bitstrings which sum to the location string. Fof example, the string 210000
is interpreted as the hex-tile a machine would be in after moving down-right
twice and right once (Figure 5).

Each hex-tile on the plane has a six-bit direction code written on it. The
tape representing the plane is initialized with 000000 written in all spaces;
this is equivalent to the A of the internal collision state. The machines follow
the same sequence of four steps as in Model 1A. First, they read the direction
written on their hex-tile — the direction they wrote the previous time step
— and change state according to what is written on the hex-tiles around
their destination. Second, they write 000000 on their hex-tile, and then, if

they are not in the collision-alert state, move to their destination. Lastly,

13

each machine writes its new direction state on its new hex-tile.

Collisions are handled just as in the square-tile model. The machine enters
the collision-alert state when its destination is a wall or is occupied by another
machine, or when there is another machine with the same destination. A
machine will turn 60 degrees counter-clockwise in the case of collision with
another machine. Since, in the hex plane, there are no directions of movement
which take the machine through the vertex of a tile’s edge (as the diagonal
movement in the square plane would), all collisions with walls are head-on,
and in the hex-tiled case, the machine pivots 180 degrees.

Because of the constant 180 degree bounce off of walls, the stable path for
a single machine is a line, which we recall is the degenerate case of the plane
tiled in squares. An investigation of the possible collision configurations be-
tween two machines showed that there are no collisions which can put the
machines on the same path (Model 2A). As in the case with the square-tiled
plane, we conjecture there is only a finite number of collisions possible be-
tween two machines, and our search for a configuration with periodic collision
failed to turn up any counterexamples.

Having determined that following behavior could not result from collision
avoidance alone, we again added a signaling system (Model 2B). Signaling
was modeled by adding an additional six-bit code to each hexagon on the
plane, for the emitting machine’s use, and an additional pause-bit to the

direction code on each hexagon. Each hex-tile, then, holds a six-bit code

14

which the emitter will use to broadcast its presence, and a seven-bit code
each machine will use to broadcast its intended direction and whether or
not it is paused. As in the square-tiled model, receiving machines will pause
when they detect a signal from the emitting machine, and remain paused
until they either fall out of range for a sufficiently long time, or successfully
determine the direction of the emitter machine’s motion.

The model also incorporates an additional internal state for the emitter,
and additional values for the receiver’s internal collision state. The emitter
machines have an internal emit state, which can be first, second, or off.
The emitter calls when it is in first or second state, and is silent when it is
in off state. The three states cycle so that first follows off, second follows
first, and off follows second. Receiver machines have two additional possible
values for their internal collision state. They retain the default state, A, and
the collision alert state, #, but they also can be in the following state, €,
indicating they are following the emitter, or in the following-collision-alert
state, fj, which is to 2 what # is to A, and will be explained shortly.

The emitting machine writes to a convex neighborhood of hex-tiles con-
sisting of five rows of tiles running parallel to the emitter’s direction of move-
ment. The center row, which is a total of seven hex-tiles long, extends four

tiles ahead of the emitter and two tiles behind it.2 The two rows directly next

2Initially we had the neighborhood extending only one hex-tile behind the emitter, but
determined later that swarm size increase was hampered by that restriction. Temporary
emitters (see next section) would then join the swarm only out to the sides, giving the
whole the appearance of a flock of geese.

15

to the center row are six hex-tiles long, and the two outermost rows are five
hex-tiles long. The bitstring it writes to each space is similar to a direction
string (Figure 6). The string on each hex-tile is the sum of the direction
strings indicating the directions the emitter must move in to reach that hex-
tile. That is, if there is a straight-line path from the emitter, there will be
one bit set to one, indicating the direction of the path, and if there is no
straight path, there will be two bits set to one, indicating the two directions
that must be taken by the emitter.

There is a simple set of computations the receiver must make to determine
the direction of the emitter’s movement (Model 2B). It will not always be
possible to perform the computations, as the receiver may be in the emit
neighborhood for only one time step, or only one time step during which the
emitter is active. However, in most cases the receiver will be able to calculate
the emitter’s direction with two successive emit cycles, at which time it will
enter the following state, 2. The receiver will then remain paused until it is
in one of the ten hex-tiles in the emit neighborhood behind or alongside the
emitter machine (Figure 7), and begin motion in the same direction as the
emitter. It will remain in the following state as long as its timer is nonzero;
that is, as long as it remains in the emit neighborhood.

There are certain restrictions which must be made on receiver movement
when it is in the following state. It must not get knocked off course when it is

following, and also must not leave the following state if it is still in the emit

16

neighborhood and moving in the correct direction. Hence we introduced the
following-collision-alert state, §, which causes a 180 degree turn upon any
collision, and reverts to the following state when the collision is resolved.
This allows for swarms (the followers attracted by an emitter) to form which
are more than one machine deep, so that when the swarms collide with a wall,
they will reflect back neatly (Figure 8). The machines will end up in reversed
order, but will not fly off at 60 degrees to avoid collision with each other. The
only exception to this is the emitter, which will make a 60-degree turn when
colliding with another machine. ‘Therefore the only stable configurations are
those with no other machines in the emitter’s line of motion.
Configurations which are stable, though, are very stable. Since a tem-
porary emitter turns 180 degrees when it colIides with a wall or another
temporary emitter, even if it leaves the swarm it will rejoin after it and the
swarm have both reflected from the walls. A receiver just entering the swarm
might collide with a temporary emitter, but the receiver will be paused at
* the time and so it will not be affected. The temporary emitter would have
to collide again once it has reverted to the default state (A) to be knocked
out of the swarm’s line of movement. When the isolated machine rejoins the
swarm, it will cause a 180-degree deflection of the machine which initially
deflected it out of the swarm. Eventually we will have a stable but dynamic,
or fluid, swarm where machines deflect each other 180 degrees upon rejoining

the group, after having been deflected themselves.

17

5 The More the Merrier: Temporary Emit-
ters and Swarm Size Increase

All of the care we have taken to preserve following behavior in swarms that
are several machines deep is necessary only if we can create such swarms. The
fixed size of the emit neighborhood puts a limit on the number of machines
which can be in the following state at any one time. Since the following state
is preserved only while the machine’s internal timer is nonzero, the machine
must be physically in the neighborhood of the emitter. We would like for
there not to be such a small 1i1ﬁit on the size of the swarm, and in fact we
would like to have the potential for swarms to reach any arbitrary size, given
enough receivers.

In order for the swarm to grow larger, receivers farther out must be able to
learn about the emitter’s signal. One way to accomplish the “spreading of the
word” is for receivers which are in the following state to become emitters as
long as they are following. We call such receivers “temporary emitters,” and
distinguish them from the “main emitter” only by the fact that temporary
emitters do not have the capacity to turn 60 degrees upon collision, but will
always turn 180 degrees.

A non-following receiver, then, can start following via either the main
emitter’s signal or by the signal of any of the temporary emitters. This al-
lows for growth of the swarm to be limited only by the number of machines

available. However, there is a problem: the temporary emitters do not po-

18

tentially need the main emitter in order for them to stay in the following
state. Once two temporary emitters are created, if they are in each other’s
neighborhoods, then they will keep each others’ timers set and thus keep
each other in the emitting state. If the main emitter were to shut down or to
be knocked off course, there is the potential for “perpetual motion:” the two
temporary emitters will be emitting to each other, unaware that the signal
they “want” to be following is no longer there. It is undesirable to have these
small splinter groups.?

In order to prevent a collection of temporary emitters with no main emit-
ter, we introduced a second timer, our “long timer,” as opposed to the
already-established “short timer.” The long timer is an automatic shutoff
for the temporary emitters. It is set to a predetermined maximum value
when the machine first goes into following state, and decreases by one with
every time step. When it reaches zero again, the machine goes back to the
non-collision receiver state; that is, A. The machine will then pause when it
reads a signal and will need to recalculate the direction of emitter motion.
If the short timer is short enough, say, three time steps, the existence of the
long timer will prevent perpetual motion. In the case of two machines, when
one’s long timer runs out, the other will only emit until its short timer runs

out, which should not be long enough for the first to re-follow. When there

3Hence the title of this thesis, from Dickens’ Pickwick Papers: “It’s always best on
these occasions to do what the mob do.” “But suppose there are two mobs?” suggested
Mr. Snodgrass. “Shout with the largest,” replied Mr. Pickwick.

19

are more than tWo machines, we see a “ripple effect” as the long timers on
machines which began following earliest run out, then the long timers be-
longing to later additions to the swarm run out. It is possible with a larger
group to have re-following by the earliest of the swarm members, but all the

machines will eventuallyv return to receiver state.

6 This Noisy World: Signal Discrimination
in a Swarm of Signalers

There is an additional problem posed by a swarm of signaling machines;
namely, noise; Where the emit neighborhoods overlap, so do the signals, and
it would be difficult for a machine to calculate the direction of the group’s
movement. For example, if a receiver reads 111001, it will not automatically
be able to ascertain whether that code is the result of one machine writing
100001 and another writing 011000, or one machine writing 101000 and the
other 010001.

There is biological precedent for allowing the machines to differentiate
signals. In a crowded room, one individual can pick out another’s voice
without difficulty. There are many abilities contributing to this one, including
proximity, voice recognition, triangulation, and sight. Primarily, though,
it is the fact that language consists of only a small subset of all possible
strings of letters, spaces, and punctuation that allows humans to pick out

one signal. Change a few letters in a sentence, and in all likelihood, the

20

string you end up with is not a valid sentence. A person hearing one of
these altered strings of letters can figure out what valid sentence the string
is closest to and thus what was meant. The same is not true of bitstrings
— no string of two ones and four zeros or a single one and five zeros that a
receiver examines has any more validity than any other. With the biological
precedent that animals have signal discrimination, however, we can justify
using computational mechanisms to give machines the same ability.

Even with signal discrimination, we are still concerned with keeping the
main emitter’s signal from getting lost in the crowd. In effect, we would
like for the main emitter to be able to shout. This can be implemented in
the model as an additional bitstring on each hex-tile, which is reserved for
the main emitter’s use. It is a high (or loud) channel the main emitter can
dispatch a signal to, avoiding the temporary emitter static of the low channel.
The receivers within range can then read from that channel to calculate the
direction of the main emitter’s movement.

A limited number of machines, however, can be in range of the main
emitter. Continuing with the shouting analogy, we might increase the range
of the emit signal. However, we would like for the emit neighborhood to
increase only as necessary, which requires that the main emitter know how
many machines are following it. This appears to be a delicate problem.
The simplest way to solve it is to allow the main emitter the ability to

sense all machines in its emit neighborhood, and then increase the size of the

21

neighborhood as necessary, according to the number of following machines, in
order to provide room for additional swarm members. That ability, though,
would be the second added functionality that distinguished the emitter from
the receiver: not only could it call louder and farther, but it could also hear
or read from farther away. We would like to minimize the difference between
emitters and receivers, since there is no difference in the sensory abilities of
the lead animal in a flock of birds or school of fish from those of the rest of
the animals in the group.

Another potential solution involves adding a counter to the low channel,
the channel the temporary emitters use. Each temporary emitter would make
a record of its attempt to write to a hex-tile by adding one to the counter.
Then, if at the end of the time step, three méchines had tried to write to
the hex-tile, the counter would read 3. This in and of itself does not help
the main emitter determine how many machines are following it; all of the
temporary emitters would have to be writing to spaces the main emitter
could read, and for that to occur the swarm would necessarily have to be
small. The counter could theoretically be used by the temporary emitters
to communicate the number of machines following, though. A temporary
emitter could read the largest value written in its emit neighborhood, add
one to it, and use that as the value it adds to the hex-tiles around it. However,
it is difficult to conceive of an implementation for modeling this idea which

would not cause the values to snowball, producing numbers much larger

22

than the actual number of following machines due to counting each machine
multiple times. It is clear that a better solution is necessary.

In passing, we also considered the possibility of using two clocks. One
clock would synchronize the time steps we have worked with all along — each
machine would be able to move once per time step. The other clock would
run faster, with several of its time steps elapsing in every tick of the first
clock. The fast clock would govern communication, so that several signals
could occur between each motion time step. This would eliminate machines
pausing while changing direction to resolve collisions, and would provide the
opportunity for call-and-response signaling.

It would seem that call-and-response signaling could provide for a relay
system, whereby temporary emitters could determine how many machines lie
between them and the main emitter, and the main emitter could determine
how many machines are following it. There are logistical problems associated
with a relay, however. The temporary emitters must be able to discern the
shortest path to the main emitter, and the main emitter must be able to
determine when it has received all of the responses it is going to get, without
repeat responses. We did not explore the two-clock model thoroughly enough
to test solutions to each of the above, or to determine just how much of a
difficulty there is in describing them in a formal model. We suspect that the
shortest-path temporary emitter problem would be easier to solve, and the

number of following machines problem would be more difficult to solve. Of

23

course, if the temporary emitters know whether or not they are following the
main emitter, they would no longer need to read the main emitter’s signal,
so the relay eliminates the need for shouting. Without shouting, it would not
be necessary for the main emitter to know how many are following it, and

thus not necessary to solve the difficult problem of determining that value.

7 Doing it Backwards: Scattering

The problem of main emitter shutdown was considered partly as a way to
clarify the dynamics of the temporary emitters, but it also has an analogy
to the real-life systems we are attempting to mimic. If the leader of a flock
of birds or school of fish should be killed or in some other way disabled from
calling, would the group maintain its cohesiveness? A related issue which
we have not explored in depth is that of developing a “scatter signal,” some
special call from the emitter machine which would cause the receiver machines
to immediately stop following and move off in other directions, breaking up
the group rapidly. The receivers would need to first recognize the signal
as a call to scatter, which could be accomplished by adding a seventh bit
to the emitter’s signal bitstring, which would be zero normally but set to
one for the scatter signal. Upon recognizing a scatter signal, the receivers
would then need to determine a direction to move in. Since the direction bits
in the emitter’s call that the receivers use to determine following direction

would be unchanged from following call to scatter call, each receiver could

24

read the direction from the emitter to its hex-tile, and move away from
the emitter. The direction the scattering receiver moves in could simply
be the direction of the path from the emitter (with a set choice when the
direction bitstring has two bits set to ones), or it could be a pseudo-random
direction calculated using the receiver’s current timer value. We must note
that this method of scattering was conceived of using an emitter with an
increasing emit neightborhood size (although the mechanisms for increasing
the neighborhood were unclear), and modifications would have to be made

to adapt scattering to a model incorporating relaying.

8 Keeping it Real: Microtubules

The model developed in this thesis is of a system of autonomous, determin-
istic machines, but the problem of creating communicating agents which will
collect into groups may be considered using a nonautonomous model. The
analogy of our autonomous model to a flock of birds or other social orga-
nization of animals is an imperfect one — the machines are deterministic,
and the animals are not. That is, a bird put into the same environment or
given the same stimulus twice will not necessarily react the same way both
times, but our machines will produce the same results every time they are
put into the same initial configuration. Animals are autonomous, however,
so an analogy between animals and a nonautonomous deterministic model is

even less appropriate. One must look to a lower level of biological complexity

25

than birds or fish. In our search for appropriate biological systems to apply
our model to, we found microtubules.

Microtubules are one of the primary components of the cytoskeleton.
They also make up flagella and cilia, but the organization of those two struc-
tures is much more rigid than that of the cytoskeleton and so less applicable
to the model. Microtubules are composed of tubulin dimers, which form long
strands, in which the dimers are oriented in a helical fashion. The dimers
are formed of one a-tubulin molecule and one S-tubulin molecule, and are
attached to the “plus end” of the growing strand with a consistent orien-
tation, giving the strand polarity. In the cytoskeleton, the “minus end” of
the strand is anchored to a microtubule organizing center (MTOC), which
is in fact the base upon which the strand is bﬁilt. In the cytoskeleton, the
MTOC is in the centriole. It has recently been determined that the “active
ingredient” of the centriole, the MTOC itself, is an offset, or broken, ring of
~-tubulin, a form of tubulin which is not incorporated into the main body
of the strand {15]. It is hypothesized that y-tubulin will attach to only one
of the other two forms of tubulin, and thus to only one end of each dimer,
which would give the strand its polarity.

Hameroff et al modeled microtubules using cellular automata [12], using
dimers within already-formed microtubule strands as stationary cells. They
noticed that if the helix of dimers which forms the strand is cut along the

strand and flattened, the result is a twisted hexagonal pattern (Figure 9).

26

Each cell has six neighbors, two to each side, one to the top, and one to
the bottom, although the neighbors to one side are higher than those to the
other side. The primary appeal of microtubules as a basis for Hameroff et
al’s model is that each dimer has two possible states, the a-state and the
(-state, depending on whether a free electron is oriented to the a-tubulin
end of the dimer or to the 3-tubulin end. Which state a given dimer is in
depends on its previous state and the state of the dimers surrounding it,
based on electrostatic influence. Based on these rules, Hameroff et al were
able to generate robust gliders, blinkers, and selectively-propagating patterns
in either of the states against a background of the other.

The microtubule organizing center is the primary appeal of microtubules
as a motivation for our nonautonomous model. The MTOC is composed of
essentially the same components as the rest of the microtubule, but with a
specific configuration and a certain “activation” over the remainder of the
strand. In that way it is similar to a grouping of receiver machines becoming
active as an emitter conglomerate when they are in the appropriate config-
~uration. We believe it is a problem best considered as a nonautonomous
model, because the logistics of moving machines into the correct places and
having them “know” when to start emitting would be difficult at best in our

formal, fully autonomous model.

27

9 Conclusions

The study of signaling and of the emergence and integration of different sen-
sory channels in Artificial Life organisms is an active area of research. In
fact, the forthcoming 1999 Genetic and Evolutionary Computation Confer-
ence will feature a workshop entitled “Evolution of sensors in nature, hard-
ware, and simulation.” The use of formal models is rare, however. There are
certainly drawbacks to using formal models: every aspect of the model must
be explicitly stated and thoroughly checked for consistency, and that causes
refinement of the model to take place slowly. The reward, though, is that
the model is then precise and complete, and the investigator has complete
control of all parameters and complete knowledge of what each parameter
affects. If unexpected behaviors arise within the model, it is possible to find
their source, and all results are reproducible. We find no reason to avoid
formalism, that is, no inherent limitation to it. In short, formal models show
great promise, but are an underutilized resource in the study of Artificial
Life.

The refinement and analysis of our model is far from complete, but there
are some conclusions to be drawn from our work so far. We found that
symmetry is important on a very basic level of the model. Without it, there is
a need for separate rules for the diagonal and cardinal directions, a condition
not consistent with our intuit_ive understanding of motion in the plane.

There are strong possibilities for making connections between biological

28

systems and this model. Microtubules seem to be the most easily related,
but there could be others of a similar complexity level. It is possible that
the behavior of unicellular organisms such as amoebas could be mimicked
with modifications to the original model, since simple organisms are more

hardwired, or deterministic, than complex ones like birds and fish.

References

[1] A. Adamatsky, Identification of Cellular Automata, Taylor & Francis
Inc., Bristol, PA, 1994. ‘

[2] A. Adamatsky and O. Holland, Phenomenology of excitation in 2-d cel-
lular automata and swarm systems, Chaos, Solitons & Fractals, 9 1998,

1233-1265.

[3] P. Arnaud, Group locomotion of mobile robots based on auditory infor-
mation, C. Wilke, S. Altmeyer, and T. Martinetz (eds.), Verlag Harri
Deutsch, Frankfurt am Main, 1998.

[4] E. Berlekamp, J. Conway and R. Guy, Winning Ways for Your Mathe-
matical Plays, Volume 2, Academic Press, Orlando, FL, 1985.

[6] S. Cowan, Rudy Rucker’s CA lab, Pizel, 1 January/February 1990, 36—
38.

29

[6]

[7]

[9]

[10]

[11]

[12]

[13]

A. Dewdney, Five easy pieces for a do-loop and random number gener-

ator, Scientific American, 252 April 1985, 20-30.

A. Dewdney, The game Life acquires some successors in three dimen-

sions, Scientific American, 256 February 1987, 16-24.

A. Dewdney, The cellular automata programs that create wireworld,
rugworld and other diversions, Scientific American, 262 January 1990,

146-149.

M. Gardner, The fantastic combinations of John Conway’s new solitaire

game of “life”, Scientific American, 223 October 1970, 120-123.

M. Gardner, On celluar automata, self-replication, the Garden of Eden
and the game of “life”, Scientific American, 224 February 1971, 112-
117.

M. Gardner, Wheels, Life, and Other Mathematical Amusements, W. H.
Freeman, New York, NY, 1983.

S. Hameroff, S. Rasmussen and B. Mansson, Molecular automata in
microtubules: basic computational logic of the living state? Artificial
Life, SFI Studies in the Science of Complezity, Ed. C. Langton, Addison-
Wesley Publishing Company, 1988.

B. Hayes, The cellular automaton offers a model of the world and a

world unto itself, Scientific American, 250 March 1984, 12-21.

30

[14] R. Herken (ed.), The Universal Turing Machine : A Half-Century Sur-
vey, Springer-Verlag, New York, NY, 1995.

[15] B. Oakley, A nice ring to the centrosome, Nature, 378 7 December 1995,
555-556.

[16] C. Pickover, Mazes for the Mind: Computers and the Unezpected, St.
Martin’s Press, New York, NY, 1992.

[17] J. Pulsifer and C. Reiter, One tub, eight blocks, twelve blinkers and
other views of life, Computefs & Graphics, 3 1996, 457-462.

[18] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Envi-
ronment for Modeling, MIT Press, Cambridge, MA, 1987.

31

Model 1A: A mobile automaton with collision avoidance, but no other
form of “communication.”

Notation:
p': position of machine at time t.
ot: internal state at time t, an ordered pair (0%, o), where
o%: internal direction state at time t,
ol internal collision state at time t.
D= {(0’ 1), (0, -1),(1,0),(-1,0), (1,1),(1, -1), (-1, 1), (-1, -1},
also written as {N, S, E, W, NE, SE, NW, SW}.
C = {A,#}, where A is the default state and # is the collision alert state.
N(a) = {a+a(1,0)+b(0,1) : a,b € {—1,0,1}}, the neighborhood of square
o which includes « and the eight squares surrounding it.
s = symbol on square a. Note that s, is an ordered pair,
54 € DU{A, h,v}, where
A :=(0,0),
h := (0, 3) = horizontal boundary (across the top or bottom),
v := (3,0) = vertical boundary (down each side)

Execution Steps:

1. Read s,+ and change the internal state o according to state change rules
below.

2. Write: spt = A.
3. Move:

t+1

pt+1 — pt if O'tC+1 == #
op otherwise.

4. Write: spr+1 =0 .

32

State Change Rules:
((s)

O't+1 = 1

(sp + 2, F)

(SP + Y, #)

(8p + 2, #)

if 5., == A and for n € N(sp),
n ?é Spy T #ptasn + Pn 7é Sp
if 85, == h
where z = (0,-2) if s, == N,NE,NW
(0, 2) if 8y == S, SE, SW
if Ssp == v :
where y = (—2,0) if sp == E,NE,SE
(2,0) ifsp== W, NW, SW
otherwise
(1, 0) if §p == S’ SW
- (0, 1) if Sp == E’ SE'
where 2 = (C10) i 5, == N NE
(07 _1) if Sp == W/, NW

33

Collision Resolution Schemes Resulting from Model 1A
This is a list of initial collision configurations and their resolutions. The
arrows indicate the machines’ current positions and directions.

1. One machine moving south and one moving north, into the same square,
resolves in one time step.

7

T

A
N

2. One machine moving south and one moving northwest also resolves in
one time step.

1

34

3. One machine moving south and one moving west requires two times
steps to resolve.

7
(_
N\
v
__>
v

35

4. One machine moving south and one moving southwest requires three
times steps to resolve.

7
S
S~
7

S

36

Model 1B: A mobile automaton incorporating collision avoidance and
primitive communication.

Notation:
pt: position of machine at time t.
ot: internal state at time t, a tuple (o}, 0%, 0%, 0%), where
o%y: internal directional state at time t,
ot internal collisional state at time t,
ol emitter state at time t,
ok receiver state at time t.
D= {(0’1)3 (0,-1), (1,0), (-1,0), (1,1), (1,-1), (-1,1), (-1,-1)},
also written as {N, S, E, W, NE, SE, NW, SW}.
C = {A, #}, where A is the default state and # is the collision alert state.
E = {on,of f}, where the machine emits when on. (Receiver machines are
permanently off.)
R = {paused, unpaused}, where the machine is normally unpaused, but goes
into paused state when it detects an emit signal. (Emitter machines are
permanently unpaused.)

N(a) = {a+a(1,0) + b(0,1) : a,b € {—1,0,1}}, the neighborhood of array
square a which includes « and the eight squares surrounding it.
Sa = So(D, E) symbol set on square o. Note that s, consists of an ordered
pair and an additional symbol, where the ordered pair so(D) is in
DU {A, h,v}, where
A :=(0,0),
h := (0,3) = horizontal boundary (across the top or bottom),
v := (3,0) = vertical boundary (down each side),
and the additional symbol s,(E) is one of {-,+}, where + indicates the
square is within the emit neighborhood of an active emitter machine.

37

Execution Steps:

1. Read spt(D, E) and change the internal state o and internal timer value
according to rules below.

2. Write: sy = A.

3. Move:
1 | Pt if ot ==# or o' == paused
p ot otherwise

t+1

4. Write: syr+1 = o%y!, and emit (see below) if o4

== 0on.

38

Emitter Rules:
Timer:

2 ifet==0
et =¢1 ifel ==2
0 ifet==1.

State Change Rules:

[(5p(D), A) if s,,(p)(D) == A and for n € N(sp(D)) such that
n # s,(D),n # pt, it is the case that
$n(D) + pa # sp(D)
(sp(D) +z,#) if S8s,(D) (D) ==
oo [(0,-2) if 5,(D) == N,NE,NW
WAL =1 (0,2) if 5,(D) == S, SE,SW
ot — { (sp(D) +y,#) if s5,0)(D) == v
(D,0) tore - | (=2,0) i 5,(D) == E,NE, SE
where y = { (2,0) if s,(

(sp+ 2, #) otherwise

S
|

|
=
=
=
05}
S

(1,0) if s,(D) == S,SW
] (0,1) ifs,(D)==E,SE
where 2= (10} if s,(D) == N, NE
L (0,—1) if s,(D) == W,NW

ot — off ifefl==0
B 7Y on otherwise.

Emitting:

If the emit machine’s state o " is on, it will write a + to the squares in a

5 x 5 neighborhood centered at the emitter’s position p**!.

t+1
E

39

Receiver Rules:

Timer:

State Change Rules:

I(bicy = 4

0.t+1 —_

R

((sp(D), A)

(sp(D) + z,#)

(sp(D) + 9, #)

(Sp + Z, #)

2 if Spt (E) ==
1 if s,¢(E) == and ¢ ==
0 otherwise.

unpaused if et ==0
paused otherwise.

if ot, == paused,
or if s,,(p)(D) == A and
for n € N(sp(D)) such that n # s,(D),n # 1,
it is the case that s,(D) + pa # (D)
if s5,(py(D) == h and ol == unpaused
[(0,-2) if s,(D) == N,NE,NW
where & = { (0,2) if s,(D) == S,SE,SW
if s,(p)(D) == v and o) == unpaused
where g = { (=2,0) if 5,(D) == E,NE,SE
(2,0) if 5,(D) == W, NW, SW
otherwise
(1,0) if 5,(D) == S5,SW
(0,1) ifs,(D)==E,SE
(-1,0) ifs,(D)==N,NE
(0,-1) if s,(D) == W, NW

where z =

b

40

Model 2A: A mobile automaton on the plane tiled in hexagons, with
collision avoidance but no other communication.

Notation:

pt: position of machine at time t; 6 bit code of 1’s and 0’s representing
relative coordinates so that 000000 is the machine’s current relative
position at the beginning of each clock cycle.

ot: internal state at time t; consists of:
o%): internal direction state at time t,
ok: internal collision state at time t.

D = 6 bit code of 5 zeros and 1 one. The position of the one corresponds to
the direction indicated, in the following order:

down-right, right, up-right, up-left, left, down-left.
C = {A, #}, where A is the default state, and # is the collision alert state.

Let e, be a six-bit code with 1 in the z** position, 0 elsewhere.

N(a) ={a}u{a+e;:1 <z <6} is the neighborhood of hex-tile & which
includes o and the 6 hex-tiles surrounding it.
Sq: six-bit string on hex-tile o
unoccupied: 000000
occupied: direction code (one bit set to one)
wall: 101010

Note that addition of all bit strings satisfies the following relations:
1. 100100 = 000000
2. 010010 = 000000
3. 001001 = 000000

41

Execution Steps:
1. Read s,+ and change state o according to rules below.
2. Write: s, = 000000.
3. Move:

TS B
P = P if o5 ==
o' otherwise.

4. Write: Spt+1 = UgH.

State Change Rules:

(sp, A) - if s,, == A and for n € N(sp),
n# Sp, M # Py Sn + P # Sp
ot = (e:z:+3(mod6), #) if Ssp, == 101010
where s, = e;.
(ex+1(mods), #) otherwise; notation as above.

42

Collision Resolution Schemes Resulting from Model 2A
This is a list of initial collision configurations and their resolutions. The
arrows indicate the machine’s current positions and directions.

1. One machine moving to the right and one moving to the left, into the
same hex-tile, resolves in one time step.

2. One machine moving to the right and one moving down-left, into the
same hex-tile, resolves in one time step.

3. One machine moving to the right and one moving down-right, into the
same hex-tile, resolves in two time steps.

43

4. One machine moving to the right and one moving to the left, with no
tiles in between them, resolves in one time step.

5. Two machines moving to the right, with one attempting to move into
the hex-tile the other currently occupies, resolves in one time step.

6. One machine moving to the right, attempting to move into the hex-tile

currently occupied by a machine moving up-right, resolves in one time
step.

44

. One machine moving to the right, attempting to move into the hex-tile
currently occupied by a machine moving down-right, resolves in one
time step.

. One machine moving to the right, attempting to move into the hex-tile
currently occupied by a machine moving down-left, resolves in one time
step.

. One machine moving to the right, attempting to move into the hex-tile
currently occupied by a machine moving up-left, resolves in two time
steps.

45

Model 2B: A mobile automaton on the plane tiled by hexagons,
incorporating collision avoidance and primitive communication.

Notation:

pt: position of machine at time t; 6 bit string of 1’s and 0’s representing
relative coordinates so that 000000 is the machine’s current relative
position at the beginning of each clock cycle

otl: internal state at time t; consists of:
o%: internal directional state at time t,
ok internal collisional state at time t,
ol: emitter state at time t,
ol receiver state at time t.

D = 6 bit code with 5 zeros and 1 one. The position of the one corresponds
to the direction indicated, in the following order:

down-right, right, up-right, up-left, left, down-left.

C = {A, #,Q,h}, where A is the default state, # is the collision alert state,
Q is the following state, and 1§ is the following-collision-alert state (last
two used only by receiver machines).

E = {first, second,of f}, emits on first and second. (Receiver machines
permanently in off state.)

R = {1,0}, 1 indicates paused, 0 indicates unpaused. (Emitter machines
permanently unpaused.)

Let e, denote a six-bit string with 1 in the z** position, 0 elsewhere.

Let e, denote a six-place string with n in the z** position, 0 elsewhere.

Let e, , denote a six-bit string with 1 in the z** and y™ positions, 0 elsewhere.

Let €5.5,m.y denote a six-place string with n in the zt* position, m in the 3
position, 0 elsewhere.

N(a) ={a} U{a+e;: 1 <z <6} is the neighborhood of hex-tile @ which
includes o and the 6 hex-tiles surrounding it.

s(@): symbol set written on hex-tile a: (sp, sg)
sp: direction and pausing status of machine occupying «, 0000000 if
unoccupied, 0101010 if wall.
sg: emitter neighborhood code, or 000000 if no active emitter is within
range.

46

Note that addition of bit strings satisfies the following relations:
1. 100100 = 000000
2. 010010 = 000000
3. 001001 = 000000

Execution Steps:

1. Read s(p‘) and change state o and timer value (if receiver machine)
according to rules below.

2. Write: s(p*)p = 0000000.
3. Move:

41 { pt if o5t == # or j or if og == paused
p = t+1

op otherwise

4. Write: s(pt*!) = oi! adjoined to oy, and emit if or = on.

47

State Change Rules:
For Emitter Machines

first if o, ==of f
ottt = second if oty == first
of f if o, == second.

((s(p")p,A) if sp(sp(p*)) == A and for n € N(s(p*)p) such that
n # s(p)p, n # p, seventh bit of s(n)p #1,
(ot 1) = | it is the case that s(n)p + p(n)p # s(P*)p
D ¢ (ea:+3(mod6); #) if S(S(pt)D)D == 0101010
where s(p*)p = €.
[(ez+1(mode), #) otherwise; notation as above.

Codes Written to Each Hex-tile in the Emit Neighborhood
Note that the emitter’s direction of movement is indicated by e;, and all
addition is modulo six.

1. Write e, to hex-tiles ej.;, 1 <n < 4.
2. Write ez4n, to hex-tiles ezqn, €2.z4n), 1 SN <6

3. Write 5 (z41) (Tesp., €z,z—1)) t0 hex-tiles en.z m.(z+1) (resp., enzm-(z-1))5
{n,m:2<n+m<4}.

4. Write €x4n,c+n+l to hex-tiles €xtn,c+n+ly 1 S_ n S 4.

48

For Receiver Machines
Receiver machines have an internal timer, et, which has an integer maximum
value, €maz-

gt —1 ife! > 0 and s(p)r = 000000

Emaz if $(p)E 7 000000
gt
0 otherwise

e+ paused if ¢t > 0 and o == A or #
ot — c
R unpaused otherwise.

If oL, == A or #, then:

((ey,) if direction of emitter has been calculated
(see below), where e, is the direction of
emitter movement.
(s(p")p, N) if sp(sp(pt)) == A and for n € N(s(p)p)
(o3, ol = 7 such that n # s(p)p, n # p*, seventh bit of s(n)p 7
it is the case that s(n)p + p(n)p # s(@*)p
(e:c+3(mod6); #) if S(S(pt)D)D == 0101010
where s(p')p = €.
L (€z+1(mods) s #) otherwise; notation as above.

If of, == Q or |, then:

((s(p')p,A) if et ==0and sp(sp(p)) == A,

and for n € N(s(p")p) such that

n # s(p)p, n # p', seventh bit of s(n)p # 1,
it is the case that s(n)p +p(n)p # s(¥*)p
(o508 =1 (s()p,) ife'>0and sp(sp(p%)) == A,

and for n € N(s(p')p) such that

n # s(p)p, n # p', seventh bit of s(n)p # 1,
it is the case that s(n)p + p(n)p # s(r*)p

L (€z+3(mods);) otherwise, where s(p')p = ez

49

Calculating the Emitter’s Direction of Movement

1. If first string received has one entry set to one, that is, it is e, for some
z, then:

(a) If second string received = e;: then emitter is moving in direction
indicated by e;, on a collision course with receiver.

b) If second string received = e, ,,: then emitter is moving in direction
g Y g
indicated by e;,-1, alongside receiver.

(c) If second string received = 000000: then emitter is moving away
or is off, wait for more information.
i. If third string received = e,: as above.
ii. If third string received = e;,: as above.

iii. If third string received = 000000: then emitter is moving
away; direction unclear. :

2. If first string received has two entries set to one, that is, it is e;, for
some z, y, then:

(a) If second string received = e;,: then emitter is moving along-
side receiver, direction indicated by either e, or e,; wait for more
information (see below).

(b) If second string received = e, [or e,]: then emitter is moving in
direction indicated by e, [or e,], alongside receiver.

(c) If second string received = 000000: then emitter is moving away
or is off, wait for more information.
i. If third string received = e, ,: as above.
ii. If third string received = e, [or e,): as above.
iii. If third string received = e,,z # x, 2z # y: if x - z = 2, then
the emitter is moving in the direction indicated by e,. If y -

z = 2, theh the emitter is moving in the direction indicated
by ey, in both cases alongside the receiver.

iv. If third string received = e, , [or e, ,]: then emitter is moving
in direction indicated by e, [or e,], alongside receiver.

v. If third string received = 000000: then emitter is moving
away; direction unclear.

50

Figure Legends

Figure 1. Course of a stable “pretzel path” of one machine on a 4 x 5 space.

Figure 2. Resolution of an East-West and a North-South head-on collision
between two machines on a 5 x 5 space, resulting in machines following
along same path.

Figure 3. Steps preceding an East-West head-on collision on a 5x5 space.
This generalizes to an m X n space as explained in the text.

Figure 4. The 5x5 centered and two 3 x3 directional emitting neighborhoods.

Figure 5. Interpretation of the location string 210000.

Figure 6. Emit neighborhood with signal bitstrings for an emitter moving to
the right.

Figure 7. The ten hex-tiles in the emit neighborhood which are used for
following.

Figure 8. Collision with wall by a swarm of following receiver machines.
Note that the lead machine becomes the trailing machine, and so an
emitter leading receivers would become an emitter following receivers.

Figure 9. Neighborhood of tubulin dimers in a microtubule strand. After
[12].

o1

Figure 1.

Figure 2.

<

v
)

-ﬁ

71 7] 1«

N/

92

Figure 3.

<| & |«

.%

Figure 4.

.1.

-’..

+

+

1.

S|+

AEEBERE

Pl t
+ItlEl sl t

ol Bl ol I o B
wit i R KA A

53

Figure 5.

Figure 6.

54

Table 1. Emitter direction, receiver point of entrance into emit neighborhood,
and length of time receiver pauses, showing no correlation among the
three.

Emitter is at (0, 0), moving in direction shown in column E. Receiver enters at
square with coordinates shown in the third column and with initial direction
shown in column R. g,,,; is the maximum value for the receiver’s internal
timer.

Column A: Emitter final direction.

Column B: Receiver final direction.

Column C: Number of time steps receiver is frozen.

Starting directions Rec. start. pos. Entry on . Entry
E R A B C A
E N (2, -2) E N €neet+3 E
E N (2,-1) NE N emaz+3 E
E N 2, 1) E N emaz+3 E
E N (2, 2) E N 0 E
E N (1, -2) E N €nazst2 E
E N (0, -2) E N emestl E
E N (-1,-2) E N Emaz E
E N (-2, -2) E N 0 E
E N (2, 0) E N enes+3 NE
E. A (1, -2) E W €naz+3 E
E A (1,-1) E W enastl E
E A% (1, 0) NE SW e, +1 NE
E W (1, 1) E W epeet2 E
E W (1, 2) E W gnertl E
E W (2, -2) E W emartl E
E W (2, -1) E W €neet+2 E
E W (2, 0) NE SW eneet+2 NE
E W (2, 1) E W emart2 E
E w (2, 2) E W gnast2 E

57

EETETEEEEEE 22222222203

Emazt4
5maa:+4
5ma:1:+4
€ ma:z:+4
5mam+3
Emazt2
Emaz + 1

5maz

Emaz+4

5max+3
5ma:z:+3
5maz+3
Emaz+3
E:1'11,11,.’4!3-{'-3
5ma:z:+4
8’I'Tl«a.’li_*—4
6ma:z:+4
87"1,0,2:_*—45
5maa:+4

	Shout with the largest Mob : toward a model for primitive communication in mobile automata
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61

