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ABSTRACT 

strong evidence suggests that the serum ferroxidases (ceruloplasmin 

andferroxidase II) promote the formation of Fe-III transferrin and 

thereby stimulate the turnover of iron from tissue stores. Ceruloplasmin 

is the major ferro.xidase in human serum; whereas, ferroxidase II accotmts 

for an increased proportion of the activity in less highly developed 

animals. A large fold increase in total ferroxidase II activity was 

observed when both human and rabbit sera were subjected to gel-filtration 

on sephadex G-200. This indicated that whole serum might contain a 

potent inhibitor of ferroxidase II. Such an inhibitor has been isolated 

and purified to homogeneity by a combination of gel-filtration and ion 

exchange chromatography. It has a molecular weight of 64,0<YJ-67,0CJO. 
The molecular weight, chromatographic behavior, electrophoretic mobility, 

electrofocusing pH, carbohydrate content, and reactivity with anti-human 

albumin in an imnnmodiffusion system indicate that the ferroxidase 

inhibitor could be serum albumin. Furthermore, commercial human serum 

albumin exhibits an inhibitory activity with both serum ferroxidases 

that is equivalent to the ferroxidase inhibitor purified from whole rabbit 

and human serum. Serum albumin can be fragmented into several smaller 

peptide:;;, one of which contains a specific binding site for copper. it 

was this fragment that had inhibitory activity towards the serum ferroxidases. 

"In vivo" studies demonstrated that the content of the ferroxidase 

inhibitor in serum decreased when iron mobilization was accelerated from 

tissue stores by either dietary manipulation or repetitive bleeding. 

Furthermore, an inverse relationship was observed between the total serum 

content of the inhibitor and the total serum ferroxidase activity. By 

modulating the activity of the serum ferroxidases, serum album:in could 

participate in the regulation of the efflux of iron from tissue stores. 
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Copper was discovered in living matter only a century and a haJ.t ago. 

The adult human contains only about lOOmg o.t" copper and ;while orgami.Sll8 may 

vary in their dependence for other elements, they all seem to require a cer

tain amount or copper. Because it is an essential constituent of 1WJY enzymes, 

copper plays a major role in the overall metabolic picture. There are several 

reasons for copper's e.t"tectiveness as a biological agent. First or all, copper 

reacts with amino acids and proteins more strongcy than most other metals.do, 

and consequently it forms very stable chelatea with the biologic~ active 

substances. In copper containing enzymes, the copper is so strongly embedded 

that no amount ot dial.¥ais will separate the copper from the protein; the copper 

ion can only be released by more drastic measures that alter the structure of 

the protein or ey exposure to an even stronger chelating agent. Secondly, 

copper serves as a very effective catalyst whose actinty seems to be enhanced 

when it is embedded in an enzyme. Las~, copper can exist in three states: 

as the free neutral atom, as the cuprous ion (with one electron removed), am 
as the cupric ion (with two electrons removed). The two ionic etates are 

easily interconverted by the addition or release ot an electron which thereby 

gives copper greater versatility as an electron acce~e~_or an electron donor. 

Moreover, compomids contai.J::iing aingly ionized coppe~I are easi.1¥ oxidized 

by oJC;ygen from the air; consequently, copper enzymes that act as oxidative 

catalysts9iare promptly recycled by reoxidation to repeat their function (1). 
\_. 
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Biological copper is almost never found in &I\Y compound less complex 

than a protein. Very little !ree ionic copper (in the form of salts) is ever 

found in the body, even in the blood-stream. When radioactive copper is in

jected in humans in the i'orm of a copper salt, it first appears bound to the 

serum protein albllllin. It is then absorbed ay the liver and reappears in the 

blood-stream bound to ceruloplasmin, (a serum protein i'~st isolated by the 

Swedish biochemists,Holmberg and Laurell in 1947, (2)). Ninty-eight per cent ....____ 

of the copper in human serum is concentrated in ceruloplasmin (1). 

The biological role of copper has been difficult to determine. Its 

presence in the body went undetected witil recent times, mainly due to the 

rarity of copper deficiency in animals. Copper deficiency in humane has never 

been observed, since we are supplied with an abundance of copper in our water 

and food, including contributions from copper cooking utensils. Copper 

deficiency has been studied in animals in which it occurs natural:cy (dogs, 

pigs, chickens, lambs) and in experimental animals in the laboratory. Severe 

copper deficiency is responsiDle tor several a.Dnormalitiess 1) sw91back disease 

in lambs, 2) bone defects in dogs, pigs, and chickens, .3) decolorization of 

sheeps• wool and rat hair, 4) a reduction in the supply of copper enzymes, 

particular}¥ eytochrome c oxidase, and perhaps most significantly, 5) a re

duction in the synthesis of hemoglobin, causing anemia and a deficiency of 

proteins containing heme (the iron containing pigment precursor to hemo-

globin) (1). 

The recognition of anemia in t.he copper deficient animal was first reported 

in 1928 (.'.3)• This detect in iron metabolism in the copper deficient animal has 

been studied extensively by Cartwright, Wint.robe and their associates at the 
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University of utah School of Medicine (4). Their work revealed that 

copper deficient pigs developed a hypochromic microcytic anemia. Lahey 

and his associates were able to determine the progression of netabolic 

events, resulting from the anemia (5). mood analyses of five-day old 

pigs, mainta:ined on a copper deficient diet, indicated an initial rapid 

decrease in serum copper, followed by a drop in serum iron, erythrocyte 

copper and finally a drastic reduction in red cell volume. 

These observations led Cartwright 1 s group to renew the ideas of a 

role for copper in henx>globin biosynthesis. This role could be effected at 

one of three main events in hemoglobin biosynthesis; 1) .the biosynthesis 

of protoporphrin or heme, 2) the utilization of iron, or .3) the biosynthesis 

of globin ( 6). Earlier efforts to find a copper-dependent step in heme 

biosynthesis were abandoned by Iee and his co-workers (7). Instead, they 

found that as anemia developed in the copper deficient pig, there was a 

2-3 fold increase in the activity of heme biosynthetic enzyrres. They 

concluded that copper deficiency anemia was not a result of defective hene 

biosynthesis and that copper was not a co-factor in any of these reactions. 

They also found no evidence for any impairment in globin biosynthesis. From 

their observations, it seemed nnst reasonable to assume that copper was 

essential for the proper utilization of iron (7). 

One of the first major breakthroughs in the link between iron and 

copper metabolism was the result of a study made by Curzon and O'Reilly on 

a coupled iron ceruloplasrn:ln oxidation system (8,9). 

It had previously been dennnstrated by Holmberg and La.urell that 

ceruloplasrn:in had oxidase activity "in vitro" towards many substrates, 

including p-phenylenediamine, quinol, cathechol, pyrogallol, dihydro.x;yphenyl

arn:ine, adrenaline, and ascorbic acid (10). Curzon and O'Reilly further 
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investigated this by study:ing the effects of metal ions in low concentration 

on the oxidase activity of ceruloplasmin. They found that ferrous iron 

greatly enhanced the activity of ceruloplasmin on a spec:i.fic substrate, N, 

?-k:liioothyl-p-phenylenediarn:i.ne ( DPD). Furtherioore, they were able to . dexoonstrate 

that ceruloplasmin oxidized the ferrous ion to the ferric ion. Subsequently, 

they proposed a coupled iron-ceruloplasm:in system, in which Fe (II) was oxidized 

by ceruloplasmin which m turn, increased the activity Of cerul.oplasm:i.n towards 

its substrate DPD (8). 

* 
DPD + Fe+r+ DPD +Fe* 

ceruloplasmin 

* DPD = oxidized M, N-dimethyl-p-phenylenediam:ine dihydrochloride 

Curzon and O'Reilly' s data, which revealed the catalytic oxidation of 

Fe(II) by ceruloplasrnin, led to further experiments by Osald et. al, m which 

they attempted to determ:ine a biological role for ceruloplasrnin in iron 

metabolism (11) • 

.kt this time, it was generally believed that iron entered the bloodstream 

from the intestine mostly in the ferrous form (12). Once in the plasma, Fe 

{II) is rapidly oxidized to Fe (III) and is incorporated into the specific 

iron binding protein, transferrin, which can bind two atoms of Fe (nI) Per 

protein IIX>lecule, forming a red Fe (III) complex. ~fuen Fe (n ) is added to 

apotransf'errin, (the iron .tree protein) oJcy"gen is required for the formation 

of the red complex, and the rate of color formation depends on the rate of 
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Fe(II) oxidation to Fe(III) by molecular o~gen (13). C!i.ce saturated, the 

transrerrin molecule is thought to be the protein which exclusively supplies 

iron to the marrow. Iron in the marrow is subsequently utilized by the 

developing red blood cell :in the synthesis or hemoglobin (14). 

With this knowledge, and the data from ~on and o•Re:Uly•s experi

ments, Osaki's group :investigated Fe(II) oxidation under .conditions which 

might be expected to prevail :in human serum. These experiments deJOOnstrated 

that ceruloplasmin catalyzed the oxidation or Fe(II) to Fe(III) and thereby 

promoted the incorporation or Fe(III) into apotransterrin (11). 

In his experiments, Osaki used two methods to study the Fe(II) oxidation 

(ll). One was a spectrophotometric method which measured the rate of Fe(III)

transterrin formation and the other method measured the rate of Fe(II) oxidation 

by an o~gen electrode. Osaki made a cemparative study or the non-enzymic 

and enzymic rates of Fe(II) oxidation over a wide range or concentrations with 

respect to both Fe(II) and ~· It was found that the ceruloplasmin catalyzed 

reaction was 10 to 20 times taster than the non-enzymic oxidation under 

physiological conditions. Furthe!DlOre, the non-enzymic oxidation of Fe(II) 

was estimated to be insufficient to account for a rate of Fe(III)-transferr:in 

formation necessary to provide an adequate iron supply tor herooglob:in bio

synthesis. On the other hand, the enzymic oxidation by cerul.oplasmin was 

found to be approximately 11 times more active than the non-enzymic oxic_lation 
. 

and this rate would be sufficient to meet the actual reciuirement for the 

conversion of Fe(II) to Fe(III). From this :information, Osaki proposed that 

the rate of .!> rmation or Fe(III) from Fe(Il) :in plasma and the :incorporation 

of Fe(III) into transferrin could play a significant role :in the overall 
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turnover of iron. The fact that ceruloplasmin was capable of increasing this 

rate under physiological conditions suggested a possible biological role for 

ceruloplasmin in promoting the rate of iron saturation of transferrin and in 

stirrrulating iron utilization (11). 

In view of the results obtained from these experiments, Osald.' s, group 

proposed that the enzymic activity of ceruloplasmin warranted its classifi

cation as a Ferro-02-oxidoreductase or serum ferroxidase. .Although the nane 

ceruloplasmin will always bear historical significance, the term ferroxidase, 

is a more use:f.\Q.. and appropriate designation. 

A group of researchers at the University of utah School of .Medicine 

studied the effects of ceruloplasmin and plasma iron in copper deficient 

sw:ine in order to evaluate Osaki•s hypothesis in an in vivo system (15,16,17). 

It had previously been established that copper deficiency in swine pro

duced an anemia character:tzed by defective movement of iron from reti -

culoendothelial cells, hepatic cells, and gastrointest:inal mucosa to the 

plasma (18). In their studies, the utah group was able to demonstrate that 

this defect could be reversed promptly by the intravenous administration of 

ceruloplasm:in (15)• 

The animals used :in this study were maintained on a copper and iron 

deficient diet for a period of 70 days. The administered dose of 

ceruloplasrnin was based on an estimated plasma value. When the ceruloplasntln 

was adnri.nistered to the copper-deficient animals, an immediate.increase in 

plasma iron concentration was observed. This effect could not have been due 

simply to a partial correction of the copper deficient state, because when 
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inorganic copper, in an aJOOunt equivalent to that contained :in the :injected 

ceruloplasm:in, was administered, on.zy a minimal transient increase m plasma 

iron concentration was observed (15). 

The results oi' this study were :important for two reasons: 1) they de-

100nstrated "in vi:vo" that ceruloplasmin could reverse the symptoms of copper 

deficiency anemia by increasing the plasma iron concentration; 2) they de-

100nstrated that the most probable source of iron which entered the plasma 

a.i'ter the ceroloplasmin adm:inistration was the reticuloendothelial and 

hepatic cells. Since the animals were maintained on an iron deficient as 

well as a copper deficient diet, it was unlike]¥ that the gut provided the 

source of iron :induced by the ceruloplasm:in mjection (15). 

AIJ a result of this :initial experim:mt, the utah group sought additional 

"in vivo" evidence for the function of ceruloplasm:in as a ferro.x:i.d.ase m 

prorooting the rate of transferrln formation (16). 

These workers assumed that if ceruloplasm:in functioned physiologically 

in promoting the rate of transferr:in formation, and ii' the abnormalities m 

iron metabolism in copper deficient swine were due to a deficiency of 

ceruloplasm:in ferroxidase activity, then the following peysiological events 

might be observed in such animals (16): 1) a deficiency or ceruloplasmin; 

2) the deficiency of ceruloplasmin should pre~ede the restriction in the now 

of iron into the plasma as manifested by the development of lzypoferremia; 3) an 

:increase m ceruloplasmin in the circulation should precede the increase· in 

plasma iron which follows the administration of copper; 4) the rate of 

transferrin formation "in vivo" from :intravenous]¥ injected ferrous iron should 

be slower than that from intravenous]¥ administered ferric iron; 5) a rapid 
• 
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increase in plasma iron should occur following intravenous administration of 

ceruloplasmin. 

The results confirmed their predictions. In each pig, a severe degree 

of hypoceruloplasminemia was observed before the plasma ir-0n decreased. 

fzypoferremia did not occur tmtil the ceruloplasmin activity decreased to 

less than 1% of the normal level. (Ceruloplasmin activity was determined by 

its ability to oxidize Jr-phenylenediarn:ine, another enzymatic activity of 

ceruloplasmin.) (19) The administration of ceruloplasmin to the copper de-

ficient pigs was followed by a prompt and appreciable increase in plasma 

iron. This effect could not be explained by the copper contained in 

~eruloplasmin. When inorganic copper was administered, some· increase in 

plasma iron was observed; however, it was necessary to inject 100-150 ug/kg 

of inorganic copper in order to approximate the effect of o.<>-1.2 ug/kg of 

ceruloplasmin copper. Furthermore, the plasma iron response to this high 

dose of copper was delayed as compared with the response to ccruloplasmin, 

and the delay was associated with an increase :in plasma ceruloplasmin of an 

order that would in itself stimulate iron outflow. Thus, the copper appeared 

to exert its effect on plasma iron by making ceruloplasmin synthesis possible 

(16). 

The binding of iron by transf err:in after an intravenous injection of 

ferrous and ferric iron was compnred in the control and copper deficient 
. ' 

pigs in order to test the relative efficiency of the spontaneous and 

enzymatic reactions in an in vivo system. In each case, an equal amotmt of 

iron was injected, and the increase in plasma iron was determined 10 minutes 

after the injection. When ferric iron was injected, there was no difference 
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between the plasma iron values in the control and copper deficient animals. 

In contrast, when ferrous iron was injected, the hypoceruloplasminemic pigs 

were unable to retain ferrous iron in the plasma. Failure to retain iron in 

plasma implied that the iron did not become botmd to transi'errin, presumably 

because it was not oY..idized to the ferric state (16). 

The Utah group concluded from their studies that ceruloplasrnin appeared 

to be essential for an optimal rate of Fe-III transf errin formation from 

ferrous iron and apotransf errin. The non-enzymic rate of iron oxidation 

was not adequate to insure complete iron-binding in this system. Thus 

these observations constituted an in vivo demonstration of the abnormality 

in iron binding in ceruloplasrnin deficiency as predicted by Osaki et al. on 

the basis of their in vivo investigations (11). 

These results proVided such strong evidence supporting the hypothesis of 

Osaki et al. that it prompted Osald' s group to study further the mobilization 

of stored iron in an in vivo system (20). 

Animals suffering from copper deficiency anemia exhibit an iron overload 

in storage organs such as the liver or spleen (18). In contrast, animals 

suffering from iron deficiency anemia have no iron in storage (21). Thus 

in copper deficiency the storage organs may contain iron but cannot mobilize 

and utilize it for hemoglobin synthesis (18). Osaki based his in vivo 

study on this knowledge. 

In this experiment, excised manunal.iam livers from normal' as well as 

copper deficient specimens were flushed with a recyclable perfusion medilim 

containing only the plasma protein apotransferrin. Several compotmds includ

ing ceruloplasmin, CuS04, HCO) citrate, apotransferrin, glucose, f;ructose, and 
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serum albuntin (:!:cu(II))were tested for their ability to nobilize iron f'rom the 

liver into the perfusate. The appearance of :iron was dete~ed by Fe (III) 

transferrin formation and an :independent iron analysis (20). Of the compounds 

tested only ceruloplasntln produced a rapid efflux of iron into the perfusate. 

(The ceruloplasndn concentration could be reduced to 0.2uM br approximately 10-fo 

of the nonnal human value without limiting iron mobilization.) Thus, even in 

copper deficient animals a mobilizable pool of iron was present. Once the pool 

was depleted, a reduction in iron mobilization occurred. When the same liver 

was perfused again for twice as long as the original flushing time, the same 

amount of enzyioo :infused resulted in twice the amount of iron released. Since 

varying concentrations of the enzyme produced no further increase in iron 

efflux it appeared that the extent of iron mobilization was proportional to the 

flushing time. These observations suggested that a pool of nr:>bilizable iron 

was formed during the flushing tiJOO and that the total amount of iron roobiliza

tion depended on the size of this pool (20). 

From these observations, Osaki et. al. were able to propose a physiological 

role of ceruloplasndn in iron nx>bilization. Figure (I) is a schematic repre

sentation of their proposal consistent with their data (20). 

Apo hun\ferrin 

fo<Ol -------. foUll) 

·~) 
f.,,,,,,,, .. 

(o) 

/ 
/ " -----4..... 

,/ ·,1"1111) Clo. 
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Figure 1 

.... 
' ' ' \ 

I 

fe(lll) trumfe11111 

Blood 
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When the ceruloplasmin concentration in the plasma is normal a minimal 

rrobilization pool of iron is expected. step c is probably rate limiting, thus 

no appreciable pool is fo~d unless ferroxidase, step a, is elind.nated. The 

binding between Fe(III) and apotransferrin represented by step b, does not 

itself facilitate iron rrobilization. Thus, apotransferrin appurently serves 

only as a carrier of Fe(III) in the circulatory system. 

In the copper deficient state the rate of iron efi'lux. from the cell, 

(e.g. reticuloendothelial) begins to slow down when the fcrroxidase concen

tration becomes rate limiting (step a). Consequently, more iron (in storage 

as well as in the mobilizable pool) \·rould accunrulate in various organs such as 

the intestinal mucosal cells, parenchymal cells of the liver, <md reticuloend

othelial system. 

Osaki concluded that ceruloplasnrin, due to its iron oxidase activity, 

c;enerates a steep concentration gradient of Fe(II) between the iron storage 

cells and the capillary system, thus promoting efficient and maximum iron 

efi'lux and thereby promoting the rate of iron saturation of apotransferrin 

and stinrulating iron utilization (20). 

During the period when much of the experimental work on ceruloplasmin was 

accomplished, it became evident that a non-ceruloplasnrin ferroxidase also 

exsisted in serwn. 

Ceruloplasmin can be isolated from the Cohn IV-I fraction of whole human 

serwn. One of its characteristic properties is its sensiti~ty to sodium 

azide. Its ferroxidase activity is nearly 100% inhibited by lmM sodium azide. 

The first clue that another non-ceruloplasnrln ferroxidase might exist, was the 

presence of a residual non-azide sensitive ferroxidase activity in human serwn 
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and also in the Cohn IV-I :fraction (22). 

The existence or such an eneyme l«>uld account for and perhaps clarify 

some of the biological characteristics associated with Wilson's disease. 

This disorder is characterized by low plasma ceruloplasmin and an accumula

tion of copper in the liver and the brain. Due to the role o:r cerul.oplasmin 

in iron mobilization one might expect to see disturbances. in iron metabolism . 
in this disease. However, roost po.tients with this disorder have been round 

to have low normal or normal levels of iron transport.. Another characteristic 

associated with Wilson's disease, is the diminished p-phenylenediamine oxidase 

activity, (another enzymatic activity of ceruloplaamin) which would be consis

tent with the low levels of ceruloplasmin. Paradoxically, the sera :from patients 

with Wilson's disease display more felTOxidase activity than one would expect. 

Frieden and Osaki suggested the possiblity of an alternative ferroxid.ase 

prote:in, that would be capable of substituting for ceruloplasmin in Wilson's 

disease (23). 

Such a protein was isolated and purified by R.W. Topham (24). It has 

been desi~ted f erroxidase II and like ceruloplasmin it has siePificant 

ferroxidase activity; however, it also has several characteristics which 

distinguish it :from ceruloplasm:in as well as deil¥)llstrate how it could serve 

as a possible substitute in Wilson's disease. 

Two of the oore import.ant characteristics that differentiate ceruloplasndn 

from fett0xidase II and that proved to be useful in several ~r:l.mental studies 

were; 1) ferroxidase II was not inhibited by azide and 2) ferrox:idase II had no 

p-phenylenediam:ine oxidase activity. (24). 

The differential sensitivity to azide was used 88 an initial probe to 
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determine whether any ferro.xidase II activity might be present in normal 

human serum and Wilson's disease serum. Its presence was confinood in both 

sera. 

A comparative study was made of the ferro.xidase II activity and the 

activity of ceruloplasntln in the sera of normal humans and patients with 

Wilson's disease (24). In the.Wilson's disease sera, both of the ferro.xidase 

activities were lower; however, while the total ferro.xidase activity was 

decreased by a factor of 17 to 18, that of ferroxidase II ~as decreased by a 

factor of only 3 to 4. Thus, in the Wilson's disease sera, ferroxidase II 

accounted for a larger percentage (approximately 30%) of the total ferro.xidase 

activity, about a 5-fold increase over that observed in normal human serum (24). 

This data helped resolve the apparent paradox in Wilson's disease con

cerning the normal levels of iron transport observed in patients with the 

disorder. Specifically, the ceruloplasmin level decreased dramatically in 

Wilson's disease sera, while ferro:d.dase II was less affected. The total 

ferroxidase activity of Wilson's disease sera was approximately 5 to 10% of 

that of normal sera. Osaki et. al.. found that only about 1(1/, of the total 

ferroxidase activity of normal serum was necessary to.produce maximum iron 

mobilization response from the liver (20). Therefore, the total ferroxidase 

activity of Wilson's disease sera '\'lOuld be sufficient :tor normal or low norma1 

iron iretabOlism. However, this would not be possible without the large con

tribution to the total activity from ferroxidase II. The presence of 

i'erroxidase II also accounted for the fact that the p-phenylenediamine 

activity did not correlate with ferroxidase activity in Wilson•s disease 

sera (24). · 
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The kinetic parameters of i'erroxidase ll were studied and compared to 

those of ceruloplasmin ( 25). Both ferroxidasm had low Km values for o~gen. 

The o~gen concentration of human blood has been estimated to be 5.3-l20uM ( 26). 

The low Km value for o2 indicated that ferroxidase II could catalyze the 

oxidation of Fe(ll) at o~gen concentrations comparable to or even far be-

low those of hwnan blood. In addition, the pH opt:imum for ferroxidase II was 

found to be compatible with the pH of blood. The two ferl,'O.xidases have been 

shown to differ considerably in nx>lecular weight and copper content (24). 

However, the mlar activities and activities per copper atom are quite similar. 

Thua, kinetically, ferroxidase II, with a small Km value i'or o~gen, a pH 

optimum comparable to the pH oi' human blood, and a m:>lar activity comparable 

to cerulop1asm:in, would be capable of substituting for ceruloplasmin in normal 

human sera, and in Wilson's disease sera (25). 

The physical properties oi' ferroxidase II have been extensively studied 

and documented (27 ,28,29,30). It is a unique and structurally complex 

enzyme containing lipids and copper, both of which are tight~ associated with 

the protein and essential to its enzymic activity. It is ubiquitous~ dis

tributed throughout the animal kingdom. Comprehensive comparative studies 

have shown that in hwnan serum and in the sera of highly developed mammals ceru

loplasmin is-the major source oi' ferroxidase activity; whereas, in rodents and 

less highly developed animals f erroxidase II accounts i'or a larger proportion 

of the total ferroxidase activity. Thus less highly developed animals may be 

m:>re dependent on i'erroxidase n !or netabolic nx>bilization of :tron. This is 

nx>re clearly denr:mstrated by the i'erroxidase activity present in the serum of 

the New Zealand White Rabbit (Oryctolagus Cuniculus) (31). When ferroxidase ll 
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was isolated from whole rabbit serum it was found to contain three times the 

amount of copper per unit weight ot protein and a specific activity three 

times larger than that of human ferroxidase II. Since ferroxidase II appears 

to play a m:>re active role m less highly developed animals this evidence sug

gests there may have been an evolutionary transition from ferroxidase II to 

cerulopl.asmin as the major source of serum ferroxidase activity. 
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INl'RDDUCTION 

When ferroxidase II was isolated from whole rabbit serum, a rather inter

e sting phenomena was revealed. As evident in the purification table (Table I), 

a seven-fold increase in the total ferroxidase activity was observed after the 

whole serum was passed over a sephadex G-200 column (31). In order to acco1.ll'lt 

for this observed increase in total activity, it was proposed that perhaps 

in whole serum there exists a potent inhibitor of ferroxidase II, that masks 

enzymic activity in the whole serum, but when separated from the enzyme by 

passage over a sephadex G-200 column, results in this large mcrease m total 

activity. Such an inhibitor could play a highly sigflificant role in iron 

rretabolism as it could serve as a naturally occuring roodulator of the ferroxidase 

activity in the sera of less highly developed animals and thus regulate the re

lease of iron from storage tissues. 

The purpose of this study was to isolate and characterize the proposed 

inhibitor and to determine its contribution to the iron-f erroxidase metabolic 

pathway. 



Table I. Purification of Rabbit Ferrox:Ldase-II 

Purification 

step 

Whole Serum 

Sephadex G-200 

Sepharose-6B 

DEAFrSephadex 

Total 
Prote:in 

(mg) 

286o 
246 
ll5 
u.7 

Total Specific 

Activity Activity 
( AA460nm/min) ( AA460nm/min.l 

mg F<>tein . 

19 

Fold 

Purification 

1 

76 
136 
530 



MATERIALS AND METHODS 
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MATERIALS AND METHODS 

~· Fresh, frozen rabbit sera, non-sterile, non-henx>lyzed was 

purchased from Pel-Freeze Biologicals, Inc., Rogers, Arkansas. Fresh human 

serum, HBs-Ag negative, was donated from the Richnx>nd Metropolitan mood 

Service Inc., Ricluoond, Virginia. 

Human cerulopl.asmin. Purified samples of ceruloplasm:in were pre
pared using the method of Deutsch (32). 

Human Ferroxidase-II. Purified samples of human .terrox:i.dase II were 

prepared according to the method of Topham and Frieden (24). 

Rabbit ferroxidase-II. Purified samples of rabbit ferroxidase-II were 

prepared according to the method of Chin, et al. (31). 

Animals. Mature, female New Zealand White rabbits were used in these 

studies. 

~· The low iron diet was purchased from IC~ Nutritional Biochemicals, 

Cleveland Ohio. The animals receiving this diet, also received doubly deionized 

water. 

Serum albwn:in. Solutions of bovine, rabbit, and human serum albumin 

(Sigma Chemical eo., st. Louis, Mo.) were prepared in distilled water to a 

concentration (30-6o mg/ml) equivalent to the range of concentrations of albumin 

in whole serum. 

Chromatographic materials. Sephadex G-200-100 (Sigma Chemical Co., st. 
!Duis, Mo.) was swollen and equilibrated with o.OJM acetate butter pH 5.5, 
containing O.l5M NaCl and 0.02% NaN3 as an antimicrobial. agent. Sephadex G-7 5-120 

(Sigma Chemical Company, st. !Duis, Mo.) was swollen and equilibrated with o.6N 

acetic acid, pH 3.0. Sephadex G-25-150 (Sigma Chemical Company, st. !Duis, ~.) . * 
was swollen and equilibrated with deionized, glass distilled water. IEAE-Sephadex 

* DEAE = Dl.ethylandnoethyl 



A-50-120 (Sigma Chemical Company, st. IJ:>uis, Mo.) was swollen and equilibrated 

with 0.05M acetate buffer, pH 5.5, contcrlning 0.02% NaN
3

• DEAE-Sepharose Cl-

6B (Sigma Chemical Company, St. Louis, Mo.) was swollen and equilibrated with 

0.0125 M sodium acetate buffer, pH 5.0 prior to use. 

Dissociation and chelating reagent. Sodium dodecyl sulfate was pur

chased from Sigma Chemical Co., st. Louis, It>. Disodium ethylene dianrlne 

tetra acetate was purchased from Fisher Scientific Co., Fair Lawn, N.J. 

Dithiothreitol was purchased from J.T. Baker Chemical Co., Phillipsburg, 

N.J. 

Assays of Ferroxidase Activity C!I\d The Inhibition of Ferroxidase Activity. 

The enzymic oxidation and incorporation of iron into transferrin was measured 

spectrophotometrically at 46onm, where Fe (III)-transferrin exhibits maximal 

absorbance. This spectrophotometric assay of ferroxidase activity has been 

described in detail and validated in numerous previous reports (ll, 20, 24, 26, 

Zl, 31, 33 - 39). In assays contD.:ining no inhibitor, each cuvette (l.8ml 

capacity) contained 0.350 ml of a o.6 M acetate buffer, pH 6.o; o.250ml of a 

z;& (w/v) apotransferrin solution; 0.300 ml of a 4 x 1 -\i ferrous ammonium. 

sulfate solution; 0.100 ml of a solution of either whole serum ferroxidase-II 

or ceruloplasmin; and 0.100 ml of a o.o;M acetate buffer, 0.15 NaCl, pH 5.5. 

In assays containing the inhibitor, the 0.100 ml of 0.05 M acetate buffer was 

replaced by 0.100 ml of a solution of the inhibitor which was prepared in the 

same buffer. The amount of inhibition was determined by obtaining the difference 

in the initial velocities of the ferroxidase reaction of assays with and with

out the inhibitor and was reported either as % inhibition or as f). (l.A46o/min). 

Column Monitoring. Protein elution from columns was ironitored at 

280nm with an Altex m::>del 150 absorbance ironiter, an Isco irodel UA-5 absor

bance monitor with a type 6 optical mlit or an Isco model 18/P absorbance 

roc>nitor with a variable wavelength setting. 

pH Measurements. All pH determinations were made with a Fisher Accument 

model 210 pH rooter equipped with a corning series 500 combination pH electrode or 



a Beckman !! 60 pH meter. 

Ultrafiltration. Protein solutions were concentrated in an Amicon 

ultrafiltration cell, roodel 52, with an Ami.con PM 30 membrane. 

;yoph£i,zation. Protein solutions were concentrated by quick freezing 

on an FTS model SF-1 shell freezer, followed by lyophili zation on an Fl'S 5 
model FDX-1-54 freeze dryer. 

Protein concentrations. Protein concentrations were determined by 

the method of lDwry et. al. (40) with bovme serum albumin as the standard. 

Copper deterndnations. Copper analy5es were perforrred using the method 

of Wharton and Rader. (41) 

Lipid Anal;y:ses. Cholesterol analyses were performed according to the 

method of Zak (42). Phospholipid analyses were carried out using the method 
of Bartlett (43) and an average roolecular weight of phospholipid ( 797ug/mle) 
was used for the calculation of phospholipid contents. 

Albumin D3terndnations. Albumin concentrations were determined with 

Sigma Dia~ostic kit no. 630 (Sigma Chemical Co., st. !Duis, Mo.) which is 

based on the specific quantitative colormetric determination for serum albumin 

reported by Dou.mas and Briggs ( 44). 

Carboh.vdrate Anal.yses. The carbohydrate content of protein samples was 

analyzed utilizing the anthrone reaction as described by Spiro {45). 

Double Immunodii'f'u.sion. Inmrunodiff'u.sion was performed using the 

Orjan Ouchterlong system as described by Gordon (46). Goat· anti-human 

whole serum or goat anti-human albumin (Cappel Laboratories, Inc., Cochranv:Ule, 

Pa.) was placed in the center well of an immunodiff'u.sion disc (Cappel Laboratories, 

Inc., Cochranville, Pa.) and purified human ferrox::ldase inhibitor or commercial 

albumin was placed in the surrounding \'iells. The disc was :Incubated at room 
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temperature and exarrrlned after 2, 4, 8, and 21;. hours for the presence 
ot precipitation. 

PAGE - Electrophoresis. In non SDS* electrophoresis, prepolymerized 

Biophore 7.5% or 4% polyacrylamide gels (Bio-Rad Laboratories, Richmond, 

CA.) were equilibrated itlth 0.188 H Tris-glycine buffer, pH 8.9, prior to 

use. A 40ul aliquot of Biotracking dye (Bio-Rad Laboratories, Richmond, CA.) 

containing 30% sucrose was added to 160ul of protein samples (l-4mg protein/ 

ml) to obtain a final volume of 200ul. Aliquots (10-JOul) of these samples 

were applied to the tops of the gels. In SDS electrophoresis, identical 

gels were equilibrated uith 0.25M Tris acetate, pH 6.6 containing O.lfa SDS. 

Samples were prepared for electrophoresis_ by incubating 200ul of each 

protein sample (l-4mg protein/ml) with 200ul of lj'a SDS containing 0.04 

dithiothreitol and 0.001 N EDTA** for 2 hours at 37 °C. A 40u1 aliquot of 

Biotracking dye was added to 150ul of these SDS-treated samples and aliquots 

of (20-60ul) of these samples were applied to the tops of the gels. 

In both non-SDS and SDS electrophoresis, samples were run into the 

separating gels at 60 v. The electrophoretic runs were completed at 100-150 v. 
After electrophoresis, the gels were fixed with a solution of isopropanol; 

water; acetic acid (40:50:10, V/V/V), stained with coomassie blue, and destained 

with 7% acetic acid. The stained gels were photographed or scanned for protein 

at 280 run with an ISCO Model 1310 gel-scanning attaclunent for the ISCO Hodel 

UA-5 absorbance monitor. 

ftnalytical Electrofocusing. .Analytical electrofocusing was performed 

in thin layers of polyacrylamide gels exactly as described by Winters, et. al. 

(47) utilizing an LKB 2ll7 Multiphor electrofocusing unit. A final pH range 

of 3.0-6.0 was utilized. Samples of 15ul (0.5-1.0mg protein/ml) of purified 

human ferroxidase inhibitor mid commercial albumin Here applied at various 

locations on each polyacrylamide electrofocusing plate. Plates were fixed 

with 5% sulphosalicylic acid -10% TCA, stained with coomassie blue, and 

destallied with ethanol: acetic acid (3:1 v/v). 

*SDS = Sodium dodecyl s u.lfate 

**EIJI'A = Ethylene diamine tetraacetic aaid 
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Estimation of Molecular Weight. Globular proteins of known ioolecular 

weight were passed through a sephadex G-200 colunn and the elution volumes 

(Ve) measured. The void volumre (Vo) was determined by passage of blue dextran 

over the colunn. The ratios of the elution volume to the void volume (Ve/Vo) 
were then graphed aga:inst the logarithm of the molecular weight of the 
standards and a linear relationship was obtained. The molecular weight of 

the inhibitor was then determined by comparing its elution volume/void volume 
ratio to that of the standards. 

Crossed linked species of hemoglobin of various malecular weights were 
electrophoresed on polyacrylamide gels equilibrated with SDS. Treatment of a 
protein molecule with the detergent SDS, dissociates the protein into subunits 
and completely unfolds each polypeptide chain to form a long rod like SDS -
polypeptide complex. In this complex the polypeptide chain is coated with a 
layer of SDS molecules in such a way that their hydrocarbon ch.a:ins are tightly 
associated through hydrophobic interactions with the polypeptide chain and the 
charged sulfate groups of the detergent are exposed to the aqueous medium. 
Such complexes contain a constant ratio of SDS to protein (Approximately 1.4:1 
by weight) and differ only in mass. When an SDS treated protein is subjected 
to electrophoresis in·a polyacrylamide gel equilibrated with SDS, its rate of 
migration is determined primarily by its mass. The electric field simply 

serves as the driving force for the molecular sieving (48). In this study, 
the mobility of each species of hemoglobin was measured and graphed against 
the logarithm of its molecular weight and a linear relationship was obtained. 
The mobility of the inhibitor on SDS gels was then determined and compared to 

that of the standards. 
Peptic Digestion and Isolation of the Aspartic Acid Framnent of Bovine 
Serum Albumin. Solutions of bovine serum albumin were digested with 

pepsin (Sigma Chemical Co., st. Louis, Missouri) and the aspartic acid fragment 
was isolated according to the procejure described by Peters and Hawn (49). 
Specifically, a solution of 5% BSA was adjusted to pH 3.0 with 88% formic acid 

and allowed to stand at 25°C for 30 m:m. Pepsin, in 0.01 N HCL was added in 

a ratio of 1:300 pepsin to albumin {w/w) and digestion was carried out for 

33 ndnutes at 25°c. Concentrated ammonium hydroxide was added to bring the 
pH to 7, and the solution was diluted to 1% protein and cooled to 0°C. Forty 
per cent trichloracetic acid (J.T. Baker Co., Phillipsburg, New Jersey) was 
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added to the cooled mi.."rt.ure to give a 1.75% solution. The solution was 

centrifuged and solid trichloracetic acid was added to bring the supema tant 

to l~ This solution \·ras centrifuged and the precipitate washed with 10% 

trichloracetic acid and extracted with ether. The aqueous protein layer was 

lyophillized and reconstituted with o.6N acetic acid, pH ,3.0, and passed 

through a sephadex G-75 column equilibrated with o.6N acetic acid, pH 3.0. 

N-term:inal Amino Acid Analysis. The N-term:inal amino acid of the 

aspartic acid i'ragioont was determined by thin layer chromatographic separation 

of DN5-CL (l-dimethyand.nonapthalene-5-sulfonyl chloride) am1no acids according 

to the method of Morse and Horecker, (50) using standards of dansyl-aspartic 

acid and dansyl phenylalanine. (Sigma Chemical Co., st. Louis, Missouri). 



RESULTS 
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Results 

Isolation and Purification of the "Rabbit Ferro.xidase Inhibitor 

Purification Procedure. The ferro.xidase inhibitor l'las purified from whole 

rabbit serum by a combination of gel filtration and ion ~xch~ge chromato

graphy. Specifically, 30 ml of whole serum was applied to a column (2.5x 

90 cm) of sephadex G-200. Three major bands of protem were eluted from 

this column. (Fig. 2). It had previously been established that the third 

major protem band contained a potent inhibitor of ferroxidase II (31). 

The fractions comprising this band were concentrated to 10-12 ml by ultra

fil tration and applied to a second column ( 2.sx 90 cm) of sephadex G-200. 

One major band of protein was eluted from this column. (Fig. 3). Individual 

fractions were tested for inhibitory activity against the active enzyme 

and the inhibitor appeared to be associated with the latter portion of the 

major protein band. These fractions were combined and concentrated by ultra-

filtration to 5-7 ml. This material represented no significant purification 

of the inhibitor; however, passage over this column facilitated the purifica

tion achieved with the ion exchange chromatography and was therefore main-

tained m the puri.t'ication scheme. 

The concentrated material obtained from the second sephadex G-200 column 

was applied to an anion exchange column (1.6 x 15 cm) of DEAE Sephadex, 

equilibrated with 0.5 M sodium acetate, pH 5.5 containing 0.15 M NaCl and 

0.02% uaN
3
• Two major bands of protein were eluted from this column. 

(Fig. 4 ). At this stage of the purification procedure, the individual 

fractions were too dilute to assay individually for inhibition; however, 

when the two peaks were individually concentrated and assayed for inhibitory 



FIGURE ·2 

Elution Profile or Prote,ID .from ,G-200 Sephac!ex 

A sample of 30 ml. of whole rabbit serum was fractionated on a column 
(2.5 x 90 cm} packed with spehadex G-200. 'l1le elution buffer was 0.05 M 
acetate, pH 5.5, conta:lll:ing 0.15 M NaCl and 0.02% NaN:3• Protein elution 
was ioonitored at 280 nm and i"ractions of 8 ml. were collected. Ferroxidase 

activity and the inhibition of ferroxidase activity were measured as des

cribed in "Materials and Methods". 
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FIGURE 3 

Elution Profile of Protein From Seffiadex G-200 

A sample of 10 - l2 ml. of concentrated protein was i'ractionated on 
a column (2. 5 x 90 cm) packed with sephadex G-200. The elution buffer 

was 0.05 M acetate, pH 5.5, containing 0.15 M NaCl and 0.02% N~· Protein 

elution was nxmitored at 280 nm and fractions of 8 ml. were collected. 

Inhibition of ferrox:i.dase activity was measured as described in ''Materials 

and Methods". 
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FIGURE 4 

Elution Profile of Prote:in From mAE Sephaqex A - 50 - 120 

A sampl.e of 5 - 7 ml. of concentrated prote:in was fractionated on a 

column (1.6 x 15 cm) packed with DEAE Sephadex A - 50 - 120. The elution 

buffer was 0.05 M acetate pH 5.5, conta:Urlng 0.15 M NaCl. and 0.02% N~. 

Protein elution was IOOili.tored at 280 nm and fractions of 8 ml. were collected. 

FIGURE 5 

Elution Prof.:lle or Protem From DEAE Se~ A - 50 - 120 

A sample of 3 ml. of concentrated protein was fractionated on a column 

(1.6 x 15 cm) packed with IEAE Sephadex A - 50 - 120. The elution buffer 

was 0.05 M acetate pH 6.o, conta:in:ing 0.15 M NaCl and 0.02% N~· Protem 

elution was m:mitored at 280 nm and fractions of S ml. were collected. 
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activity, the inhibitor appeared to be associated uith the second major 

protein band. The fractions comprising this band were concentrated by 

ultra.filtration to a volume of approximately 3 ml. This material repre

sented a 3-4 fold purification as compared with the sample obtained from 

the first spehadex G-200 column. 

The final purification step entailed applying the concentrated material 

obtained after DEAE ion exchange chromatography to a column (1.6 .x 15 cm) 

of Deae sephadex equilibrated with 0.05 M sodiwn acetate, pH 6.o, containing 

0.15 M NaCl and 0.02% NaN. .. ,. A single symmetrical peak was eluted from this 
) 

column. (Fig. 5). The fractions were concentrated by ultra.filtration to a 

volume of 2 ml. This material represented a 4'-5 fold purification as com

pared with the sample obtained from the first sephadex G-200 column; however, 

it could represent a much greater fold purification when compared to whole 

rabbit serum. A significant amount of purification was probably accomplished 

upon separating the enzyme from the inhibitor after passage over the first 

sephadex G-200 column; however, since the enzyme and the inhibitor were both 

present in whole serum, it was impossible to measure the initial purification 

step. (Table II). 

Homogeneity of the purified Inhibitor 

The active material obtained from the final purification step was 

subjected to polyacrylamide gel electrophoresis and a single band of protem 

was obtained. In addition, the fmal material was treated with sns, a dete~ 

gent that disrupts the non-covalent bonding m a protein molecule; dithiothreitel, 

which breaks any existant di-sulfide bonds; and EDI'A, a chelating agent which 

binds any metals present. Treatment with this combmation of reagents results 

m the dissociation of a protein molecule into its component subunits 



'° ("', TABLE II. PURIFICATION OF RABBIT FERROXIDASE-II INHIBITOR 

-· 
Purification Step Total Protein 

(mg) 

G-2001 761 

G-2002 529 

DEAE pH 5.5 118 

DEAE pH 6.0 38.2 

Specific Inhibition 
(%/mg protein) 

3.00 

3. 1 0 

10. 7 

14.4 

Fold Purification 

l. 00 

1. 03 

3.56 

4.80 

% Recovery 

1 00 

70 

55 
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(polypeptide chains). AJ:, a result of this treatroont, electrophoresis 

indicated no dissociation of the .final material into smaller molecular 

weight subunits. smce the active material migrated the same distance in 

both non-SDS and SDS gels with no .further dissociation, it would appear 

that the complete purification procedure yielded a homogenous protein in 

the fom of a single polypeptide chain. (Fig. 6) 

Characterization of the Rabbit Ferroxidase Inhibitor 

Estimation o.f the Molecular Weight 

The molecular weight of the purified· rabbit .ferroxidase inhibitor was 

estimated using a colunn of sephadex G-200 calibrated with standard pl]Oteins 

of known molecu1ar weight as prescribed in methods. The average molecular 

weight obtained through this method was 70,octJ (Fig. 7). 

In a second study, cross linked species of hemoglobin of various mole

cular weights were electrophoresed on polyacrylamide gels equilibrated with 

SDS as described in roothods. A comparision of the mobility of the purified 

inhibitor with that of the standards indicated that the ferroxidase inhibitor 

had a molecular weight of approximately 60,000 (Fig. 7). Af:> a result of 

these two studies, it would appear that the molecular weight of the 

ferroxidase inhibitor is between 60,000 and 70,000. 

Comparision of the Lipid and Copper Contents of F erroxidase II 
and the Ferroxidase Inhibitor 

It has been established that lipids, primarily in the form of 

phosphotidyl choline and cholesterol, as well as copper, are tightly 

associated with ferroxidase II and essential to its emzyme activity (27 ,28,30). 



FIGURE 6 

Purity of the Ferroxidase Inhibitor as ~ermined by 

Pol.y:ecr.ylam:i.de Gel Electro:ebpresis 

38 

In order to determine the purity of the ferroxidase inhibitor, samples 
of the protem were electrophoresed on 4% and 7 •5% polyacrylamide gels as 

described in "Materials and Methods". A: 4% gel, B: 7.5% gel. 
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FIGURE 7 

D3terminat;ian of the Molecular Weight o:r the Purified 

Rabbit Ferroxidase Inhibitor 

The mlecular weight of the purified ferroxidase :Inhibitor was deter
mined by SDS - electrophoresis and gel - filtration aa described in "Materials 
and Methods"• A: SDS - Electrophoresis, B: Gel - Filtration 
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In order to :investigate the possibility that the inhibitor might 

:interact with ferro.xidase II through hydrophobic interactions with the 

lipid components, the purified sample was examined for lipid content. In 

comparision to the enzyme, the inhibitor conta:incd no significant amotmts 

of phospholipid or cholesterol. Elcam:ination for the presence of copper 

aga:in revealed no sif9:1,ificant amotmts when compared to that present in 

ferroxidase II. (Table III). 

Ran!ie of Inhibition of the Purj,fied Ferroxidase Inhibitor 

The purified ferroxidase inhibitor was tested to see if it :inhibited 

ceruloplasmin (ferro.xidase I) as well as i'erro.xidase n, in order to 

determine if it was a more comprehensive inhibitor of serum ferroxidase 

activ:ity (51). Samples of purified ceruloplasmin and f'erroxidase II, 

containing comparable a.rootmts of ferro.xidase activ:ity, were tested with 

equivalent amotmts of the inhibitor. Seventy four per cent inhibition was 

observed with ceruloplasmin compared to 53% inhibition with ferroxidase II 

(51). 

In Vivo studies of the Rabbit Ferro.xidase Inhibitor 

Several in vivo studies have revealed that both ceruloplasmin and 

ferroxidase II are capable of mobilizing iron from tissue stores (20,51). 

Since the inhibitor has been shown to be effective aga:inst both serum 

ferro.xidases, it could pla:y a physiological role in iron metabolism by 

regulating iron efflux from these tissue stores. In order to investigate 

such a physiological role for the inhibitor, two experiments were designed 

to determine if there was any correlation between the levels of' the inhibitor 

and the amotmt of' ferroxidase activity in the serum of normal animals and 

iron deficient animals (51). 



TABLE III. CHEMICAL COMPARISON OF RABBIT FERROXIDASE-11 

AND RABBIT FERROXIDASE-11 INHIBITOR. 

Sample 

43 

Copper 
Protein 

Phospholipid 
Protein 

(mg/mg protein) 

Cholesterol 
Protein 

(mg/mg protein) (n moles/mg protein) 

Ferroxidase-1 I 

Ferri xi dase-1 I 
Inhibitor 

0. 178 

0.005 

o. 149 32 

0.022 0 
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In the first study, two New Zealand white rabbits were maintained 

first on a diet of normal iron content for four weeks, then on a diet of 

low iron content for four weeks, followed by a return to a diet of normal 

iron content for four weeks. During the period when the animals were 

maintained on a low iron diet, the total ferroxidase activity greatly in

creased while the total amount of the ferroxidase inhibitor dramatically 

decreased. Both the total ferroxidase activity and the; am::>unt of ferroxidase 

inhibitor returned to normal values when the animal.a were refed a diet of 

normal iron content (51) (Table IV). 

To further substantiate this data, a third animal was maintcdned on 

a diet of normal iron content, and repetitively bled to accelerate the 

100bilization of iron from tissue stores. mood samples were obtained from 

the animal on alternate days for a period of nine consecutive weeks. During 

this period, a steady decline in the total amount of the ferroxidase inhibitor 

occurred in the first .five weeks of bleeding, with a corresponding steady m

crease in the total ferroxidase activity. 1fuen the repetitive bleeding was 

ceased for four weeks, both the total ferroxi.dase activity and the total 

amount of the ferroxi.dase :inhibitor returned to their original values (51). 

(Fig. 8). 

As a result of these experiments two important observations were made: 

1) The content of the ferro:d.dase inhibitor in serum decreased when iron 

mobilization was accelerated from tissue stores by either dietary manipu

lation or repetitive bleeding 2) An inverse relationship was observed 

between the total serum content of the inhibitor and the total serum 

ferroxidase actitity. Thus, this data suggested that the inhibitor could 

play a physiological role in iron metabolism by modu;Lating the total 
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TABLE IV 

EFFECT OF DIET ON THE SERUM CONTENT OF FEROOXIDASE 

ACTIVITY AND THE FERROXIDASE INHim'roR 

Diet Total Ferroxidaae 
Activity 

( AAJ+60/rrdn/rril serum) 

Normal Diet, 4 weeks 
Low Iron Diet, 4 weeks 
Refed Normal Diet, 4 weeks 

Normal Diet, 4 weeks 
!Dw Iron Diet, 4 weeks 
Refed Normal Diet, 4 weeks 

0.925 
2.00 

0.913 

W.7 
2.13 
1.12 
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Total Ferro.xidase 
Inhibition 

A(AA460/mm/ml serum) 

0.9'/7 
0.298 

0.924 



FIGURE 8 

Effect of Renetitiy;e JP.eestlng on the Serum Content 
of Ferrox:ipase Activity and the Ferroxidase Inhibition 

46 

The ferro.xi.dase activity and the inhibition of ferroxida.se activity 

were measured as described :in ''Materials and Methods"• 

1 = period of repetitive bleed.:lng; 2 = period of no ble~ding. 
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!erroxidase activity and thereby regulating the efflux of iron from storage 

tissues. 

Isolation and Purification of the Human Ferroxi.dase Inhibitor 

Evidence for the Presence of a Human FeIToxidase I~bitor 

Due to the successi'ul purification of the rabbit feITOxidase inhibitor 

and the physiological implications obtained from the "in vivo" studies, it 

seemed logical to investigate whether such an inhibitor also existed 1n 

whole human serum. 

Whole human serum was processed in a manner identical to that of whole 

rabbit serum (31). After the initi~ passage over a sephadex G-200 column, 

a 7-fold increase in the total ferroxidase II activity was observed (Table V). 

The elution pattern obtamed from this column was similar to that obtamed 

with whole rabbit serum, and the third protein band inhibited ferrmd..dase 

II. (Fig. 9). 

Purification of the Human Ferroxidase Inhibitor 

The procedure for the purification of the rabbit f erroxidase II inhibitor 

was modified considerably for the most effective purification of the human 

ferroxidase inhibitor. Both procedures combined gel filtration with ion ex

change chromatography; however, the purification of the human ferroxidase 

inhibitor required fewer gel filtration steps. In addition, IEAE sepharose 

was used as the ion exchange resin rather than IlEAE sephadex. A column 

packed with Deae sephadex . was effective for only one sample application 

because the sephadex resin has a tendency to shrink when exposed to buffers 

of increasing ionic strength. In contrast, DEAE sepharose can be used with 

repeated applications of the sample without shrinkage of the colunn bed, 
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Sample 

Whole Serum 

Ferroxidase II 

Total Protein 
(mg) 

1956 

Att.er Sephadex G-200 

Ferroxidase II 1B4 

Table V Comparison of the Total Activity of 
Ferroxid.ase II in Whole Human Serum 
and a£ter Elution .from Sephadex G-200 

Specific Activity 

( 4A460nm/min) 

Total Activity 

( "460nm/min) 
mg protein 

.0036 7.0 

.2494 45.9 
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FIGURE 9 

Elution Profile of Protein From G-200 Sephadex 

A sample of 30 ml. of whole human serum was fractionated on a colunn 
(2.5 x 90 cm) packed with sephadex G-200. The elution buffer was 0.05 M 
acetate, pH 5.5, contain:ing 0.15M NaCl and 0.02% NaN3• Protein elution 
was IOOnitored at 2SO nm and fractions of 8 ml. were collected. Ferroxid.ase 

activity and the jnhibition of ferroxidase activity were measured as des

cribed :in "Materials and Methods"• 
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when buffers of varying ionic strength are passed through the column. The 

method of concentration was also modified. Concentration by ultrafiltration 

resulted in loss of inhibitory activity; therefore, lyophilization was used 

as the method of concentration throughout the entire purification procedure. 

Specifically, .30ml of uhole serum was applied to a column (2.5 x 90cm) of 

aephadex G-200 and prote:i.n eluted with 0.05 M sodium acetate buffer, pH 5.3 

conta:i.n:i.ng 0.15 M NaCl and o.o;q& Nal~. Three major bands of prote:i.n eluted 

from the column (Fig. 9 ). The fractions compris:i.ng each prote:i.n band were 

pooled and quickly frozen :in a shell freezer conta:i.n:i.ng a methanol bath at 

54°C and concentrated by lyophilization. The lyophilized fractions were 

reconstituted with deionized glass distilled water to a volume of 5ml. Each 

reconstituted sample was tested for ferroxidase II activity and inhibitory 

power against the active enzyme. The first prote:in band eluted from the 

column contained the ferroxidase II activity whereas the third prote:i.n band 

contained the ferroxidase :inhibitor. 

The lyophilized sample contain:i.ng the ferroxidase inhibitor, was desalted 

on a column (2.5 x 25cm) of sephadex G-25 and eluted with deionized glass 

distilled water. This desalted sample was applied to a column (2.6 x lOcm) 

of DEAE sepharose CL-6B and the column was developed sequentially with 

0.01251'1 sodium acetate buffer, pH 5.0; O.Ol25M sodium acetate buffer, pH 4.65; 

and 0.05M sodium acetate buffer, pH 4.0. Some prote:i.n was eluted from the 

column with each buffer (Fig. 10). The fractions comprising the :i.ndiVidual 

prote:i.n bands were combined and lyophilized. The lyophilized samples were 

reconstituted with 2-Jml of deionized glass distilled water tested for in-

hibitory activity. The :inhibitory activity was contained in the protem band 

eluted with the pH 4.65 acetate buffer. This material represented a 10-fold 

purification of the ferroxidase inhibitor with a recovery of 78% of the in-
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FIGURE 10 

Elution Proi'ile 0£ Protein :from DEAE - Semarose CL - 6B 

A sample of 5 ml. or concentrated protein was fractionated on a column 
(2.6 x 10 cm) packed with IEAE Sepharose CL - 6B. The elution bu.t"ters were 
0.0125 M sodium acetate, pH 5.0; 0.0125 M sodium acetate, pH 4.65; and o.05M 
sodium acetate, pH 4.0. Prote:in elution was roolrl.tored at 280 nm and fractions 

of 8 ml. were collected. 
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hibitory activity as compared to whole human serum, (Table VI). As in the 

case of the rabbit inhibitor, the calculation of the total inhibition con

tained :in whole s'erum was complicated by the presence of both ferroxidase 

II and the inhibitor in whole serum. It was assumed that the total in

hibition recovered after sephadex G-200 gel filtration represented 

essentially 100% of that contained in whole serura, and that the total in

hibition calculated for the sephadex G-200 purification step was equivalent 

to the total inhibition present in whole serum. If some inhibition had 

been lost during gel filtration, the specific inhibitory activity of the 

whole serum would have been higher than the value presented in the purifi

cation table; therefore, the values in Table VI represent the minimal specific 

inhibitory activity that could exist in whole serum. 

Electrophoresis in 45~ and 7• 5% polyacrylamide gels indicated that the 

inhibitor preparation contained a single protein component. The small value 

obtained for the final fold purification indicated that the inhibitor might 

possibly be a major serum protein. 

Characterization of the Purified Inhibitor 

Estimation of the Molecular Weight 

The molecular weight of the purified f erroxidase :inhibitor was estimated 

by SDS polyacrylamide gel electrophoresis and gel filtration, as described 

in methods, (Fig. ll). The average molecular weight obtained by SDS 

electrophoresis was 64,000, and the average molecular weight obtained by 

geJ., filtration was 67 ,ooo. These values were in good agreement with those 

obtained with the rabbit inhibitor (i.e. SDS electrophoresis-60,000 and 

gel filtration-70,000) and were virtually identical to the molecular weight 

reported for human serum albumin (52). Furthermore, the human ferroxidase 
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TABIE VI Purification of the Human Serum Ferrox:l.dase Inhibitor 

Purification Total Total Inhibitory Specific Inhibitory 
step Protein Activity Activity 

(mg) A( AA460nm~/min A(AAJHJrun)/min/mg protein 

Whole Human 2217 1.80 s x lo-4 

Serum 

Sephadex 642 1.80 2S x io-4 

G-200 

.lEAE 167 i.40 SJ x io-4 

Sepharose C!t-6B 

Fold Percent 
Purification Recovery 

1 100 

3.5 100 

l0.4 7S 



FIGURE ll 

~teD1Wat;iJm o.{ the Molecul.ar Weight of the 
Purii'ied Hwnan Ferroxidase Inhibitor 
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The mlecular weight of the purified ferroxidase jn}tlbitor was detei

rnined by SDS - electrophoresis and gel - filtration as described jn 

"Materials and Methods"• A: SDS - electrophoresis, B:, Gel - Filtration. 
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inhibitor was eluted from DEAE sepharose with a buffer of identical ionic 

strength and pH as that used to elute human album:in from DEAE sepharose 

dur:ing its purification from whole serum. Lastly, at the pH at which 

electrophoresis was conducted, the i'erroxidase inhibitor appeared to be a 

highly anionic protein, which is also characteristic of' albumin. Therefore, 

several comparative stud:i.es were conducted with the purified ferroxidase :in

hibitor and authentic human serum albumin to determine Whether the serum 

i'erroxidase inhibitor l·ras serum albumin. 

Electrophoretic Copparisons 

The electrophoretic I!X)bilities of the purified i'erroxidase inhibitor 

and authentic human albumin were compared in 7e5% and 4% non-SDS and SDS 

polyacrylamide gels. The I!X)bilities of the ferroxidase inhibitor and the 

authentic albumin were identical in all four electrophoretic systems. Samples 

of the purified ferroxidase inhibitor and authentic human albumin were also 

subjected to analytical electrofocusing in thin layers of polyacrylarnide 

gel with a f:inal pH range of 3.4 - 6.o. Both samples focused at identical 

positions in the gel and specifically in the vic:inity of pH 4.9, the 

isoelectric point reported for albumin. (Fig. 12, 12A) 

Colorimetric Determination of Albumin 

A specific quantitative procedure based on the af.finity of albumin for 

bromcresol green was used to determine the concentration of albumin iri the 

purified inhibitor samples (44). A val'.W' of 0.97 mg albumin/mg protein was 

obtained for the purified sample and authentic albumin; which indicated that 

with respect to the total protem concentration, at least 97% of the inhibitor 

sample was albumin. 



FIGURE 12 

cowarison of the Electrophoretic Mo~ilitz of the 

Purified Ferroxidase Inhibitor and Aathenti,c Human 

Album:in in Non - SDS and SDS Systems 

60 

Samples of the purified ferroxid.ase :inhibitor were electrophoresed in 

non - SDS and SDS systems as described in "Materials and Methods"• 

A: Ferroxid.ase Inhibitor on 7. 5% 
Non - SDS Gel 

B. Authentic Human Album:in on 7. 5% 
Non - SDS Gel 

C: Ferro.xidase Inhibitor on 4% 
Non - SDS Gel 

D: Authentic Human Album:in on 4% 
Non - SDS Gel 

E: Ferro.xidase !nhibitor on 7. 5% 
SDS - Gel 

F: Authentic Human Albumin on 7. 5% 
SDS - Gel 

G: Ferroxidase Inhibitor on 4% 
SDS - Gel 

H: Authentic Human Album:in on 4% 
SDS - Gel 



0 

N 

~CD 
0 
er 
- -

-
-

N 

CJ 

I .. } 
) 

I-

"'--... 

"" r 

I-~ 

A2aonm ~O.IA~ 

("') } CD 1 
)> 

• t 
~ } • 
c 

• 
l l 

> I' 
L 

r 
) 
~ 

11 

.) 



FIGURE 12A 

Comparison of the Electrorocusing Behavjpr of the Purified 

Ferroxidase Inhibitor and Authentic Huffien Albumin 

62 

Samples of the purified ferroxidase inhibitor and authentic human albumin 

were subjected to analytical electrofocusing as described in "Materials and 

Methods"• 
A: Ferroxidase Inhibitor 

B: Authentic Human Album:in 

C: Ferroxidase Inhibitor 

D: Authentic Human Albumin 



pH = 5.8 5.0 4.2 3.4 
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Carbo}lydrate Analysis 

Serum albumin is a mique major plasma protein, in that it alone 

contains no carbohydrate (53). Assays of crystalline albumin show less 

than one sugar residue per molecule, and absence of carbohydrate is a 

classic criterion for purity of albumin (54). The purified ferroxidase 

inhibitor and authentic human albumin were analyzed for carbohydrate 

and both samples contained less than one sugar residue per molecule. 

Irrmrunodiffusion Studies 

The purified ferroxidase inhibitor and samples of authentic human 

albumin were reacted with anti-human albumin and anti-human whole serum 

in a double imnnmodiffusion system as described in methods. Within 24 

hours, a single line of precipitation was visible in all four systems, 

indicating that an antigen-antibody complex had formed (Fig. 13). 

Cross Reactivities 

A rather convincing piece of evidence supporting the identification 

of the purified ferroxidase inhibitor as serum albumin was obtained by 

testing and comparing the inhibitory potency of samples of authentic 

albumin with samples of the purified inhibitor. Both the inhibitor and 

the authentic albumin inhibited ferroxidase I {ceruloplasmin) and 

ferroxidase II with virtually the same potency {Table VII). 

Hechanism of Inhibitor 

Studies to elucidate the site and mode of action of the ferroxidase 

:inhibitor were initiated. Extensive research has shown that human as well 

as other serum albunrlns have tmique copper binding properties associated 
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FIGURE 13 

CoffiParison of the Reaction of the Purified Ferrox:i.dase 

Inhibitor and Authentic Human AlbUIIdn with Anti - Human 

Alpum:ln and Anti - Human Whole Serum :in an Immunodiffusion System 

Samples of the purii'ied ferroxidase :inhibitor and authentic human albumin 

were incubated with anti - human alburn:in and anti - human whole serum :in an 

::i.Jnmunod:Lrfusion system as described in "Materials and Methods0 • 

A: Ferroxidase Inhibitor vs. Anti - Human Albumin 

B: Ferroxidase Inhibitor vs. Anti - Human Whole Serum 

C: Authentic Human Albumin vs. Anti - Human Albumin 

D: Authentic Human Albumin vs. Anti - Human Whole Serwn 
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TABLE VII Comparison of the Inhibitory Potencies of the Purified Ferroxidase 

Inhibitor and Authentic Human Albwnin 

Ferroxidase 
Sample 

Hu.man 

Ferroxidase-I 

Hu.man 

Ferroxidase-II 

Inhibitor 
Sample* 

' Purified Ferroxi.dase Inhibitor 

Authentic Human .Albumin 

Purified Ferroxidase Inhibitor 

Authentic Human Albwn:in 

*All inhibitor samples were equivalent :in protein concentration 

Percent 
Inhibition 

51 

56 



68 

with the N-terrninal end of the molecule (52). It has been delJX)nstrated 

that albumin binds Cu(II), forming a square planar chelate eith the a. 

amino nitrogen of the N-terminal aspartate residue, the first two peptide 

nitrogen atoms, and the 1-nitrogen of the imi.dazole ring of the histidyl 

residue at position 3 (52). Since copper is essential to the enzymic 

activity of both serum ferroxidases, it seemed logical to investigate 

whether this copper binding site on the albumin IJX)lecule did indeed inter

f ere with the activity of the ferroxidases. 

Albumin has been successfully fragmented and the copper binding site 

isolated and indentified (49,55-59). In ~he current study, preparations 

of the purified inhibitor were subjected to peptic digestion according 

to the methods of Peters and Hawn (49) (see methods). After digestion, 

the protein solution was treated with trichloracetic acid in a concentra

tion range le751~w/v)-10'/o(w/v), in order to precipitate out the desired 

fragment. The precipitate was then suspended in water and the trichlorace

tic acid extracted with ether. The aqueous protein layer was lyophillized 

and then reconstituted with o.6N acetic acid, pH 3.0, to a volume of 25ml. 

This material. was passed through a column (2.5 x 115cm) of spehadex G-75 

and protein eluted with o.6N acetic acid, pH 3.0. Protein elution is 

usually monitored at 280nm where absorption is due entirely to the presence 

of aromatic amino acids. However, proteins also absorb ultraviolet light 

between 210nm and 250nm due to absorption of aromatic and other residues 

and absorption due to some types of hydrogen bonds and other interactions 

concerned in conformation and helix content (60). In the experiment con

ducted by Peters and Hawn (49), the peptide fragment containing the 

copper binding site had very little absorption at 280 nm due to a low 
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content of aromatic residues. In the current study, the desired peptide 

fragment was detectable at 230nm, therefore protein elution was monitored 

at 230nm. Four major bands of peptide material eluted from this colUJIU1 

(Fig. 14). The fractions comprising each peptide band, were pooled and 

lyophilized. Each sample was reconstituted with 2 - 3m+ of o.6N acetic 

acid, pH 3.0 and tested for inhibitory activity against the enzyme. The 

inhibitory activity was associated with the fourth peptide band (Table VIII). 

This material was then applied to a colUJIU1 of spehadex G-25 equilibrated with 

o.6N acetic acid, pH 3.0. The inhibitory activity was associated with the 

third protein band. (Fig. 15) 

The fragmentation of albumin by pepsin yields two peptide chains termed 

the aspartic acid and phenylalanine fragments, because they include the two 

term:inal sites of the albumin I!X)lecule. It is the aspartic acid fragment 

that contains the copper binding site (49,56-58). In order to determine 

whether the desired albumin fragment had been successfully isolated and re

covered an N-terminal amino acid analysis was done on the peptide fragment ob

tained from the previously described experimental method. This was accomplished 

by thin layer chromatographic separation of DNS-CL (l-dimethyl-aminonapthalene-

5-sulfonyl chloride) and.no acids. (See methods). Dansyl derivatives of 

aspartic acid and phenylalanine were run as standards along with the dansyl 

derivative of the N-terminal residue of the isolated peptide fragment. When 

the thin layer plate was developed, it was observed that the peptide frag-

ments migrated identically with the dansyl aspartic acid standard. It was 

concluded that the copper binding site of the albumin I!X)lecule had been 

successfully isolated, and due to its inhibitory activity could possibly be 

the site which interferes with the enzymic activity of the serum ferroxidase. 
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FIGURE 14 

Elution Profile of Prote:in From G- 75 Se~ 

A sample of 25 ml. of concentrated protem was fractionated on a column 

(2.5 x ll.5 cm) packed with sephadex G - 75. The e1ution buffer was o.6 N 
acetic acid, pH 3.0. Protem elution was mnitered at 230 nm and fractions 

of 8 ml. were collected. 
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FIGURE 15 

Elution Profile of Protem From G - 25 Sephgdex 

A sample of 3 ml. of concentrated protein was fractionated on a column 

(1.5 x 52 cm) packed with sephadex G - 25. The elution butter was o.6 N 

acetic acid, pH 3.0. Protem was nxmitored at 230 nm and fractions of 8 ml. 

collected. 
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Table VIII Comparison of the Inhibitory Activity 
of the Pepsin Generated Peptide Fragments 
Eluted from Sephadex G-75 

Total Protein 
(rrg) 

197.4 

65.9 

73.9 

18.7 

Specific Inhibitory 
Activity 

(A A460mn) /mining protein 

.0026 

. 0023 

.0644 

Total Inhibitory 
Activity 

( 4 A460mn) /min 

.1713 

.1700 

1.2043 
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DISCUSSION 

Numerous 11 in vivo 11 and 11 in vitro" studies have established that the 

serum ferroxidases, ceruloplasmin (ferroxidase I) and ferroxidase II, play a 

physiological role in promoting the oxidation and incorporation of iron into 

transferrin; thereby facilitating the mobilization of iron from tissue stores 

(11,15,16,20,13,16,34,35,51). Specifically, the serum ferroxidases catalyze 

the oxidation of Fe(II) to Fe(III) as iron fluxes from the Hver to the blood

stream, thus providing a site for transferrin to sequester the ferric ion 

(11, 24}. 

The copper tightly bound to both serum ferroxidases has been shown 

to be essential to their enzymic activity {11,15,16,20,24,34-36,51,59,61). 

Previous studies have shown that copper deficiency in laboratory animals pro

duces an anemia that emulates iron deficiency anemia; furthermore, the symptoms 

have been shown to be due to an inability to transfer iron from the cells to the 

plasma (5,18). This suggests that the serum ferroxidases could provide, at least 

in part, the much sought missing link between copper and iron metabolism (6,62}. 

Ferroxidase II has been purified from a number of sources including 

whole rabbit and whole human serum. In each case, a seven fold increase in the 

total ferroxidase activity was observed after the first purification step. This 

data suggested that perhaps there exists a potent inhibitor of ferroxidase II, 

that masks enzymic activity in whole serum, but when separated from the enzyme 

during purification results in this large increase in the total activity. · 

Such an inhibitor was isolated and purified to homogeneity and was 

found to be effective against ceruloplasmin (ferroxidase I) as well as ferroxi

dase II. Characterization studies strongly suggested that the purified inhibitor 

was serum albumin. This evidence would account for the small fold purification 

required to obtain a homogenous preparation of the ferroxidase inhibitor and the 
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good recovery of inhibitory activity; since albumin is a relatively stable protein 

and accounts for such a large fraction of the total protein in whole serum 

(53-65 % of the total protein) (63). 

The results of the characterization studies revealed that the purified 

inhibitor resembled serum albumin in terms of molecular weight, electrophoretic 

mobility, electrofocusing results, a specific colorimetric test, absence of 

carbohydrate, and immunodiffusion studies. Of particular interest was the 

effectiveness of commercial albumin as a potent inhibitor of serum ferroxidase 

activity. The authentic albumin inhibited both ceruloplasmin (ferroxidase I) and 

ferroxidase II with about the same degree of potency as the ferroxidase inhibitor. 

This is very meaningful from a physiological viewpoint. In human serum, cerulo

plasmin accounts for greater than 90% of the total serum ferroxidase activity; 

however, in less highly developed animals, ferroxidase II contributes a larger 

fraction of the total serum ferroxidase activity {28,31). Thus, even though 

the relative contribution of the two serum enzymes to the total serum ferroxidase 

activity may vary from one animal species to another, the ferroxidase inhibitor, 

due to its potent inhibitory activity against both ferroxidase enzymes,would 

still be capable of modulating the total serum ferroxidase activity; and hence, 

modulating the mobilization of iron from tissue stores. This strongly suggests 

a physiological role for the ferroxidase inhibitor in the overall scheme of iron 

metabolism. This role is depicted in(figure 16) which is a schematic summary 

of iron metabolism. The serum ferroxidases facilitate iron mobilization by 

oxidizing Fe(II) to Fe(III) so that it can be incorporated into transferrin thus 

creating a large concentration gradient for Fe{II) across the plasma membrane 

of the liver cell. By inhibiting the enzymatic activity of the serum ferroxidases, 

the ferroxidase inhibitor would affect iron metabolism at the level of Fe(III) 

transferrin formation. The iron in the Fe(III)-transferrin is contributed directly 



FIGURE 16 

A Schematic Summary of Iron Metabolism 

A schematic summary of iron metabolism depicting a possible 
physiological role for the ferroxidase inhibitor. 
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to the developing reticulocyte in the bone marrow. When the mature red cell 

finishes its life cycle it is scavenged by the reticuloendothelial cells, 

principally in the liver and the spleen. The iron is recovered and released 

into the plasma where it can be absorbed by the mucosal cells of the intestine 

or recycled into the marrow by incorporatin into transferrin·. 

The results of several in vivo studies further support the suggestion 

that the ferroxidase inhibitor could play an active role in the regulation of 

iron mobilization. One would expect that animals receiving low iron diets would 

be more dependent upon the mobilization of iron from tissue stores for the 

maintenance of the plasma iron pool than animals receiving diets of normal iron 

content. Thus, the serum of animals receiving low iron diets should contain 

lower levels of the ferroxidase inhibitor and a greater total ferroxidase activity 

than the serum of the same animals when fed diets of nonnal iron content. Such 

a correlation between the serum content of the inhibitor and the total ferroxi

dase activity was observed in the dietary studies with rabbits. This correlation 

was further substantiated by the changes in the serum content of the ferroxidase 

inhibitor and the total ferroxidase activity observed in the rabbit that was 

repetitively bled. Thus both studies suggest that the inhibitor could be involved 

in the regulation of iron mobilization from tissue stores. 

The finding that the ferroxidase inhibitor is effective against both 

ceruloplasmin (ferroxidase I) and ferroxidase II is also important from a mech

anistic viewpoint. The serum ferroxidases differ markedly in physical properties 

and chemical composition. Ceruloplasmin is a cupro-glyco protein whereas 

ferroxidase II is a cupro-lippo protein (24,25,28). Although the two differ 

markedly in structure, they both contain tightly bound Cu(II) ions which are 

essential to their ferroxidase activity and their ability to facilitate iron 

mobilization from tissue stores (11,15,16,20,24,25,26,28,34,35,36,51,61). The 
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assumption that the bound Cu{ll) of the ferroxidases might be the functional site 

with which the inhibitor interacts correlates well with the idendification of the 

ferroxidase inhibitor as serum albumin. The unique copper binding properties of 

albumin associated with the amino tenninal end of the molecule could possibly 

interfere with the binding of the substrate (iron) to the ferroxidase, oxidation 

of the iron by the ferroxidase, or sequestering of the oxidized iron from the 

ferroxidase by transferrin. 

The pepsin generated aspartic acid fragment of the albumin molecule 

has been shown to contain the specific copper binding site (56). The finding 

that this fragment, and only this fragment, potently inhibits the serum ferroxi

dase activity, further supports the suggestion that the bound Cu(II) of the 

ferroxidases could be the site with which albumin interacts. 

It is not unreasonable to speculate that albumin could play a functional 

role in iron metabolism. Albumin has several diverse functions that contribute 

to homeostasis through the mechanisms of hemodynamics, transport and nutrition 

(52). The plasma proteins are large colloidal molecules and are nondiffusable 

through capillary and glomerular walls as most other blood solutes. They are 

thus entrapped in the vascular system and exert a 11 colloidal osmotic pressure 11
, 

which serves to maintain a nonnal blood volume, and a nonnal water content in 

the interstitial fluid and the tissues. Albumin exerts 80% of the colloidal 

osmotic pressure. If the albumin falls to low levels, water will leave the blood 

vessels and enter the extracellular fluid and the tissues, thus producing edema 

{63). 

Another important function of albumin is its participation in nonnal 

fat metabolism; the main metabolic abnormality of analbuminemic persons (those . 
who lack or have extremely low levels of albumin) is a gross disturbance in lipid 

transport. Albumin accepts, the 'free fatty acids released by lipoprotein lipase, 

keeps them in solution, and transports them between liver and peripheral tissues 
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in the course of their active metabolism (64). 

Albumin also serves to stabilize the plasma concentrations of calcium, 

tryptophan, and hormones including cortisol, testosterone, and estrogens. Tryp

tophan binding varies inversely with the load of fatty acids. This causes the 

concentration of free tryptophan to rise when fatty acid levels rise and may have 

important consequences in the levels of tryptophan in the brain and the production 

of serotonin (52). 

Albumin is one of the few extracellular proteins having a free thiol group 

which serves both to detoxify Hg 2+ and to transport poorly soluble disulfides 

through the mechanism of thiol-disulfide exchange. Albumin also binds bilirubin, 

(a by-product of red cell degeneration) which is particularly important in the 

newborn infant where the concentration of .free bilirubin determines its passage 

into the hydrophobic tissues of the brain with concomitant risk of damage through 

11 kernicterus 11 (52). 

The nutritive function of albumin arises from its availability to cells 

as a source of amino acids through pinocytosis. Possibly 10% of protein meta

bolism may be carried on in this manner. Albumin formeiby the liver postprandially 

when the level of amino acids in the portal blood is high, is utilized by cells 

when circulating free amino acids are in short supply (32). 

The multifunctionali'lyof albumin could be linked to what is termed its 

11microheterogeneity11
• This description was first used in reference to the changes 

the albumin molecule underwent when exposed to a low pH. In the pH range from 

2 to 4, the molecule expands, becoming longer and more asymmetric without a 

change in molecular weight (65,66,67). The helical content decreases and the 

molecule unfolds so that interior parts become accessible (68,69). Microhetero

geneity appears to be present even in the albumin of a single donor; polymorphism 

of a donor population is not its cause •. Removal of tightly bound fatty acids 

decreases but does not eliminate this microheterogeneity (70,71). Possible caus·eS:~ 
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are (1) intramolecular disulfide bond interchange, (2) differences in amide 

content or location, or (3) modifications of circulating molecules (11molecular 

aging 11
) such as acetylation of -amino groups by aspirin. There is no reason 

to suspect that the plasma of a typical individual contains albumin species 

differing in amino acid sequence. Rather it seems that albumin, once freed of 

globulin by crystallization or chromatography, is a single protein that can 

become polydisperse by uptake of ligands or perhaps by intramolecular isomeri

zation (52). 

It is quite possible that the inhibitory activity of the albumin molecule 

is somehow related to one molecular form of microheterogeneous albumin rather than 

related to the entire serum pool of albumin. Evidence to support this is apparent 

from some of the data obtained from the "in vivo 11 experiments. When a rabbit was 

placed on a low iron diet it was observed that the levels of the inhibitor dropped 

dramatically, whereas the total protein level remained fairly constant. Since 

albumin represents such a large fraction of the total protein in serum, one would 

expect the levels of the inhibitor and the total protein to correlate better. 

This discrepancy suggested that the actual inhibitory activity of albumin may be 

due to a small specific substance that is bound to the albumin molecule, or to 

one molecular form of the microheterogeneous protein. Additional experimental 

work will have to be completed before this evidence is clearly understood. More 

exact information concerning the copper binding site in the molecule and kinetic 

data determining the type of inhibition should help to elucidate the mechanism 

by which the inhibitor interacts with the serum ferroxidases. 
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