
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

4-22-2004

Discovering the potential for advancements in intrusion detection Discovering the potential for advancements in intrusion detection

systems systems

Kenneth J. Buonforte
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Buonforte, Kenneth J., "Discovering the potential for advancements in intrusion detection systems"
(2004). Honors Theses. 432.
https://scholarship.richmond.edu/honors-theses/432

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/432?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Discovering the Potential for Advancements in Intrusion
Detection Systems

Kenneth J. Buonforte
Honors Thesis*

Department of Mathematics & Computer Science
University of Richmond

April 22, 2004

Abstract

An intrusion detection system (IDS) is a collection of monitors strategically placed
on a network or individual host iri order to detect anomalous behavior. Since James
Anderson introduced one of the first frameworks for an intrusion detection system in [1],
researchers have extended the capabilities of these systems. IDSs take many forms, from
systems as basic as command line audit logs t9 those that emulate the defense mechanisms
of the human immune system. However, as intrusion detection has evolved, scientists
and administrators alike are beginning to question the need. for this technology due to
its lack of quantifiable performance and in ability to handle increasingly fast networks.
A report published by Richard Stiennon, Vice President of Gartner Inc., asserts that
intrusion detection systems will be obsolete by the year 2005. The controversy surrounding
Stiennon's statements has forced researchers to seriously consider the viability of these
systems. Yet, despite valid complaints and concerns with the progress of intrusion detection
systems, we feel these systems should continue to undergo research and development as
there are still many unanswered questions in regards to its future use. Additionally, the
failures that have spurred discontent with intrusion detection systems have often resulted
from careless configuration and implementation rather than from their design. This paper
demonstrates that there is still potential for futher exploration into the development of
intrusion detection systems.

*Under the direction of Dr. Doug Szajda

1

This paper is part of the requirements for honors in computer science. The signatures below, by
the advisor, a departmental reader, and a representative of the departmental honors committee,
demonstrate that Kenneth J. Buonforte has met all the requirements needed to receive honors
in computer science.

(advisor)

(reader)

(honors committee representative)

2

Contents

1 Introduction

2 Outline

3 History of Intrusion Detection Systems

3.1 Computer Security Threat Monitoring and Surveillance

3.2 Dorothy Denning and IDES

3.3 SHADOW.

3.4 SNORT ..

4 Classifications of Intrusion Detection Systems

5 Insertion and Evasion: Staying Under the Radar

5.1 Insertion .

5.2 Evasion .

6 Denial of Service Attacks

7 The Snort IDS

8 Recent Advances in IDS Technology

8.1 Detecting Service Violations and DoS Attacks

4

5

5

6

6

7

7

8

10

11

11

12

14

16

17

8.2 A Virtual Machine Introspection Based Architecture for Intrusion Detection 18

8.3 Global Intrusion Detection in the DOMINO Overlay System 20

8.4 Building Attack Scenarios through Integration of Complementary Alert Correla-
tion Methods . 23

9 Conclusion 24

3

1 Introduction

Intrusion detection systems (IDS) have two major purposes: to efficiently detect malicious
behavior on an individual host or network of hosts, and to initiate some kind of incident response
mechanism to restore normalcy to a system. IDSs come in many forms ranging from basic
command line audit loggers to full-scale emulations of the defense mechanisms found in the
human immune system [14]. The framework mentioned in [lJ deals with security audit logs,
how they are monitored by company personnel, and what happens in the event of a suspected
attack. IDS researchers consider this paper to be one of the first in intrusion detection. It
illustrates the imminent need for a system of accurate aggregation and recognition of misuse
patterns on an individual host.

~

As access control mechanisms arc installed in the operating systems, the need for
security audit trail data will be even greater; it will not only be able to record
attempted unauthorized access, but will be virtually the only method by which user
actions which are authorized but excessive can be detected.

Intrusion detection systems can be categorized by their methodology, or combination of method­
ologies, as well as by the their topology in regards to placement of individual monitors (Sec
Section 3). False positives, which arc false alarms, and the usual complaint that they aren't
fast enough to be real-time alarms arc two major concerns with intrusion detection systems.
But even more dangerous is that intrusion detection systems arc also vulnerable to attack. The
monitors of an IDS can be evaded, temporarily halted, tampered with, and attacked with enough
brute force to eventually cause them to crash [SJ. Thus, as stand-alone devices, intrusion de­
tection systems cannot 'yet be trusted to provide a perfectly accurate view of what is actually
occurring on a network.

As networks invariably become larger in scale and bandwidth, the challenge of developing a
resilient, accurate, and efficient intrusion detection system intensifies. Security administrators
are constantly challenged with new kinds of attacks in the forms of viruses, worms, denial of
service, brute force, masquerading, social engineering, etc. Each of these attacks incrc~'lc daily
in their potential for inflicting significant financial and infrastructural damage. Recent statistics
gathered by Carnegie Mellon's Computer Emergency Response Team (CERT) indicate that
companies reported 137,529 incidences for the year of 2003, up 55,435 from 2002 and 84,871
from 2001. There is a very real pressure on those developing computer security devices to
produce successful results.

The various weaknesses of current commercial intrusion detection systems continue to mar
the overall reputation of the technology as solid and important security solutions. Thus, in
an attempt to justify the necessity of continuing research in intrusion detection systems, this
paper highlights a few of the recent advancements in the field that indicate promise for a more
dependable solution.

4

2 Outline

Section 3: History of Intrusion Detection Systems In this section, we give an overview
of the history of intrusion detection starting from James Anderson's first contributions to
current commercial products including Snort.

Section 4: Classifications of Intrusion Detection Systems This section provides an in­
troduction to the current classifications of intrusion detection namingly misuse detection
and anomaly-based detection schemes in addition to two different physical frameworks
known as host-ba.c:;ed intrusion detection systems and network-based intrusion detection
systems. Lastly, this section introduces some hybrid solutions.

Section 5: Staying Under the Radar via Insertion and Evasion Insertion and evasion
attacks take advantage of a situation in which IDS monitors arc not aligned with the
hosts they protect and therefore can have their view of network/host activity skewed.
This section covers examples of these kinds of attacks and potential solutions.

Section 6: Denial of Service In this section, we discuss the Denial of Service attack, another
method of IDS interference. Attacks discussed in this section include the "Ping of Death",
SYN Flooding, and Distributed Denial of Service (DDoS).

Section 7: Snort and the Open Source Community One of the most popular IDSs today
is Snort, the Open Source Initiative's response to over-priced commercial IDSs. This
section covers the advantages and shortcomings of using Snort in addition to some examples
of its use.

Section 8: Recent Advances in IDS Technology Despite the challenges of designing a prac­
tical, resilient, and real-time IDS, recent aavancements in intrusion detection offer some
optimistic blue-prints for future solutions. This section will address new approaches to
distributed intrusion detection, building an IDS with virtual machines, attack correlation,
and improving the detection of denial of service attacks.

Section 9: Conclusion In the conclusion, we offer three reasons as to why we feel intrusion
detection systems are important security devices. Additionally, we summarize the topics
covered in this paper.

3 History of Intrusion Detection Systems

An intrusion detection systems is a collection of nodes responsible for detecting malicious activity
on a host or network of hosts. Early forms of these models include audit logs that had two
purposes: to log the actions of a user on a specific host, and to log the behavior/throughput on
a network.

5

3.1 Computer Security Threat Monitoring and Surveillance

In 1980, James Anderson introduced a method for leveraging information gleaned by audit logs
in order to come to certain conclusions regarding the behavior of a system, providing a framework
for an intrusion detection system. It is considered by many researchers as the first academic
acknowledgement of intrusion detection. Anderson discusses the importance of maintaining
accurate audit lo-gs and goes into some depth about the practices and steps taken to derive
valuable behavioral characteristics about the integrity of a system. An important contribution
that he makes in this paper is his observation of how easy it is to compromise system logs or
avoid them altogether.

It is evident that such audit trails are not complete. Users (particularly ODP per­
sonnel with direct programming access to datasets) may operate at a level of control
that bypasses the application level auditing and access controls. [...] Programmers
with the ability to use access method primitives can frequently access database files
directly without leaving any trace in the application access control and audit logs.

This paper concludes that one of the easiest ways for an attacker to avoid being caught is to
alter the audit logs in order to erase the trail of intrusion.

3.2 Dorothy Denning and IDES

Dorothy Denning continued research in intrusion detection throughout the 1980's, making her
most well known contribution in the form of the detailed model she describes in [13].

An important objective of our current research is to determine what activities and
statistical measures provide the best discriminating power; that is, have a high rate
of detection and a low rate of false alarms.

Denning claimed that her model, otherwise known as Intrusion Detection Expert System (IDES),
was real-time and could run independently with other system applications. Despite the fact that
her predictions about the real-time capabilities of these systems have not yet come true, her
work provided a foundation for future models of research.

Another one of Denning's important contributions is the idea that the behavior of an anomalous
presence in a system, either in the form of a virus or human attacker, has recognizable patterns
different from regular activity. This idea of identifying abnormal behavior through offiine and
real-time statistical analysis is an intrusion detection scheme that continues to challenge re­
searchers.

Finally, Denning considers the paradigm of network intrusion detection in addressing virus and
worm patterns in her paper. This an evolution from Anderson's approach in that instead of
intrusion detection being applicable strictly to an individual host, in her proposal intrusion
detection should involve monitoring an entire network of hosts.

6

3.3 SHADOW

The U.S. military has been a long time proponent, through allocation of funds and resources, of
developing intrusion detection. One of the most prominent voices in intrusion detection research
is Stephen Northcutt. At the Naval Surface Warfare Center Dahlgren Division (NSWCDD),
Northcutt develop~d a intrusion detection system dubbed Secondary Heuristic Analysis for
Defensive Online Warfare (SHADOW). Built in 1994, this IDS is still available today although
the latest release is a year old. According to the tool's documentation [15], SHADOW consists
of a sensor located at some point near a system's firewall and another sensor placed elsewhere
within a network. Through utilization of the tcpdump and libpcap libraries for network packet
capture, SHADOW identifies events that match a network wide definition of interesting behavior
where interesting means potentially malicious.

The key to effective use of SHADOW is intelligent definition of the tcpdump filters
based on the network environment and educated recognition of known and potential
exploits from traffic patterns.

Additionally, since this product is open source, it is freely distributed, which also means that the
administrators of the tool are responsibl~ for its successful performance, a recurrent theme found
in the shortcomings of most security devices. Therefore, the developers of SHADOW emphasize
in [15] the importance of having an intimate knowledge of the user's Linux installation and the
interworking of his network.

Stephen Northcutt's contribution to IDS research also includes several books, among them [3]
and [16].

3.4 SNORT

Similar to the Department of Defense's open source solution SHADOW is Snort, an IDS de­
veloped by Martin Roesch in 1998. Snort is one of the most widely used intrusion detection
systems currently available. Snort's impressive collection of tools related to intrusion detec­
tion combined with the support of the open source community and that fact that it is freely
distributable make it a highly marketable solution. According to [11], there are an estimated
200,000 installations worldwide and it is said to be as widely distributed as its closed market
competitors. Snort is a signature-based tool that relies on a strong database of attack signatures
for identifying potentially malicious network traffic. A core set of currently updated and widely
applicable rules are included in a Snort download. Another powerful feature is the ability to
write custom rules that are more specific to a user's network. Since Snort's syntax for rule
creation is easy to learn, security administrators are better able to configure their IDS solution.
The Statistical Packet Anomaly Detection Engine (SPADE), a heuristic method for detecting
intrusion, is another feature available to Snort users. Section 7 goes into more depth about
some of these features as well as the advantages and disadvantages of Snort.

7

Other commercial IDSs include Cisco's NetRanger, Internet Security Systems's RealSecure,
Symantec's Intruder Alert and NetProwler, and Enterasys's Dragon network intrusion detection
solution and Squire host-based intrusion detection system. Many of these systems offer a hybrid
approach to intrusion detection combining the advantages of predominant intrusion detection
architectures.

4 Classifications of Intrusion Detection Systems

Understanding the tradeoffs and compromises associated with each categorization of an intrusion
detection system is important in making optimal design decisions for a given organization. ,
Therefore, it is necessary to recognize the different categorizations of the methods for intrusion
detection and their physical implementation.

For any security administrator, the initial decisions about the IDS he wishes to implement must
be based his organizations's mission-critical resources. For example, an IDS for a Department
of Defense computer network should be configured to devote most of its attention toward hosts
containing classified information. In a setting where the prevention of information leaks is of
utmost importance, IDS sensors should be finely tuned for monitoring the traffic coming in
and out of a network and also for watching individual hosts to make sure employees aren't
distributing classified information to unauthorized persons. Since the main objective in this
environment is to ensure the integrity of its mission-critical assets, larger than usual overhead
costs are tolerable shortcomings if it means better protection of said assets. A corporation in
the private sector is also concerned about corporate espionage and propriety information leaks.
However, a corporation is less likely to enforce a host by host analysis of its employees' computers -
because it either wishes to establish an environment of trust amongst its personnel or it decides
that the money spent on maintaining a complex IDS is simply not worth it. In fact, as described
by (3], it can be relatively difficult to persuade the upper-management of a company that their
organization needs a security solution as involved as an IDS. On the other hand, since so many
organizations have reported losing billions of dollars due to network breaches and fraud, lately
it appears that companies are more willing to invest in intrusion detection, which means that
furthering the development of successful systems will become more important in the commercial
setting.

There are two essential characterizations of the methods for intrusion detection: misuse detection
and anomaly-based detection. Both methods define what is considered normal, acceptable
behavior for the use of individual hosts on a network and the stream of traffic between hosts
and from external networks.

Anomaly-based detection involves attempting to identify anomalous behavior through aggrega­
tion of various system or user statistics. For example, there are current efforts on the devel­
opment of identification algorithms for profiling specific user based information including the
commands he enters at a shell prompt and his unique keyboard entry patterns. The latter tech­
nique is often referred as keyboard dynamics. Currently inaccurate algorithms for determining
these dynamics prevent this approach from acting as a stand-alone authentication scheme, but

8

it is an additional step to an more in-depth solution. In a sense, the IDS monitors become
more autonomous in anomaly-based detection because they are the trained monitors that make
deductions as to whether or not the current behavior of the system they're protecting is ma­
licious. Unlike misuse detection, a well implemented anomaly-based detection scheme may be·.
able to detect unknown attacks which may have very different attack signatures from other
previously known attacks. While it is possible to successfully detect new attacks within the
network paradigm, defining anomalous behavior for a host is often a more effective because
the IDS monitors have access to more specific behavioral information with which to make IDS
decisions.

A second method for intrusion detection is misuse (signature-based) detection where a monitor
compares system behavior with a set of rules, also known as attack signatures, in order to
recognize previously executed attacks. Misuse detection accomplishes this by parsing through
either network data streams or user commands to discover characteristics of attack signatures
indicative of a potential attack scenario. For example, Snort, is powerful because members of the
Snort community are encouraged to report different attacks and develop new rules to protect
against other similar attacks. This allows the IDS to have a thorough collection of attack
signatures that, if updated appropriately, should prevent attacks from reoccurring. Another
nice feature about this type of detection is that since the identifiable attacks· have already
occurred, it is a given that some system administrator will have knowledge as to how to deal
with the attack and initiate effective incident response. Misuse detection is only as good a~ :the
community that develops the attack signatures and appropriate incident responses. · · ·

Placement of IDS monitors can also be divided into two dominant strategies. A network-based
intrusion detection system (NIDS) attempts to identify malicious/abnormal behavior by focusing
its analysis on incoming network traffic, usually at the packet level. Because net~ork pa~kets
can have large payloads, analyzing a packet in 1ts entirety is not ideal as· it pla~es ·execution
strains on the IDS and possibly the network. Instead, most NIDSs do their primary analysis
in the header of incoming packets where they can monitor protocol types, destination internet
protocol {IP) addresses and ports, source IP addresses and ports, and other vital network
activity information. Drawbacks to most NIDSs include slow execution, especially in large
gigabit networks, and complaints that they don't have a specific enough view of what is actually
happening at the host level. In other words, these IDSs have poor visibility. · ·

Host-based intrusion detection systems {HIDs) remedy the problem of host level ignorance by
monitoring specific user actions on an individual host. Keyboard and command loggers, CPU
monitors, and other user-level modus operandi for collecting information are all considered
frameworks for HIDSs. In earlier versions of this framework, HIDSs were blind to activity on,
other hosts as they were configured to focus on monitoring only the behavior of the individual
user on one host. In a large network setting, HIDSs are still effective individually as their
only responsibilities are still in monitoring individual hosts, however they now have the option
of communicating with each other for better propagation of information essential for accurate
intrusion detection. Additionally, in this scenario it doesn't matter how many new 'hosts are
added to a network as long as each host is given its own monitor. In fact, recent advances in
intrusion detection frequently include a protocol for host-to-host communication in combining

9

host-level monitors within an NIDS to build a more powerful hybrid solution. Similarly, misuse
detection and anomaly-based detection can be combined to develop a stronger attack detection
scheme which can detect old and new attacks. However, careful thought is required in developing
a hybrid solution as the potential for an IDS that is cumbersome, intrusive, and vulnerable to
attack increases if the paradigms are not combined in a careful manner. For example, if an
IDS sensor is responsible for matching attack signatures with incoming packets and computing
information regarding the stream of packets to hopefully discover anomalous behavior, the sensor
will almost certainlY. become a network bottleneck. That is why there are research efforts still
in progress to effectively examine the advantages and disadvantages of NIDS, HIDS, misuse ..
detection, and anomaly detection in order to derive the most potent solution.

An example of a hybrid solution to intrusion detection is a distributed intrusion detection
system (DIDS). Perhaps one of the most interesting attempts at a DIDS can be found in [14].
Authors Stephanie Forrest and Steven A. Hofmeyr model their intrusion detection system after ·
the human immune system. They even give intrusion detection nodes proper cell names (i.e.
t-lymphocyte) to differentiate between the purposes of each nodes in their DIDS. [18] is another
form of DIDS that is built on an overlay network and is highly scalable and heterogeneous. The .
hierarchical design of DIDSs increases the redundancy of the system and the aggregation of data
regarding system activity. Additional work in this area is found in [4,5,19,20].

Another interesting approach toward developing a hybrid solution is in using an artificial neural
network as a framework for an IDS. These systems leverage the ability of neural networks that
have been trained to understand normal system behavior to teach the IDS how to autonomously
detect malicious behavior, thereby alleviating the reliance on human intervention for incident
response. This has been a promising realm of ~esearch and development, primarily in academia
[22,23,24,25]

5 Insertion and Evasion: Staying Under the·.Radar

Despite the fact that insertion and evasion have opposite definitions, they both can occur wheri
there are inconsistencies between the NIDS monitors and the hosts a network. [9] graphically
depicts this situation. In this figure, the NIDS resides at the same hierarchical level as the
hosts it defends, unobtrusively reading packets off the line in a promiscuous mode setting, an
ideal setting for an attacker to execute an evasion or insertion attack. Another property of
NIDSs that make these attacks plausible is that the NIDS only checks IP packet headers rather
than the entire packet. As previously mentioned, a good way to speed up a potentially slow
NIDS is to focus only on the headers of incoming packets as payload sizes can be varied and
unpredictable and header information usually provides enough detail about the entire packet
for the purpose of intrusion detection. If a cracker successfully executes either method of IDS
subversion correctly, he can infiltrate a network with a reasonable assurance that he will not be
caught, at least until a security administrator recognizes that something is amiss with a host on
the network and manually sounds the alarm. Finally, if the IDS resides on a network segment
other than that of the hosts it defends, insertion attacks can still defeat the IDS through clever

10

manipulation of the packets with which the attacker executes his attack.

5.1 Insertion

Insertion occurs in a system where the hosts abide by more restricting rules regarding what
packets to accept and reject than the actual IDS monitor. Therefore, if an attacker has done
enough reconnaissance, or if he is just plain lucky, packets can be sent to a target network in a way
such that only the IDS will accept all of them, even the malicious ones. If a hacker can deduce
certain features about the target hos_t of his attack, he can send some packets that he knows the
host will not accept. In this situation, the IDS monitors do not have the same packet rejection
rules as the hosts, and therefore, the attacker can send packets in a manner that essentially
skews the view of the IDS monitor, and therefore the attacker can continue launching the attack
while "staying under the radar". To clarify, the attacker takes advantage of IP fragmentation
by sending a series of fragments that will be reconstructed to form a packet with a payload that
has no real meaning and does not appear malicious; however, the attacker can include packet
fragments in the stream that the host will reject and thus not include in its reconstruction of
the entire packet. Instead, the reconstructed packet may contain an unauthorized system call
or other malicious instructions. [9] gives a very detailed description as to the specifics of this
attack due to their analysis of the IP code for the BSD 4.4 Operating System.

According to [9], a very simple way to ensure a packet is accepted by an IDS sensor but rejected
by target host is through manipulating the header fields of the maliciously formed IP packet.
For example, setting an invalid checksum will most likely make the sent packet unacceptable
by a host. However, if the IDS monitor is not checking that all packets have valid checksums,
a bad checksum will not cause the IDS to signal_ an alert. Another quick manipulation would
be to set the time to live header field to some value where once the packet is passed through
the IDS, its TTL value would decrement to zero and would therefore be dropped by a host but
accepted by an IDS monitor as valid traffic.

5.2 Evasion

The attack opposite of insertion is evasion. This involves an attacker "evading" an IDS by
sending packets that he knows will be rejected by the IDS, and therefore will be unanalyzable,
but accepted by individual hosts. In a sense, the attacker is covering his tracks because he's
guaranteeing that the packets he sends are flat out rejected by the IDS monitors and therefore,
the attacker sends a packet stream with packets that he knows the IDS will reject but that the
target host will accept.

This is more difficult to execute then insertion because the attacker must be sure that the
IDS monitors are not placed on a hierarchical level above the hosts. In other words, if the
IDS monitors are acting as a gateway in deciding what packets the hosts should and shouldn't
receive, evasion may not work the way the attacker intends it to. In the event that a monitor
is placed on the same hierarchical level as a host, since the attacker knows the packets will

11

reach the end-user regardless of whether or not it is rejected by the IDS monitors, he can simply
create a malicious attack stream that will deceive the IDS but elegantly succeed in exploiting
the target host.

Both of these kinds of attacks are indeed clever, but they are based on concepts that were
central to older versions of IDSs . These days, IDS monitors are more likely to check for bad
checksums on packets and set other header field rules that should prevent potentially malicious
packets from escaping its sensors. Still, those NIDSs concerned with increasing detection speed
may overlook or even sacrifice many of the necessary configurations for preventing either of
these simple attacks. The larger a network becomes, the more bandwidth the NIDS monitors
are responsible for handling and therefore tradeoffs must be made. Therefore, according to [9],
often the only way to ensure prevention of evasion or insertion is to incorporate a host-based
solution. Additionally, the HIDS and the NIDS monitors along with the other hosts on the
network must be synchronized and therefore; the responsibility lies on the system administrator
who must iron out any inconsistencies. This last point identifies a major concern with IDS
technology: the human element. This idea will invariably resurface with every practical and
conceptual IDS design as the success in implementing a secure solution is only possible when
the administrator of that solution is proactive and responsive.

6 Denial of Service Attacks

A Denial of Service attack is dangerous not only in its potential for incurring network outages
but also in the ease of its execution. This attack is aimed at flooding a network entity with
usually nonsensical traffic in order to overwhelm the entity to the point that it can no longer
service the requests of other users as it is either in a busy /waiting state or has crashed from
being overloaded.

An example of the Denial of Service attack involved one of the most notorious and severely
prosecuted hackers in modern cyber crime, Kevin Mitnick. In his final black-hat attack Mitnick
would take advantage of a very simple flaw in the TCP protocol. This attack is known as SYN
flooding and is carefully documented [10] by the man who Mitnick attacked in his final moments.
The participants in this attack include a trusted server A, a host B involved in a trust relationship
with server A, and an attacking host C. In order to avoid leaving a trail of intrusion, the attacker
from host C spoofs the source IP address in the header of the malformed packets he sends, often
borrowing an unused IP address on the target network. After careful reconnaissance regarding
the trust relationships existing between server A and various other hosts on the targeted network,
the attacker will attempt to overwhelm server A with the maliciously formed packets thus
exploiting a flaw in the transfer control protocol (TCP) three-way handshake. Pursuant to
TCP, in order to open a communication the initiator, in this case host C, must request that
the receiver, server A, allocate a buffer in its transfer queue and send a confirmation ACK/SYN
packet back to the initiator. If the initiator does not finish the third part of the three way
handshake, a predefined timeout value will cause the receiver, under the assumption that the
connection has gone bad, to close the communication and deallocate all buffer space in its

12

queue which relates to the failed communication. The exploit exists in the moment between
the second part of the TCP communication initiation and the timeout where, if host C sends
an overwhelming amount of communication requests and leaves them in a half-open state, the
receiver's queue will eventually fill up to capacity and it will no longer be able to service any
other hosts on the network. When the attacker is positive that server A has reached maximum
capacity, if he has also determined the sequence that host B uses to increment its own ACK
packets, the attacker can spoof the source information of server A and finally establish a trusted
communication with host B.

As a result of the media frenzy surrounding Mitnick's arrest and prosecution, the SYN Flood
attack has been heavily analyzed by many experts in the field, and is therefore much more
difficult to execute on a network with a semi-dutiful security administrator. Even during the
time of the original attack, many steps could have been taken to detect and possibly prevent it
earlier. A simple precaution to take would be to install a lightweight firewall or filtering router to
protect a network from reconnaissance in addition to manually disabling the r-utilities thereby
making it nearly impossible for the attacker to develop a threatening level of knowledge of the
trust relationships between network entities. [3]

In terms of defeating an IDS, a SYN flood attack can be directed at a network monitor provided
the attacker knows which hosts are monitors and the monitors have not been configured to
safeguard against the attack. Unfortunately for the administrator of the IDS, Denial of Service
attacks can come in even simpler forms than the SYN Flood. Among these forms, one entails
sending ICMP packets to a host in order to "ping" it, or find out if it is online and accessible, at
such a rapid pace that the host being pinged finally crashes. This attack is known as the "Ping
of Death" attack. The seemingly infinite number of ping requests exhausts the resources of a
targeted host. When a host's resources are overwhelmed in this manner, it has no choice but to
shut down, allowing the attacker to redirect traffic dedicated for the pinged host to another IP
address.

Distributed denial of service (DDoS) attacks augment conventional DoS attacks by utilizing
multiple sources to attack a host. This reduces the threat of detection to an attacker as he can
send less data from individual nodes by spreading out his attack. Additionally, since the attack
originates from multiple sources, narrowing down the identity of the cracker becomes more
difficult. This is especially true when the attack comes from compromised hosts on other third­
party networks (i.e. commercial networks). In this case, the attacker is essentially hiding behind
an otherwise trusted network to further distort his identity. In these situations, the organizations
of the hijacked third-party networks must also claim a degree of liability for potential flaws in
their security policy that lead to the final DDoS. attack.

A denial of service attack can be prevented by setting thresholds on various system metrics. For
example, recent IDS frameworks have [18] installed packet-filtering schemes on various network
nodes that will drop packets from an IP address outside of a given range. Thresholds on other
metrics such as delay, loss, and bandwidth consumption place restrictions on a host so that it
is not overwhelmed by any other host, whether or not that host resides on the same network.
These measurements of network activity allow for quantifiable evidence that a host is potentially
under a DoS attack. Section 8 goes into more depth on recent research in this area.

13

7 The Snort IDS

One of the most well known and widely used intrusion detection systems which benefits from the
support of the open source community is the Snort intrusion detection system. Originally created
by Martin Roesch, this tool is a signature based IDS that has many advantages for personal
computing purposes as well as medium, and in some cases even large, sized corporations. The
most appealing advantage of the Snort intrusion detection system is that its free to download
and distribute, a liberty that can be attributed to GNU General Public License published by
the Free Software Foundation. In other words, Snort can be freely installed on any number of
machines just as long any modifications made to Snort's source code are posted and documented
for public use.

Another key advantage of Snort is that it is constantly being developed by a community of
programmers that range from system administrators, security administrators, analysts, devel­
opers, engineers, to other parties interested in maintaining the enormous signature library that
currently (as of March 20, 2004) includes around 1,500 prewritten rules. Of course, the success
of the tool relies entirely on the administrator and his consistency in upgrading the definitions.
Provided that the those responsible for administering this product are diligent in its upkeep,
having an entire community of like-minded ethical hackers and problem solvers working at de­
vising solutions to recent attacks is similar to having an entire community of security engineers
for the price of an internet connection to a BBS (Bulletin Board System) or Snort mailing list.
Even if a black hat decided to post a fraudulent rule to the message board, one can expect
that the creators and maintainers of Snort would eventually find the inconsistencies and the
intentional deception in the fake rule.

Lastly, Snort is highly portable. Its current ver:sion can run on architectures including i386,
SPARC, Alpha, and Motorola 68000/Power PC as well as being compatible, with operating
systems such as Linux, OpenBSD, FreeBSD, Solaris, HP-UX, Win32, Mac OS X, and more. The
most current version that has just been released is Snort v2.l.l, which according to its website
(www.snort.org) addresses such issues as updating its templates, a fixed port-scan' alert bug,.
removing the escaping of '3' and '_,, and many more examples of the ongoing maintenance effort.
It is also a relatively small application, only consisting of a few megabytes of space. However,
where memory usage becomes a factor is in storing the information that Snort produces, which
can be gigabytes. Output generated by Snort can come in the following forms: syslog, tcpdump,
Text Logfile, XML, Relational database, SNMP, and Snort Unified. In fact, Snort supports every
major relational database platform from MySQL to Oracle and even Microsoft's SQL Server.
[11] The fastest among these is the tcpdump option because of the simplicity and locality of
the log file whereas, despite its convenience and manageability, the relational database approach
can be a serious strain on network performance, a prevalent issue with all NIDSs. The ideal
situation involves utilizing the last format on the previous list of available options: the Snort
Unified Format and a stand-alone partner process to Snort known as Barnyard. In order to find
a solution that allowed their users to have more accessibility to their network performance logs,
the initial creators of Snort developed a method whereby the Snort daemon handling network
traffic can focus primarily on its intended job of packet analysis by off-loading the storage task
to Barnyard. Because Barnyard is its own process, it can run along with the Snort daemon and

14

do the work of sorting the output data into relational databases greatly reducing the bandwidth
strain that would otherwise be unequivocally present in the absence of the helpful plug-in.

Barnyard is one of the many possible plug-ins that Snort offers its vast community of users.
A heuristic library has also been added to enable anomaly-based detection to a predominantly
rule based system. This library is known as the Statistical Packet Anomaly Detection Engine
(SPADE). In SPADE, traffic is assigned a risk metric and when the metric exceeds a certain
threshold, that particular portion of traffic is labelled bad, causing Snort to generate an alert.
This is effective in preventing low probes from distributed sources because of the use of a metric
that will keep track of bad traffic aimed at a host on the protected network, even if it is fingered
once a day, or from multiple sources.

However, since one of the most attractive features of the Snort IDS is its simple yet powerful
syntax for devising rules, one must actually examine a few samples to understand exactly how
the tool works. In downloading the latest version of Snort (version 2.1.2), one can access the
complete list of current rule sets that include the following:

attack-responses.rules, smtp.rules, backdoor.rules, snmp.rules, bad-traffic.rules, mul­
timedia.rules, mysql.rules, sql.rules, chat.rules, netbios.rules, telnet.rules, ddos.rules,
oracle.rules, p2p.rules, virus.rules, policy.rules, web-attacks.rules, experimental.rules,
pop2.rules, finger.rules, porn.rules, ftp.rules, web-frontpage.rules, rpc.rules, rser­
vices.rules, icmp.rules and xl I.rules,

Altogether there are forty-eight rule sets along with a few configuration files and other miscellany.
The following is an example of what these rules look like and how they are decoded by the Snort,
signature-matching engine: -

alert icmp $EXTERNAL_NET any -> $HOME_NET any
(msg:"ICMP PING NMAP"; dsize: O; itype 8;)

The above rule is broken down in this manner: an alert should be generated for ANY ICMP
packet that comes from outside the host network, has an empty payload (dsize: 0) and has
a type field of 8. The msg tells the admin that the reason for the alert is due to a possible
ICMP NMAP PING, which indicates that an attacker is using NMAP, a network surveillance tool, to
traverse HOME_NET. The markups in mixed with the syntax allow Snort to parse the alerts that
it encounters for easy reporting capabilities.

Snort also allows its users to configure and create new rules that are more appropriate and specific
to a client's network, a fairly unique feature not found in most commercial products. Allowing
users to write their own rules, which isn't difficult once the syntax for Snort is understood,
increases the granularity of an IDS. However, it also puts more responsibility on the' security
administrator responsible for maintaining the tool. The success of the Snort IDS is directly

15

proportional to the amount of planning, design, and configuration that the administrator is
capable and willing to do.

While Snort is an incredibly powerful tool, it has some significant drawbacks. First and foremost
is Snort's complexity in rulesets and plug-in/library options. In this case a blessing can be a
curse if security administrator is not entirely sure which services should be run and which ones
he can cut. The difficulty is especially apparent in the installation process. Each device must
be configured with a certain meticulosity that can cost an organization a sizeable price in man
hours as well as leave the system open to a potential vulnerability that a human is quite likely
to leave unnoticed. Thankfully there is a substantial amount of documentation available either
for free or for a maximum price of $30 dollars (the going rate for [11] is $28.50).

Secondly, despite the heuristic help that SPADE provides in anomaly-based detection, "Snort is
primarily a signature-matching IDS, and consequently falls victim to the false positive quandary."
[11] While steps can be made to reduce the quantity of these pesky false alarms, there arc an
inevitable evil that must be dealt with. Additionally, because Snort is predominantly signaturc­
based, it will repeatedly be susceptible to newly crafted attacks. Despite how quickly the open
source community is capable of reacting, its members obviously can't write rules in real time to
catch up with the rate of new attacks.

Finally, Snort's status as an open-source tool prevents it from being used by enterprizc-class
applications. The GNU Public License may not be enough for the necessary contractual vendor
agreement to prove the product's legitimacy in the court and in the board room. An IDS is
an integral part of the protection of valuable company assets and certain liability issues arc
often only handled best through a more proven framework than the relatively young, liberally
minded Open Source Initiative and the Free Software Foundation. However, based on recent
corporate decisions to invest in Linux boxes for production servers, corporations have been
visibly migrating toward the open source solution.

All shortcomings aside, Snort is commercial friendly while retaining a vendor~frce characteristic
that lends to it an unbiased level of respect. Pride in a truly successful product in addition
to a recurrent level of communal interest in solving a plentiful supply of intrusion detection
challenges will continue to drive the development of this tool while sustaining its popularity
both in the office building and on the home pc.

8 Recent Advances in IDS Technology

The following papers are all recent attempts at solving some of the aforementioned problems
with conventional IDSs. Each of the following contributions have been made within the last two
years. They demonstrate that there is still potential for improving and extending the capabilities
of an intrusion detection system.

16

8.1 Detecting Service Violations and DoS Attacks

This paper proposes a method for detecting the Denial of Service attacks mentioned in Section
6 and another attack of similar consequence known a quality of service (QoS) attack. The
difference between a quality of service attack and a denial of service (DoS) attack is in the aim
of the attacker. In a network where a QoS scheme is present, users have varied service rates
based on a payment plan or special privilege. For example, if a user pays an extra monthly fee
to his internet service provider (ISP) for an extra service (i.e. streaming video), he is entitled
to a bigger and faster share of the available bandwidth. The motive of a QoS attack is to gain
access to a higher class of service for recreational use or, worse yet, for orchestrating an attack
on a larger network that would require more efficient bandwidth capabilities.

The authors of [12] believe that either attack can be quickly detected and possibly prevented
by their proposed scheme. Contrary to basic detection schemes that simply wait until network
performance drops abnormally, the new method presented in this paper attempts to prevent
this situation from even occurring by focusing on early detection of such attacks. Additionally,
the developers of this detection scheme aim to incur retribution on those responsible for the
attacks.

The contributions made by this paper arc techniques for monitoring network behavior in order
to detect DoS and QoS attacks early enough to avoid the detrimental effects of a network outage.
An outage in this sense refers to the inability of a network entity or service to function correctly.
The three parameters in the decision making process of the presented techniques are delay,
packet loss ratio, and throughput. All three service level agreement (SLA) parameters define
the characteristics of service level behavior. Although it is not the original work of [12], the first
technique for network monitoring is known as core-based monitoring. A core router isotherwisc
known as an ingress router or one that is placed 'within a network whereas an edge router, also
referred to as an egress router, is one placed on the outside. Core-based monitoring involves
aggregating SLA statistics from core routers. These statistics come from randomly. selected
packet headers saved by a core router, where random is defined by a given probability function.
From the saved packet headers, ingress routers form special packets known as probe packets_.
that are sent to egress routers, which compute the network delay. Core routers compute the
other SLA parameters in a similar fashion.

The significant drawback in this solution is the amount of overhead required to generate accurate
statistics. The overhead hit comes from the stain placed on the core routers in having to compute
SLA statistics through marking random packets. Since the focus of this paper is quick detection
of a potential DoS attack, the authors introduce distributed monitoring, which fits under the
umbrella of another known technique for SLA statistic computation: edge-based monitoring, a
method similar to core routing except in the way it measures the packet-loss ratio. Another
approach that fits in the category of edge-based monitoring is stripe-based monitoring. Stripe­
based edge monitoring involves sending a series of consecutive packets known as a stripe to,
various nodes on a network to compute SLA parameters in a more direct manner. In monitoring
the packet drop rate of the stripe, a network monitor can make quick and accurate conclusions
in regards to the proper behavior of a network. Stripe-based monitoring accomplishes all of

17

this through inferences made by the results of the stripes it sends to edge routers and not core
routers thereby reducing overhead costs.

In distributed monitoring, overhead is further reduced by placing monitors on an overlay network
which resides over the physical network. In this environment, the monitors have direct access
to each other. They regularly probe the underlying network in sending stripes similar to those
sent in stripe-based monitoring. However, these monitors are primarily interested in finding
congested edges, or links, as opposed to exact service level agreement values. If a monitor finds
that one of its edges to another node is congested, it will trigger other monitor nodes to test
that link for congestion. In short, this scheme reduces to number of node comparisons to O(n)
whereas striped-based requires comparisons on the order of O(n2). This is because of the direct
connection of edge routers in the distributed scheme which allows for detecting congestion in two
directions as opposed to the restriction found in stripe-based monitoring where only malicious
traffic travelling in the same direction of the stripe can be detected, potentially requiring O{n2)

in a worst case scenario.

Each of these schemes incurs overhead as a result of its implementation, however, in theory they
should still be able to balance this overhead with SLA parameter computation to effectively
uncover a potential DoS or QoS attack scenario before it materializes. In a core-based solution,
because each monitor incurs high levels of individual overhead, it is not a scalable solution unlike
the route-based approach featured in stripe-based and distributed monitoring. Regardless, each
monitoring scheme can in theory uncover DoS and QoS attacks. The promising arguments
made in this paper suggest that research on the practical implementation of these monitoring
schemes should continue and that DoS and QoS attacks are detectable at their early stages and
potentially preventable.

8.2 A Virtual Machine Introspection Based Architecture for Intru.:.
sion Detection

Another recent development is [7] a paper that describes a unique approach to intrusion de­
tection, one that attempts to solve two reoccurring problems with traditional host-based and
network-based intrusion detection systems, namingly evasion and direct attack. To combat
these vulnerabilities, the authors of this paper develop a unique framework for an IDS built
with Virtual Machine Monitor (VMM) technology. One of the best ways to prevent evasion
from obstructing the view of an IDS monitor is to ensure good visibility. In other words, by
increasing the range of analyzable events, an IDS monitor will have a better perception of indi­
vidual host activity. However, this approach leaves the IDS monitor more vulnerable to direct
attack. That is, without any redundancy, if a monitor is compromised, intrusion detection is
no longer possible until the monitor is restored to a working state. This leaves a system in a
fail open state in which an attacker's actions will not be recorded for post incident response
analyzation assuming the attack is eventually detected. , .

Both of the dominant intrusion detection frameworks suffer from poor visibility (NIDS) and
susceptibility to direct attack (HIDS). As such, it is necessary to develop a system that can

18

remedy these problems while retaining the desirable properties of either framework. Virtual
Machine Monitor technology accomplishes this by using an introspective approach that the
authors of [7] deem Virtual Machine Introspection {VMI). VMI does not require an IDS monitor
to physically reside on a host in order to analyze states and events. Instead, because a virtual
machine is software that abstracts the hardware resources of a host, a monitor running on a
virtual machine is isolated from the actual hardware itself. This method of isolation prevents
attackers from taking advantage of the vulnerability of IDS monitors residing at the same level
as host's operating system. Because the IDS monitor is no longer directly tied into the host's
operating system, it can exist in a network of distributed virtual monitors while retaining a high
degree of visibility.

Additional isolation between host and monitor comes from the difference in programming lan­
guages· in the implementation of the virtual monitor and the actual operating system. For
example, a monitor can provide surveillance for a host running a Linux operating system even
if it is uniquely programmed by a different language because of the level of abstraction in the
interface between a virtual and a physical machine. Since prior research of virtual machines
exists, a virtual machine API is accessible.

VMM merely leverages a third-party host OS to provide drivers, bootstrapping code,
and other functionality common to VMMs and traditional operating systems, instead
of being forced to implement all of its functionality from scratch.

The virtual machine monitor is the entity responsible for the virtualization of system resources
for virtual machines, and therefore is the most important entity within the IDS. It communi-.
cates with the VMI IDS, which is the virtual machine introspection intrusion detection system,
through a protocol that further secures the VMM from attack. Even an attack on the VMI IDS
is tolerable as long as the VMM retains visibility. All traffic into the VMM is assumed to be
malicious and is therefore processed by the VMI IDS, just a host running in promiscuous mode
would see all traffic on an Ethernet network. In addition to isolation, two other prope'rties that
the VMM approach provides and IDS with are inspection and interposition. Inspection refers
to the VMM's ability to know the exact state of a virtual machine, which makes it difficult to
evade the IDS. The property known as interposition allows the VMI IDS to utilize the VMMs
ability to intervene in the execution of privileged instructions of its virtual machines in order to
detect illegal actions. [7] gives an example of such an action as an illegal modification of a given
register.

There are potential drawbacks to this system. The first is in modifying the virtual machine
monitor in order to extend the functionality for the VMI IDS. If the VMM is modified incorrectly,
the overall system is prone to a security breach.

In confronting this issue in our prototype system, we provided additional function­
ality by leveraging existing VMM mechanisms.

A second drawback is deciding which machine events to handle based on their potential for
incurring overhead. For example, some events require a minimal step such as 'copying or logging,

19

whereas other events, often involving memory access, require that the VMM take a performance
hit which has a direct effect on the rest of the network. The developers handle this drawback
by predefining events that they know will decrease performance but must be monitored because
of their potential to be malicious. A final drawback is in the potential exposure of the VMI
IDS because of its relationship to the VMM and a given virtual machine. The main idea is that
since the developers allow the VMI IDS to have access to a given virtual machine's state, it
is exposed to attack via a successful compromise of a virtual machine. And, because the VMI
IDS is allowed close access to the VMM's code, the VMM can also be exposed to attack via
a successful compromise of the VMI IDS. Thus, the VMI IDS and the VMM have their own
secure method for transportation to provided added security to the VMM, an entity that must
be defended above all other entities.

The policy engine responsible for recognizing and responding to malicious behavior is built into
the VMI IDS. Through an interface provided by the VMM, the VMI IDS can request machine
state information and then utilize its policy engine to conduct analysis on the information. The
engine includes a framework for developing high-level intrusion detection APis and a module
for acting on the APis. An example of such a module is a polling-module that checks a virtual
machine, via the VMM interface, for malicious behavior on a periodic basis, where the policy
APis specify what should be checked.

There are additional weaknesses with this solution that deal with flaws in the V MM. These
include an exploitable network stack, the detectable presence of a VMI IDS in noticing differences .
between execution times of virtual, (VMM calls) and non-virtual processes, errors in the actual
code of the VMM, and insecure communication between the VMI IDS and the VMM. Attacks
on the IDS itself include modifying the operating system interface library of the OS running an
IDS monitor, or directly attacking it through a· buffer overflow or inducing resource exhaustion.
However, the fact that this framework utilizes a third-party OS to run the virtual machines
makes it less susceptible to attack.

An important point about the discoveries and contributions made in [7] is that other IDSs
may also lend themselves to a virtual machine introspection based architecture, establishing
a new approach toward hardening all IDSs. If the developers of this architecture allowed the ·
failures of some commercial IDSs to discourage their research, they made not have made these
breakthroughs. Yet, in leveraging previous research regarding virtual machines, they were able
to devise an improved IDS scheme that has some very desirable features.

8.3 Global Intrusion Detection in the DOMINO Overlay System

Briefly mentioned in Section 4, distributed intrusion detection systems (DIDS) arc IDS hybrids .
that combine the four classifications of intrusion detection: misuse detection, anomaly detec- .
tion, host-based intrusion detection systems, and network-based intrusion detection syste~s. ·
Naturally, the nodes that comprise a distributed intrusion detection system must be able to
communicate with each other so it is a given that a DIDS will be comprised of at le~t NIDS
monitors.

20

There are several papers [2, 20, 21] that introduce unique approaches toward implementing
DIDSs. At the 2004 Network and Distributed System Security Symposium (NDSS '04), au­
thors Vinod Yegneswaran, Paul Barford, and Somesh Jha presented their creation: Distributed
Overlay for Monitoring InterNet Outbreaks (DOMIN0)[18]. The contributions provided in this
paper include a new approach toward distributed intrusion detection, a method for monitoring
unused IP addresses to prevent spoofing, and a thorough evaluation of an IDS through use of
extensive test data (four months of data from 1600 different networks).

DOMINO is built on top of an overlay network, much like the distributed scheme for detecting
DoS and QoS attacks in [12], which means it has several desirable features. The topology of the
network under surveillance is assumed to be heterogenous giving added flexibility to the DIDS.
It also provides decentralization which increases the reliability of the IDS in that if one monitor
is compromised, other monitors should still be able to function normally. Another important
feature of DOMINO is that it can aggregate global attack information increasing the overall
perception of the IDS. As is the case with most forms of DIDSs, DOMINO has a hierarchical
structure comprised of layers whose nodes have intrusion detection responsibilities different than
that of other nodes elsewhere in the hierarchy. In the case of DOMINO, the nodes that make
up the three tier hierarchy arc termed axis overlays, satellite communications, and terrestrial
contributors.

Axis overlay nodes do a majority of the information sharing in the DOMINO intrusion detection·
system. These nodes are assumed to be continually joining and leaving a network in the event
of failure or individual configuration. Each axis node is comprised of several components. The .
first among these is a activity database that stores global and local intrusion detection data.
Data found in these decentralized databases is transferred from node to node in order to ensure.
that all nodes on the network can be alerted in the event of an attack. Another component to
this node is an active-sink, which is a sniffer that specifically monitors unused IP addresses. In
preparing for and executing an attack, an attacker may search for an unused IP address on a
target network that they can spoof. However, if an IP address is deemed unused, DOMINO
monitors will trigger an alert if it generates any traffic. Other components that make up axis
overlay nodes are NIDS/Firewall rulesets, a query engine for gleaning real-time data from the
individual host if necessary, and a communication protocol for the periodic exchange of intrusion
detection data.

Satellite contributors are nodes that arc responsible for a given locality in a network. Because
of their limitation to a specific area on a network, their information is not necessary reliable in
predicting the current situation of the entire network. Instead, they are important in contribut-.
ing the incident response phase of an IDS where in the event that an axis overlay node detects
malicious behavior, satellite contributors can provide more specific information about the area
supposedly under attack.

The least trustworthy source of network data comes from the terrestrial contributors. Their
primary task is to collect raw network data and to pass it to DOMINO nodes higher in the
hierarchy. These nodes are not considered intrusion detection monitors. Instead, they are
thought of as simple packet loggers that can store all kinds of traffic information.

21

To test their DIDS solution, the developers of DOMINO simulate two major networks attacks:
the SQL-Snake worm and SQL-Sapphire worm (also known as the SQL-Slammer). The desired
result of the SQL-Snake simulation was to measure DOMINO's effectiveness in reaction time
and alarm rate. The method used for generating alarms was a voting scheme where based on
the following metric:

A node votes for an alarm if the following holds:

1) 200% increase in number scans from the hourly average, and

2) 100% increase in the number of sources from hourly average, and

3) number of sources is greater than five.

Since this attack leverages multiple sources in order to further propagate itself, training nodes
to recognize an increase in this kind of behavior as potentially dangerous is an efficient way
of identifying the location of an attack. As a result of DOMINO's thorough communication
scheme, a security administrator will have an accurate view of the network behavior and will
be able to react quickly to remedy the situation. After running this simulation, the developers
of DOMINO concluded that in adding enough nodes to their system, the outbreak of the SQL­
Snake could be quickly detected with a low false positive rate. The SQL-Slammer simulation
allowed them to come to similar conclusions in attack detection.

Another nice feature offered by the DOMINO IDS is known as IP blacklisting, a preventative
measure for identifying reconnaissance on a network. The developers of DOMINO found in their
research that a small number of IP addresses arc often the source of a majority of scans and
attacks. Therefore, in keeping an active list of these IP addresses, during the incident response
phase security administrators can better narrow Ciown the source a potential attacker.

In the end of their paper, the authors highlight usual IDS vulnerabilities and offer their approach
toward solving them. In terms of combating a denial of service attack, DOMINO can remedy two.
potential situations. When a participant of the DOMINO IDS is under a DoS attack from and
exterior location, the authors believe that the distributed nature of DOMINO allows for nodes to
be compromised. The authors claim that preventing DOMINO nodes from being compromised
is a "non-goal." In the event that the DoS attack is coming from a compromised node, filters
that reside on DOMINO nodes have thresholds set that prevent it from becoming overwhelmed
by any one source that either resides on or off a network.

The second category of IDS vulnerability that [18] addresses is infiltration, which is another
term for masquerading as an IDS monitor. An authentication protocol that DOMINO requires
its axis nodes to participate in requires that an attacker know how to compromise both the axis
node and the authentication scheme they use to communicate.

Finally, several features of DOMINO can potentially remedy IDS monitor obfuscation. For
example, the aforementioned authentication scheme between DOMINO includes adding SHA-I
digests (a hash algorithm) to ensure that tampered packets are easily recognizable. Additionally,
the distributed nature of DOMINO and the filters on its nodes prevent individual nodes from

22

obfuscating network sensors through increasing data volume. The fact that DOMINO is a
collection of multiple localities and not just one entire network gives it more perceptibility and
granularity against stealthy reconnaissance attacks. Lastly, because DOMINO pays attention
to both live and unused IP address, there is no part of the network that goes undetected.

DOMINO is another example of IDS research that has real promise. A potential issue could be
the expense of the system given that it is such a large-scale solution. What is interesting about
DOMINO is that it combines the power of network firewalls with intrusion detection to provide
and optimal security environment in the form of an IDS, which is opposite to the predictions
made by Gartner's Richard Stiennon. We feel it should be interesting to monitor the progress
of DOMINO and its potential for practical use in a commercial setting.

8.4 Building Attack Scenarios through Integration of Complemen­
tary Alert Correlation Methods

Another paper presented at the NOSS 2004 conference presents a method for aggregating at­
tack scenarios in order to provide a more accurate depiction of the combination of events that
comprise an overall attack. The authors of [19] found that individual attacks can be correlated
through integrating causal relationships and identifying similarities in attack attributes. In rec­
ognizing the nature of these relationships, they can construct a high-level representation of the
probable sequence of events in a large-scale attack.

The first method for correlating attack sequences examines prerequisite and consequential data
surrounding individual attack scenarios, where prerequisite data refers to system conditions nec­
essary for an attack to occur and consequential refers to system conditions that result from a
given attack. To further emphasize on how one would link attacks based on predicates (pre­
requisites and consequences), the authors develop a series of logical formulas. They define a
hyper-alert type as a triple made up of a fact, prerequisite and a consequence. Hyper-alerts are
grouped based on similarity in facts where the prerequisite condition is what must come true
for the consequence to hold. The idea of this model is to establish a chain of prerequisites and
consequences such that a later hyper-alert can be traced back as a consequence of an earlier
alert. Utilizing some basic set theory, the authors define the following collection of sets for any
hyper-alert type T: Prereq(T), Conseq(T), and ExpConseq(T) (expanded consequence set of
T which includes all predicates implied by the set of consequences for T). The IDS correlates
hyper-alerts based on the relationships between these sets. To clarify, a hyper-alert h1 is said
to prepare for h2 if for some prerequisite p of h2 , there exists a corresponding predicate c in the
set of expanded consequences of h1 that occurs before p. In other words, a predicate that is a
consequence of one alert can be an indirect cause or prerequisite for a following alert. The most
appropriate method for representing these relationships is through acyclically graphing nodes
connected by edges where the nodes represent individual attacks and the edges represent causal
relationships between nodes.

In the event that an IDS fails to detect an individual attack, two clusters of correlated alerts are
linked together in the same manner that the IDS correlates individual hyper-alerts. Therefore,

23

while several clusters may appear disjoint, there remains the possibility that one of these clusters
prepares for the other. Augmenting correlation graphs is also possible by matching attack
sequences with similar attributes. For example, if there exists two attack sequences that share
an similar prerequisite and consequence, even though the sequences in between both predicates
may differ for either attack sequence, they may be combined in the overall correlation graph as
both sequences are equally likely.

The major contribution of [19] is in its method for providing security administrators and forensics
experts with a more intuitive engine for hypothesizing the specifics of an intrusion, rather than
requiring them to sift through tcpdump logs or other potentially large network data repositories.
Even if the IDS misses a step in the attack sequence, given that enough the IDS collects enough
data to provide some level of correlation, hypotheses based on these correlations may help
investigators uncover the missed step in other event logs. This greatly increases the efficiency of
the investigation and the probability of apprehending and prosecuting the responsible individual.

9 Conclusion

In this paper, we provide an introduction to intrusion detection systems by charting their history
and explaining their various classifications. Additionally, we present some of their vulnerabilities
and how they can are avoided. Finally, we document current research that attempts to remedy
these vulnerabilities to demonstrate the potential for hardening these systems. To conclude this
paper, we give three reasons as to why we believe that use and research of these devices should
continue.

Reason 1: Preventing the Repetition of History
The importance of intrusion detection systems such as Snort, SHADOW, and others that base
their methodology on matching attack signatures against previous attacks is that they prevent
history from repeating itself. After Code Red, Nimda, SQL Slammer, SQL Snake, and other large
scale, media-hyped attacks ravaged the globe, the need to patch other potentially vulnerable
systems became suddenly imminent. In order to prevent carelessly written and rushed-to­
production proprietary code from being repeatedly exploited, it is necessary that researchers
continue to examine the attack patterns and design an IDS solution, which sometimes is as easy
as posting a new rule to a message board, to ensure that those attacks do not reoccur. With
so much at stake in the compromise of current networks, a solution in the form of a rule-based
IDS appears to be the easiest and most supported.

Reason 2: Aiding the Post-Attack/Forensic Effort
With computer crime increasing on an annual basis, the probability that an organization will
suffer an attack also rises. It is almost a given that most companies, large and small, will experi­
ence some sort of system breach ranging from the theft of a personnel phone book to 50,000 client
credit card numbers stored on a centralized database server. Therefore, careful preparation is
vital to maintaining a reliable level of business survivability. When the inevitable breach occurs,
the IDS can often be the most reliable, and sometimes the only thorough depiction of what
actually happened. When the forensics experts are summoned to the scene of a cyber-crime,

24

their first sources are the IDS logs, provided the attacked network had an IDS in place. A good
example of how advanced IDS systems can really aid in the investigation of a break-in comes
from the paper mentioned in [19] that introduced a method of associating network events as
members in a set of causal or correlative relationships thereby depicting a possible step-by-step
reenactment of the attack{s). This paper proposes an framework where security administrators
can graphically piece together probable attack sequences to nail down the specifics of an at­
tack and hopefully use that information to find and prosecute those responsible. Pursuant to
Reason 1, a good IDS can allow the real security experts to further assess the current network
configuration (access policy, monitor placement, etc.) to prevent a repeat occurrence.

Reason 3: Adding Another Measure of Security
No successful security system is comprised of only one security device, no matter how inclusive
that device is. The main contenders in the argument that renders IDSs as obsolete devices are
known as firewalls. Firewalls come in both hardware and software form and are usually placed
at the gateway of a network in order to have control of which packets may enter a network
or on individual hosts to ensure a higher granularity of security. While these devices have
certainly proven their worth, even more so than intrusion detection systems in many regards,
they too are vulnerable to evasion with more serious consequences. Firewalls arc said to be
figuratively comparable to a candy bar: crunchy on the outside but chewy on the inside. In
other words, firewalls are very tough to beat and arc becoming more resilient with each version.
However, once they are surpassed, if there is no other form of defense within network they
.protect, a potential attacker can open a hole that will allow him to have considerable access
to network resources {the chewy inside) without having to worry about being detected by any
other device except the actual users utilizing the system. Thus, if Tsutomu Shimomura only
employed a firewall on his personal system and decided to leave out the IDS that mailed him
his activity logs, catching Kevin Mitnick would have been much more difficult, if not impossible
as Shimomura was on vacation at the time of the attack and Mitnick had been known for his
slippery escapes. Additionally, as was mentioned previously, internal attacks make up a sound
majority of successful computer theft, and according to [11],

proxy-aware instant messengers, such as AOL Instant Messenger, can be used to
slice through any open port on a corporate fircwall...Most non-technical users may
be unaware that they are creating a gaping security hose by going about their daily
activity.

The point is that a sound security system needs intrusion detection as part of the solution.
Encryption, cryptography, access policies, firewalls, and honcypots arc individually not enough
to provide effectual system security. The flaws in IDSs should invigorate those involved in
the research effort to improve its technology and to continue developing unique approaches at
combatting computer and network breaches. However, just as relying solely on a firewall for
overall system security, relying on an IDS in a similar manner is also unwise as they are not yet
capable of being a network wide solution. Network traffic along with new attack methods are
too unpredictable and their scale ofintensity increases with each passing year. The fact that a

25

successful IDS can be downloaded and distributed freely under the Open Source Initiative should
be enough to convince organizations that the manual labor cost of installing and maintaining an
IDS is not only sensible but necessary. Until firewalls reach the point where they can accomplish
what current IDSs can through combining the two technologies in a hybrid device, intrusion
detection systems are necessary components in ensuring the best solution in securing a network.
Only when each of these elements are tactfully combined, can a system be truly secure. Kozoil
puts it well in [11] :

An IDS is a critical component in a defense-in-depth information security strategy.
Defense in d_epth is the method of protecting information resources with a series
of overlapping defensive mechansisms. The thought is that if one defense should
somehow fail, others will be in line to thwart an attack.

Perhaps it is the intimidating forms or complexities that characterize various designs of intrusion
detection systems that make them unmanageable and therefore ineffective. It could also be the
fact that some commercial IDS vendors distribute a product that is not rigorously tested. These
vendors market a dangerous sense of security that potential buyers may not recognize. On
top of that, closed source solutions are expensive to purchase and tricky to install. However,
intrusion detection is a technology that continues to challenge both attacker and defender alike
to theorize, practicalize, analyze, and experiment. What is exciting about this technology is
that it will never be perfect. As long as the human race relies on a digital medium to rcposit
vital assets, there will always be an infallible race condition between the next attack and the
next intrusion detection solution. The results of recent breakthroughs are promising enough to
justify the need to continue the development of intrusion detection systems.

References

[1] James Anderson Computer Security Threat Monitoring and Surveillance. James P. Anderson
Co. April 15, 1980. Contract 79F296400.

[2] Phillip A. Porras and Peter G. Neumann EMERALD: Event Monitoring Enabling Response
to Anomalous Live Disturbances. Computer Science Laboratory. SRI International, 1997.

[3] Stephen Northcutt and Judy Novak. Network Intrusion Detection New Riders Publishing.
2003.

[4] Wayne Jansen, Peter Mell, Tom Karygiannis, Don Marks. Applying Mobile Agents to In­
trusion Detection and Response. National Institute of Standards and Technology. October
1999.

[5] W. Jansen, P. Mell, T. Karygiannis, D. Marks. Mobile Agents in Intrusion Detection Re­
sponse. National Institute for Standards and Technology, 2000.

26

[6] Seth Robertson, Eric V. Siegel, Matt Miller, and Salvatore J. Stolfo. Surveillance Detection in
High Bandwidth Environments. In Proceedings of the 2003 DARPA DISCEX III Conference.
April, 2003.

[7] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture
for Intrusion Detection. Network and Distributed System Security Symposium. February
6-7, 2003.

[8] Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection. Secure Networks, Inc. January, 1998.

[9] Yu-Xi Lim, Varun Kanotra, Nitin Namjoshi, and Seng Oon Toh. Wireless Intrusion De­
tection and Response. Georgia Institute of Technology School of Electrical and Computer
Engineering. December, 2002.

[10] Tsutomu Shimomura. Technical details of the attack described by Marko.ff in NYT. Wed,
25 Jan 1995 12:36:45 GMT. comp.security.misc,comp.protocols.tcp-ip,alt.security.

[11] Jack Koziol. Intrusion Detection with Snort. SAMS Publishing. Indianapolis, May 2003.

[12] Ahsan Habib, Mohamed M. Hefeeda, and Bharat K. Bhargava Detecting Service Viola­
tions and DoS Attacks NDSS 2003. CERIAS and Department of Computer Sciences Purdue
University.

[13] Dorothy E. Denning. An Intrusion-Detection Model. IEEE Transactions on Software Engi­
neering, Vol. SE-13, NO. 2, February, 1987, 222-232.

[14] Steven A. Hofmeyr and Stephanie Forrest. Immunity by Design: An Artificial Immune
System. Proceedings of GECCO, 1999, 1239:1296.

[15] The Shadow Team. SHADOW Version 1.8 Installation Manual. Naval Surface Warfare
Center Dahlgren Division. 25 April 2003.

[16] Mark Cooper, Stephen Northcutt, Matt Fearnow, Karen Frederick. Intrusion Signatures
and Analysis. New Riders Publishing. 2003.

[17] John Bashor. Software That Detects Hackers Helps Catch Big Leage Intruder. Science Beat.
Berkeley Lab. March 29, 2000.

[18] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global Intrusion Detection in the
DOMINO Overlay System. Computer Sciences Department, University of Wisconsin, Madi­
son. NDSS 2004.

[19] Peng Ning, Dingbang Xu, Christopher G. Healey, and Robert St. Amant. Building Attack
Scenarios through Integration of Complementary Alert Correlation Methods. Cyber Defense
Laboratory. Department of Computer Science. NOSS 2004.

27

	Discovering the potential for advancements in intrusion detection systems
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

