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Abstract 

Populations of zooplankton, ~eratella cochlearis.(Rotifer_a) 

Bosmina longirostris (Cladocera), andMesocyclops 1edax (Copepoda) 

were sampled in Westhampton Lake from June 30 to December 22, 1978. 

Population densities were estimated over time and analyzed for 

stability relative to the occurrence of rainfall. Two aspects 

of stability were used for analysis and given operational 

definitions as follows: Resistance - a population was resistant 

if its density was not more variable during periods of rain 

compared with periods of little or no rain; Persistence - a 

population was persistent if its density during periods of rain 

was not different from its density in periods of little or no rain. 

In the summer, f. cochlearis showed low resistance and non-per­

sistence; !!_. longirostris showed high resistance and persistence; 

M. edax showed high resistance and non-persistence. In the fall, 

all three populations showed high resistance and persistence re­

lative to the occurrence of rainfall. Resistance of populations 

in surmner was consistent with the opportunistic, r-selected life 

history strategy of the rotifer, the more K-selected strategy of 

the copepod and the intermediate, compromising strategy of the 

cladoceran. Persistence in the summer was also consistent with these 

strategies for the rotifer and cl adocerao, but not for the eopepod. 

In the fall, the effects of rainfall were masked by the effects 

of fall turnover in the lake. 
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INTRODUCTION 

Organisms respond in various ways to environmental 

disturbances, and a result of these responses is often a change in 

population size. Such a change is an emergent property of 

population size, intrinsic growth rate, competition, predation, 

natality, mortality, emigration and immigration. 

Stability is a measure of the extent that population size 

changes with respect to environmental disturbance. An early 

definition of stability, borrowed from classical mechanics, is that 

a system tends to return to its equilibrium state after being 

perturbed (Botkin and Sobel, 1975). This definition is inadequate 

for biological systems as populations are likely to be continually 

in a transient state, i.e., never reach an equilibrium (Holling, 

1973). 

Definitions of stability that do not require an equilibrium 

state have been recently developed. These definitions focus on 

three aspects of stability. The first, resilience, refers to 

whether or not a population returns to a previous size following a 

disturbance (Holling, 1973). The second, resistance, is the 

capacity of a population to remain constant in size in the face of 

an environmental disturbance (Ricklefs, 1973). The third, 

persistence, refers to the population size remaining within 

specified bounds over a period of time. (Botkin and Sobel, 1975). 

The concepts of resilience and resistance define a spectrum of 

compromises in life history strategies. One population is likely to 

be more resilient and less resistant than another population or vice 
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versa. The more resilient population will respond faster to 

environmental change, declining rapidly in an adverse environment 

and increasing rapidly in a favorable environment. The more 

resistant population will be less variable over a wider range of 

environmental conditions. Both populations, however, could be 

equally persistent (Harrison, 1979). 

Resilience and resistance may be further explained by the 

concepts of r- and K-selection (MacArthur, 1972). An r-selected 

species has a relatively high growth potential and reproduces 

rapidly in favorable environmental conditions, whereas a K-selected 

species has a lower growth potential, but remains close to the 

carrying capacity of the environment and is less sensitive to 

environmental change. The r-selected species would be more 

resilient and the K-selected species would be more resistant. The 

concepts of r- and K-selection describe how populations of different 

life history strategies achieve stability. 

Not only the characteristics of the species but also the 

nature of the environmental disturbance determines population 

stability. Environmental disturbances may be rhythmic, e.g., 

diurnal or seasonal cycles or arrhythmic, e.g., rainfall, floods, or 

fires. The former have been studied extensively with respect to 

population changes. The latter have been largely neglected. 

Arrhythmic events are unpredictable and, therefore, difficult to 

study. They are a common part of an organism's environment, 

however, and are likely to play an important role in determining 

sizes of populations and their presence or absence {Connell, 1978). 
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The present study examines population stability of zooplankton 

with respect to natural arhythmic disturbances. The organisms used 

in this study were Keratella cochlearis (Rotifera), Bosmina 

longirostris (Cladocera), and Mesocyclops edax (Copepoda) in 

Westhampton Lake. The environmental disturbance is rainfall 

occurring in the drainage basin of the lake. These species possess 

differing life history characteristics, but each occupies the 

pelagic zone of the lake (Hutchinson, 1967). Rainfall on the 

drainage basin may, therefore, similarly influence the environments 

of the three populations. 

The objectives of this study were to test the following 

hypotheses: (1) The zooplankton populations are resistant to the 

environmental disturbance of rainfall, (2) The zooplankton 

populations are resilient relative to the environmental disturbance 

of rainfall, {3) The zooplankton populations are persistent relative 

to the environmental disturbance of rainfall, {4) Stability 

(resistance, resilience, and persistence) of a zooplankton 

population varies according to life history characteristics of the 

species. 

METHODS AND MATERIALS 

The study was conducted in Westhampton Lake, a freshwater 

impoundment on the campus of the University of Richmond, Virginia. 

The surface area of the lake is 6.2 ha. (15.3 acres) with a mean 

depth of 2.8 m and a maximum depth of 7 m (Fig. 1). The 

northeastern neck of the lake is formed by the confluence of Little 

Westham Creek, the major tributary, and Robins Branch (new name). 
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The lake receives runoff from a 6.69 km2 (2.58 mi2) drainage basin, 

covered principally by suburban development. 

Rainfall data were gathered throughout the study period. A 

graduated cylindrical rainfall gauge located on the roof of the 

Gottwald Science Center, approximately 100 m from Westhampton Lake, 

was used to measure rainfa 11. A stage-rain recorder located on 

Robins Branch at the northern end of the lake proved to be 

inaccurate in measuring rainfall quantities, but it did indicate 

when rainfall began and subsided so that rainfall intensity could be 

calculated. Additional data were obtained from the National Weather 

Service at Byrd Field, and from the National Weather Service Three 

Chopt Station. The latter was located within the Little Westham 

Creek drainage basin approximately 1.6 km from Westhampton Lake. 

Runoff volumes during rain storms on July 25 and August 4, 

1978 were estimated from hydrographs generated by a stage-rain 

recorder located on Robins Branch. Mechanical failure of a stage 

recorder on Little Westham Creek prevented measurement of runoff in 

that stream. Efforts to directly calibrate the stage recorder were 

hindered by intermittent failure of the flow meter, relatively brief 

periods of peak flow in the stream, and the unpredictability of 

storms of sufficient intensity to create measurable flow. 

Available information, however, made calibration of peak flow 

possible based on the equation Q =CIA (Chow, 1964); where Q is the 

peak flow in cubic feet per second, C is an index of runoff 

according to the surface type of the drainage basin, I is the 

rainfall intensity in inches per hour, and A is the area of the 
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drainage basin in acres. The peak flow for the two graphs were 

different, therefore, the calculated values were used as points to 

define a line of stream height versus discharge. 

With the points on the hydrograph calibrated, the discharge, 

as a function of stream height, was measured at fifteen-minute 

intervals and summed for the entire time of discharge, giving the 

runoff volume for Robins Branch. The area drained by Robins Branch 

is approximately 20% of the entire drainage basin of Westhampton 

Lake (Bishop, pers. comm.). Assuming that the surface type of the 

Robins Branch drainage is similar to the surface type of the 

remainder of the basin, the runoff for the basin was extrapolated 

from the calculated values. 

Two sampling stations were established for routine data 

collection. One station (UL) was located at the bridge near the 

northern end of the 1 ake midway between the east bank and the 

island. The second station (DL) was located at the Student Conmons 

Building at the front wall that extends over the lake midway between 

the east and west banks (Fig. 1). 

A Kerrmerer bottle was used to collect samples at 1 m intervals 

from the surface to near bottom. Each sample was poured into a 

bucket, agitated to make the contents homogeneous, then a 1 1 

aliquot was drawn off and poured into an 8 1 polyethylene bottle. 

Aliquots of samples taken at successive depths were combined to form 

a composite sample. A separate bottle was used for each station. 

Sixteen collections were made in the summer (prior to the onset of 

fall mixing) and 18 collections were made in the fall. 
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A T.N. Tronics temperature meter and probe were used to 

measure water temperature in Celsius degrees at 0.5 m intervals from 

surface to bottom. Data were recorded on days of collection and 

compiled to give temperature profiles of the lake throughout the 

study period. Other field data included site, time, air temperature 

and observations of atmospheric conditions, changes in turbidity, 

and development of blue-green a 1 g ae bl corns. 

The abundance of algae was estimated with a Turner Model III 

fluorometer that irradiates a water sample with UV light and 

measures the fluorescence of the sample on an arbitrary scale from 0 

to 100. Fluorescence is linearly proportional to the concentration 

of chlorophyll, therefore, the instrument reading corresponds to the 

abundance of algae (Lorenzen, 1966). 

Each field sample was agitated and a portion was poured into a 

50 ml beaker. The subsample was then agitated, poured into a 

cuvette, and placed into the fluorometer for measurement. The 

subsample was recombined with the field sample after a reading was 

made for each station. 

The zooplankton samples were concentrated through a #20 mesh 

plankton bucket and placed in jars that contained 95 % ethanol. 

Before organisms were counted, the sample was adjusted to a known 

volume between 150 ml and 350 ml and poured into a 500 ml beaker. 

The sample was stirred with a magnetic stirrer at slow speed 

(approximately 150 R.P.M.) to insure homogeneous distribution of the 

zooplankton while the subsamples were drawn off (Wetzel and Likens, 

1979). 
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Five 12 ml subsamples were drawn from each sample with a 

calibrated pipette and placed in a grid-marked petri dish for 

counting. Counts were made by scanning the entire subsample 

following the procedure of Edmondson and Winberg (1971). 

Zooplankton species were identified by keys in Edmondson (1959) and 

Pennak (1978), and counts of each species were recorded. 

The density (no./liter) of each species at each station was 

calculated by taking the average number from the subsamples then 

solving the following equation: 

No./liter = Xss (Vcs/Vss) 
. Vs 

Where Xss = average number of individuals of a species counted in 

the subsamples, Vcs = volumes of the concentrated sample, Vss = 

volume of one subsample, Vs = volume of the original sample. 

The validity of combining data from the two stations was 

ascertained through correlation analysis. Correlations were 

calculated on an IBM 360 computer with an Interactive Data Analysis 

Program. The formula used was as follows: 

r = Ixv 

'1Ix2 !y2 

where r is the correlation coefficient, x is the value at station 

UL, and y is the value at station DL. The resultant was compared to 

r value tables for the test of significance (Steel and Torrie, 

1960). Further analysis for the same reason, was done by a 

three-way analysis of variance with treatments of station, season, 

and precipitation regimes (Steel and Torrie, 1960). 
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The two tailed Student's t-test was used to test significance 

of differences in means of fluorescence measurements between the 

rainy and dry periods. The following formula was used: 

where t is the Student's t value, x1 and ~2 are the means of values 

from the rainy and dry periods, respectively, Sf and s~ are the 

variances of values from the respective periods and n1 and n2 are 

the number of observations from the respective periods (Steel and 

Torrie, 1960). 

Statistical analyses were used to test population stability. 

Resistance was given the operational definition that a population 

was resistant if its size was not more variable during periods of 

rain compared with periods of little or no rain. Significant 

differences were tested by homogeneity of variances given by the 

following formula: 

F = SJ I S~ 

where F is the resultant F value from the ratio of the two 

variances, Sl is the variance of population densities in the rainy 

period and S2 is that of the dry period. Variance was calculated by 

the previously mentioned computer program using the formula: 

s = Ix2- - ( Ix )2 I n 
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where s is the variance, x is the population density value, and n is 

the number of observations. A population was defined as resilient 

if its size after the rainfall event returned to the same level as 

that before the event. This could _be tested by using the Student's t 

test for comparing measurments before and after the rainfall event. 

This was not carried out in this study as peroids of rainfall were 

long relative to generation times of the zooplankton, and other 

physical conditions, i.e., temperature, were different before and 

after the rainy periods. Persistence was given the operational 

definition that a population was persistent if its size during 

periods of rain was not different from its size in periods of little 

or no rain. Significnace was tested by the analysis of variance 

with treatments of season and precipitation regime. Calculation was 

carried out as given in Steel and Torrie (1960). Further analysis 

of means was carried out by use of Duncan's New Multiple Range Test 

as given in Steel and Torrie (1960). All values for these tests 

were transformed to log 10 (X+l) to satisfy the assumption that 

variances of compared data sets were similar. 

RESULTS 

Physical factors 

According to the National Weather Service, Byrd Field, 

Richmond, Virginia, total rainfal 1 during the study· was less than 

the forty year average for a comparable time of year (Table 1). 

Rainfall in the Westhampton drainage basin was less than at Byrd 

Field. 
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Rain in the drainage basin occurred as clustered events during 

the study. Several weeks ~f rain were separated by longer periods 

of little or no rain (Table 2}. Most rainfall occurred during two 

periods, July 14 to August 13, 1978 and November 15 to December 9, 

1978. Of the 408 mm total rainfall, 202 mm, or 49.5 % of the total, 

occurred in the first period and 141 mm, or 34.6 % of the total, 

occurred in the second period (Table 3). 

Estimates of runoff into the lake following rain on July 25 

and August 4, 1978,taken from hydrographs of Robins Branch {Figure 

2) were 100,278 m3 and 56,407 m3, respectively. Assuming equal 

rainfall over the 6.69 km2 of the drainage basin, the 45 mm rain on 

the former date equalled 301,050 m3 of water and the 27 mm rain on 

the latter date equalled 180,630 m3 of water falling on the drainage 

basin. Runoff, therefore, was 33 % and 31 % of the total rainfall 

on those dates, respectively. These percentages are within the 

range of expected runoff from a moderately sloping suburban area 

(Chow, 1964), such as that of the Westhampton drainage basin. 

The lake was thermally stratified from the beginning of the 

study in late June into late September. During summer 

stratification, the surface temperature ranged from 30 C to 33 C and 

the bottom temperature gradually rose from 7 C to 12 C. The 

thermocline, layer of steepest temperature gradient, ranged in depth 

from 2.5 to 3.5 m (Fig. 3). Fall turnover began in late September 

and proceeded until the lake was isothermal at 7 C by mid-December. 

·The increased flushing rate following rainfall did not result in a 

measurable change in thermal stratification. 
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Phytoplankton 

Phytoplankton density had a bimodal distribution with peaks in 

1 ate July to early August and in 1 ate November to early December 

(Fig. 4). A correlation coefficient of 0.90 for fluorescence at 

stations UL and DL was statistically significant at the 95 % 

confidence level. Data from the two stations, therefore, were 

combined in further computations. Average fluorescence was 

significantly higher in rainy periods than in dry periods in the 

summer and the fall (Table 4). 

Zooplankton Populations 

A 11 popu 1 ati ons constantly fluctuated throughout the study 

period. Keratella cochlearis and Bosmina longirostris populations 

had bimodal distributions. Both populations peaked in late July and 

in late October to early November (Figs. 5 and 6). The copepod 

population had one peak in early September and disappeared from 

samples by early December (Fig. 7}. 

Stability 

. The study period was partitioned into four segments for the 

purposes of assessing the impact of rain and season on zooplankton 

populations. The criteria for partitioning were amount of rain and 

temperature profile of the lake. The segments were summer rainy, 

summer dry, fall rainy, and fall dry. The summer rainy period was 

July 14 to August 13, 1978. The summer dry period was June 30 to 

July 13, 1978 and August 14 to September 20, 1978. The fall rainy 
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period was November 15 to December 9, 1978. The fall dry period was 

September 21 to November 14, 1978 and December 10 to December 22, 

1978 (Table 3). 

The coefficient of correlation for population densities at 

stations UL and DL were significant for the rotifer and cladoceran, 

but the statistic was not significant for the copepod (Table 5). A 

three-way analysis of variance was calculated for population 

densities transformed to log 10 {X+l) {Steel and Torrie, 1960). 

Densities at the two stations were not significantly different for 

the three populations (Table 6). Graphic analysis also reveals 

similarities at both stations for density changes of the three 

populations (Figs. 5, 6, and 7). Population data for stations UL 

and DL, therefore, were pooled for stability analysis. 

Of the three aspects of stability that were to be examined, 

resilience, resistance, and persistence, only the latter two have 

been analyzed. In order to have analyzed population responses for 

resilience, a relatively brief period of high intensity rainfall 

preceded and succeeded by relatively long, dry periods would have 

had to occur. As these events did not occur during the study, the 

tendency of each population to return, following the rainfall event 

to its initial density before the event, could not be tested. 

Resistance was analyzed by comp_arison of variances of 

population densities in dry and rainy periods. A significantly 

higher variance in the rainy period, compared to the dry period, 

would indicate a low resistance relative to factors associated with 

rain. Persistence was analyzed by comparison of mean population 
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densities in the rainy period with that of the dry period. A 

significant difference in population density, either higher or 

lower, in the rainy period, compared to the dry period, would 

indicate that the population density was not persistent. 

Kerate11a cochlearis had a significantly higher variance in 

population density in the rainy period than in the dry period during 

the summer (Table 7). The reverse was found for this species in the 

fall; the variance was significantly lower in the rainy period than 

in the dry period. Bosmina longirostris, similarly, had a higher 

variance of population density in the rainy period than in the dry 

period during the summer and a lower variance in the rainy period 

than the dry period during the fall. The difference in variances, 

however, were not statistically significant in either season. 

Mesocyclops edax had a lower variance in population density in the 

rainy period compared to the dry period in both summer and fall. 

The variances were significantly different in the summer but not in 

the fal 1. 

The two-way analysis of variance was used to determine the 

differences in population means in rainy and dry periods for the two 

seasons. Further analysis of the statistical interaction of season 

and precipitation was accomplished by use of Duncan's multiple range 

test. Significant differences in population densities in different 

precipitation regimes were emphasized within each season and 

differences in population densities between seasons were not 

considered. 

Two-way analysis of variance indicated no significant 
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difference in population density related to season or precipitation 

for ~- cochlearis (Table 8). The interaction term for season and 

precipitation, however, was significant. The multiple range test 

revealed a significant difference in means between the rainy and dry 

periods in the surrmer for ~- cochlearis, but showed no significant 

difference for the precipitation regimes in the fall (Table 9). 

Mean population densities were not significantly different for 

season, precipitation, or interaction of the two treatments by the 

two-way analysis of variance for ~- longirostris {Table 10). The 

multiple range test similarly revealed no significant difference 

between means for the four season-precipitation regimes (Table 11). 

The two-way analysis of variance revealed significance in all 

treatments of population density means for ~- edax (Table 12). The 

multiple range test showed a significant difference in precipitation 

regimes in the surrmer only and not in the fall for that population 

(Tab 1 e 13). 

DISCUSSION 

Much attention has been given to the influence of rhythmic 

environmental changes, . e.g., seasonal cycles, on planktonic 

populations (Hutchinson, 1967; Porter, 1977). Population changes 

re 1 ated to rhythmic environmenta 1 changes are cued by changes in 

photoperiod and temperature {Hutchinson, 1967). 

Less information has been gathered on the influence of 

arrhythmic disturbances. The unpredictability of arrhythmic events 

presents problems in experimental design and in interpretation of 

data gathered relative to such events. In this study, for example, 
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data were partitioned into rainy and dry periods. Rain occurred, 

however, during the dry periods, and during the rainy periods, there 

were days that no rain occurred. Study of arrhythmic events is also 

complicated by unknown mechanisms of response by planktonic 

organisms. 

Rainfall often results in physical, chemical, and biological 

changes in lakes. The flushing rate increases with runoff from the 

drainage basin following rainfall. Increased runoff may also result 

in changes of thermal stratification in lakes (Wetzel, 1975). 

Increased concentrations of nutrients, such as nitrates and 

phosphates, may occur following increased runoff. If nitrates and 

phosphates are limiting factors in algal growth, blooms of algae, or 

dramatic increases in their density, may occur following the influx 

of these nutrients (Odum, 1959). 

Numerous changes in biotic and abiotic factors in Westhampton 

lake occur following rainfall. Runoff and flushing rate has been 

shown to increase after rainfall in this and other unpublished 

studies (Bishop, pers. comm.). Models have been successfully tested 

showing increases in turbidity, nitrate and phosphate following 

rainfall in Westhampton Lake (Bishop and Moore, 1975; Bishop, 

1977). Phytoplankton production has also been shown to increase 

after rainfall (Bishop, 1971). 

In this study, many factors could have been monitored to 

indicate changes in environmental factors in Westhampton Lake 

associated with rainfall. Runoff volume and phytoplankton 

production were chosen, however, because both have been previously 
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shown to vary immediately following rainfall and they could be 

important factors in regulating or limiting zooplankton population 

densities. 

Hall (1964) found that the factors regulating population 

density of the cladoceran Daphnia galeata mendotae in Baseline Lake 

were food (principally phytoplankton), temperature, predator 

pressure, and flushing rate. The latter was not found to be of 

great importance in his study because emigration was offset by 

irmnigration from lakes upstream from Baseline Lake. This was not 

the case with Westhampton Lake, as there were no lentic habitats 

upstream. Therefore, food for the herbivorous zooplankters !$_. 

cochlearis and ~- longirostris and flushing rates were estimated 

relative to the occurrence of rainfall. Food sources of the 

carnivorous M. edax were not measured. Variation in density of the 

herbivorous zooplankton with respect to rainfa11,however, may give 

an indication of variation in food sources for this species. 

The results of this study showed that rainfall could have a 

biologically significant effect on Westhampton Lake with regard to 

zooplankton populations. Phytoplankton production was significantly 

higher during rainy periods than dry periods in both sunmer and 

fall. The amount of runoff measured on July 25 and August 4, 1978 

displaced 58% and 33% of the total lake volume, respectively. As 

Hall (1964) found the density of Q. galeata mendotae in outlet water 

of Baseline Lake to be approximately equal to the population density 

of the lake, these displacements could export a large percentage of 

standing crops. 

16 



Zooplankton population density data were partitioned between 

the sull1Tler and fall seasons for analysis. This was done because of 

changes that occur in the limnetic environment as lakes pass from 

summer stratification into fall mixing. Typically, changes in 

zooplankton densities are associated with this event. Additionally, 

changes in zoopl ankton physiology associated with the decrease in 

temperature and change in photoperiod occur during the transition 

period (Hutchinson, 1967). These events in the fall may mask 

differences in rainy and dry periods between seasons. 

The results of the test for resistance (homogeneity of 

variance) in summer showed that variance of population densities for 

K· cochlearis significantly increased from the dry to rainy period. 

The statistic showed no significant difference for the B. 

longirostris population and a significant decrease for the tl· edax 

population. The K· cochlearis population, therefore, showed low 

resistance and the population of ~· longirostris and tl· edax showed 

high resistance relative to the occurrence of rainfall in sull1Tler. 

In the fall, the K. cochlearis population densities 

significantly decreased in variance from the dry to rainy period, 

and the population densities of ~· longirostris and tl· edax showed 

no significant difference in variance during that period. All three 

populations, therefore, revealed high resistance relative to the 

occurrence of rainfall in the fall. 

The tests for persistence (two-way ANOVA. and multiple range 

test) in summer showed that means of population densities for K· 

cochlearis were significantly higher in the rainy period than in the 
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dry period. Population densities for ~· longirostris were not 

significantly different in the two precipitation regimes, and ~· 

edax population densities were significantly lower in the rainy 

period than in the dry period. The K. cochlearis and M. edax 

population were, therefore, not persistent, and the B. longirostris 

population was persistent in summer relative to the occurrence of 

rainfall. 

In the fall, mean population densities for all three 

populations showed no significant difference between the rainy and 

dry periods. The three populations were, therefore, persistent 

relative to the occurrence of rainfall in the fall. 

In order to comp are these results with other studies, data 

from collections made in 1969 from Westhampton Lake (Bishop, 1971) 

were analyzed in the same manner. In that study, data were taken in 

the summer only and all species of rotifers, cladocerans, and 

copepods were combined in their respective groups. Partitioning 

rainfall data into a dry period (July 1 to July 18, 1969) and a 

rainy period (July 30 to August 12, 1969) gives a mean rainfall per 

day of 1.56 mm/day and 5.57 mm/day, respectively. Zooplankton data 

were also partitioned between the two periods for analysis. 

Homogeneity of variance of data from the three groups gave the 

same results as in this study (Table 14). Variances were 

significantly different for rotifers but not for cladocerans and 

copepods. The former group, therefore, showed low resistance and 

the latter two groups showed high resistance with respect to the 

occurrence of rainfall. 
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A one-way analysis of variance was used to analyze zooplankton 

data as the additional treatment of season could not be included in 

analysis. Rotifer mean densities were significantly different 

between the dry and rainy periods, and the mean densities for 

cladocerans and copepods were not significantly different (Table 

15). The rot if ers . were, therefore, not presi stent, and the 

cladocerans and copepods were persistent. The results for the 

rotifers and cladocerans were consistent with the study, but the 

result for the copepods was not. The 1 atter may be due to the 

lumping of all copepods in the counts by Bishop (1971). Mesocyclops 

edax departs from the 1 ife history characteristics of most other 

copepods in Westhampton Lake in some significant ways. It is larger 

and likely slower in development than most other copepods and it is 

carnivorous, rather than herbivorous. The latter characteristic may 

impose a greater lag time in which the species could not take 

advantage of immediate increases in phytoplankton. 

In sumnarizing the results of this study, each population had 

a different combination of low or high resistance and persistence or 

non-persistence in the sunmer. The three populations in the fall, 

however, were the same with high resistance and persistence relative 

to the occurrence of rainfall. These results may be a consequence 

of differences and similarities in life histories of these 

organisms. 

The life histories of rotifers, cladocerans, and copepods 

exhibit a continuum of compromises in the potential for rapid 

population increases, predator avoidance, and competitive ability 
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(Allan, 1976). The three major groups, ranked with respect to 

opportunism, would be rotifers greater than cladocerans greater than 

copepods. In favorable circumstances, such as abundance of food 

sources and/or relatively low predator pressure, populations of more 

opportunistic species would increase more rapidly. In adverse 

circumstances, however, the less opportunistic populations would be 

influenced less and the more opportunistic species would decline 

more rapidly. 

The life history of rotiferan subclass Monogononta and that of 

the cladoceran are very similar even though it is not closely 

related (Hutchinson, 1967). Most species of these groups are 

herbivorous, feeding primarily on phytoplankton although detritus, 

bacteria, and dissolved organic matter may be supplementary sources 

of nutrition (Saunders, 1969). Copepods have much more divergent 

characteristics in reproduction and nutrition. 

An investigation of niche hypervolume in Mirror Lake revealed 

a separation of these three species by mode of feeding (carnivorous 

versus herbivorous), food size selectivity, depth, and timing of 

production maxima {Makarewicz and Likens, 1975) The monthly 

production values were found to reflect the gradient of 

greater-to-lesser opportunism with K. cochlearis production ranging 

between 10 to 40 micrograms/liter/month, !· longirostris ranging 

between 2 to 8 micrograms/liter/month, and ~· edax ranging between 2 

to 4 micrograms/liter/month. 

The life cycle of K. cochlearis is monocyclic, i.e., sexual 

reproduction occurs once within an annual life cycle of otherwise 
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parthenogenetic reproduction (Hutchinson, 1967). Individuals 

overwinter as mictic resting eggs. These eggs hatch to produce 

amictic females with rising temperature in the spring. Reproduction 

is parthenogenetic through the surrmer; each reproducing female 

carries a single subitaneous egg. During the fall, the population 

reaches its maximum density and mictic females are then produced. 

Males arise from the eggs of the mictic females and sexual 

reproduction occurs in the late fall. The fertilized eggs develop 

the hard outer layer of the mictic resting eggs. During the 

parthenogenetic reproduction of the sunmer, generation time 

(egg-to-egg) is from 40 to 70 hours at 20 C (Lindstrom and Pejler, 

1975), and generation time is influenced predominantly by variation 

in available food and temperature (Edmondson, 1965). Feeding by 

this species is accomplished by sweeping particles into the mouth by 

the action of coronal cilia. Food particles are usually less than 

12 microns (Hutchinson, 1967). 

Mature specimens of K. cochlearis are from 135 to 220 microns 

long (Edmondson, 1959). Variation in length is due primarily to 

development of anterior and posterior processes by cyclomorphosis. 

The monocyclic life cycle of ~- longirostris is very similar 

to ~· cochlearis (Hutchinson, 1967). In the spring, females hatch 

from overwintering ephippial eggs. Successive generations are then 

produced by parthenogenetic reproduction through the sunmer. In the 

fall, males are produced and sexual reproducti'on occurs, followed by 

development of the ephippia. The principle difference in 

reproduction of the two species is that males of B. longirostris are 
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fully developed and diploid, whereas males of K. cochlearis are 

greatly simplified morphologically and are haploid (Hutchinson, 

1967). 

Bosmina longirostris is one of the smallest cladocerans in 

North America. Mature specimens range in length from 330 to 380 

microns (Hutchinson, 1967). Its small size serves as an advantage 

in that fish prey more heavily on the larger cladocerans, such as 

Bosmina coregoni and species of Daphnia (Zaret and Kerfoot, 1975; 

Stenson, 1976). !· longirostris has been found to be more abundant 

in lakes stocked with bluegill (Lepomis macrochirus) and less 

abundant in the absence of the fish, indicating a competitive 

disadvantage relative to larger cladocerans (Lynch, 1979). 

Predation on this species occurs more cormnonly with invertebrate 

predators such as Chaoborus and Cyclops vernalis (Stenson, 1976; 

Kerfoot, 1978). Ingested particles by !· longirostris broadly 

overlaps the particle size range of macro and microconsumers. It 

feeds most intensely, however, in the range of 1 to 3 microns, the 

same as rotifers (Makarewicz and Likens, 1975). Generation time 

from egg to egg for !· longirostis is 5 to 7 days (Zaika, 1973). 

Embryonic development is 2 to 3 days and sexual maturation is 3 to 4 

days at 11 to 19 C. 

The life history of ~· edax differs from ~· cochlearis and B. 

longirostris in many aspects. It is much larger than the rotifer or 

cladoceran, reaching an adult length of 960 to 1,130 microns. It is 

bisexual and reproduces by obligate sexuality. Eggs are carried by 

the female in two egg sacs attached to either side of the genital 
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segment. Development of the copepod is holometabolous with six 

nauplier and five copepodite stages (Hutchinson, 1967). 

Overwintering diapause is accomplished by copepodites buried in the 

bottom sediment (Hutchinson, 1967). The generation time of many 

copepods for which data are available averages 8 days (Allan, 

1976). The generation time of !1_. edax ,although not available, 

would be longer than this considering its relatively large size 

(Zaika, 1973). The generation time of !1_. edax would, therefore, be 

one or more days l anger than B. l ongi rostr is and 5 or more days 

longer than K. cochlearis • The adult of the species is a strict 

carnivore, feeding principally on copepodites and secondarily on 

small cladocerans and rotifers (Confer, 1971). The copepodites are 

also carnivorous, but the nauplii are filter feeders (Macarewicz and 

Li kens, 1975). 

From the life history characteristics pr_esented, !S_. cochlearis 

is the most opportunistic or r-selected species, !1_. edax is the 

least opportunistic or K-selected, and B. longirostris is 

intermediate in opportunism. In theory, therefore, the rotifer 

should exhibit the least resistance and the cladoceran and copepod 

should be more resistant. Persistence, in the operational 

definition, would also be dependent on this factor in the same way. 

In summer, K. cochlearis exhibited low resistance relative to 

the occurrence of rainfall, and B. longirostris and r1· edax 

exhibited high resistance. This result is consistent with the 

expected results, based on life history characteristics. In regard 

to persistence, however, the results were not consistent with what 
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was expected from life history characteristics. The rotifer and 

copepod were not persistent, but the cladoceran was persistent. In 

the fall, all three populations exhibited a high resistance and 

persistence with respect to the occurrence of rainfall. 

Several conclusions and observations can be presented from the 

results of this study. Considering the summer season, the rotifer, 

K. cochlearis, population shows low resistance and non-persistence 

relative to the occurrence of rainfall, as would be expected for an 

opportunistic species. 

The copepod, ~- edax, shows resistance and non-persistence in 

the summer. It should be noted that these conclusions result from a 

very low density of zero measured during the rainy period. It is 

possible that the species probably was present in the lake during 

that time as it immediately reappeared in samples in the subsequent 

dry period. Its density during the rainy period probably was too 

low to be detected by the methods used. The high resistance of the 

population appears to give an unsatisfying result relative to 

population stability in this case. Extinction of a species would 

also be interpreted from this analysis as being resistant as 

variance (zero) would likely be less after extinction than before. 

This case points clearly to the conclusion that a single definition 

of stability may not be appropriate for biological systems. 

The B. longirostris population, intermediate between the 

latter two relative to opportunism, was resistant and persistent. 

This result suggests t~at compromise in population growth rate, 

competitive and predator avoidance abilities may increase population 
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stability over a variety of environmental changes. 

Allan (1974) discussed a theory relating body size to 

predation and competition. He concluded that the smaller body size 

among cladocerans, e.g., B. longirostris, may compromise these 

factors such that an adaptive peak would occur. If increased 

stability could be assumed to reveal greater adaptation, these 

conclusions would support this theory. 

In the fall, all three populations showed high resistance and 

presistence. This appears to indicate that population stability is 

related to environmental changes, as well as life history 

characteristics. A number of physical, chemical, and biological 

changes occur in the fall (Hutchinson, 1967; Wetzel, 1975). Fall 

mixing of lakes occurs with a decline in temperature, oxygenation of 

the hypolimnion, release of nutrients from the bottom layer and 

annual density peaks of phytoplankton and zooplankton. With these 

changes in the fall, the environmental impact of rainfall could have 

been masked. 

Several questions, which could be the basis of future 

investigations, have been raised by this study. Resilience of 

zooplankton populations could be determined if sampling could be 

done around a brief and intensive storm to study the population 

responses. The question of why phytoplankton increases following 

rainfall has not been answered. One possible avenue of 

investigation would be to determine the changes in grazing pressure 

following a rainfall event. As zooplankton are likely exported in 

large numbers with increased flushing rate, a brief period of 
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decreased grazing may give a lag time before grazing rate catches up 

with phytoplankton production. Lastly, it is possible that some 

planktonic species exist in Westhampton Lake only because of the 

periodic occurrence of environmental disturbance caused by rainfall, 

and species, which would otherwise be competitively eliminated, may 

exist in the lake only because of an ability to take advantage of 

these episodes through rapid population growth. 
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TABLE 1: Monthly rainfall quantities from July to December 1978 
measured in the Westhampton Lake drainage basin and 
monthly rainfall quantities for the same period measured 
by the National Weather Service, Byrd Field, Richmond, 
Virginia - Mean monthly rainfall quantities for July to 
December are from the records of the National Weather 
Service, Richmond, Virginia, from 1938 to 1977. Quan­
tities are given in mm. 

Westhampton Lake National Weather National Weather 
Month Drainage Basin, 1978 Service, 1978 Service, 1938- 77 

July 77 106 141 

August 141 148 125 

September 12 7 91 

October 20 30 85 

November 92 114 78 

December 66 95 82 

TOTAL 408 500 602 
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TABLE 2. Rainfall quantities in mm on given dates. Measurements, 
unless otherwise indicated, were made with a graduated 
cylindrical rainfall gauge located on the roof of the 
Gottwald Science Center, approximately 100 m from 
Westhampton Lake. T = trace, less than l mm rain. 

Date 

Jul l l 
14 
16 
25 
28 
31 

Aug l 
4 
6 

11 
13 
25 
28 
29 
31 
31 

Sep 10 
13 
14 
23 

Oct l 
4 
5 

16 
Nov 8 

10 
15 
16 
16 
18 
23 
27 
29 

Dec 3 
4 
8 
9 

16 
20 

Rainfal 1 (mm) 

T 
2 

22 
45 

2 
6 

32 
27 
43 
14* 

9* 
5 
T 
6 
l* 
4* 
2 
4 
T 
6 

11 
3 
3 
3 
6 
6 
5 
5 

22 
2 
6 

20 
20 
4* 

25* 
T 

32* 
2 
3 

Approximate Time 

24:00 - 06:00 
l 2 : 00 - 14 : 00 
04:00 - 13:00 
23:00 - 02:00 
24:00 - 06:00 
06:00 - 08:00 
18: 00 - 21 : 00 
04:00 - 06:00 
13:00 - 21:00 
21:00 - 24:00 
1 5: 00 - 18: 00 
14:00 - 15:00 
24:00 - 06:00 
21 :00 - 24:00 
24:00 - 01:00 
07:00 - 10:00 
22:00 - 24:00 
24:00 - 24:30 
22:00 - 24:00 
19:00 - 20:00 
13:00 - 20 :00 
11 : 00 - 15 : 00 
1 7 : 00 - 1 8: 00 
16:00 - 21:00 
08:00 - 18:00 
1 7 : 00 - 2 3 : 00 
15:00 - 24:00 
24:00 - 06:00 
13:00 - 24:00 
24:00 - 06:00 
24:00 - 06:00 
04:00 - 06:00 
15:00 - 18:00 
04:00 - 24:00 
21:00 - 08:00(12/5) 
05:00 - 06:00 
11 :00 - 20 :00 
15:00 - 20:00 
17:00 - 24:00 

*Data gathered from National Weather Service Three-Chopt Station, 
located within the Little Westham Creek drainage basin approximately 
1.6 km from Westhampton Lake. 
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TABLE 3. Total rainfall quantities in rrm and average rainfall 
per day in mm/day for rainy and dry periods in summer 
and fall of 1978 (T =trace of rainfall, less than l 
ITUT1) • 

Average 
Preci pita ti Qn Total Rainfall 

Season Condition Dates Rainfall {mm} {mm/da~} 

Summer Rainy Jul 14-Aug 13 202 6.5 
Dry Jun 30-Jul 13 T T 

Aug 14-Sep 20 22 0.6 

Fall Rainy Nov 5 -Dec 9 141 5.6 
Dry Sep 21-Nov 14 38 0.7 

Dec 10- Dec 22 5 0.4 
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TABLE 4. Mean phytoplankton, in units of fluorescence, in dry 
and rainy periods, during the summer and fall 1978. 
N is the number of observations within each period, 
t is the two-tailed student 1 s t-test of independent 
means. 

Period Mean N t 

Summer - Dry 28.6 20 
-3. 108 

Summer - Rainy 35.9 12 

Fall - Dry 16.6 28 
-4.610 

Fall - Rainy 33.0 8 
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TABLE 5. Correlation coefficient of population densities at 
stations UL and DL. 

Organism 

Keratella cochlearis 

Bosmina longirostris 

Mesocyclops edax 

*Significantly correlated with P = .05. 
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Correl at ion 
Coefficient 

0.84* 

0.40* 

0.29 



TABLE 6. Three-way analysis of variance of population densities 
for JS.. cochlearis, .!!_. longirostris, and M. edax. Tre~tment 
sum of squares is calculated partitioning data according 
to season (summer/fall}, precipitation regime (rainy/dry), 
and stations (UL/DL). Treatment for station only was 
calculated to determine significance. N.S. = not significant. 

K. cochlearis 

Source df S.S. M.S. F 

Treatment 7 6.76 0.97 l.87 

UL/DL 1 0.21 0.21 0.40 N.S. 

Error 54 27.99 0.52 

TOTAL 61 34.75 0.57 

!!_. longirostris 

Source df S.S. M.S. F 

Treatment 7 l. 31 0.19 0.79 

UL/DL l 0.01 0.01 0.04 N.S. 

Error 56 13.41 0.24 

TOTAL 63 14. 72 0.23 

M. edax - --
Source df S.S. M.S. F 

Treatment 7 8.47 1.21 9.31 

UL/DL l 0.02 0.02 0.15 N.S. 

Error 56 7.54 0.13 

TOTAL 63 16.01 0.25 
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TABLE 7. Variance of population densities in periods designated surruner-rainy, surrmer-dry, fall-rainy, and fall-dry. 
Values are the pooled variances from the two stations. F value is the ratio of variances in the ,rainy 
period over the dry period within each season. 

---- Pooled Variances ---- -- df --- ·--Pooled Variances -- -- df ---

Species Summer-rainl'. Surrmer-dr,}'.'. Ra i nx/ d r,}'.'. F Fall-rain,}'.'. Fal 1-drx Ra i nx/ dr,}'.'. F 

Keratella cochlearis 2,495.90 105.01 9/17 23.77* 36.67 183,676.16 5/27 0.00* 

Bosmina longirostris 62,160.60 20,134.44 9/19 3.09 26,621. 62 47,073.55 5/27 0.57 

Mesocl'.clo~s edax 0.00 329.09 9/19 0.00* 3.33 5.67 5/27 0.59 

* Significant at 95% level for two-tailed F test. 



TABLE 8. Two-way analysis of variance with replication of 
population density measurements for Keratella cochlearis. 
Treatments are partitioned into season (summer/fall) 
and precipitation regime (rainy/dry). See text for 
definition of season and precipitation regimes. Values 
are transformed to 10910 (X+l). 

Source df S.S. M.S. F 

Treatment 3 5.89 1.96 3.92* 

Summer/Fal 1 1 0.57 0.57 1.14 

Rainy/Dry 1 0.41 0.41 0.82 

Interaction 1 4.91 4.91 9.82* 

Error 58 28.86 0.50 

TOTAL 61 34.75 0.57 

*Signficant at 95% level. 
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TABLE 9. Duncan 1 s multiple range test of population density means 
for Keratella cochlearis in different seasons and pre­
cipitation regimes. Lines below population density means 
group values that are not significantly different at the 
95% level. Values are transfonned to 10910 (X+l). 

- Season precipitation regime: 

- Mean population density 

- Groupings of means not 
significantly different 
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Summer 
Dry 

0.86 

Fall 
Rainy 

0.94 

Fall 
Dry 

1.43 

Summer 
Rainy 

1.66 



TABLE 10. Two-way analysis of variance with replication of 
population density measurements for Bosmina longirostris. 
Treatments are partitioned into season (summer/fall) 

Source 

Treatment 

and precipitation regime (rainy/day). See text for 
definition of season and precipitation regimes. Values 
are transformed to 10910 (X+l). 

df S.S. M.S. F 

3 0.96 0.32 1.39 

Summer/Fall 1 0.01 0.01 0.04 

Rainy/Dry 1 0.91 0. 91 3.96 

Interaction 1 0.04 0.04 0.17 

Error 60 13. 76 0.23 

TOTAL 63 14. 72 0.23 

39 



TABLE 11. Duncan's multiple range test of population density means 
for Bosmina longirostris in different seasons and pre­
cipitation regimes. Lines below population density 
rTEans group values that are not significantly different 
at the 95% level. Values are transfonned to loglO (X+l). 

Summer 
Season precipitation regime: Dry 

- -Mean population density 1.98 

- Groupings of means not 
significantly different 
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Fa 11 
_Q!1_ 

2.02 

Summer 
Rainy 

2.25 

Fall 
Rainy 

2.33 



TABLE 12. Two-way analysis of variance with replication of 
population density measurements for Mesoc cl o s edax. 
Treatments are partitioned into season summer/fafff 
and precipitation regine (rainy/dry). See text for 
definition of season and precipitation regimes. Values 
are transformed to log10 (X+l). 

Source df S.S. M.S. F 

Treatment 3 8.00 2.67 20.54* 

Summer/ Fa 11 l 2.29 2.29 17.62* 

Rainy/Dry 1 1.43 1.43 11.00* 

Interaction l 4.28 4.28 32.92* 

Error 60 8.01 0. 13 

TOTAL 63 16.01 0.25 

*Significant at 95% level. 
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TABLE 13. Duncan's multiple range test of population density 
means for Mesocycl ops edax in different seasons 
and precipitation regimes. Lines below population 
density means group values that are not significantly 
different at the 95% level. Values are transformed 
to 10910 ( X+ 1). 

SulTiTler 
Season precipitation regime: Rainy 

- Mean population density 0.00 

- Groupings of means not 
si gni fi cantly different 
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Fall 
Dry 

0.19 

Fall 
Rainy 

0. 39 

Summer 
Ory 

0.91 



Fig. 1. Bathymetric map of Westhampton Lake with the 

location of sampling stations indicated. Contour 

lines are in one meter intervals, and data is 

updated to April 1979. SR indicates the location 

of the stage rain recorder on Robins• Branch 

near the confluence of Little Westham Creek. 
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WESTHAMPTON LAKE 

Depth in m~_ters _ 

Scale: .. 1 --1!'!!!6""'6~m----.1 



Fig. 2. Hydrographs during rainfall on July 25, 1978 

(a) and August 4, 1978 (b) generated by a 

stage-rain recorder on Robins• Branch. 

Data represents calibrated flow in m3/sec 

versus time in hours. 
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Fig. 3. Isothermal lines of the temperature gradient 

of Westhampton Lake from June 30 to December 22, 

1978. 11 011 is dry period; 11 R11 is rainy period; 

11 SU 11 is the period of summer stratification, and 

11 FA 11 is the period of fall turnover. 
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Fig. 4. Phytoplankton abundance measured by fluorescence 

in Westhampton Lake from June 30 to December 22, 

1978. 11 011 is dry period; 11 R11 is rainy period; 11 SU11 

is the period of surruner stratification, and 11 FA 11 is 

the period of fall turnove-r. 
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Fig. 5. Population density in numbers/l of Keratella 

cochlearis (Rotifera) from station UL (solid 

line) and station DL (dashed line) from 

June 30 to December 22, 1978. 11 011 is dry 

period; 11 R11 is rainy period; 11 SU 11 is the 

period of surrmer stratification, and 11 FA 11 

is the period of fall turnover. 
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Fig. 6. Population density in numbers/1 of Bosmina 

longirostris (Cladocera) from station UL 

(solid line) and station DL (dashed line) 

from June 30 to December 22, 1978, .11 011 is 

dry period; 11 R11 is rainy period; 11SU11 is 

the period of summer stratification, and 

11 FA11 is the period of fall turnover. 
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Fig. 7. Population density in numbers/l of Mesocyclops 

edax (Copepoda) from station UL (solid line) 

and station DL (dashed line) from June 30 

December 22, 1978. 11 011 is dry period; 11 R11 is 

rainy period; 11 SU 11 is the period of sunmer 

stratification, and 11 FA11 is the period of fall 

turnover. 
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Appendix A 

Population density of zooplankton in Westhampton Lake at stations 
UL and DL in collection, June 30 to Decenter 22, 1978. Units of 
measure were No./l. 

Keratella Bosmina Mesoc.z:cl ops 
cochl eari s longirostris edax 

Date UL DL UL DL UL DL 
Jun 30 8. IT. 155. 156. IT. r. 
Jul 10 9. 11 • 219. 131. 0. 1. 
Jul 13 36. 34. 17. 155. 2. 0. 
Jul 17 86. 139. 256. 893. 0. o. 
Jul 22 81. 142. 128. 448. 0. o. 
Jul 26 26. 34. 34. 174. 0. o. 
Jul 30 57. 41. 139. 83. 0. 0. 
Aug 4 10. 11. 269. 121. 0. 0. 
Aug 11 16. 353. 0. 
Aug 17 3. 6. 61. 19. 8. 24. 
Aug 20 0. 0. 46. 4. 12. 7. 
Aug 23 0. 41. 34. 3. 12. 
Sept 7 2. 10. 532. 78. 77. 12. 
Sept 10 2. 4. 306. 181. TO. 40. 
Sept 14 11. 9. 318. 229. 9. 6. 
Sept 18 10. 9. 112. 386. 12. 18. 
Sept 21 3. 28. 55. 94. 9. 1. 
Sept 25 32. 20. 25. 87. 1. o. 
Oct 3 252. T04. 154. 70. 1. 1. 
Oct 18 805. 1133. 271. 254. 8. 3. 
Oct 31 1793. 782. 177. 625. 6. o. 
Nov 7 244. 199. 501. 777. 1. o. 
Nov 10 95. 79. 657. 436. 0. 2. 
Nov 17 22. 3. 171. 274. 0. 1. 
Nov 21 11. 5. 152. 355. 2. 5. 
Nov 26 4. 270. 0. 
Dec 3 6. 8. 474. 76. 0. 5. 
Dec TO 5. 0. 57. 34. 0. 0. 
Dec 12 8. 5. 60. 213. 0. 0. 
Dec 14 18. 7. 53. 49. 0. 0. 
Dec 16 14. 2. 68. 179. o. o. 
Dec 18 17. 0. 21. 44. 0. 0. 
Dec 20 4. 1. 99. 16. o. 0. 
Dec 22 6. 2. 59. 47. 0. 0. 
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Appendix B. Temperature profile readings in degrees celsius from June 30, 1978 to December 22, 1978 in 
Westhampton Lake. Depth is in meters and all readings are from station D. L. at the front 
wall of the Student Commons Building. 

Date 
De~th (m) 6/30 7/10 7/13 7/17 7/26 7/30 8/4 8/11 8/17 8/20 8/23 9/7. 9/10 
0 28.0 33.0 28.0 29.0 31.0 29.5 30.0 32.0" 33.0 30.0 33.0 3Q.O 26:0 
0.5 28.0 31.5 27.0 28.0 30.0 29.0 26.5 29.5 33.0 30.0 29.0 27.5 26.0 
1.0 28.0 28.0 25.5 25.0 28.0 29.0 24.5 28.0 29.0 30.0 27.0 26.0 26.0 
1.5 27.5 21.5 25.0 24.5 27.0 28.5 23. 5 27.0 28.0 30.0 26.5 25.0 26.0 
2.o 24.0 24.5 25.0 24.0 25.0 26.0 23.0 25.0 26.0 27.0 26.0 25.0 26.0 
2.5 19.0 20.5 21.0 21.5 23.0 22.5 -- 22.5 22.0 22.5 23.0 24.0 25.0 
3.0 14.0 14.0 14. 5 16.5 18.0 18.0 20.0 19.5 19.0 19.0 20.0 21.0 21.0 
3.5 9.5 11.0 11.5 12.0 13.0 13. 5 -- 15.0 16.0 15. 5 15.0 17 .o 17.0 
4.0 7.5 8.0 8.0 9.5 10.0 11.0 11.0 12.0 12.0 12.0 12.5 13. 5 13.0 

Date 
De~th (m} 9/18 9/21 9/25 10/3 10/8 10/14 10/31 11/17 11/26 12/12 12/18 12/22 
0 30.0 26.0" 24.0 22.0 18.0 23.0 21.0 15.0 12.0 10.0 7.0 7.0 
0.5 21r.o 25.5 23.0 21.0 18.0 23.0 20.0 15.0 12.0 10.0 7.0 "7.0 
1.0 27. 5 25.0 23.0 21.0 18.0 23.0 19.0 15.0 12.0 10.0 7.0 7.0 
1.5 27.0 24.5 23.0 21.0 18.0 22.0 18.0 15.0 12.0 10.0 7.0 7.0 
2.0 27.0 24.0 22.0 21.0 18.0 21.0 18.0 15.0 12.0 10.0 7.0 7.0 
2.5 26.0 23.0 22.0 21.0 18.0 21.0 18.0 15.0 12.0 10.0 7.0 7.0 
3.0 24.5 22.0 22.0 21.0 18.0 21.0 18.0 15.0 11.0 9.0 7.0 7.0 
3.5 21.0 19.0 19.0 21.0 18.0 21.0 18.0 15.0 11.0 9.0 7.0 7.0 
4.0 13.0 17 .0 17 .0 18.0 17.0 20.0 18.0 15.0 



Appendix C. Data were gathered on ten species of zooplankton in 
the course of this study. This list may assist others who collect 
and need to identify zooplankton in Westhampton Lake in future 
studies. Please note that identification of copipods were 
confirmed by Dr .• Harry C. Yeatman. 

Rotifera 
Conochilus unicornis 
Keratella cochlearis 

Kellicottia bostoniensis 
Polyarthra ~· 
Asplanchna fil!· 

Cladocera 

Bosmina longirostris 
Daphnia longispina 

Copepoda 

Mesocyclops edax 
Tropocyclops prasinus mexicanus 

Cyclops vernalis 
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Appendix D. Fluorescence measurements from stations UL and DL 
in Westhampton Lake from June 30 to December 22, 1978. 
Measurements were made with a Turner Model III fl uorometer using 
an arbitrary scale from zero to 100. 

Date UL DL Date UL DL 

Jun 30 31 27 Nov 7 20 21 
Jul 10 30 27 10 24 19 

13 29 28 17 25 23 
17 31 29 19 32 47 
22 34 34 21 40 28 
26 39 47 23 42 30 
30 36 31 26 41 37 

Aug 4 42 40 Dec 3 40 30 
11 34 41 10 10 11 
17 36 40 12 9 9 
20 45 38 14 8 9 
23 33 31 16 9 9 

Sep 7 24 20 18 7 8 
10 21 21 20 8 7 
14 20 29 22 8 7 
18 23 19 
21 26 20 
25 23 24 

Oct 3 27 20 
6 17 19 
8 19 21 

10 21 21 
12 24 21 
14 24 75 
18 32 26 
31 40 25 
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years. In 1978, I returned to the University of Richmond to finish 

the requirements for a Master of Science degree, and, in 1979, 

worked at the Virginia State Water Control Board. 

Presently, I am living in Alexandria, Virginia and working 

for Potomac Electric Power Company as a biologist. My research 
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