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Abstract

Relative difference sets (RDS) have been studied at great lengths in
Abelian groups. RDSs in 2-groups have connections to constructions of
divisible designs, which in turn are in correspondence with binary codes
with good error correcting properties. In particular, a recent paper of
Galati exhibited a (4,4,4,1)-RDS in a non-Abelian group relative to a
normal but not central subgroup, the first known example of such an RDS.
We study RDS with this anomaly as our motivation. In our investigations,
we found that there is a correspondence between the existence of relative
difference sets and the existence of short exact sequences of groups. We
appeal to group cohomology to study these short exact sequences and to
gain insight into the existence of these RDS.

1 Introduction

In a finite multiplicative group G of order g = mn, we call a k-element subset
D a (m,n, k, A)-relative difference set in G relative to a normal subgroup N
of order n if the multiset of formal differences DD~! = {dldz_ Yidy,do € D}
contains each nonidentity element of G\N exactly A times and intersects with
N only in the identity. N is often referred to as the forbidden subgroup, as it
is avoided by DD\ {1}.

Example 1.1. In the group Zs, the set D = {0, 1,3} isa (4, 2, 3, 1)-RDS relative
to the normal subgroup {0,4}. The verification of this is a straightforward
computation of differences. Note, however, that we would write this group
additively and compute DD~! = {d; — d» : d1,d2 € D}.

Example 1.2. G is always itself a (|G|, 1, |G|, |G|)-RDS relative to the trivial
subgroup.



Relative difference sets are of interest to us because of their connections to
geometry and coding theory. In particular, RDSs can be used to construct divis-
ible designs and, in certain cases, projective planes. These combinatorial (and
algebraic and geometric) constructs have deep ties to coding theory - they give
rise to constructions of codes. Often, these codes have a large minimum distance
(enabling them to correct large numbers of errors) because of the connection to
geometry. Additionally, the associated geometry often is used to design efficient
decoding algorithms. Thus, RDSs have an indirect practical application.

We consider the A = 1 case for several reasons. First, it is in a sense the
limiting case. That is, the existence of a (m,n,k,A)-RDS in G relative to N
guarantees the existence of a (m, 1, k, An)-RDS in G/N. In general, if there is
a U < N < G such that U 9 G, then we can construct a (m, %, k,uA)-RDS in
the factor group G/U. So, in some cases, we can construct RDS with larger A
from those with smaller A. In addition, as A gets larger, there is more known
about these RDS, and there is relatively little known about RDS with A\ < /m.
The A = 1 case is also associated to projective planes, which gives us a nice
geometry connection. In these ways, it is natural for us to stick to the A =1
case.

This paper traces our year-long study of RDS. We began the year looking at
Dembowski and Piper’s theorem classifying projective planes with quasiregular
collineation groups. We saw that one of the cases corresponded to a quasiregular
collineation group with an associated (2%,2%,2%,1)-RDS. We then moved on
to generalize this geometric idea in a more algebraic setting, semifields. While
studying semifields and their connections to RDS, we also began reading a paper
of Horadam and Perera. We were able to connect ideas from the two studies,
noting that the cohomology approach of Horadam and Perera was in fact a
generalization of the semifield case. After studying the methods and theorems
of Horadam and Perera, we looked at an example of an RDS, due to Flannery,
in a nonabelian group relative to a normal but not central subgroup. Horadam
and Perera had only treated the case of central forbidden subgroups. This
brought us to the end of our year, when we started to delve more deeply into
the cohomology, studying the group extension problem for cyclic extensions.

2 The Beginning: Projective Planes, Collineation
Groups, and Semifields

This section consists of two major parts. First we consider projective planes
and collineation groups. We'll see that quasiregular collineation groups of pro-
jective planes correspond to RDS. Next we introduce semifields and their use
in constructing projective planes. We can use the properties of a semifield to
prove existence of an RDS in a group constructed on the set S2, where S is a
semifield.
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Figure 1: The Fano Plane can be constructed from Z3

2.1 Projective planes and quasiregular collineation groups
We begin with some basic definitions and examples.

Definition. A projective plane consists of a set of points, a set of lines, and an
incidence relation determining when a point and line are incident, which satisfy:

1. there is exactly one line incident with each pair of points,
2. each pair of lines intersects in exactly one point, and
3. there exist four points, no three of which are collinear (avoids trivial case).

We will be dealing with finite projective planes. That is, our lines have a
finite number of points. Therefore, it may be helpful to note that “points” and
“lines” are not “points” and “lines” in the usual sense. Rather, points are any
structure we so choose, and lines can be described as lists of the points that
they contain.

Example 2.1. Take the points of our construct to be the one-dimensional sub-
spaces of the vectorspace V = Z3. They are then ((001)), ((010)), ((100)),
((011)), ((101)), ((110)), ((111)). Lines are then the two-dimensional sub-
spaces of V. That is, Ly = {((010),(100))}, Lo = {{(011),(100))}, Ls =
{((101), (100)}}, Lq = {((011), (001))}, Ls = {((111), (101))}, Le = {{(011), (101))},
and L; = {{(111), (001))}. Figure 1 illustrates this configuration.

Notice that this design does, in fact, satisfy the conditions for it to be a
projective plane. We can now talk about its collineation group.

Definition. A collineation is a permutation of the points of a projective plane
sending lines to lines. A collineation group is a collection of collineations that
forms a group under composition. The group is called regular if the group is
sharply transitive on the points; that is, if given 2 points P and @ of the plane,
there exists a unique collineation in the group that sends P to Q.



More generally, we can talk about automorphism groups of designs as groups
of permutations of the points of the design that send blocks to blocks, with
regularity of the group defined as the existence of a unique autmorphism sending
any point P to any other point Q. Regular automorphism groups of symmetric
designs contain RDS relative to the trivial subgroup. These are not of particular
interest to us, but the proof is simple and illustrates the general principle. For
this, we need one more definition.

Definition. The development of an RDS is the set of translates of the RDS.
That is, if D C G is an RDS, then (written multiplicatively) {Dg = {dg : d € D}
is the development of D.

Notice that each element of the development produces the same multiset of
differences, and thus is an RDS in itself. This is trivial, as

(d19)(d2g)™" = (dig)(97"d3 ") = ey
This brings us to our first theorem.

Theorem 2.1. The existence of a symmetric (g, k,\) design with a regular au-
tomorphism group G is equivalent to the existence of a relative (g = |G|, 1,k, X)
difference set in G relative to the identity subgroup.

Proof. Given a group G with such a difference set D, the development of the
RDS is the line set of the symmetric design, and the points are the group ele-
ments (in a symmetric design, any pair of points determines A lines - a projective
plane is a symmetric design with A = 1). We claim that given any two group
elements (points) g and h, there exist exactly X blocks containing g and h. They
are as follows. Consider the RDS. There are A pairs of points with difference
gh~1. Choose one such pair (a,b) C D so that ab~! = gh~. Note that in any
such pair, we can determine b uniquely by fixing a. Then the translate (line)
D(a=1g) contains both

1. a(a™lg) = g and
2. bla~'g) = (bat)g = (ab~") g = (gh™) g = (hg™)g = h.

Since a~1g is unique to our choice of a, our A pairs of points sharing a difference
give rise to A different translates (now viewed as lines) of D containing both g
and h. Thus we have a symmetric design. It is also clear that G acts regularly
on this design by the group operation.

On the other hand, if we start with the symmetric design and regular auto-
morphism group, then choose a point z in the design. Associate the point gz
(remember the group acts on the design) with the group element g. Now we
claim that any line of the design is a difference set in G. There are A distinct
lines containing any pair of points. Because the mapping is regular, we can
treat each line as a translate of any other line. Choose two group elements g
and h. Since ) lines contain both g and h, and since each line of the design
is a different translate of a given line, we see that there are A pairs of points

19 € G}



on each line whose difference is gh™! as follows. Take the lines £; (1 < i < \)
containing g and h. Then for any line M we can write M = L;a; for distinct
a; € G. The (distinct) elements ga; € M each have a corresponding ha; € M
such that ga;(ha;)~! = gh~* € MM~1, Since each element of G\ {1} appears A
times in MM ™1, we see that each line of the design is itself a (trivially relative)
difference set. 0O

Having an understanding of regular collineation groups, we can now move
onto the so-called quasiregular collineation group acting on a projective plane.

Definition. A group I' acts quasiregularly on a projective plane if for each
v €I, p a point in the plane, and L a line in the plane:

1. py = p implies that zy = z for all z € pI', and
2. L~y = L implies that X+ = X for all X € LT

Therefore a quasiregular collineation group fixes either all or none of the
points (resp. lines) in a given orbit.

For the simplest example of such a group, we look to the smallest example of
a projective plane: the Fano plane. The following argument is described in [1].
In Figure 1, we indexed the points and lines as the one- and two-dimensional
subspaces of the three-dimensional vectorspace over Z,. Based on the classifi-
cation of Dembowski and Piper, we select one point as “the point at infinity”.
Similarly, we will choose one line (which must contain the point at infinity) to
be “the line at infinity”. We will denote these by 0o and L, respectively, and
we will let {(001)) = oo and L7 = L. The classification says that we should
be looking for collineations that fix the special point at infinity and the line at
infinity (though not necessarily the additional points on that line), and that the
collineation should have 3 point orbits. Since there are 4 points in the projective
plane that are not on Ly, there should be 4 elements of our group. That is, we
are looking for 4 collineations. Because the mappings are collineations (taking
lines to lines) and because we must fix the line and point at infinity, it turns
out that the image of any point off of Ly, say ((100)), determines the entire
mapping as follows:

1. {(100)) — ((100)). This is the identity mapping, where each point and
line maps to itself. We denote this mapping I.

2. {(100)) — {(101)). We see that ((101)) — ((100)), since co must be fixed
and lines must map to lines. Then since we want the collineation to be
quasiregular, it can’t fix anything in this point orbit (since there’s already
something that’s not fixed). Hence ((010)) and ((011)) map to each other.
All the points on L, are fixed, and this is our entire map. We call it ¢;.

3. ((100)) + ((011)). By fixing oo, we see that ((101)) — ((010)). To get 3
point orbits, we must send ((010)) +— ((100)) and ((011)) + ((101)). This
swaps the two non-co points on Lo, and we call this map ¢3.



4. ((100)) +— ((010)). This map takes ((100)) — ((010))— ((101)) —
((011))— ((100)). As above, this map swaps the two non-co points on
Loo. We call this ¢3.

Under composition, it is clear that ¢3 does not square to the identity. Hence
this group must be isomorphic to Z4s. Indeed, the set {I,¢s} in this group
is a (2,2,2,1)-RDS relative to {I, ¢1}, the normal subgroup generated by the
element ¢ of order 2. Looking, then, at Z4, we see (as we expect) that the
set {0,1} is a (2,2,2,1)-RDS relative to the normal subgroup {0,2}. In fact,
we can do this in general. If we take a point from the large point orbit, say
p = {(100)), and a line from the large line orbit, say Lo, and we define the set
D={g€G:p9 € Ly} ={I,¢2}, we can see that D is a (2,2,2,1)-RDS relative
to the normal subgroup (¢1). It’s clear that this process works in this case, but
it also works in general. Take a point from the large point orbit and a line from
the large line orbit, and we can construct our RDS D as above [1].

Conversely, we can always construct a projective plane from a group G with
a (29,2%,2%,1)-RDS. There are 22¢ translates of the RDS, and 22 cosets of the
forbidden subgroup, which we treat as lines. Treating the group elements as
points, we get a structure with 222 points and 22 + 2 lines. Nonparallel lines
intersect in one point. This is an affine plane of order 2*. We can extend this
by adding a point at infinity for each parallel class of lines (2% of these come
from translates of the RDS, and 1 of these comes from the set of cosets). We’d
like any 2 of these points to determine a line as well, so we add a line at infinity
containing all of the points at infinity. This new structure has 22¢ + 2% + 1
lines on as many points. Nonparallel lines intersect in one point as follows.
Each translate of the RDS contains at most 1 element from each coset of the
forbidden subgroup, since differences of elements in the same coset are in the
forbidden subgroup. Moreover, there are 2% cosets of the forbidden subgroup
and 2% elements of each translate of the RDS, so each translate must contain
exactly 1 element from each coset. In other words, RDS translates and cosets
(viewed as lines) intersect in exactly one point. Cosets are parallel to each
other, as they do not share elements. Distinct translates of an RDS intersect in
at most one point as well. Take, for instance, an RDS D = {d1,ds, ...,d2+ } and
a translate Da. If |[D N Da| > 1, then there exist d;,d; € D such that d;a = di
and dja = d; for some (k,l) # (¢,5). But then drd;t = (dia)(dja)~t = didj_],
which contradicts A = 1.

Thus the constructed set is a projective plane. This plane has a quasiregular
collineation group associated with it, defined by translation by G on the affine
plane (points of which are indexed by elements of G).

We summarize these results with a theorem.

Theorem 2.2. There exists a (2%,2%,2%,1)-RDS in a group G of order 22*
if and only if G is a quasireqular collineation group with & point orbits of a
projective plane of order 2°.



2.2 Semifields

In some cases, as above, the geometry can help us to construct an RDS. There
is a more general method for constructing these projective planes which involves
an algebraic construct known as a semifield.

Definition. A semifield is a set S along with two binary operations, + and -,
such that

1. (S,+) is an abelian group with identity 0.
2.a-(b+c)=a-b+a-cand (a+b)-c=a-c+b-cforalla,bceS.
3. There is a multiplicative identity 1.

4. There are no zero divisors. That is, if a-b =0, eithera=00r b=0.

Therefore a semifield is much like an integral domain, only semifields do
not necessarily have associativity or commutativity of multiplication. We call
a semifield proper if it is not itself a field. There are proper semifields of order
2% for k > 4. A paper of Knuth [8] showed that semifields can be used to
construct projective planes in much the same way as fields. That is, we view 1
dimensional subspaces of the 3 dimensional vectorspace (3 copies of the abelian
group underlying the semifield) as points, and we view 2 dimensional subspaces
as lines. Since semifields can construct projective planes, and since we know
that certain quasiregular collineation groups of projective planes contain RDSs,
we can relate semifields to certain RDSs as follows. ,

Let S be a finite semifield. We create the group G on the set S2 under the
following operation:

(a,b)(c,d) =(a+c,b+d+a-c).

This group turns out to be isomorphic to the quasiregular collineation group of
the projective plane, but we can show more directly (avoiding planes altogether)
that this group has an RDS.

Theorem 2.3. Let S be a semifield of order |S| = 22 for some a, where the un-
derlying abelian group has exponent 2. Then in the group G on the set S? (under
the above operation), D = {(g,0) : g € S} is a (|S|,]S],|S|,1)-RDS relative to
the normal subgroup N = {(0,z) : z € S}.

Proof. We note first that the group identity is (0,0) and that (a,b)™! = (a,a®+
b) for any a, b € S. Take (a,0), (b,0), (c,0), and (d,0) € D with (a,b) # (c,d),
and assume that (a, 0)(b,0)~! = (c,0)(d,0)~!. Substituting for the inverses and
performing the group operation yields (a+b,5%+a-b) = (c+d,d?+c-d), giving
usa+b=c+dand b?+a-b=d?+c-d. Substituting the first into the second
yields (a+b)-b=(a+b)-d, or

(a-+b)(b—d) =0.



Since, in our case, the group underlying the semifield is of exponent 2, and since
semifields by definition have no zero divisors, either a = b or b = d. Of course,
if a = b then (a,0)(b,0)~! is the identity. This accounts for |S| copies of the
identity in DD~1. Otherwise, if b = d, thena = ¢ (since a+b = c+d from above),
whence no two pairs of distinct elements of D produce the same difference. Since
there are | S|>—|S| distinct ordered pairs of elements in D (and |S|2—|S| elements
in the set S?\V), all that remains is to show that DD~! avoids N and that
N is normal. If (0,z) = (a,0)(b,0)~ = (a,0)(b,5%) = (a + b,b%> + a - b), then
a = b, which we already noted yields the identity as the difference. Moreover,
(0,z) € Z(G) for all z € S, so N 4 G, and thus G contains a (|S],]S|,|5], 1)
RDS (namely D) relative to N.

To recap, we know how to construct RDS from projective planes - we find a
quasiregular collineation group of the plane (there are usually several), and in it
sits an RDS. Finding these groups, in general, is not easy. So, we appeal to the
work of Knuth (8], who says that semifields can be used to construct projective
planes, and these semifields provide a simple way to define the quasiregular
collineation group. This construction, though, takes a bit of doing. If we are
only concerned about finding the RDS, Theorem 2.3 allows us to do that.

So, we seem to have tied up the business of associating projective planes to
RDS. But, we haven’t yet considered the case of an RDS appearing in a group
that is not coming from a semifield construction. We look for a generalization
in the following sections.

3 Group cohomology

To decide if a certain group G has an RDS with certain parameters, we may
simply compute all of the appropriately sized normal subgroups of G and per-
form an exhaustive search over the subsets of G (potential D’s). Of course,
as the group size gets large, this becomes infeasible. In addition, it is difficult
even to enumerate all of the groups of order 32 (there are 51), much less those
of order 64 (there are 267) or 128 (there are 2328). This makes it essentially
unfeasible to search for something as small as even (16, 16, 16, 1)-RDS using this
approach. This seems to be the wrong way to approach the problem.

We try another method. If G has an RDS, then the RDS must be relative
to something! There must be a normal subgroup N and a quotient group
H = G/N. So, another approach to this problem is to look at pairs (N, H)
and look at properties of groups G that admit N as a normal subgroup with
quotient H. As it turns out, this problem has a name (aptly, the group extension
problem) and has been studied extensively.

3.1 Group extensions and factor sets

A short exact sequence of groups is a sequence as follows:

1-NHGL H-1,



where ¢ and 7 are homomorphisms, ¢ is injective, 7 is surjective, and image(t) =
ker(w). Here we will say that G is an extension of N by H (books vary here -
some refer to G as extending H by N). If the elements of H are 1, u, v, ..., w,
then we will denote the cosets of N in G by IN, 4N, oN, ..., wN. Similarly, we
will choose a set of coset representatives 1, @, o, ..., @ such that (@) = u for
each u € H. We'll call our choice of coset representatives a transversal, given
by the mapping 7 : H — G, where 7(h) = h.

Since N is normal in G, the mapping @ — %~ 'a# is an automorphism of N
(note that although @ € G, @~!N@ = N). Moreover, since u € H, this defines
a group action of H on N, namely

u

a* = u"lad. (1)

Since, in general, it is not the case that 45 = Wwv, we define a mapping 9 :
H x H — N that satisfies the equation

v = woy(u, v). (2)

The set of elements that can be written as 1 (u,v) for some u, v € H is called a
factor set, since it, in effect, determines products of inverse images of elements
of the factor group. Since applying the homomorphism 7 to equation (2) gives
that m(¢(u,v)) =1, it is apparent that 1(u,v) € N. Moreover, if we adopt the
convention that 1 = 1 we see from Equation (2) that ¥(u,1) = 1 = ¥(1,v) for
all u, v € H. We'll call a factor set normalized if it satisfies this condition.

To define G, we need only the following:

1. The normal subgroup N.

2. The factor group H.

3. The automorphisms a 2 a* of N.

4. The factor set ¥(u,v) € N; u, v € H.

Hall then presents necessary and sufficient conditions for G to exist with
normal subgroup N and factor group H & G/N.

Theorem 3.1. There exists a group G with normal subgroup N and factor
group H if and only if there exists ¢ : H x H — N such that for alla € N, u,
v, w € H,

1. (@*)? = P(u,v)" 1 (a®)¢(u,v), and
2. P(uv, w)p(u, v)* = P(u, vw)P(v, w).

Proof. (=) Assume such a G exists. Define 1 as above, so that 40 = T (u,v)
for all u, v € H. Then taking a € N, we see that

(a*)¥ = P(u,v)"H(a™)Y(u,v),



by the definition of 1. In addition, because associativity of G gives that (a7)w =
@(7w), we can discern the following equality. Using the left hand side, we get:

(W)w = (To(u,v))D
= (w(ww)(u, v))D
= (ww(@™P(u,v)w))

= (www)P(u,v)”
wowy(uv, w)Y(u, v)v.

Using the right hand side, we get:

w(vw) = wEwP(v,w))

= wvwy(u, vw)y(v, w).
Equating the two, and cancelling the wvw, we’re left with

P(wv, w)(u, v)* = P(u, vw)P(v, w).

(<=) On the other hand, assume we have automorphisms and a factor set sat-
isfying the above. Consider the symbols {@a : u € H,a € N}. We'll define a
binary operation (product) on these symbols given by

da - Ub = ToY(u, v)a’b.

We'll call this system of symbols with a binary operation G. G is associative as
follows:

(Ga-0b)-we = (Toy(u,v)a’d)- wc

wowy (uv, w)P(u, v)“{(a”)*]6¥e

wow (uv, w)(u, v)¥ [Y(v, w) " a’w)y(v, w)]b¥e
W[y (uv, w)h(u, v) (v, w) (e w)p(v, w)b*c
wow [y (u, vw)](a"w) (v, w)b*c

ta - 7wy (v, w)b¥c

I

1l

@a - (ob - wc).

While it’s not necessary to assume that 9(1,1) = 1, it does make our com-
putations easier. We’ll assume this, with the understanding that we may use
the equality 1 = I¢(1,1)~! (from 11 = 1¢(1,1)) instead, and that our result
is in fact the same. If we take u = v = 1 in (a%)* = ¥(u,v)"1a*¥9(u,v), we
get that (a')! = a'. Since a! = c is arbitrary, we have ¢! = ¢ for all c € N.
Using u = v = 1 appropriately in ¢¥(uv, w)¢(u,v)¥ = ¥(u, vw)yp(v,w) yields
1 = ¥(1,w), and if we instead use v = w = 1, we get that 1(u,1) = 1, and these
hold for all u,w € H. These equalities yield 11 to be a right and left identity,
as 11 - we = wy(1,w)c = we, and @a - 11 = (u,1)a = @a. Moreover, since
a 2 a* is an automorphism of N, then there is an element d € N such that

10



d* = ¢(w!,w) ¢! for any given ¢ € N and w € H. So for arbitrary wc in
G, we have that w=1d - we = 1y(w™1,w)d¥c = 11, the identity. The system is
clearly closed under the binary operation, and with associativity, identity, and
left inverses, we have that G is a group.

The mapping ¢ : 2a — u is a homomorphism of G onto H, where the kernel
consists of the elements la. Since Ia-1b = I(1,1)ab = 1lab, the mapping
la — a is an isomorphism between the kernel of ¢ and N. Hence N is normal
in G, with factor group H. |

For reasons we will see shortly, we will be focusing on central extensions,
those where ¥(u,v) € Z(G) for all u, v € H. Note that this does not imply
that N < Z(G), only that the factor set (contained in N) is central. This
reduces our two conditions from Theorem 3.1 to only the second. That is,

P(uv, w)P(u, v)* = P(u, vw)p(v, w).

3.2 Cohomological foundations

As we stated above, we have H acting on N by conjugation. We can view
this action as a left or right group action on N. If we instead let H act on
both sides of N N Z(G), an abelian group, we can view this group as a double
H-module, a group that admits H as a group of operators on each side. The
group action must be well-defined and obey distributive and associative laws.
Hall [5] remarks that often in double sided modules, the group action on one
side is often trivial. In our case, that would mean h-x =z forallh€ H and z
in the factor set, where here we denote the left group action by (-). So we will
ignore the action of H on the left. This way we can use H as we have been, but
we get to make use of some module theory.

Definition. For a double H-module N, we define C™(N, H) to be the additive
group of functions f : H® — N such that f(z1,22,...,zn) = 0 if z; is the identity
element of H for any i. We will call such functions n-dimensional cochains.

There is an operator d, called the coboundary operator that maps C™ homo-
morphically into C"*+1. For each f € C™, we have:

(6f)($0,$1,272,...,$n) = g -f(xl,...,;z:n)
(—l)n_lf(-TO, -‘-xn—l) *Tn

n
Z(—'l)tf(.'lfo, L1y eeey Tt 1Lty Ttt1y 00y ZL‘n)
t=1

+

+

Hall [5] proves the following theorem, to which we will appeal soon:
Theorem 3.2. If f € C", then §2f =0.

Definition. If f € C™ and §f = 0, then f is an n-dimensional cocycle. More-
over, if there exists a g in C™~! such that g = f (that is, if f is in the range of
the coboundary operator), then we say that f is a coboundary.
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Note here that every coboundary is indeed a cocycle by Theorem 3.2 above.
The cocycles comprise the kernel of the coboundary operator (recall that §
is a homomorphism) from C™ into C™*!. Hence the cocycles are a normal
subgroup of the cochains, and we write this set as Z™(N, H). Moreover, the
coboundaries, B*(N, H) are normal in the cocycles, and their quotient group,
Z"(N,H)/B™(N,H) is called the n'* cohomology group of the double H-
module N, and it is denoted H™(N, H). Lastly, we'll call two cochains co-
homologous if their difference is a coboundary.

So what does this all mean to us? Let’s go back and consider normalized
factor sets. They satisfy ¥(u,1) =1 = ¢(1,v). It seems that v : H x H - N
satisfies the conditions of being a 2-dimensional cochain. Now, the 2-dimensional
coboundary operator looks like:

(6f)(@o,T1,22) = o - f(z1,22) — f(w0,71) - T2 — f(T0T1,T2) + f(Z0, T172)-

Zg, 1, and x2 are in H, so let’s call them u, v, and w respectively. Now noting
that we are ignoring left group actions, the coboundary equation becomes:

(0f)(u,v,w) = f(v,w) — fu,v) - w — fluv,w) + f(u, vw).
Cocycles are 0 under the coboundary operator, so they satisfy the equation:
0 = f(v,w) - f(u,v) - w— fuv,w) + f(u,vw).
We can rearrange to get:
fluwv,w) + f(u,0) - w = f(v,w) + f(u,vw).

Looking back, we notice that this is the same as condition 2 in Theorem 3.1.
The 1) we've been using to define the factor set has many of the same properties
as a 2-dimensional cocycle. This section is best tied up with two theorems. The
first of which is due to Hall [5)].

Theorem 3.3. The groups that are extensions of an abelian group N by a group
H form a group of their own. It is isomorphic to H*(N, H) where

1. H operates trivially on the left of N.

2. H induces automorphisms of N on the right.

3. Factor sets are the cocycles of Z*(N, H).

4. Equivalent factor sets differ by coboundaries in B?(N, H).
The second of which is found in Dummit and Foote:

Theorem 3.4. A function f : H x H — N is a normalized factor set for some
extension G of N by H if and only if f is a normalized cocycle in Z*(N,H).

12



We summarize the above theorems as follows. First, factor sets and cocycles
are the same things. So, once we’ve picked automorphisms, all we need to do
is find some cocycles to generate group extensions. Second, cocycles that differ
by coboundaries produce isomorphic groups. That is, the groups that we get as
extensions depend on the cocycles modulo the coboundaries. Interestingly, the
first theorem says that the groups that we can get as extensions actually form
a group themselves, where the group operation stems from pointwise multipli-
cation of the cocycles generating the groups.

4 Tying cohomology to RDS: the Horadam ap-
proach

As we saw in section 3, cocycles determine group extensions. In [6], Horadam
describes what she refers to as central relative difference sets by using cocyclic
generalized Hadamard matrices. That is, she generates a matrix representing
the cocycle, and she then uses properties of the matrix to discern properties of
the extension. In particular, she can tell if the extension has a relative difference
set.

For a finite group H, a finite abelian group IV, and a cocycle ¢y : Hx H — N,
the cocyclic matrix My is the |H| x |H| matrix (with rows and columns indexed
by elements of H) such that M;; = ¢(i,7). Horadam’s paper only treats the
case of central extensions; that is, N < Z(G), where G is an extension of N by
H (again, books vary on this - some refer to an extension where the factor set is
central as a central extension). This means that we may omit the group action
in the cocycle equation ¥ (uv, w)y(u, v)* = ¥P(u,vw)y(v,w) to leave us with:

W (w, w)P(u, v) = P(u, vw)P(v, w).

Again, we will only consider normalized cocycles, those where ¥(u, 1) = ¢(1,v) =
1 for all w, v € H. In the following example, we consider the simplest possible
case: extension of an abelian group by a cyclic group.

Example 4.1. Suppose H is cyclic (that is, & Z,, for some m) and that n € N.
If we write H = (a: a™ = 1) = {1,a,4a?,...,a™ !}, then we can define

1 ifi+j<m
n ifi+j>m.

¢(ai, aj) = {

. . G+37) (mod m)+k i+
Let u = ai, v = a7, and w = a*. Then ¥(uwv, w)(u,v) = nl S

and ¥(u, vw)yY(v, w) = pl CEEHELmemd |4 | 28| - Thege quantities are equal (and
thus the cocycle equation holds) if and only if [L“L—’m‘"f—dﬂ)*'—kj + |_‘—7-‘;l_| =
Lﬁﬂ%jmn—)_! + [ £}, We have two possibilities. Either i+ j > m or
i+ j < m. Consider only the left hand side of the equation. If i +j > m,
which makes LL:?ZJ = 1, then LgﬂumT;’d—'ﬁlﬁj = Llini;"—kj — 1, since i + j

13



(mod m) = i+ j — m. This makes the left hand side L——LJ A similar argu-
ment shows that the right hand side equals the same quantlty On the other
hand, if ¢ +j < m, then (i + j) (mod m) = i+ j and |£Z| = 0, so the left
hand side is still | *Z% | We equate the right hand side in the same manner.
In either case, the function ¢ is a cocycle, with cocylic matrix

1 1 1 1
11 1 n
My=|: 1oL O
1 1 n on
1l n ... n n

When we are extending a group N by a group H, we consider the group
Gy ={(n,h) :n € N, h € H}. We define multiplication on this group to be

(m, 9)(n, h) = (mny(g, h), gh).

Notice that independent of our choices of N and H, Gy will always have the
property that N 4 Gy and that Gy /N = H.

On the other hand, we can use a given group G to construct a short exact
sequence and cocycle. Again, using our short exact sequence,

1-NSGL H- 1,

we choose a transversal function 7 : H — G such that n(7(h)) = h for each
h € H. In other words, 7 chooses a set of representatives of the cosets of
N. The element 7(g)7(h)T(gh)~! of G is in the image of «. We know this
because 7(7(g)7T(h)T(gh)~!) = 1 (remember 7 is a homomorphism), and by the
definition of a short exact sequence, the image of ¢ is the kernel of 7. Since this
element of G is in the image of ¢, t71(7(g)7(h)7(gh)~!) is defined. We define
the cocycle ¥r(g,h) = =1 (r(g)7(h)r(gh)~1).

Theorem 4.1. If we use 7 to construct Gy, , we create a group isomorphic to
G via the isomorphism ¢, where ¢ : (n, h) — v(n)7(h).

Proof. We see that ¢ is a homomorphism, since ¢((m, g)(n, h)) = ¢(mni.(g,h),gh) =
(t(m)e(n)T(g)T(h)T(gh)~1)7(gh) = t(m)i(n)r(g)7(h), but since «(N) < Z(G),
this is equal to «(m)7(g)(n)r(h), which is ¢(m,g)@(n,h). To show that ¢ is
1-1, if #(m,g) = ¢(n,h), we'd have 1(m)7(g) = t(n)7(h). Applying 7 to both
sides (and remembering that image(t) = ker(r) and that 7(7(z)) = z for all
z), we are left with g = h. We cancel in G to get t(m) = ¢(n), which means
that m = n by the injectivity of . Hence ¢ is injective. Moreover, given g € G,
we can see that ¢ is surjective since 7 chooses the coset of N in which g exists,
and there is a unique element of N by which 7(7(g)) can be multiplied to get g
back. a

We can finally compile our work into a result about difference sets. The
following result allows us to write a difference set in a canonical form when the
forbidden subgroup is abelian.

14



Theorem 4.2. Let N be a finite abelian group of order w and H be a finite
group of order v, such that wlv. There exists a relative (v, w,v, 2)-difference
set in a central extension G of N by H, relative to N, if and only if there exists
a cocycle ¢ such that G = Gy and {(1,h) : h € H} is a relative (v,w,v, 2)-
difference set in Gy, relative to N x {1}.

Proof. (<) This is obvious. Take the RDS to be the image of {(1,9)} under
the isomorphism.

(=) Since translates of an RDS are still RDSs, we may assume that our RDS,
D in G contains the identity. Since D contains an element from each coset of N,
define a transversal 7 : H — @ so that the image of 7 is D. Then let 1, be the
cocycle determined by 7 (see above), whence G = Gy,.. Then, the isomorphic
image D* in Gy, is a (v, w,v, £)-difference set in Gy,, and thus D* is also a
complete transversal in Gy,. We can thus write D* = {(ax,h) : h € H. We
define a coboundary 8¢(g, h) = #(g) " ¢(h)~*é(gh), where ¢ : H — N, ¢(h) =
a,:l for each h € H. If we let ¢ = 1, 0¢, then (since 1 and 1 are cohomologous,
there is an isomorphism ® : Gy, — Gy. We'll let ®(a, h) = (a¢(h), h), whence,
remembering D* = {(ax,h) : h € H, we see that ®(D*) = {(an(an)™',h) : h €
H} = {(1,h) : h € H}. By the isomorphism, ®(D*) is then a (v, w,v, )-RDS
in Gy (and it is, in fact, relative to N x {1}). a

An important point to make here is that this is a generalization of the
relative difference sets we found in the semifield construction! In that case, we
found a (v,v,v,1)-difference set in a group G relative to N = {(0,z)}. The
group structure on G was that (a,b)(c,d) = (a + ¢,b +d + a - ¢). Switching
the components of everything (and thereby creating an isomorphic group), we
have a group with operation (a,b)(c,d) = (a +c¢+b-d,b+ d). Recall that
we defined the operation in the group constructed by the cocycle method as
(m,g)(n,h) = (mni(g, h),gh), and notice that the cocycle takes the place of
semifield multiplication. We can now see the semifield construction phrases in
the language of group extensions. Taking a semifield S as an additive (abelian)
group under semifield addition, we can extend S by itself, using the semifield
multiplication as the cocycle. We can see that semifield multiplication satisfies
the cocycle equation if we note that it distributes over addition and that addition
is commutative. For instance,

Pluv,w)P(u,v) = (u+v)*wtuxv
= uxw-+ovrwt+uxv
= uxvtuxwtviw
= ux(v+wy+vrw
P(u, vw)P(v, w).
Horadam and Udaya have seen this and refer to cocycles of this type as multi-

plicative cocycles. The idea of using cocycles to try to find difference sets, then,
has led us to find at least one example we already knew.
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We had mentioned before that Horadam and Perera had used cocyclic gen-
eralized Hadamard matrices to get results about relative difference sets. We
begin with this definition.

Definition. A v x v matrix M with entries in a finite (multiplicative) group W
of order w is a generalized Hadamard matriz GH(w, Z) over W if, for fixed ¢
and k, i # k, the multiset of quotients mijm;jl, 1 € j € v contains each element
of W exactly £ times. This GH(w, %) is normalized if the entire first row and
column have only W’s identity as their entries. The matrix is G-cocylic if its
entries are values in the range of some cocycle from G x G into W.

Example 4.2. The additive group of F4, the finite field with 4 elements (0, 1, o, a?),
is isomorphic to Z2. We can construct a normalized Z2-cocyclic GH(4,1) over
Z% from the finite field. Write Z2 as (a,b : a® = b% = (ab)? = 1). Let 9 :
Z3 — 72 be multiplication in F4. That is, use the isomorphism ¢ : Z3 — (F4)+,
¢:1+0,a— 1,b— a,ab a2, and let (g, h) = ¢~ (¢d(g) * ¢(h)), where *
denotes multiplication in F4. That 1 is indeed a cocycle is more easily seen by
locking at the cocycle equiation in terms of elements of F4, remembering that 1

is field multiplication, and the group operation is field addition. We see that

(z+y)*2]+[zryl=[z*(y+2)]+ly*2], =92k,
Thus we verify that
[ (ww, w)] [P(u,v)] = [Y(w,vw)] [Y(v,w)]  u,v,w e Z3.

‘We can then use 1 to generate

1 1 1 1

1 a b ab
My = 1 b ab a

1 ab a b

My is an example of a normalized Z3-cocyclic GH(4, 1) over Z3. We can see that
it is normalized as its first row and column only contain the identity. Horadam
[7] refers to cocycles that come from semifield or field multiplication as multi-
plicative cocycles. Since fields are themselves semifields, the group extension Gy,
has a (4,4, 4,1)-RDS by Theorem 2.3.

Definition. A cocycle ¢ : H x H — N is orthogonal if for each h # 1 € H,
there are {%Il solutions z € H to ¥(h,z) = n for a given n € N.

That is to say that an orthogonal cocycle gives rise to a cocyclic matrix
where there is a uniform distribution of elements in each noninitial row. Of
course, all normalized cocyclic generalized Hadamard matrices have this uni-
form distribution since the set of quotients of corresponding elements of any
two rows must be uniformly distributed (this is the definition of a generalized
Hadamard matrix), and the first row is all the identity (see Example 4.2). In
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fact, the converse is true as well. That is, the cocyclic matrix of any normalized
orthogonal cocycle is a normalized cocyclic generalized Hadamard matrix, which
we prove as follows, using the group ring ZN. In essence, we treat elements of
N as the coordinate vectors of an |N|-dimensional vectorspace over Z.

Lemma 4.3. Let vy : HXH — N be a cocycle. InZN, for each pair of elements
h, ke H,

Y (b )k, g)"t =p(rk™B)TL S p(hkg

geEH geH

Proof. For computational ease, set d = hk~!. Then

Yo vk gyt = > w(dk,g)p(k,g)

geEH geEH

= Y ((d, k)7 y(d, kg)y(k, 9))p(k, g) 7

gEH

= (k)™ ¢(d, k)
g€EH
= Y(hk™1 k)" Z¢ (hk™1,

geEH

with lines 2 and 4 of the above string of -equalities coming from the cocycle
equation and the fact that g — kg is an automorphism of H. O

We can now prove the theorem we mentioned before.

Theorem 4.4. The normalized G-cocyclic matriz My over N is a general-
ized Hadamard matriz if and only if for every g # 1 € H, >,y ¥(9,h) =
L(3onenn) in ZN (that is, 1 is an orthogonal cocycle).

Proof. (=) This is obvious, as aforementioned, since the first row consists of
only the identity.

(«) We appeal to Lemma 4.3. Choose two rows of My, say the h row and
the k row. The left hand side of the equation in Lemma 4.3 counts the num-
ber of times each element of N occurs as a quotient between corresponding
elements of these rows. Remember that if this distribution is uniform for all
h and k, then the matrix is generalized Hadamard. The right hand side is
equal to ¥(hk™1, k)" (3 ,cn 1) in ZN since 9 is orthogonal. Noting that
n + (hk~1, k)~ 1n is an automorphism of IV, we see that the right hand side is
equal to simply . 1, and our cocyclic matrix is generalized Hadamard. O

We still haven’t talked about why we're interested in normalized cocyclic
generalized Hadamard matrices, but we have found that they are equivalent to
normalized orthogonal cocycles. The main result of the Horadam and Perera
paper makes a connection between these cocyclic generalized Hadamard matri-
ces. Though I did not work through this proof in detail, I can give a sketch of

its content.

17



Theorem 4.5. Let H be a finite group of order v and N be a finite group of
order w such that wl|v. Then the following are equivalent:

1. There is an H-cocyclic GH(w, %) over N.

2. There is a relative (v, w,v, Z)-difference set in a central extension of N
by H, relative to N.

3. There is a divisible (v, w,v, Z)-design, class regular with respect to N, with
a central extension of N by H as a regular group of automorphisms.

Proof. (2 < 3) This is a well-known result.

(1 = 3) Use the cocyclic matrix to define a cocycle and create a group extension
G. The points of the design are the elements of G. The point classes are the
cosets of N in G, and the blocks are the sets {(¢(hi, hj)nk, hi)} where 7,k are
fixed and ¢ ranges, h;,h; € H, and ny € N.

(2 = 1) Horadam uses an algebraic structure known as the twisted group
ring to prove that if Y3 p > hcp(L,9)(1,A)7" = v(1,1) = 257 (e, 1) +
2y en oner(a, ) inthering (ZC)Gy, thenforallg #1 € G, 3 c g ¥(g,h)™! =
Y acn @ in ZC. What this statement is saying, essentially is that if we look at
the multiset of differences from the set {(1,g9) : g € H}, we'll get v copies
of the identity [(1,1)], and 2 copies of every other element of the group Gy,
on the set N x H (this corresponds to the summation of (a,h)), except we
subtract off the elements that look like (a,1), since they are in the forbidden
subgroup (isomorphic to N). The computation in the twisted group ring then
says that if this occurs (that is, if there is a relative difference set in Gy rel-
ative to N x {1}, since we know that if there is one at all, then there is one
that looks like {(1, ) : h € H}), then the equation }_, 5 ¥(g,h) ™! = X cna
holds in ZC, or in other words, the cocycle 1 is orthogonal. We’ve already seen
that orthogonal cocycles produce generalized Hadamard matrices in Theorem

4.4. a

This essentially completes our study of the Horadam and Perera paper. It is
worth noting that most of the arguments in the paper are only good when the
normal subgroup is central in the extension. The next thing I'd like to do is go
back through many of these proofs to see where the cocycle equation (which is.
not in generality) was invoked. Hopefully these results can be changed slightly.
For instance, I don’t think that, in general, we care about generalized Hadamard -
matrices. On the other hand, I think orthogonal cocycles are essential, but I

haven’t proved it yet.

5 An anomolous (4,4,4,1)-relative difference set

Relative difference sets have been studied in great detail in abelian groups. In
fact, several nonabelian examples of groups that admit relative difference sets
are known, too, but they had all been examples of difference sets relative to
central subgroups. This is what makes an example that appeared in a paper of
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Galati (but due to Flannery) [4] so intriguing. There is no motivation for the
following - only the example.

Example 5.1. In the group G = (z,y : 2z = y? = l,yzy = 2°), R =
{1,223, zy} is a (4,4,4, 1) relative difference set, relative to the normal but
not central subgroup N = {(z*,y). We can verify this directly.

So seemingly out of nowhere comes a nonabelian example of a group with a
RDS relative to a normal subgroup that is not in the center of the group. More
surprisingly, perhaps, is that this example is in a small semi-direct product.
We finally get to a research question! In which nonabelian groups might there
be a (27,27,2",1)-RDS relative to a normal but not central subgroup? In an
attempt to further explore this, we look at this example cohomologically.

Let N = (a,b:a? =b? = (ab)2 =1) X Zy x Zy and let H = (z : z* = 1).
We define a homomorphism ¢ : H — Aut(N) so that a¢® = ¢ and b5 = ab.
As we’ll see in the next section, since a is fixed by our automorphism, we can
write a cocycle

1 111

;s 1 11 a
[¢a(z1,x7)]= 11 a a
1l a a a

Additionally, we saw above that we could define a coboundary given any set
mapping. We define that mapping as follows:

¢:H-—>N,¢:1l——>1,z»—>a,x2|—>a,z3r——>b.

Then our coboundary 8¢ : HxH — N, given by 8¢(z*,z7) = B(zi) (2@ i+~
has cocyclic matrix

1 1 11

P 1 a b b
Wal@ 2] =1 4 1
1 ab b 1

Their pointwise product % is also a cocycle equivalent to ,, since they are
cohomologous. Its matrix is given by

11 1 1

i 1 a b ab
W) =11 v o a
1 b ab a

The elements of the extension G look like elements of the set N x H with
the group operation (ni, h1)(n2, h2) = (nlng(h’)w(hl,hz),hlhg). The homo-
morphism generated by (b,1) — ¥ and (b, z) — z is an isomorphism onto
G = (z,y: 28 = y® = 1,yzy = z°), which is the group listed in Example 5.1.

It is worth noting here that ¢ is an orthogonal cocycle (notice the uniform
distribution of elements in each row), even though its cocyclic matrix is not
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generalized Hadamard. In fact, I am so impressed by this that I leave this
connection between orthogonal cocycles and RDS as a conjecture. Note that I
haven’t put much time into trying to resolve this conjecture, though in the case
where N is central, this reduces to Theorem 4.5 by the equivalence of orthogonal
cocycles and generalized Hadamard matrices in the N central case.

Conjecture 5.1. There is a relative (v, w, v, Z)-difference set in an extension
of N by H, relative to N if and only if there is a (cocycle, automorphisms) pair
such that there is an orthogonal cocycle from H x H — N.

I took a particular interest in seeing if there were more RDS in cyclic ex-
tensions of elementary abelian groups (that is, where N =2 Z% and H = Zam.
Unfortunately, I ran out of time. I did, however, find a section of Hall’s book
that treated cyclic extensions in some detail, which I present in Section 6 as
follows.

6 Cyclic extensions

Early on, we made a point that to define an extension of a group N by a group
H, we needed only describe the automorphisms a & a* of N and the factor set
Y(u,v) € N for u, v € H. We'll do just that as follows.

Suppose H is a cyclic group of order m, generated by an element z, so that
the elements of H are 1,z,2?,...,z™ . Further suppose G is an extension of a
group N by H, so that G/N = H. If we let Z be the coset representative of the
coset of N that maps to z, then we can also let 2,22, ..., 2™ ! be representatives
of the cosets that map to z2,z3,...,2™ ! respectively. Z™ = « for some a € N,
since (EN)™ = N. So, applying the automorphism a &2 a* of N m times, we
get:

a®" =a tao. (3)

(Remember that a® = z~1aZ). Since a = Z™, we see that o = T 'ai = z™,
or simply:

o =a. (4)

It can actually be shown that Equations (3) and (4) are also sufficient to have
an extension of NV by H.

Theorem 6.1. Let N, H be finite groups, H cyclic of order m. Then an
extension G of N by H exists if and only if there exists an automorphism a = a*
of N and o € N such that Equations (8) and (4) hold.

Proof. (=) Clear from the previous discussion.
(<) The elements of H are {z* : 0 < i <m — 1}. Suppose then that we define

automorphisms as follows:

amo.:a, azi=(azl‘1)z, 1<i<m-2.
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We define our factor set

I N
a ifi+j>m.
Hall says that it’s clear to see, then, that our choice of automorphisms and factor
set satisfy the premises of Theorem 3.1, which would imply that an extension
G exists, but I had to work a little to understand this Let’s first show that
this satisfies (a*)” = ¥ (u,v) " a**P(u,v). Let u =z and v = 2. Ifi+j <
m, then ¥(u,v) = 1, and our equation reads (a® )’”’ = o = ¢, This
equation clearly follows from the definition of our automorphism. On the other
hand, if i + j > m, then (a®)* = (a’(m) (med m))g”m = a‘l(a'"”(iﬂ) (rmod m))oz,
which is what we wanted to show. As for the other equation to satisfy, that
is, P(uv, w)YP(u, v)¥ = P(u, vw)P (v, w), we've already seen in Example 4.1 that
the right hand side of the equation is equal to al - , where u = 7%, v = 27,
and w = z*. The left hand side, then, is aLMM‘J(“l)kaL_”xk, but
since a = ™, the above elements commute, and so the action of w is trivial,
and we are reduced entirely to Example 4.1, and the left hand side and right
hand side are equal. O

Amazingly, this simple theorem decides the question of the existence of cyclic
extensions. It does not, however, give much information about relative difference
sets. We began looking at trying to extend-elementary abelian groups by cyclic
groups. The next step in this program, then, would be to attempt to classify
the automorphisms of the elementary abelian groups (the N’s) that we are
extending by H. In general, the number of automorphisms of Zj is HZ;OI (2™ —
2%), which comes from counting the number of ways we can choose n linearly
independent generators for Z%. This number is reduced by the condition that
the automorphism has to have a fixed point.

7 Conclusion

I spent a lot of time this year doing expository work. In fact, most of what I
did this year involved reading books and papers and working through examples.
Only a small part of my time was spent on the cyclic extensions and trying to
eliminate or create possible groups in which we may find a difference set. The
first places to look are the groups of order 32 and 64 of small exponent (it seems
that most of the 2-groups that have RDS have small exponent). While I haven’t
solved a problem, I have learned a lot, and the counting proof that the semifield
gives rise to a difference set is one that I have not seen elsewhere. I plan to take
this problem with me as I move on, and hopefully I will make more progress on

it.
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