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Abstract 

In this thesis, we examine the boundary behavior of Laplace transforms 

(as analytic functions on the right and left half planes) of certain bounded 

functions. The types of bounded functions we consider are Fourier transforms 

of measures and almost periodic functions. 
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Overview 

This thesis deals with boundary behavior of certain integral transforms. Specif­
ically, we deal with the Laplace transform. Let 

C+ = {z E C: Re(z) > 0} 

and 

C_ = {z E C: Re(z) < 0} 

denote the right-half complex plane and the left-half complex plane, respectively. 
If¢: IR-> C, then the Laplace transform of¢, denoted by ..C[¢] or fq,, is a function 
from c+ to c and is defined by 

fq,(z) = 100 

¢(t)e-ztdt. 

A related integral transform of¢ is the left Laplace transform, which is denoted by 
Fq, and is the function from C_ to C defined by 

Fq,(z) =- [
0

00 

¢(t)e-ztdt. 

When ¢ is bounded and continuous in IR, the functions fq, and Fq, are analytic in 
c+ and c_ respectively. 

However, just because fq, is analytic inC+ and Fq, is analytic inC_, this does 
not mean that they are well behaved near the imaginary axis. An example relating 
to this is the following theorem, due to Poincare. But to understand this theorem, 
we first need the following definition. 

DEFINITION. We say that f : C+ -> C and F: C_ -> C are analytic continua­
tions of each other across some interval "( C i!R if there is some analytic function g 
defined in a domain U which contains"(, and such that g = f on UUC+ and g = F 
on u uc_. 

THEOREM (Poincare, 1883, [14]). Let { cn}n;:::I be a sequence of complex num­
bers such that 

00 

n=l 

and let the sequence { Xn}n;::: 1 be dense in JR. Then the function 

00 

f(z)=L~ 
n=l z- ?Xn 

is analytic on C+ U C_ but does not have an analytic continuation across any arc 
of iiR. 

5 



6 OVERVIEW 

It is not difficult to see that if 

cp(x) = 1 eixtdCJ(t), 

where 

n=l 

is the discrete measure on lR with a point mass at each Xn, then f<1> (F¢) is the 
function in Poincare's example, restricted to IC+ (rcsp. IC_ ). Thus, the transforms 
f<!> and F¢ are poorly behaved ncar ilR. However, one can show that in Poincare's 
example, that the limits 

lim !¢(x + iy) and 
x--o+ 

lim F¢(x + iy) 
x-o-

exist and are equal for almost every y E JR, in the sense of Lebesgue measure. A term 
coined by H.S. Shapiro (see [17]) says that /¢ and F¢ are "pseudo-continuations" 
of each other. The idea of pseudo-continuation has applications in several fields of 
mathematics and electrical engineering. 

If CJ is not a discrete measure but a general finite measure, and where as before 
we define 

cp(x) = 1 eixtdCJ(t), 

then the above limits for f.t> and F¢ also exist almost everywhere, but only in certain 
circumstances are those limits equal, i.e. f q, and F¢ are pseudo-continuations of 
each other only in certain circumstances. 

If CJ is a discrete measure, then the associated function ¢ is a special type of 
function, known as an almost periodic function, although not all almost periodic 
functions are obtained in this way. If¢ is an almost periodic function, we currently 
cannot say much about the existence or non-existence of the limits off<!> and F¢, 
as we did for when 

¢(x) = 1 eixtdCJ(t). 

\Ve can also not say much about whether Jq, and F¢ are pseudo-continuations of 
each other. However, we can still say that f<!> and F¢ are "related" in a meaningful 
way, as did Bochner and Bohnenblust did in 1934 (see [4]). We denote this relation 
by saying that f<!> and F¢ are Bochner-Bohnenblust continuations of each other. One 
of the main results of this thesis is to extend Bochner-Bohnenblust continuation to 
a wider class of functions - the 5 2-almost periodic functions of Besicovitch. 

Although we do have some partial results which say that in certain cases Jq, 
and F¢ are pseudo-continuations of each other, we do not currently understand 
the precise relationship between Bochner-Bohnenblust continuation and pseudo­
continuation. For example, we do not know whether every Bochner-Bohnenblust 
continuation is a pseudo-continuation. 

Chapter 1 is a review of measure theory and some classical results from the early 
twentieth century about the boundary behavior of analytic functions. Chapter 1 
also introduces almost periodic functions and 5 2-almost periodic functions, and con­
tains basic results about them. Chapter 2 is a slight detour into the investigation 
of boundary values of the Borel transform, which turns out to be closely related to 
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the Laplace transform. Chapter 3 contains a discussion of the Laplace transform, 
as well as Bochner-Bohnenblust continuation. It also discusses the extension of 
Bochner-Bohnenblust continuation to 5 2-almost periodic functions. Finally, Chap­
ter 4 discusses some open questions and contains some partial results about the 
relationship between pseudo-continuation and Bochner-Bolmenblust continuation. 



CHAPTER 1 

Preliminaries 

1.1. Basic Measure Theory 

In this section, we follow [16]. A measure fL on the set lR of real numbers is 
a function fL : Y C P(JR) --> C U { oo} satisfying certain properties which we will 
specify later. Here P(JR) denotes the power set of JR, and C denotes being either 
a proper or improper subset. :tvleasures are a way of assigning "size" to a set. In 
order to understand measures, we must first be clear on the type of domains they 
can be defined on. We need the following definition. 

DEFINITION 1.1.1. A collection E of subsets of lR is called a a-algebra on lR if 
the following conditions hold: 

(1) lR E E. 
(2) A E E implies N E E. (Here Ac is the complement of A in JR.) 

00 

(3) If An E E for all n EN, then U An E E. 
n=l 

So a a-algebra on lR is just a collection of subsets of lR which contains lR and is 
closed under complements and countable unions. Note that, by De Morgan's laws, 
(2) and (3) imply that a a-algebra is closed under countable intersection, and (1) 
and (2) imply that a a-algebra contains the empty set 0. An important fact is that 
for any collection of subsets of JR, there is a smallest a-algebra containing every set 
in the collection. 

DEFINITION 1.1.2. The Borel sets of lR are be the elements of the smallest 
a-algebra containing all the open subsets of JR. 

We are now ready to give a precise definition of a measure. 

DEFINITION 1.1.3. (1) Let E denote the a-algebra of Borel sets of JR. A 
positive Borel measure is a function fL from E into [0, oo] which is countably 
additive. This last statement means that if A1, A2, A3, ... are pairwise 
disjoint Borel sets, then 

We also assume that J.L(A) < oo for some A E E. (Otherwise, the measure 
is not interesting). 

(2) A complex measure is the same as a positive measure, except that its 
range is contained in C U { oo}. 

(3) A finite complex measure is a complex measure whose range does not 
contain oo. 

9 
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DEFINITION 1.1.4. M(IR.) is the set of all finite complex measures on the Borel 
sets of R Let M+ (JR.) denote the positive elements of M(IR.). 

From [16] we gather up some useful facts about measures. 

PROPOSITION 1.1.5. If p, E M+{IR.), we have the following: 

{1) p,(0) = 0. 
(2) p,(A1 u A2 U · · · u An)= 11(A1) + JL(A2) + · · · + JL(An) for A1, A2, · · · , A,. 

pairwise disjoint. 
00 

(3) If A1 C A2 C A3 C · · · and A= U A 1., then we have that 
n=l 

lim p,(An) = p,(A). 
n-oo 

00 

{4) If A1 :::l A2 :::l A3 :::J • • ·, A; and A= nAn, then 
n=l 

lim p,(An) = JL(A). 
n-oo 

(5) 

Jl- CQ An)~ ~p,(An), 
whether the A; are disjoint or not. 

(6) A c B implies p,(A) ~ p,(B). 
{7) If p, E M(IR.), then (1)-(4) hold. 

THEOREM 1.1.6 {The Jordan Decomposition Theorem). Let Jl be a complex 
measure in M(IR.). Then there are Ji-l,Jl2,Jl3,Jl4 E M+{IR.) so that 

Jl = (P,l - Jl-2) + i(Jl3- Jl-4)· 

We now mention Lebesgue measure, which is undoubtedly the most important 
example of a Borel measure. It is a Borel measure on the real numbers, which 
means that it is defined on the Borel sets of the real numbers. Lebesgue measure 
is the unique measure which assigns to every open interval (a, b) and every closed 
interval [a, b] the measure b - a. In fact, Lebesgue measure can be extended to be 
defined on more sets than just the Borel sets, but this is not important to us at the 
moment. We denote Lebesgue measure by m. 

It will be useful to have a definition of the notion of the size of a measure. For 
positive measures, a natural value to take is just p,(IR.), but for complex measures 
this definition does not work, since we can have p,(IR.) = 0 but have p,(E) i 0 for 
some set E, which cannot happen for positive measures. In order to try to define 
a type of norm for complex measures, we make the following definition. 

DEFINITION 1.1.7. Let Jl be a finite complex Borel measure on R The function 
IJi-l : E --> [0, oo] is defined by 

N 

IJLI(E) =sup L lp,(E;)I, 
j=l 

where the { E;} form a finite partition of E into Borel sets, and the supremum is 
taken over all possible finite partitions of E. 
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This function 1111 is called the total variation measure of 11· As one might guess 
from the name, it turns out that 11 is actually a measure. \Ve state this as a theorem. 

THEOREM 1.1.8. If 11 E M(IR), then IJLI E M+(IR). 

Now that we have defined 1111, we may define 

IIJLII = IPI (IR). 

This is called the total variation of Jt. From the definition of lltl we see that, for a 
given finite complex measure JL, IJL(E)I :S llltll for all sets E E E. 

If Jl and >. are two complex measures, and c E C, let us define JL + >. and CJL by 

(JL +>.)(E) = 11(E) +>.(E) 

and 
(c11)(E) = c(JL(E)). 

If JL, >. E M(IR) then CJL and Jl +>.are both in M(IR), so M(IR) is a complex vector 
space. \Ve now have the following theorem. 

THEOREM 1.1.9. The set M(IR) with norm II · II forms a normed vector space. 
That is to say M(IR) forms a vector space and II ·II satisfies the usual properties of 
a norm: 

(1 l liP II ~ o 
(2) IIJL1 + JL2II :S IIJL1II + IIJL2II 
(3) llcJLII = lclll11ll-

Besides the Jordan composition, there is another common decomposition of 
measures. It is known as the Lebesgue decomposition. We first make the following 
preliminary definition. 

DEFINITION 1.1.10. Let m be Lebesgue measure on IR (although any positive 
measure would work) and let>. E M(IR). 

(1) If there is a Borel set E such that for any Borel set A we have that 
>.(En A) = >.(A), we say that >. is concentrated on E. 

(2) If m(E) = 0 implies that >.(E) = 0 for every set E E E, we say that >. is 
absolutely continuous with respect to m, and we write >. « m. 

(3) If>. is concentrated on a set E with m(E) = 0 we say that >. is singular 
with respect to m or just singular, and we write >. ..l m. 

An important observation is that if >. « m and >. ..l m, then >. = 0. 
\Ve can now discuss two extremely important theorems in measure theory. 

THEOREM 1.1.11 (The Lebesgue Decomposition Theorem). Suppose>. E M(IR). 
Then we may write 

>.=>-a+>." 

where Aa, As E M(IR), Aa « m, and As ..l m. Furthermore, this decomposition is 
unique. 

THEOREM 1.1.12 (The Radon-Nikodym Theorem). Suppose that >. E M(IR) 
and that >. « m. Then there is a unique h E Ll (IR) such that 

>.(E)= l h dm 

for any Borel set E. 
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In Theorem 1.1.11, we call .>." the absolutely continuous part of >. and As 
the singular part. We call the function h in Theorem 1.1.12 the Radon-Nikodym 
derivative of>. with respect to p, and write 

or 

d).= h dm 

d). 
h=-. 

dm 
Note that the converse of the Radon-Nikodym theorem is also true. It states that 
if hE £ 1 (m) then the measure 11 defined by 

p(E) := l h dm 

is a finite measure in IR, and 11 « m. 
We have just mentioned one notion of the derivative of a measure, the Radon­

Nikodym derivative. There is another notion of the derivative of a measure which 
we will now discuss. It turns out that both of these notions are related. 

DEFINITION 1.1.13. Let 11 E M(IR) be a real measure. Then we define the 
upper derivative of 11 at x by 

(D)() I
. p((x-r,x+r)) 

J1. X = Imsup . 
r--+O+ 2r 

If we replace sup by inf, we get the quantity (f2Jl.)(x), which is called the lower 
derivative of 11 at x. Also, note that for all x E IR, 

-oo :S (f2Jl.)(x) :S (DJJ.)(x) :S oo. 

DEFINITION 1.1.14. If (f2Jl.)(x) and (DJJ.)(x) are finite and equal, we say that 
11 has a symmetric derivative at x and we set 

(Dp) (x) = (f2Jl.) (x) = (Dp) (x ). 

If J1. E M(IR) is a complex measure then J1. = 111 + ip2 for some 111, J1.2 E M(IR), 
and we define Dp = Dp1 + iDJ1.2 whenever the Dpi exist. 

We now have the following major theorem. 

THEOREM 1.1.15. Let J1 E M(IR). 

(1) Dp exists for m-a.e. x E R 
(2) Dp E £l(IR). 
(3) The Radon-Nikodym derivative of 11 is equal to Dp m-a.e. 

Fact (3) is known as the Lebesgue differentiation theorem. 

1.2. Integral Transforms 

In this section, we discuss various integral transformations which will be useful 
later. 

DEFINITION 1.2.1. Let z = x + iy where y > 0. 

(1) The Poisson kernel Pz : IR-> IRis defined as 

Pz(t) = ..!:_ lm (-
1
-) = ..!:_ { ~2 2 · 

1r t-z 1r x-t +y 
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(2) The conjugate Poisson kernel Qz : 1R-> IRis defined as 

Q,(t) = 2_ Re (-1-) = 2_ x- t . 
rr t- z rr (x- t)2 + y2 

(3) The Borel kernel B, : IR ___. IC is defined as 

1 1 
B.(t) = --. 

71' t- z 

Notice that Q.(t) + iP.(t) = B.(t). We now have: 

DEFINITION 1.2.2. (1) The Poisson transform of a measure J1, E A!(IR) is 
the function P 11- : IC \ 1R -> IC defined by 

(P/1-)(z) = l P.(t)dfJ-(t). 

(2) The Conjugate Poisson transform of a measure Jl E A!(IR) is the function 
QfJ- : IC \ IR -> IC defined by 

(QfJ-)(z) = l Q.(t)dJ1,(t). 

(3) The Borel transform of a measure 11- E M (IR) is the function B Jl : IC \ IR -> 
IC defined by 

(BJ1,)(z) = l Bz(t)dfJ-(t). 

The Poisson transform is also called the Poisson integral. The domain of all 
these transforms is IC \JR. Clearly BJ1, is analytic on IC \ R We also have that PJt 
and Q/1- are harmonic on IC \ IR since they are the imaginary and real parts of BJl, 
respectively. 

One of the most important theorems about the Poisson kernel, called Fatou's 
Theorem, is as follows. It is found in [16] (Theorem 11.10) stated for the disc, but 
here we state it for the upper half plane. 

THEOREM 1.2.3. Suppose that J1, E M(IR) and is real. Then for each x E IR, 

(.!.2y.)(x) :S liminf(PJ1,)(x + iy) :S limsup(PJt)(x + iy) :S (DJt)(x). 
y-o+ y-o+ 

Wherever (D/1-)(x) exists and is finite, which occurs a. e., we have 

lim (PJ1,)(x + iy) = (DJt)(x). 
y-o+ 

We also define the Hilbert Transform, another extremely important integral 
transform. ForE> 0, and for J1- E M(IR), define 

(1.2.4) (H,fJ-)(x) = 1 -1
-dJl(t) 

Jx-tJ~< X- t 

Since 11 E M(IR), (H,Jl)(x) is well defined for every x and for every E > 0. Set 

(HJ1,)(x) = lim(H,Jl)(x) 
•-o 

wherever it exists. In [13] we find that the (HJ1,)(x) exists a.e.[m]. The limit in 
the above equation is also called the principle value of the integral in equation 
(1.2.4) and is denoted by placing "P.V." in front of the integral. We thus make the 
following definition. 
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DEFINITION 1.2.5. Let Jl E M(JR). The function (HJL) : lR --> IC defined for 
m-a.e. x E lR by 

(HJL)(x) = P.V. j -1
-dJL(t) 

X- t 
is called the Hilbert Transform of Jl. 

THEOREl\1 1.2.6 (Kolmogorov). For JL E M(JR), 

m({x E lR: i(HJL)(x)l > ,\}) :S Cl~tll 
for some constant C independent of Jl and ,\. 

The two previous theorems may be found, stated slightly differently, in [13]. 
THEOREM 1.2.7. For J1 E M(JR), 

lim (QJL)(x + iy) = (HJL)(x) 
y-o+ 

for m-a.e. x. 

The main type of integral transformation we study is the Laplace transform. 
\Ve will define it here, and will discuss it more later. 

DEFINITION 1.2.8. Let cp : lR --> iC be a bounded function. Let IC+ = { z E iC : 
Re(z) > 0} denote the right half complex plane. Then the Laplace transform of¢, 
which we write as .C[¢], is the function .C[¢] : IC+ --> IC defined by 

(.C[¢])(z) = l"" cp(t)e-ztdt. 

Lastly, we define the Fourier transform of a measure. 

DEFINITION 1.2.9. Let J1 E M(JR). Then the Fourier transform of Jl, written as 

Ji, is the function fi : lR --> IC defined by 

fi(x) = L eixtdJL(t). 

Notice that lfi(x)l :S IIJLII for all x E lR and that a simple application of the Lebesgue 
dominated convergence theorem shows that fi is a continuous function on JR. 

1.3. Fourier Series 

In order to understand almost periodic functions, one must first understand 
periodic functions, especially since almost periodic functions have many properties 
which are analogous to properties of periodic functions. Also, knowledge of periodic 
functions is needed to prove some theorems about boundary values of analytic 
functions. 

DEFINITION 1.3.1. A periodic function f : lR --> IC of period k is a function 
such that f(x + k) = f(x) for all x E JR. 

In particular, this definition implies that f(x + nk) = f(x) for any integer n. 
From now on, all the periodic functions we will discuss will have period 27r, since 
all the results we prove easily generalize to arbitrary periods. Also, since they 
are periodic, it is only necessary to discuss their values on [0, 27r). In addition, we 
assume all the functions discussed in this section arc integrable with respect to m 
on [0, 27r). The set of all functions on [0, 27r) integrable with respect tom is denoted 
by £1(0,27r). 
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DEFINITION 1.3.2. The mean value off E L1(0, 2rr) is defined by 

M(f) = _.!._ {
2

" J(t)dt. 
2rr ) 0 

15 

The most important of all concepts relating to periodic functions is the concept 
of a Fourier series. \Ve first define a Fourier series as a formal series, without 
asserting anything about its convergence. 

DEFINITION 1.3.3. Let f E L1(0, 2rr). The Fourier series which corresponds to 
f is defined by 

DO 

n=-oo 

where we write 

j=-DO 

to indicate this correspondence. The Fourier coefficient f(n) is defined by 

~ 1 12" . f(n) = - f(x)e-mxdx. 
2rr 0 

\Vc usc the notation 

1 12" (!,g)= -
2 

J(x)g(x)dx, 
7r () 

whenever this integral exists. Using this notation, we have that fen) = (!, einx). 
Note that since we have assumed that f is integrable, the Fourier coefficients always 
exist. 

Here are some standard facts about Fourier series. 

PROPOSITION 1.3.4. The set of functions { einx}~~~DO is orthonormal, that is 
(einx' eimx) = dnm• 

THEOREM 1.3.5 (The Riemann-Lebesgue Lemma). Iff E L1(0,2rr), then 

lim f(n) = 0. 
lni~DO 

A proof can be found in [11] (Theorem 30). 

THEOREM 1.3.6 (Bessel's Inequality). For f E L2(0, 2rr), we have 

N 1 12" L lf(n)l2 ~ - IJ(tWdt. 
n=-N 2rr o 

We also have two other theorems, which can be found in [16] section 4.26. 

THEOREM 1.3.7 (The Ricsz-Fischcr theorem). If {en}~=-= is a sequence of 
complex numbers, and 

DO 

j=-oo 

then there exists a periodic function f E L2 (0, 2rr) such that fc n) = Cn for all n E Z. 
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THEOREM 1.3.8 (Parseval's theorem). If /,g E L2(0,2rr), then 
00 

L J(n)g(n) =(!,g). 
n=-oo 

An important question is that of the convergence of Fourier series, in various 
senses. 

THEOREM 1.3.9. Let f E £2(0, 2rr). Then the Fourier series off converges to 
f in the "mean", or equivalently in the norm of L 2 . That is, 

1
2rr N 2 

lim Jt(x)- L f(n)einxJ dx = 0. 
N~oo 0 n=-N 

The above theorem tells us about convergence of Fourier series in the £ 2 norm. 
However, it does not tell us about pointwise convergence, which is an interesting 
and very complicated question. We state, but do not prove, the following very deep 
theorems. 

THEOREM 1.3.10 (Carleson). The Fourier series of an L2(0, 2rr) function con­
verges to that function almost everywhere. 

THEOREM 1.3.11 (Hunt). For p > 1, the Fourier series of an £1' (0, 2rr) function 
converges to that function almost everywhere. 

THEOREM 1.3.12 (Kolmogorov). There exists a function in L 1 (0, 2rr) whose 
Fourier series diverges everywhere. 

The first two are Theorem 12.8 in [1]. The result of Kolmogorov may be found 
in [12]. 

It is often more useful to look at other types of summability of Fourier series. 
oo N 

Consider a series L an and define SN = L an- Then SN is the Nth partial 
n=-oo n=-N 

sum of the series. \Ve now define 

1 N 
aN= -N L:sn, 

+ 1 
n=O 

so that aN is the average of the first N + 1 partial sums of the series. 
00 

DEFINITION 1.3.13. If for the series L an we have that 
n=-oo 

then we say that the series converges to A in the sense of Cauchy. 
00 

DEFINITION 1.3.14. If for the series L an we have that 
n=-oo 

lim aN= A 
N~oo 

then we say that the series is (C, 1) summable to A or Cesaro summable to A. 

If a series is (C, 1) summable to some A, then we say it is (C, 1) summable. 
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THEOREM 1.3.15. If an infinite series converges to A (in the sense of Cauchy), 
then it is ( C, 1) summable to A. 

This means that if a series converges and we compute its ( C, I) stun instead of 
its Cauchy sum, we will get the same result. Otherwise, it would not be sensible to 
speak of the ( C, 1) sum as an actual sum of the series. 

Another important method of summation is the method of Abel. We will need 
it later. 

00 

DEFINITION 1.3.16. Consider the series L a,. Define 
n=-oo 

00 

(1.3.17) 
n=-oo 

for 0 < r < 1, if the sum in ( 1.3.17) converges in the sense of Cauchy. Then we say 
that the series is Abel summable to A if 

lim r(r) =A. 
r-1-

EXAMPLE 1.3.I8. Consider the series 
00 

n=-oo 

where 
ifn < d 
if n ~ 0 

Its Nth partial sum SN is 0 if N is odd and 1 if n is even. Thus, 

lim SN docs not converge. 
N-oo 

Therefore, the series is not Cauchy summablc. However, we have 

_ I ~ S _ lN/2J + 1 
aN - N + 1 ~ n - N ' 

n=O 
so 

. 1 
hm aN= -

2
. 

N-oo 
Thus 

00 

L an = ~ in the sense of Cesaro. 
n=-oo 

Lastly, we have 
00 00 1 

r(r) = L a,.rlnl = L(-1)nrn = -. 
n=-= n=O 

1 + r 
So 

lim r(r) = ! 
r-1- 2 

and thus 
00 

L an = ~ in the sense of Abel. 
n=-oo 
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If a series is Abel summable to some A, then we say it is Abel summable. We 
then have the following theorem, which is Theorem 55 in [10]. 

THEOREM 1.3.19. If an infinite series is (C, 1) summable to A then it is also 
Abel summable to A. 

COROLLARY 1.3.20. If an infinite series is Cauchy summable to A, then it is 
Abel summable to A. 

This theorem states that Abel summation is at least as strong as Cesaro sum­
mation, which is at least as strong as Cauchy summation. In other words, the Abel 
sum of a series is defined and gives the same value as the Cesaro sum of the series, 
when the Cesaro sum of the series is defined. Also, the Cesaro sum of a series is 
defined and gives the same value as the Cauchy sum of the series, when the Cauchy 
sum is defined. 

The (Cauchy) sum of a Fourier series at a point x is simply the Cauchy sum of 
the series 

(1.3.21) 
n=-oo 

The Fejer sum of a Fourier series at a point xis simply the (C, 1) sum of the series 
1.3.21. The Abel sum of a Fourier series at a point xis simply the Abel sum of the 
series 1.3.21. 

A Fourier series is said to be Fejer summable at a point if its Fejer sum exists at 
that point; the same is true for Cauchy summability. We now state three theorems 
about summability of Fourier series. The first two correspond to Theorem 73 in 
[11]. The third follows from the second theorem, and from Theorem 1.3.19. 

THEOREM 1.3.22 (Fejer). Iff is continuous and periodic with period 271" then 
it is Fejer summable to itself for all x E [0, 271"). 

THEOREM 1.3.23 (Lebesgue). Iff E £ 1 (0, 27r) then the Fourier series off is 
Fejer summable to f almost everywhere. 

THEOREM 1.3.24 (Fatou). Iff E £ 1 (0, 21r), then the Fourier series off is Abel 
summable to f almost everywhere. 

Note that the above theorem of Lebesgue implies that if f(n) = g(n) for all n 
and j,9 E £ 1(0,271") then f = 9 almost everywhere. This is true because the Fourier 
series for f will be the same as the Fourier series for g, and thus they will have the 
same Fejer sum almost everywhere. But this sum equals f almost everywhere and 
9 almost everywhere, so f and 9 must be equal almost everywhere. 

1.4. Almost Periodic Functions 

Almost periodic functions, of the type we will be discussing, are functions from 
the real line to the complex plane. We will discuss some preliminary notions and 
then define them. In general, we follow [5] and [9]. 

DEFINITION 1.4.1. Let f : lR ---> C be a function. An f-translation number for 
f is a number T such that for all x E IR, we have 

(1.4.2) lf(x- r)- f(x)l < f. 

We call the setoff-translation numbers for/, Ej(f). 
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DEFINITION 1.4.3. A set in JR. is called relatively dense if some number L exists 
such that every open interval of length L in JR. contains at least one clement of the 
set. 

EXA11PLE 1.4.4. 

(1) The set of all multiples of IOO is relatively dense, since every open interval 
of length 101 contains an element of the set. 

(2) The set of all squares of integers is not relatively dense, since the distance 
between n 2 and (n + I) 2 is 2n +I, which approaches CXJ as n----> CXJ. 

DEFINITION 1.4.5. A uniformly almost periodic function, or almost periodic 
function for short, is a continuous function f: JR.----> C such that for all f > 0, EJ(f} 
is relatively dense. 

Note that a continuous function f is periodic with period p if and only if the 
0-translation numbers off are all numbers of the form pn, where n is any integer. 
The almost periodic functions are "almost periodic" because they "almost" display 
periodicity, in the sense that for arbitrarily small E they have in a sense regularly 
spaced €-translation numbers. 

PROPOSITION 1.4.6. Any periodic function is almost periodic. 

Definition 1.4.1 characterizes almost periodic functions by their structural prop­
erties. It is desirable to find a more analytical characterization of them. Consider 
the class of all functions of the form 

where the ,\n arc arbitrary real numbers. We call functions of this form trigono­
metric polynomials. 

THEOREM 1.4.7. Any trigonometric polynomial is almost periodic. 

PROOF. This theorem follows from Proposition 1.4.6 and part (3) of Theorem 
1.4.9 (see below). D 

Let the uniform closure of a class of functions be the set of all functions which 
can be uniformly approximated by functions in the class to an arbitrary degree of 
accuracy. Then we have the following: 

THEOREM 1.4.8 (The Fundamental Theorem). The set of uniform almost peri­
odic functions is identical with the uniform closure of the trigonometric polynomials. 

Theorem 1.4.25 (see below) provides a proof of the Fundamental Theorem. 
Given (uniform) almost periodic functions f and g, then using definition 1.4.5 

one can show the following: 

THEOREM 1.4.9. (I) f is bounded. 
(2) / 2 and l/1 are almost periodic. 
(3) f + g is almost periodic. 
(4) fg is almost periodic. 

THEOREM 1.4.10. Suppose Un} is a sequence of almost periodic functions and 
fn ----> / uniformly. Then f is almost periodic. 
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COROLLARY 1.4.11. The set of almost periodic functions with metric d(f, g) = 
sup{lf(x)- g(x)l : x E JR} is a complete metric space. 

\Ve also have the following very important theorem: 

THEOREJ\1 1.4.12. Let f be an almost periodic function. Then the limit 

(1.4.13) 11N M(f) = lim N f(t) dt 
N-oo 0 

exists and is finite. 

We call the value M(f) the mean value of f. 

EXAJ\IPLE 1.4.14. Iff is a periodic function with period p, then 

11'' M(J) = - f(t)dt. 
p 0 

PROOF. Let N > 0 and define I<= I<(N) = lN/pJ. Then we have 

N=Kp+r 

where r is a function of N and 0 ::::; r(N) < p for all N. Thus, 

1 {N 1 K-1 {(n+1)p 1 {Kp+r 

N Jo f(t)dt = N ~ Jn" f(t)dt + N} Kp f(t)dt 

1 K-1 {" 1 {Kp+r 

= N ~ Jo f(t)dt + N }Kp f(t)dt 

I<f" 1r 
= N lo f(t)dt + N lo f(t)dt 

= NN- r {" f(t)dt + 2_ r J(t)dt 
P Jo N Jo 

Now, since 0::::; r < p, for all N, we have that as N -> oo the first term approaches 

11" - f(t)dt, 
p 0 

and the second approaches 0. Thus, 

M(f) = lim N
1 {N f(t)dt = ~ {" f(t)dt. 

N-oo Jo P Jo 

The following is not difficult to see but will be important later. 

PROPOSITION 1.4.15. If 

N 

f(x) = ao + L eiA"x 

n=1 

where An # 0 for all n, then 

M(f) = ao. 

0 

In other words, the mean value of a trigonometric polynomial is equal to its constant 
term. 



1.4. ALI\IOST PERIODIC FUNCTIONS 21 

Any function of the form eiAx is periodic and thus almost periodic. Let eA(x) = 
eiAx. Then, for any almost periodic function f, the function eAf is almost periodic 
and we may define 

(1.4.16) 

When it is clear what function we are talking about, we will sometimes simply write 
a(>.). We call this number the Fourier coefficient corresponding to >. for f. 

THEOREM 1.4.17. Let {An};;'=1 be a finite set of real numbers. Then for an 
almost periodic function f, 

N 

L iaJ(>.nW ~ M(lfl2
)· 

n=l 
Notice how this theorem resembles Bessel's inequality for periodic functions. 

COROLLARY 1.4.18. For any almost periodic function f, a,(>.)= 0 for all>. E lR 
except possibly for a countable number of values of>.. 

The corollary must be true since otherwise we could obtain arbitrarily large 
N 

values for L ia(>.nW by picking appropriate sets of An's. 
n=l 

DEFINITION 1.4.19. The spectrum of an almost periodic function is the set 
containing all >. for which a(>.) i= 0. Let cr(f) denote the spectrum. 

Suppose we have ordered the spectrum of an almost periodic function as 
{ >.1, >.2, A3, ... } . Then we may make the following definition. 

DEFINITION 1.4.20. The Fourier series of an almost periodic function is the 
formal series 

00 

(1.4.21) L a(>.n)eiAnX, 
n=l 

Iff is an almost periodic function and l::::"=l anei>-nx is its Fourier series then 
we write, as with the Fourier series of a periodic function, 

00 

f"' L anei>-nx. 

n=l 
We now have the following important theorems. 

THEOREM 1.4.22 (Parseval's Theorem). 
00 

(1.4.23) 
n=l 

where the sum is taken over cr(f) = { An};;"=l· 

THEOREM 1.4.24 (The Uniqueness Theorem). If two almost periodic functions 
have the same Fourier series, they are equal to each other. 

We can now see many analogies between continuous periodic functions and 
almost periodic functions. For example, both types of functions have a mean value. 
However, the most important analogy is that both have a type of Fourier series. In 
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addition, both types of Fourier series satisfy a Parseval's theorem and a uniqueness 
theorem. It is natural to ask whether there is some analog of Fejer summation for 
almost periodic functions. It turns out that there is, although it is more complicated 
than in the case of periodic functions. The following theorem establishes this "Fejer 
summation." 

THEOREM 1.4.25. Let f be an almost periodic function with Fourier series 
00 

n=l 

Then there are rational numbers ri=l such that 

(1) for all k and m, 0 ~rim) ~ 1, 

(2) rim) --> 1, as m--> oo, with k fixed 
(3) the sequence of functions Sm --> f uniformly as m --> oo, where 

n 

sm(x) = L a(.Xk)rkm)ei-'•x. 
k=l 

Here n is a function of m. 

Notice how the Fundamental Theorem follows from this Fejer summation. 

1.5. A Generalization of Almost Periodic Functions 

The definitions and results of this section can be found in [3]. 

DEFINITION 1.5.1. Let f and g be two Lebesgue measurable functions. Let 
l > 0 and p ;:::: 1. Define the Sf distance between f and g as 

Dsr = II!- gllsr = !~~ { ~ 1x+1

IJ(t)- g(t)IPdt} l/p 

If either lor pare equal to one we omit writing them when convenient. 

PROPOSITION 1.5.2. The Sf distance defines a metric. 

DEFINITION 1.5.3. The set of all Sf -almost periodic functions is the closure of 
the trigonometric polynomials under the Sf metric. 

PROPOSITION 1.5.4. For a measurable function j, the following are equivalent: 

(1) The function f is in closure of the trigonometric polynomials under the 
Sf metric, i.e. it is Sf -almost periodic. 

(2) The function f is in closure of the uniformly almost periodic functions 
under the Sf metric. 

(3) For any E > 0 the set of all Sf £-translation numbers off is relatively 
dense, where me make the definition that if for some E > 0 and T E lR we 
have D8 v(f(x + T), f(x)) < E, then T is an Sf £-translation number of f. 

I 

In fact if f is an Sf almost periodic function then for any other 1' > 0 it is an 
Sf, almost periodic function, so from now on we just speak of SP-almost periodic 
functions. 

For SP-almost periodic functions, the mean value always exists, as in Theorem 
1.4.12. These functions have Fourier series, which contain at most a countable 
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number of non-zero terms, as in Definition 1.4.20 and Corollary 1.4.18. Iff is a 
SP-almost periodic function, it has Fejer sums which converge to it in the Sf norm 
for any l, analogous to Theorem 1.4.25. There is also a uniqueness theorem for the 
Sf Fourier series, like Theorem 1.4.24. Note that to Sf almost periodic functions 
are considered identical if they are equal in value a. e. 

1.6. Some Classical Boundary Value Theorems 

We have stated that we will be investigating the boundary values of Laplace 
transforms, but we have not discussed precisely what these boundary values are 
and how they are defined. In this section, we define two types of boundary values, 
the radial limit and the non-tangential limit. Since we are talking about Laplace 
transforms, we are strictly speaking only worried about the boundary values for 
functions in the right and left half plane. However, we will for now usually discuss 
these limits for the unit disk, since proving things about them is simpler in this 
case. However, all the results, with appropriate modification of definitions, will 
hold for the right and left half planes, which can be seen by conformal mapping of 
the disk onto the right half plane. 

DEFINITION 1.6.1. If f : ]]J) --+ C, we define the radial limit of f at the point 
ei9 , where e E lR, as limr-I- f(rei 9

), whenever the limit exists. 

Since we are studying these limits, it is important to know conditions for their 
existence. The following theorem is helpful: 

THEOREM 1.6.2 (Fatou). Let f : ]]J) --+ C be bounded and analytic. Then for 
almost all e E JR, the radial limit off at ei9 exists and is finite. 

PROOF. The following proof is from [8]. First, write f(z) = L:::'=oanzn. Now, 
writing z = reiiJ we have 

DO DO DO 

n=O n=O n=O 

where we have set 

(~ -- -inB) n L....t ajan-je r . 
]=0 

Cn(r,e)= 

Now, for 0:::; r < 1, the power series for f is absolutely convergent no matter what 
e is, so that for a given r we have 

DO DO DO 

where we have set 

c~(r) = (t iaJilan-JI) rn. 
]=0 

But we have c~(r) ~ lcn(r,e)l for all n, so that each term of the sum of the 
cn(r, e) is less than a corresponding term of an absolutely convergent series, and this 
absolutely convergent series is independent of e. Thus I:::"=o cn(r, e) is uniformly 
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convergent in B. Now upon integrating term by term in B, only terms of the form 
J:f,.iani 2r2n = 27rjanl 2r 2n do not vanish, so we have 

00 1 1211" L ianl 2
r

2n = 
2

7!" if(rei0 )j 2dB S sup{lf(zW : z E IIJi}. 
n=O 0 

This holds for all r < 1. Now, by the Lebesgue monotone convergence theorem, 

so 
00 

L lanl 2 S sup{jf(z)j 2
: z E IIJi}. 

n=O 

But now by the Riesz-Fischer theorem, we have that the series 
00 

2.: aneinO 
n=O 

is the Fourier series for some function f E L2 (0,27r). Now, this series is (C, 1) 
summable to f almost everywhere, so it must be Abel summable to f almost 
everywhere by Theorem 1.3.19, so we have that 

00 

lim ~ anrneinO = lim f(re;e) 
r--+oo ~ r--+oo 

n=O 
exists for almost all e. 0 

It is useful to know whether or not radial limits are unique. That is, if two 
bounded functions have the same radial limits, we wish to know whether they are 
equal. 

THEOREM 1.6.3 (F. and M. Riesz). Let f be analytic and bounded in IIJi, and 
suppose f has its radial limits equal to zero on some set of positive measure. Then 
f = 0 identically on IIJi. 

Thus, radial limits of bounded analytic functions are unique. However, we have 
from [2]: ' 

THEOREM 1.6.4 (Bagemihl and Seidel). (1) There exists a non-zero an-
alytic function in ][]) with radial limits equal to 0 almost everywhere. 

(2) There exists a non-zero analytic function in llJi with radial limits equal to 
oo almost everywhere. 

The proof is by construction. Note that by the Riesz theorem the function 
in part (1) must be unbounded. The first part of the theorem says two different 
unbounded functions can have the same radial limits almost everywhere. The 
second part illustrates that the hypothesis ofboundedness is required in the theorem 
of Fatou. 

Even though if f is unbounded the radial limits of f equaling zero almost 
everywhere does not imply that f = 0, we do not know about the case where f 
equals zero everywhere. The next theorem deals with this case. 

THEOREM 1.6.5. If a function f analytic in llJi has radial limits equal to 0 
everywhere then it is equal to 0. 
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PROOF. We shall prove the theorem for the right half plane, which implies that 
it holds for lDl by conformal mapping. LetS be the finite square 0 < x < 1, 0 < y < 
1. Now, look at the family of functions Uv: 0 < y < 1}, where fv(x) = f(x + iy), 
where (x, y) E S. Also, define fv(O) to be the radial limit off at y. Then each fy 
is continuous on [0, 1] and equals 0 at x = 0, since the radial limit is 0 everywhere. 
Now let 

Ek = {y: max \fy(x)\::; k}, 
O~x~l 

where k is a positive integer. Then 
00 

U Ek = [0,1] 
k=l 

(this is false if the limit only exists a.e.) Now if y0 E Ek c, where k E N, then 
\f(xo + iyo)\ > k for some xo > 0. But letting zo = x0 + iy0 , we see that for all 
z in some ball about zo, \f(z)\ > k. Then if we take all the imaginary coordinates 
of points in the ball, we get an open interval about y0 such that for all y in the 
interval, if(x + iy)J > k for some x. So all they in this interval will belong to Ek c. 

This shows that Ek c is open, and thus that Ek is closed. 
But then the Baire category theorem says that some Ek must contain an in­

terval, say [Yr, yz], where Yr < Y2 (see [16], section 5. 7). And therefore in the box 
S' = [0, 1) x [y1, yz], we will have that f is bounded and has radial limit equal to 
0 on a set of positive measure. Thus we may apply the Riesz Uniqueness theorem, 
Theorem 1.6.3, and conclude that f = 0 identically in S'. But f is analytic so it 
must be equal to zero everywhere. 0 

We now discuss angular sectors in lDl. Let ~ be a point on the boundary of lDl 
and let (3 be the argument of the ray from ~ to the origin. Then the angular sector 
of lDl at~ with angle a is the set {z E lDl: I arg(z- ~)- (JJ < a/2}. We denote this 
set by r a(~). It is a triangular shaped region with vertex at~. 

DEFINITION 1.6.6. f : lDl-+ IC has a non-tangential limit at ~ if for each a with 
0 < a < 1r we have 

lim f(z) = L. 
z-+1; 

zEfa(O 

THEOREM 1.6. 7 (Lindelof). Let f be an analytic function bounded in some disk. 
Let a be a point on the boundary of the disk. If f(z) converges to some number b as 
z approaches the point a along some Jordan arc, then it has a non-tangential limit 
at a, and the value of this limit is b. 

COROLLARY 1.6.8 (Fatou). Let f : lDl-+ IC be bounded and analytic. Then for 
almost all B E JR, the non-tangential limit off at e;e exists and is finite. 

PROOF. Apply the above theorem of Lindelof and the Theorem of Fatou on 
the existence of radial limits almost everywhere (Theorem 1.6.2). 0 

Note that unlike Theorem 1.6.3, the following theorem applies to unbounded 
analytic functions as well as bounded ones. 

THEOREM 1.6.9 (Privalov). If a function f analytic in lDl has non-tangential 
limits equal to 0 on some set of positive measure, then it is equal to 0 identically in 

lDl. 
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1. 7. Continuation of Analytic Functions 

Sometimes we have two analytic functions, defined on different domains, and we 
wish to determine whether they are in some sense the same function. The simplest 
way to do this is through the notion of analytic continuation. 

DEFINITION 1. 7.1. We say that f : C+ --> C and F : (:_ --> C are analytic 
continuations of each other across some arc 'Y c i!R if there is some analytic function 
g defined in a domain U which contains "f, and such that g = f on U U C+ and 
g = F on UuC_. 

Here, C+ = { z E C : Re(z) > 0 is the right half complex plane and C_ = { z E 
C : Re(z) < 0 is the left half complex plane. Iff and Fare analytic continuations 
of each other, then they are in some sense the "same" function, just defined on 
different domains. 

There is still another type of continuation, pseudo-continuation. 

DEFINITION 1.7.2. Let f : C+ --> C and F : C_ --> C be analytic. If the 
non-tangential limits off and ofF exist and are equal a.e., we say that f and F 
are pseudo-continuations of each other. 

PROPOSITION 1.7.3. Pseudo-continuation is compatible with analytic continu­
ation, in the sense that iff : C+ --> C has a pseudo-continuation F : c_ --> C and 
f has an analytic continuation G across an arc of i!R in a neighborhood n of the 
arc, thenG=F onn. 

PROOF. If there is some function G which is an analytic continuation of f, 
then G must have the same non-tangential limits as fin (i!R) n r, and thus G must 
have the same non-tangential limit as F almost everywhere, so they are equal by 
Theorem 1.6.9 (Privalov's uniqueness theorem). Here, U is as in definition 1.7.1. 0 

This theorem provides the reason whereby we may call pseudo-continuation 
a "continuation," which we would not want to do if it were not compatible with 
analytic continuation. There are other types of continuation, for example Bochner­
Bohnenblust continuation, which we will define later. Since it is a continuation, it 
is also compatible with analytic continuation. We will prove in the next chapter 
that the example of Poincare mentioned in the introduction, namely 

f(z)=f~, 
j=l Z- 2Xn 

has the properties that fie+ and !haL are pseudo-continuations of each other. 



CHAPTER 2 

The Borel Transform 

2.1. The Borel 'Jransform 

As a preliminary to other results, we prove some theorems about the Borel 
transforms of measures. Borel transformations are useful since, as we will see later, 
they are related to Laplace transforms. Let 

JH[+ = { z : Im z > 0} 

be the upper half plane. Recall that for a E M(!R), the Borel transform of a is 
defined as 

(Ba)(z) = J da(t). 
z-t 

THEOREM 2.1.1. Let a E M+(JR). Then 

Ba(JH[+) C JH[+, 

PROOF. Letting z = x + iy, we have that 

Im c ~ t) = ( x - t f2 + y2 
which is greater than zero if lm z = y > 0. So when Im z > 0, 

Im(Ba)(z) =JIm ( ~a~tD =JIm C ~ t) da(t) > 0. 
D 

THEOREM 2.1.2. Let a E M(JR). Then the non-tangential limits of (Ba) exist 
m-a.e. 

PROOF. We follow [18]. If a E M+(JR), Theorem 2.1.1 says that Ba is an 
analytic map of JH[+ into JH[+· Now, let 

-i(z + 1) 
g = z -1 

Then g is a conformal map from ][)) to JH[+. Set 

f = g-1 o (Ba) o g, 

Then f maps ][)) to ][)) and so has finite non-tangential limits almost everywhere 
by Fatou's theorem, Theorem 1.6.2. Therefore, Ba must have non-tangential (but 
possibly infinite) limits a.e. So we must show that Ba does not have infinite non­
tangential limits on a set of positive measure. But Ba can only have an infinite 
non-tangential limit at a point if f has non-tangential limit of 1 there, since the 
only pole of g is at 1. And f cannot have non-tangential limit of 1 on a set of 
positive measure unless f is identically 1, by the Riesz theorem (Theorem 1.6.3). 

27 
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But this is impossible impossible since 1 is not in the range of g. So BO" has finite 
non-tangential limits almost everywhere. 

Now, if O" E M(IR), write 

O" = (0"1 - 0"2) + i(0"3- 0"4), 

using the Jordan decomposition, where each O"; E .. M+(IR). Now, since each BO"; has 
non-tangential limits a.e., so does BO". 0 

The previous result is, in a sense, not particular to Borel transforms. In fact, 
more is true. 

THEOREM 2.1.3. Suppose f : C+ --+ D is analytic, where D is the complex 
plane with some ray omitted. Then f has non-tangential limits almost everywhere. 

PROOF. By a translation and a rotation, we may assume that D = C\ ( -oo, OJ. 
Define 

g(z) = [f(z))2 . 

Then g: IC+ --+ IC+, and by following a similar procedure to that in Theorem 2.1.2, 
we see that the non-tangential limits of g exist almost everywhere. Now, if g has 
non-tangential limits equal to zero on a set of positive measure, then g is equal to 
zero identically by Theorem 1.6.3, so f is also zero identically, and thus f clearly has 
non-tangential limits almost everywhere. But if g is not the zero function, then g 
has non-zero non-tangential limits almost everywhere, so log lg(z)l must have finite 
non-tangential limits almost everywhere. But then 

f(z) = e~ log \g(z)\+j Argg(z) 

must have non-tangential limits almost everywhere. 0 

Notice how the Borel Transform (BO")illll+ has an analytic continuation to 
(BO")p!L across any arc that avoids the support of the measure O". We also have 
the following result. 

THEOREM 2.1.4. Let O" E M(IR). Then for all x E IR we have that 

lim y(BO")(x + iy) = -iO"( {x} ). 
y-+0 

PROOF. For a fixed x, 

1 dO"(t) 1 y 
y(BO")(x + iy) = y + . t = ( t) + . dO"(t). 

lR x zy - lR x - zy 

Now, we have that 

I y I= IYI < 1 
(x- t) + iy v(x- t)2 + y2 -

and that 

lim = y {Q if t #X 
y-+O (x- t) + iy -i if t = x 

Thus, by the Lebesgue dominated convergence theorem, 

lim { y . dCJ(t) = { -iX{x}(t)dCJ(t) = -iCJ( {x} ). 
y-.o}JR(x-t)+zy JIR 

0 
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This theorem implies that the non-tangential limit of a Borel transform can be 
infinite on a dense set, e.g. for the measure 

00 

(]' :::= 2:::: 2-nOa,.' 
n=l 

where a1, a2, ... is an enumeration of the rationals. However, amazingly, the non­
tangential limit must still exist almost everywhere for any Borel transform. Also, 
the Borel transform of a measure 0' cannot have an analytic continuation across 
any arc which contains a point mass of 0'. 

Now that we have investigated analytic continuation of the Borel transform, 
we wish to investigate pseudo-continuations. We begin with the following theorem. 
Recall that 

(DO')(x) = lim O'(x- r, x + r) 
r-+oo 2r 

wherever this limit exists (which is almost everywhere). 

THEOREM 2.1.5. If 0' E M(lR) then 

lim ((BO')(x + iy)- (BO')(x- iy)) = 2i(DO')(x) a.e. 
y-+0+ 

PROOF. 

(BO')(x + iy)- (BO')(x- iy) ==~I c -~:(2 iy) - t-~:(~ iy)) 

= _!_I [(t- x) + iy]- [(t- x) - iy]dO'(t) 
7r (t-x)2+y2 

1 I 2iydO'(t) 
= :;;: ( t - X )2 + y 2 

= 2i I Px+iy(t)dO'(t) 

and 

lim I Py+ixdO'(t) == (DO')(y), 
x-+O+ 

by Theorem 1.2.3. 0 

CoROLLARY 2.1.6. If 0' E M(lR) then (BO')jruL is a pseudo-continuation of 
(BO')IEI+ if and only if 0' .l m. 

PROOF. Recall that 
dO' 

DO' = - almost everywhere, 
dx 

where dO'jdx is the Radon-Nikodym derivative of 0' (see Theorem 1.1.12). Thus, 
by Theorem 2.1.5, 

(BO')IJHI+ == (BO')pHI_ 

precisely when dO'/ dx == 0 almost everywhere, i.e. when 0' .l m. 0 

We also wish to see whether, when (BO')je+ has an analytic continuation to 
IlL, we must have that this analytic continuation is (BO')pHI_· To investigate this 
question, we use the Borel transform to give an extension of the Cauchy integral 
formula to the upper half plane, which is interesting in its own right. 
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THEOREM 2.1.7. Suppose f is an analytic function in JH[+ and continuous in 
JH[+ U JR. Further, suppose that f satisfies 

c 
lf(z)l < I I for all z E JH[+ U JR, z<> + 1 

where C is a constant and a > 1. Then for any z E JH[+ we have 

f(z) = ~ loo f(x) dx. 
27r~ _

00 
X- Z 

PROOF. Let z E JH[+ and suppose that f is an analytic function in JH[+ which 
is continuous on JH[+ U JR, and satisfies 

c 
IJ(z)l < I I for all z E JH[+ U JR, z<>+l 

where C is a constant and a > 1. Then, by the Cauchy integral formula, 

(2.1.8) f(z) = ~ 1N f(() d( + ~ 1 f(() d(, 
2m -N ( - z 2m "''N ( - z 

where N > lzl and IN is the upper half of the circle with radius N and center 0. (So 
IN is a semi-circular path connecting-Nand N.) Now, on IN the value of lf(()l 
is bounded above by C' /(N<> + 1), which is bounded above by C' /(N<>), where C' 
is a constant. Also, II/((- z)l < 2/N for N > l2zl. Thus, on IN 

Iilli __!!:__ (- z < N<>+ 1 ' 

where C" is a constant. The length of IN is 21rN, so 

Letting N __.... oo, we see that 

lim ~ 1 f(() d( = 0. N-..,oo 27r~ "''N (- Z 

Note that f is integrable on the real line, since a> 1. Now, let N __.... oo in (2.1.8) 
to see that the theorem is true. 0 

We now can prove the following theorem about analytic continuation of Borel 
transforms. 

THEOREM 2.1.9. There exists acrE M(JR) such 

f: JH[+ __.... C given by J(z) = (Bcr)(z) 

does not analytically continue to 

g: JH[_---+ C given by g(z) = (Bcr)(z), 

even though f is continuous on JH[+ U lR and g is continuous on JH[_ U R 
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PROOF. Let 
dCJ = ¢ dm 

where 
rjJ(x) = (x + i)-312

. 

In general, for complex z, define 

rjJ(z) = (z + i)-312
, 

where we use a branch of the square root function so that ¢ is analytic in JH[+. \Ve 
know that CJ E M(IR) because <PJJR. E L1 (IR). Then using (2.1.7), we can see that, for 
z E JH[+, 

(BCJ)(z) = ~ { ¢(x) dx = 2¢(z). 
7rt }JR. X- Z 

Let f = (BCJ)illl+ and g = (BCJ)IIll-· It is clear that f does not analytically continue 
from the upper half plane to a function analytic in the lower half plane, since rjJ(z) 
must have a branch cut somewhere in the lower half plane. But g is analytic in JH[_, 

since it is a Borel transform. Thus, f cannot be analytically continued to g. 0 

We know that Iimy-.o+(BCJ)(x + iy) exists for almost every x E IR, and even 
that if CJ .l m, that it equals limy-.o- (BCJ) (x + iy) almost everywhere, but we have 
not yet discussed the acutal value of the limit. We can prove the following (which 
we will do later in a slightly different setting, see Theorem 3.4.3). 

THEOREM 2.1.10. Suppose that 

where 

CXl 

CJ = LaiJ>-; 
j=l 

CXl 

LlaiJ < oo 
j=l 

and Aj E lR for all j E N. If xo E lR is such that 

f Jail < oo 
i=l Jxo- >.il 

then 
CXl 

lim (BCJ)(xo + iy) = L ~· 
y-.o+ j=l xo - i 

The previous theorem applies only at a specific point. We now give a global 
theorem. 

THEOREM 2.1.11. Suppose that 
CXl 

LlaiJ < 00 

j=l 

and that there exists a sequence {bn}~=l C (0, 1) such that 

(1) 
CXl 



32 2. THE BOREL TRANSFORr-1 

(2) 

f l~jl < 00. 

j=l J 

If Aj E lR for every j EN and 

then 

00 

a= Lai<l".xj 
j=l 

00 

lim (Ba)(x + iy) = L ___!!:j_ 
y-o+ x- >.. · 

j=l J 

for almost every x E JR. 

PROOF. By Theorem 2.1.10, it suffices to show that 

( ) ~ ianl 
g x = £...... lx _ >.. I < oo a.e. 

j=O n 

Note that 

Now, 

Loo la·l 
g(x) = --1

- > n 
lx-a·l 

j=l J 

only if for some j, 

But this implies that 

Uoo { lc·l } {x:g(x)>n}C x:lx-\-l>nbi, 
J=l J 

so 

m({x:g(x)>n}):=:;~m({x: lcil >nbi})=~~~= ~~~-
£...... lx->..1 L...n b nL... b· 
j=l J j=l J j=l J 

Now, as n ---+ oo we see that 

m({x: g(x) = oo}) :=:; 0. 

0 



CHAPTER 3 

The Laplace Transform 

3.1. The Laplace Transform 

Let ¢ : lR -> IC be a bounded measurable function. Recall that we define the 
Laplace transform of ¢, which we write as ..C[¢], as the function ..C[¢] : IC+ -> IC, 
where 

..C[¢](z) = l')Q ¢(t)e-ztdt. 

Recall that IC+ = {z E IC: Re(z) > 0} is the right half plane. We also write f<t> for 
..C[¢]. 

The Laplace transform has the following basic properties. 

THEOREM 3.1.1. (1) The Laplace transform is linear, i.e . 

..C[c1¢ + c20] = c1..C[¢] + c2..C[O] 

where ¢ and 0 are functions and c1 and c2 are scalars. 
(2) If¢ is bounded, then ..C[¢](z) exists for all z such that Re(z) > 0. 
(3) If¢ is bounded, ..C[¢] is analytic for Re z > 0. 

PROOF. The first assertion is obvious. For the second, notice that 

ll:>O q'>(z)e-ztdtl S IJ¢IIoc 1oo e- Rc(tz)dt = ll¢lloc 1oo e-t Rc(z)dt < 00 

as long as Re z > 0. The third can be shown to be true by differentiating under the 
integral by Leibniz's rule. 0 

Since almost periodic functions are continuous and bounded on [0, oo) the pre­
vious theorem implies that the Laplace transform of any almost periodic function 
exists for Re(z) > 0. 

We have the following result which relates Borel transforms to Laplace trans­
forms. Recall that for a E M(JR) we define the Fourier transform of a as the 
function (J : lR -> IC defined by 

8(x) = l eixtda(t). 

THEOREM 3.1.2. Let CJ E M(JR). Then 

PROOF. We have 

(..Ca)(z) = { da(~) = irr(Ba)( -iz). 
}R Z- tX 

(..Ca)(z) = 100 

e-zt l eixtda(x)dt = 100 h e-zteixtda(x)dt 

= r roo e-zteixtdtda(x) = r - 1
-. da(x), 

jRJo }R Z- lX 
33 
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where we applied Fubini's theorem, which is permissible since IJ is a finite measure. 
0 

THEOREM 3.1.3 (Uniqueness Theorem). Suppose that¢ is a bounded continu­
ous function on [0, oo) and that .C[¢] = 0. Then ¢ = 0. 

PROOF. Using the substitution w = e-t, we have 

.C[¢](z) = r= ¢(t)e-z1dt = {
1 

wz¢( -log(w)) dw = {
1 

w%- 1¢( -log(w))dw. 
Jo Jo w Jo 

The previous identity along with the linearity of the integral, says that 

fo
1 

P(w)¢(-logw)dw = 0 

for any polynomial P. Since the polynomials are uniformly dense in the set of 
continuous functions on [0, 1], we see that 

fo1 

g(w)¢(-logw)dw = 0 

for all g continuous on [0, 1]. It now follows that 

11 

[(¢(-logwWdw = 0 

and so 
¢(- log w) = 0 for all w > 0. 

0 

Thus, the Laplace transform is unique on the space of continuous bounded 
functions. 

EXAMPLE 3.1.4. If¢= eiAx then 

1 
fq,(z) = --,. 

Z-A 

DEFINITION 3.1.5. Analogous to fq,, we define Fq, : IC_ --+ IC by 

F.p(z) =-[~ ¢(t)e-z1dt, 

where Re(z) < 0. 

Note that if¢: lR--+ IC, then, letting x = -t we have 

Fq,(z) = jo ¢(t)e-z1dt =- r= ¢(-x)e-(-z)xdx = -f,p(-z) 
-oo Jo 

where 
'1/J(t) = ¢( -t) for all t E R 

The left Laplace transform has the same basic properties of the Laplace transform, 
as found in Theorems 3.1.1 and 3.1.3, with appropriate modification of domain. We 
also have the following: 

THEOREM 3.1.6. Let 1J E M(lR). Then for Re z < 0 

F3 (z) = { diJ(~) = irr(BiJ)(-iz). 
}R Z- tX 
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PROOF. We have 

Fa(z) =- ! 0 

e-zt { eixtda(:L')dt =-! 0 

{ e-zteixtda(x)dt 
-oo JR -oo JR 

=- r ! 0 

e-zteixtdt da(x) = r - 1
-.-da(x), 

}R -oo }R Z- lX 

where we applied Fubini's theorem, which is permissible since a is a finite measure. 

EXAl\IPLE 3.1.7. If ¢J = eih then 

1 
F¢(z) = -,. 

Z-A 

3.2. Bochner-Bohnenblust Continuation 

D 

\Ve now define Bochner-Bohnenblust continuation. In this section, we shall re­
prove a 1934 theorem of Bochner and Bohnenblust, thereby showing that I3ochner­
Bohnenblust continuation is compatible with analytic continuation. In the next sec­
tion, we shall define an extension of Bochner-Bohnenblust continuation and prove 
that it also is compatible with analytic continuation. 

DEFINITION 3.2.1. Let f : IC+ --> IC and F: IC_ --> IC be analytic. If there is an 
almost periodic function ¢J such that 

f(z) = fq,(z) for Re(z) > 0 and 

F(z) = Fq,(z) for Re(z) < 0 

then we say that f and Fare Bochner-Bohnenblust continuations of each other. 

Note that f and F can be Bochner-I3ohnenblust continuations of each other 
even if they are not analytic continuations of each other. For example, let a E M (IR) 
be defined by 

n=l 

where ,\1 , ,\2 , ... is an enumeration of the rationals. Let 

f =fa and F =Fa. 

Since 
00 

iT(x) = LTnei>."x, 
n=l 

iT is an almost periodic function and so f and F are I3ochner-I3ohnenhlust contin­
uations of each other. But by theorems 2.1.4 and 3.1.2, both f and F have infinite 
non-tangential limits on a dense set of i!R, so neither can be analytically continued 
across iR But, by theorems 2.1.5 and 3.1.2, f and F are pseudo-continuations of 
each other. 

We need the following theorem. 

THEOREl\1 3.2.2. Suppose that ¢J : IR+ --> IR is a measurable function, and that 

1</J(x)l <£for all x > 0. 

Then 
t 

lfq,(z)l < -R for all z E IC+· 
ez 
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PROOF. We have that 

I r= <jJ(t)e-z1dt/ :S r= icfi(t)e-z 1 idt :S r= Ee-Rc(z)tdt = ~· 
Jo lo }0 Re(-) 

0 

Note that a similar result holds for the left Laplace transform. 
\Ve are now almost ready to prove that Bochner-Bohnenblust continuation is 

compatible with analytic continuation. However, we first prove the following lemma. 
Recall that 11N . a¢(>.)= M(<Pe->.) = lim N ¢(t)e-'>.1dt. 

N-oo 0 

Also recall that 
a(¢)= {y: aq,(y) -j. 0} 

is called the spectrum of ¢ and is at most a countable set. 

LEMl\IA 3.2.3. For ally E IR, 

lim xfq,(x + iy) = lim xF9 (x + iy) = a9 (y). 
x-0+ 2:-0-

PROOF. We restrict ourselves to the proof of the lemma for f 9 ; the proof for 
F¢ is similar. Let E > 0 be given. Let 

K 

rPn(t) = 2)~n)eit>., 
k=l 

be one of the Fejer polynomials for ¢ such that 

l¢(x)- rPn(x)l < E for all x E JR. 

(See Theorem 1.4.25, and take b~n) = a(>.n)rkn) .) Here, [{ is the integer required 
by Theorem 1.4.25. Note that, every >.k is in the spectrum of¢. Now by Example 
3.1.4, 

K b(n) 

1
oo 

!¢(z) = L _k_.- + (f(t)- fn(t))e-(x+iy)tdt 
b=l z- z>.k 0 

and thus 

I 
K b(n) I 

lx!¢(X + iy)- a(y)i :S L ~( k ) - a(y) +xU·) 
k=! X+ l y-Ak X 

= 1;.. xbkn) - a(y)l + E, 
~ x + i(y- Ak) 

where we have used the triangle inequality and Theorem 3.2.2. 
Now, if y is not in the spectrum of¢, then a(y) = 0, and also as x --> 0+, we 

will have 

So in this case 

K E --,-X--,-- -4 0. 
k=! X+ i(y- Ak) 

lim sup lxfq,(x + iy)- a(y)i :S E. 
x-0+ 

Since E was arbitrary the limit must equal 0. 
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If y is in the spectrum of¢, then all terms of the sum approach 0 as x--> 0+, 
except the term for which )..k = y, this term will be equal to bk") for all x. Thus we 
have 

lim sup lxf<J>(x + iy)- a(y)l::; lbk")- a(y)l + €::; 2€, 
x-0+ 

for large enough choices of n, since ri") --> 1 as n --> oo, which means that bk") --> 

a(y) as n--> oo. So once again the limit must equal zero, since € was arbitrary. 0 

\Ve now show that Bochner-Bohnenblust continuation is compatible with an­
alytic continuation. This is a reformulation of the 193-1 theorem by Bochner and 
Bohnenblust[4]. 

THEOREM 3.2.4. Bochner-Bohnenblust continuation is compatible with analytic 
continuation. That is, if f<J> has an analytic continuation across some sub-arc of 
i!R, this analytic continuation must equal F¢-

PROOF. Suppose that f<J> has an analytic continuation across (ia, ib). Then we 
must have that a(y) = 0 for all y E (a, b), by the previous lemma. Now, we can 
approximate ¢ by 

I< 

¢n(t) = l::)i")eio .• , 
k=l 

where for each n we have l¢(x)- ¢n(x)l < 1/n for all x E JR. Now, let 

I< b(n) 
Rn(z) := L ~ = .C[¢n](z). 

k=l z - l k 

Then we have, for all z E ( -1, 1) x (a, b), 

c 1 . 
lf<J>(z)- Rn(z)l::;; I Re(z)l If Rez > 0, and 

c 1 . 
IF<J>(z)- Rn(z)l::; ; I Re(z)l If Re z < 0. 

by Theorem 3.2.2. The previous two inequalities gives us the fact that 

C' 
IRn(z)l ::; j;f 

in some box S whose intersection with the imaginary axis is a subset of (a, b), since 
both /q, and Fq, are bounded in some such box. Furthermore, each Rn(z) must 
be analytic in S because its set of singularities is a subset of iCJ(¢) (where CJ(¢) 
is the spectrum of¢ and we assume that CJ(¢) n (a, b) = 0). Thus, by a cla.~sical 
and technical theorem of Beurling (see [15, p. 95]), the Rn form a normal family 
on S and thus by Mantel's theorem ([7, p. 201]) there is a subsequence of these 
Rn converging uniformly on compact subsets of S to some analytic function. But 
by (3.3) this subsequence, if it converges uniformly at z must converge to f<t> if 
Re(z) > 0 and F<l> if Re(z) < 0. Thus the analytic continuation of /q, must be 
~- 0 
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3.3. An Extension of Bochner-Bohnenblust Continuation 

Recall the definition of the S 2 (i.e. S?) norm given in Definition 1.5.1. We wish 
to extend the definition of Bochner-Bohnenblust continuation using this norm. 

DEFINITION 3.3.1. Let f: c+ --> c and F : c_ --> c. If there is an 5 2-almost 
periodic function ¢> such that 

f(z) = Jq,(z) for Re(z) > 0 and 

F(z) = Fq,(z) for Re(z) < 0 

then we say that f and F are extended-Bochner-Bohnenblust continuations of each 
other. 

We have the following theorem, analogous to Theorem 3.2.2. 

THEOREI\1 3.3.2. Suppose that¢> is a function with S 2 norm less than 00. Then 
there is a constant C independent of¢> such that, for Re(z) > 0, 

(3.3.3) l£[¢](z)l < Tcfzf ifO :S e z :S 1 
{ 

211<1>11 , R ( ) 

11¢11s> iJRe(z) > 1 

PROOF. We have, letting x = Re(z), 

l£[¢j(z)l :S (')(") lif>(t)e-ztl dt = f {N+
1 

lif>(t)e-ztl cit 
lo N=OjN 

:S 'fn [1:+1 l¢(t)12 dt] 1/2 [LN+1 le-ztl2 dt] 1/2 

by the Cauchy-Schwarz inequality. Now, using the fact that e-t is a decreasing 
function we see that 

[1:+1 le-ztl2] 1/2 dt :S ((e-N)2)1/2 =e-N. 

Also, from the definition of the S 2 norm we have that 

[ 

N+1 ] 1/2 L l¢(tWdt :S ll¢11s>. 

Thus, we find 

oo [ N+1 ] 1/2 [ N+1 ] 1/2 
l£[¢](z)l :S ~0 L l¢(t)l2 dt L le-•tl 2 dt 

:S ll¢11s> f e-Nx = 111~1~s~x 
(3.3.4) 

N=O 

Now, for 0 :S x :S 1, we have that 

so 

1- e-x>~ 
- 2' 
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and thus Inequality (3.3.4) implies that 

l£[¢](z)l::; 2llci>lls, for 0::; x::; 1. 
X 

Also, 
1- e-x < 1 for all x, 

so Inequality (3.3.4) implies that 

1£[¢](z)l :S: llc/>lls2 for all x 2: 0. 

This proves the result. 

Note that, once again, a similar result holds for Fq,. 

0 

To prove extended-Bochner-Bohnenblust continuation is compatible with ana­
lytic continuation, we need the following lemma. It is analogous to Lemma 3.2.3. 

LEMMA 3.3.5. Let¢ be an 5 2 -almost periodic function. Then 

lim xfq,(x + iy) = lim xFq,(x + iy) = aq,(y). 
x-0+ x-0-

PROOF. We restrict ourselves to the proof of the lemma for fq,; the proof for 
Fq, is similar. Let E > 0 be given. Let 

K 

cf>n(t) = Lbk")eit>., 

k=l 

be one of the Fejer polynomials for ¢ that is within E/2 of it in the S 2 norm. Thus, 
every Ak is in the spectrum of¢. Now we have 

K b(n) 

1
oo 

fq,(s) = ~ _k __ - + (J(t)- fn(t))e-(x+iy)tdt. 
L s -t>.k 0 k=l 

Note the 8 2 norm of f(t)- fn(t) is less than E/2, so by Theorem 3.3.2 we have that 

roo (J(t)- fn(t))e-z 1dt < ~-lo x 
for sufficiently small x. Thus, by applying the triangle inequality we see that, for 
sufficiently small x, 

I 
K xb(n) I (CE) 

lxfq,(x + iy)- a(y)l :S: L "( k ).. ) - a(y) + x -
k=l X+ l y- k X 

=It ~t~n) ).. ) -a(y)l +E. 
k=l X+ l y- k 

The rest of the proof is as in Lemma 3.2.3. 
0 

Now that we have Lemma 3.3.5 we have the following important theorem. It 
is analogous to 3.2.4. 

THEOREM 3.3.6. Extended-Bochner-Bohnenblust continuation is compatible 
with analytic continuation. That is, if fq, has an analytic continuation across some 
sub-arc of iiR, this analytic continuation must equal Fq,. 
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PROOF. Suppose that f<J> has an analytic continuation across (ia, ib). Then we 
must have that a(y) = 0 for ally E (a, b), by the lemma. Now, we can approximate 
¢>by 

[{ 

¢>n(t) = :L:>~n)eit>,•, 
k=l 

where for each n we have II¢- ¢nils> < 1/n. Now, let 

[{ b(n) 

Rn(z) := L ~ = £[¢>,.](z). 
z- l/\k 

k=l 

Then we have 
c 1 

lf<J>(z)- R,.(z)l ~-:;:;I Re(z)l for 0 < Re(z) ~ 1 

c 1 
IF<J>(z)- Rn(z)l ~ -:;:;I Re(z)l for -1 ~ Re(z) < 0 

by Theorem 3.3.2. The previous two inequalities gives us the fact that 

C' 
IRn(z)l ~ j;f for all z E S 

where Sis some box whose intersection with the imaginary axis is a subset of (a, b), 
since both f<J> and F<l> are bounded in some such box. The rest of the proof goes 
like the proof of Theorem 3.2.4. D 

3.4. Some Specific Results about Non-tangential Limits 

We now state some results about specific values of non-tangential limits of 
Laplace transforms. The first shows that the Laplace transform of an almost peri­
odic function ¢> may not have a non-tangential limit at a point iy even if y 't u( ¢>). 
Recall that u(¢>) denotes the spectrum of¢>, (sec Definition 1.4.19). 

THEOREM 3.4.1. Let an and An be sequences of real numbers such that each 
an> 0, 

and 

00 

I
. an 
1msup~ = oo. 
n-oo nAn 

Then if¢> is the almost periodic function defined by 
00 

¢>(x) = Laiei>.,x, 
j=l 

The Laplace transform fq, does not have a non-tangential limit at 0. 

PROOF. Define 

Now, note that if Re(z) > 0, 

Re (-1-) = Rc(z) > 0. 
z - i>. lz - i>-.1 2 
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Thus, 

Re(J.p,.(z)) > Re(f¢,..(z)) 

for n > m and for all z E IC+. Now let z .. = 1/n. Then 

Re(f¢(z .. )) > (Re/¢,.(z .. )) ~ >.; a~~~n2 
so we have that 

limsupRe(f¢(zn)) ~ limsup a
2
" 

n-oo n-oo Ann 

So, for example if we choose 
1 

an= 2" 

and 

we will have 

I. an r· 2" 1m sup~= 1m sup-= oo. 
n-+CXl 1\nn n-+oo n 

So then 
limsupRe(f.p(zn)) = oo. 

a,.n 

0 

Thus, in this case I¢ will not have a non-tangential limit at zero, even though 0 is 
not in the spectrum of ¢. 

We will now discuss conditions under which we can actually compute certain 
boundary values of Laplace transforms. 

LEJ\11\IA 3.4.2. Let { ¢ .. } be a sequence of bounded continuous functions on n~+ = 
[0, oo) which converge uniformly to a bounded function ¢. Then 

l¢n --+ f.p 

uniformly on compact subsets of IC+. 

Now, for any z E IC+, we can use the lemma to conclude that, for any almost 
periodic function ¢, 

where the ¢ .. are almost periodic and approach ¢ uniformly. 

THEOREM 3.4.3. Suppose that 

where 

If Yo E R is such that 

CXl 

¢(x) = L ajei>.,x 

j=l 
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then 

PROOF. Define 

3. THE LAPLACE TRANSFOR~I 

00 

lim U<t>)(x + iyo) = L . aj. . 
x-o+ . zyo - z.X1· ;=1 

n 

rPn(x) = Laiei>.1 x. 

j=1 

Now, applying the Lemma, we have for all z E IC+ that 

~ a· 
/¢(z) = lim f<t>..(z) = L ~-

n-oo j=l Z - 'lAj 

So, letting z = x + iy, we have 

So if 

f[y:\[ <oo 
n=1 J 

then 

1/.p(z)l = f z ~ii.X· < f lv :i.x.[ < oo. 
j=1 1 n=1 J 

for all z E IC+. Now we apply the dominated convergence theorem to sec that 
00 00 00 . 

lim f.p(x + iy) = lim "'"""' _ai . ="'"""' lim _ai . - "'"""'---'!:.:!:.L 
x-o+ x-o+ L X + zy - z.X1· L x-o+ X + zy - z.X1 - L A - y · 

;=1 ;=1 j=1 J 

We now give a global theorem, analogous to Theorem 2.1.11 

THEOREM 3.4.4. Suppose that 
00 

Llail < oo 
j=1 

and that there exists a sequence {bn}~= 1 C (0, 1) such that 

(1) 
00 

(2) 

f I~JI < oo. 
j=1 J 

Define ¢ to be the almost periodic function 
00 

¢ = Laiei>.Jx. 
j=1 

0 
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Then 

for almost every x E JR. 

~ a lim (J¢)(x + iy) = ~ ~ 
x-o+ j=l y - l j 



CHAPTER 4 

The Big Question 

4.1. The Big Question 

For many almost periodic functions ¢, f<J> and F¢ are pseudo-continuations of 
each other. 

EXAMPLE 4.1.1. If 

where 

DO 

¢ "' :L:: anei:O.nx 
n=l 

DO 

L iani < oo, 
n=l 

then f<J> and F¢ are pseudo-continuations of each other. 
This is true since the condition 

DO 

L ian I< oo, 
n=l 

says that the measure 
DO 

!7 = Lan8:..,. 
n=l 

is a finite measure which is singular with respect to m, and since ¢ = a. Thus, 
Theorem 3.1.2 and Corollary 2.1.6 imply that f<J> and F¢ are pseudo-continuations 
of each other. 

The following question now arises. 

QUESTION 4.1.2. Is every Bochner-Bohnenblust continuation also a pseudo­
continuation? In other words, for every almost periodic function ¢, is it the case 
that fcf> and F¢ are pseudo-continuations of each other. 

This question is the main one to which all results of this thesis relate. If 
every Bochner-Bohnenblust continuation is a pseudo-continuation, then Bochncr­
Bohnenblust continuation is not really a new type of continuation at all. How­
ever, if some almost periodic function ¢exists so that f<J> and F¢ are not pseudo­
continuations of each other, then Bochner-Bohncnblust continuation is a distinct 
type of continuation from pseudo-continuation. 

Intuitively, one would expect that there is some almost periodic function ¢ for 
which f<J> and F¢ are not pseudo-continuations of each other. There are two possible 
ways to show this. 

(1) Show that for some ¢, f<P has non-existent non-tangential limits on a set 
of positive measure. 

45 
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(2) Show that for some ¢, even though both !¢ and F¢ may have non­
tangential limits almost everywhere, their non-tangential limits will be 
unequal on a set of positive measure. 

Unfortunately, both approaches are more difficult then they might seem, even for 
extended-Bochner-Bohnenbl ust continuation. 
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