
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

Spring 1997

Parallel programming Parallel programming

Peter Dailey
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Dailey, Peter, "Parallel programming" (1997). Honors Theses. 440.
https://scholarship.richmond.edu/honors-theses/440

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/440?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

· UNIVERSITY OF RICHMOND LIBRARIES

11
3 3082 00688 8407

Parallel Programming

Peter Dailey
Honors Thesis1

Department of Mathematics and Computer Science
University of Richmond

April 18, 1997

1. Under the direction of Dr. John Hubbard

This paper is part of the requirements for the honors program in computer science. The

signatures below, by the advisor, a departmental reader, and a representative of the depart-

mental honors committee, demonstrate that Peter Dailey has met all the requirements

needed to receive honors in computer science.

(advisor)

(reader)

(honors committee representative)

Parallel Programming
by

Peter Dailey

April 14, 1997
Dr. Hubbard

The speed of technology is always increasing, especially in the field of computing.

Unfortunately, the size of the problems needing to be solved are also growing in many areas. In

order to keep up with this, parallel computing has become an important research area. The term

parallel computing essentially refers to using multiple processors cooperating to solve a problem.

For certain problems this can speed up the solution by a factor ofN, the number of processors

being used. There are algorithms, for which there is no speed increase due to certain

dependencies.

Many different architectures of parallel machines have been developed, the most common

of which are SIMD and MIMD. These two acronyms stand for Single Instruction Multiple Data,

and Multiple Instruction Multiple Data respectively. The first of these refers to a machine which

solves a problem by executing a sequential algorithm simultaneously on many elements of the

data using the N processors. This type of computer is often referred to as a vector processor. The

second architecture is not bound to any simple pattern as is SIMD. MIMD can execute many

different instructions simultaneously on different data. Introduced with this, however, are many

new problems such as synchronizing the actions of the processors when necessary, and keeping

data consistent. The latter at times can be solved by sharing data. Any data that must be

simultaneously accessible to all processors may be kept in a common area often with another

node in charge of checking accessibility. The machine I used, an IBM SP2, is of the second type.

It is a machine made up of 48 RS/6000 nodes. On this machine, the nodes are split into two

pools, 0 and 1. Pool 0 consists of eight processors and is used for interactive processes. The

larger pool, of 40 processors, is used for batch processes. I only used pool 0, so I was limited to 8

processors.

In order to program for these computers, new programming languages must be designed

which can specify the distribution of data, synchronization of the program, and message passing

between processors. The languages I used are MPI, which is actually a language extension, and

High Performance Fortran. I chose these languages because they both have compilers on the IBM

SP2.

MPI, or Message Passing Interface, is a facilitator for interprocessor communication for

use with either the Fortran 77 or C programming languages. This interface was initially begun in

April of 1992 at the Workshop on Standards for Message Passing in a Distributed Memory

Environment. Two and a half years passed before the fully standardized MPI version 1.0 was

released. One of the major goals ofMPI was a high degree of portability. For this reason, the

MPI library of functions has been implemented for a wide range of systems. The fact that the

interface can be used with both Fortran and C extends the bounds of its usage even further.

Two major drawbacks ofMPI at the current time are the lack of both explicitly shared

memory and support for debugging. Both of these drawbacks affected the work which I have

done this year in one way or another. Many parallel algorithms, such as the Fast Fourier

Transform, implicitly assume the presence of shared memory in their "Big Oh " estimates. This

does not mean that the algorithms cannot be written without it, for it is quite easy to write a

procedure which mimics sharing the data. This does, however, place the optimal time estimates

out of reach because of the need for additional communication to keep all distributed data

consistent. This will be discussed in greater detail later.

The nonexistence of debugging facilities also greatly hindered my work with parallel

algorithms. Programming for N processors at once greatly complicates the algorithms. Not only

would debugging allow for the testing of the logic, but also assure the programmer that sent

message is received correctly. This was perhaps the greatest problem for me. At times I needed

to completely rewrite the program sequentially for a local compiler and use the local debugger to

test the logic. This was comparatively easy, however in relation to matching corresponding sends

and receives.

The creation ofMPI datatypes greatly facilitated achieving the goal of portability.

Because different machines have distinct representations for types of data, a standardized

representation was needed as an intermediary. Once these were created, each machine's

implementation of MPI only needed functions to translate the representation of the data back and

forth. These MPI datatypes correspond to datatypes existing in Fortran and C. The following is a

chart of how MPI types relate to those of C:

MPl_CHAR
MPl_SHORT
MPUNT
MPl_LONG
MPIJLOAT
MPl_DQUBLE
MPLLONG_OOUBLE
MPl_UNSIGNED_CHAR
MPl_UNSIGNED_SHORT
MPl_UNSIGNED
MPl_UNSIGNEO_LONG

signed char
signed short int

signed int

double

signed long int
float

long double
unsigned chor
unsigned short int
unsigned int
unsigned long int

All MPI datatypes are preceded by "MPI_." This is true of all datatypes, procedures, and

constants provided by the interface. When programming in MPI, this prefix is reserved, and

cannot be used by the programmer. The above datatypes are only a subset of those available in

MPI, some of which do not correspond to types in the programming language. Some others do

not correspond to types in the programming languages. The MPl_BYTE datatype is an example of

one. This type essentially tells the interface that the data is devoid of format. Any data sent of

this type will be received exactly the same as it was sent even if the communication is between

two vastly different machines. User defined types for C structs can also be added by the

programmer. This will be explained later.

Out of all 125 procedures included in the Message Passing Interface, there are six which a

MPI programmer cannot do without. The C prototypes of these are the following:

~Anl !n"!('.""l :U""'•rr~r rhn" **'*nrn1•\,
,\/~, 1,I,~\ :, ui'':JV' v '--' ,, 'J"/l

MPl_Comm_size(MPl_Comm comm, int *Size);
MPl_Comm_rank(MPl_Comm comm, int Hank);
MPl_Send(void* buf, int count, MPl_Datotype dotatype, int destination, int tog, MPl_Comm

comm);
MPl_Recv(void *buf, int count, MPl_Oatotype dototype, int source, int tog, MPLComm comm,

MPLStotus *Status);
MPl_Finolize();

MPI_Init must be called before any other MPI procedures can be run; This routine is responsible

for setting up the MPI environment. This may mean drastically different things on separate

machines. For this reason, much of MPI's portability rests on the shoulders of this routine.

Therefore it cannot be stated here what this routine does, because it changes from one

environment to another. This procedure is even different depending on the language it is being

used with, for example the Fortran prototype for this function has no parameters. When used

with C, one can specify on the command line the value of certain environment variables. For

example MP _PROCS is the environment variable which dictates how many processors will

simultaneously run the program. Alternatively the command-line statement" foo -procs 4 "

specifies four processors will run foo.

The second of these functions, MPl_Comm_size(), returns the size of the communication

world specified by the first parameter comm. This parameter is of type MPl_Comm which is an

addition to the C library of types. MPl_COMM_WORLD is the default communication descriptor which

describes the whole communication world, containing all processors running the current

program. When this descriptor is sent, the value of MP _PROCS (or the command line value of

procs) is returned in the second parameter. I have used the variable nproc, a C int, for this

purpose in each of my programs. The communication world can be broken up into groups and

given topologies, in which case the programmer would define new communicators, but I did not

find the need to use these.

Each processor in the communication world is given a rank number. An inquiry to the

communication descriptor returns this value. MPl_Comm_ronk() executes this inquiry. These rank

numbers consist of the integers from 0 to one less than nproc. This convention facilitates the logic

of the algorithms, allowing the programmer to specify which processors do certain jobs. This

also allows for direct point to point communication, which I will describe in the next couple of

paragraphs. I have developed my own convention in calling this variable mytid, for my task

identification. There is however a difference between this and nproc, other than the obvious. Mylid

contains nproc different values even though it is only a single integer, while nproc remains the

same on all processors. This has been a constant point of confusion for me in my work with MPI.

In each of my programs, I have also defined a master process, namely where mytid = = 0. I have

done this in order to have one processor in charge of coordinating the input/ output and data

consistency.

Once the communication world and the processors are initialized properly, we can use

MPI to send data between the nodes. MPLSend() and MPl_Recv() are the functions most often used

for this. These send and receive data, respectively, while blocking further execution of the

program until completion of the functions. MPUsend() and MPUrecv() correspond to the non-

blocking forms of these functions. The first three parameters of these functions describe the data

being transmitted. The first, void *buf, is the address of the buffer to be copied out of or into. The

type and number of elements of type are contained in the next two parameters, int count,

~aloypc do lo type to be communicated. The count does not refer to the number of bytes sent,

because that is machine dependent, but instead represents the number of elements of the datatype

transmitted. In this scheme, type checking is done three times. The datatypes specified in each of

the function calls must correspond to those of the respective send and receive buffers. The types

specified by in the send and receive parameter lists must also match. In this way type checking is

accomplished between the types of each host language and the MPI datatypes, as well as between

the two ends of the communication channel. The count on each end does not figure into the type

checking, however. The size of the receive buffer does not have to be the same size as the send

buffer, it merely has to be large enough to hold the contents of the send buffer.

There are two ways to ensure that a receive procedure acquires the correct message. This

is done by matching the third and fourth parameters of the send and receive calls, int source (or

destination), int tog. A message sent to a particular destination process, specified by rank number,

cannot be received by any other processor. Likewise a receive specifying a particular source

cannot receive a message from another processor (unless other non-blocking receives are

pending). Since the programmer can never be positively sure which order processes will execute

sends and receives in, one must be careful or the program will be blocked from completing. For

this reason togs can be used. A tag is merely an integer which provides additional information

other than the source processor. If every message has a unique tag, then a receive function

doesn't need to know the source of the message it is waiting on. In such a case, the constant

MPl_ANY _SOURCE can be sent as the source rank, and the tag determines which message is received.

Similarly, there is also a MPl__ANy_TAG constant when the tag value doesn't matter. The two

constants can be used simultaneously to receive any message currently in transit. In the case of a

successful transmission, all MPI communication procedures will return the constant MPl_SUCCESS.

Notice that for blocking functions error checking is not necessary since the program could not

possibly continue until both routines finish properly. Error codes are returned in other cases, but

they depend on the implementation. The last parameter MPLStatus &status of MPl_Recv()contains

the error codes and other information about the message acquired. If MPl_ANY _SOURCE or

MPl_ANY_TAG were sent as parameters, the source and tag of the corresponding send routine could

be extracted from status.

At the end of the program, the routine MPl_Finalize() is called. No messages can be in

transit when this procedure is called because no MPI routine can be called after it. The

communication is shut down and cannot be reopened except by restarting the program. This

does not have to be the final line of the program, however. The processes will still be running (all

':;ro:: of them) subsequent to this function call, but under an MISD paradigm, which is

essentially useless.

Broadcasting is another concept which I found particularly useful, especially in regard to

data consistency. This is implemented by the following function:

MPl_Bcast(void *buffer, int count, MPl_Datatype datatype, int root, MPl_Comm comm);

This function works simultaneously as a multiple send and receive. In only this one line of code

(actually executed nproc times), processor root's contents of buffer are sent to all other processors

in the communication world described by comm which store them in their own buffer. This

process does not need to be accompanied by a corresponding receive. This is used mostly to

make all data consistent.

These are by no means the only functions which I have found useful. Timing the

execution of the program and creating new MPI datatypes facilitated not only my programming,

but also the analysis of the algorithms. There is not much difference between the timing features

included in MPI, and those in the C language. Times in MPI are returned by the following

function:

double MPl_Wtime(void);

The return value of this function is a double precision float corresponding to the number of

seconds, not ticks, which have passed since some fixed time in the past. The distinguishing

feature between this and the C timing functions is that this returns a time to all processors. There

is no guarantee that all processors will have the same time elapsed, and in fact they will most

likely be different. Calling this function at the beginning and at the end of the function and

printing the difference will then show the user the time elapsed.

In my earlier programs, I only transmitted data of predefined datatypes. As my work

progressed, I incurred the need to pass C structs, especially in the programming of the Fast

Fourier Transform, which I will discuss in greater detail later. I will use the example of the

complex datatype which I used in the Fast Fourier Transform to assist in my presentation of this

important concept. The C Complex datatype is created by the following declaration:

Struct Complex l
double re;
double im;

We now have a C type which we can use to build a corresponding MPI type. The first step in this

process is giving our new type a name, for which I used m_complex, to help me remember that it

was the MPI datatype, without using the forbidden "MPL" prefix. To name our type we declare it

as a variable of type MPl_Oatotype, another new addition to the C type library. In order to describe

our new datatype, we must create some arrays to hold information about the new type. These

arrays must have as many elements as there are components in the C derived type. These

declarations are shown below.

MPl_Dototype m_complex;
MPi_Dototype type[2] = jMPLDOUBLE, MPJ_DOUBLEl;
int blocklength[2] = j 1, 1 L
MPJ__Aint disp(2] = iO, sizeof(double)!;

The names of these variables need not have any relation to the name of the MPI type being built,

as they will be bound to it later. The second declaration, that of type[2] contains the datatypes of

the subtypes within the Complex structure. For this reason, it is initialized to jMPl_DOUBLE,

VfJl~DOUBLE!. Since the MPI environment only needs to know the standardized representation, the

MPI types are used, facilitating representation conversions. Block\ength[2] is set to j 1, 1 (,because

both of the subtypes are single elements, not arrays. Should the derived datatypes consist of

arrays, then this array would hold the size of the arrays. MPl__Aint is the C type of the last necessary

variable. This type is used for arbitrary addresses, or offsets. In this case the variable disp[2],

contains the offsets of the two MPl_DOUBLE pieces within m_complex. The first will be 0, because

the address of the buffer of type m_complex should contain the re component of the first complex

variable. The offset for the im component, will then be sizeof(double). There is a function

available to return this information to facilitate programming. It is:

int MPLAddress(void* location, MPLAint *address);

This feature is available to facilitate portability of programs. It will simply return the offset of the

second parameter with regard to the first for the machine it is executed on.

Once these descriptors of are initialized, steps can be taken to commit these changes to

the MPI environment. This is done using the two routines shown below:

MPU ype_struct(int count, int * array_oLblocklengths, MPl-.Aint *array_oLdisplacements,
MPl_Datatype *array_oUypes, MPl_Datatype, newtype);

MPl_ T ype_commit(MPl_Datatype *data type);

The first function, MPI_Type_struct(), allows us to describe the data as a set of"blocks." The

first block of data for example Complex.re is represented by the first element of the arrays

'.:rruy_oUypes, arroy_oLblocklengths, and array_oLdisplacements. We can see that it has type

MPl_DOUBLE, blocklength one, and displacement 0. In order to render this new type useful to the

MPI environment, we must save it. This is achieved by the second routine, MPUype_commit(). It

is at this time that the system analyzes to see if any optimizations can be made. We are now free

to send variables of type m_complex between processors.

The other language I programmed in was HPF, or High Performance Fortran which is an

extension to the Fortran 90 programming language. While Fortran 90 did include some features

for parallel programming, they were not extensive. The High Performance Fortran Forum

(HPFF), an international group of some 500 interested programmers cooperated in an effort to

extend those capabilities. The official specifications for this language are copyrighted by Rice

University. HPF was planned to facilitate data distribution and computationally intense

programming. Its capabilities include use with MIMD and SIMD machines.

High Performance Fortran allows for parallelism through the use of some preprocessor

directives. While it has some capabilities lacking in MPI, it is not nearly as flexible. MPI does

not support shared memory, while HPF does. Parallelism and distribution in HPF, however are

not defined by the programmer as they are in MPI. In HPF, in most instances, the programmer

merely places specially formatted comments in the code which tell the compiler that a particular

section of the code is parallelizable. Ii1 HPF, data can be distributed onto a topology of

processors using the following declarations:

DOUBLE PRECISION, DIMENSION(N) :: Y
!HPF$ PROCESSORS, DIMENSION(M) :: PROCS
!HPF$ DISTRIBUTE(CYCLIC) ONTO PROCS :: Y

After declaring the array, in this case Y, the two preprocessor directives specify how the array

shall be distributed. Every directive in the HPF language must begin with !HPF$, CHPF$, or *HPF$.

The first directive in the code above tells the preprocessor that you have a linear arrangement of

1,J; processors running the program. Next, the DISTRIBUTE command is used to describe the actual

distribution of the data. In this case it is to be done in a CYCLIC manner. This scheme is shown

below, with N = 16 and M = 4:

Processor
1
2
3
4

Elements of Y
1, 5, 9, 13
2, 6, 10, 14
3, 7, 11, 15
4, 8, 12, 16

This means that whenever Y is used in a parallelizable computation, each processor will do the

computations on its assigned elements. CYCLIC is not the only alternative for the distribution

directive. BLOCK is another scheme which I found useful. This scheme is as follows, with the

same parameters:

Processor
1
2
3
4

Element
1,2, 3, 4
5,6,7,8
9, 10, 11, 12
13, 14, 15, 16

In addition to the u1SI Ki du IE. command, there is also an ALIGN directive. This works is almost like

the FORTRAN 77 EQUIVALENCE routine. When aligning two pieces of data, however, it does not

mean that they refer to the same memory location, but instead that they are distributed to the

same processor. This is important, because when used correctly, it will minimize the

interprocessor communication traffic.

Once data is distributed, much of the parallelization is specified by the programmer.

Using the INDEPENDENT directive, "!HPF$ INDEPENDENT," the preprocessor knows that the loop to

follow can be executed in parallel. The work will be parallelized according to the specified

scheme. This statement can include a DO or a FORALL. DO is a holdover from the Fortran 77

language. FORALL is a new construct which is automatically parallelized. It has a form very

similar to a DO loop. The importance of this construct lies in the simplicity it creates for array

computations. Any data needed in a FORALL statement which is not distributed, or not correctly

distributed, will be sent via a message to the processor performing the computation. In

parallelized loops, functions or subroutines may be called, but must be declared PURE. This

attribute was designed mostly to be used in conjunction with FORALL statements. Use of this

attribute is essentially a promise by the programmer to the compiler that any side effect caused

by the function were not intentional, and therefore not wanted. PURE functions are allowed to

return a value, but not alter any other data. This construct first appeared in the Fortran 90

language.

There are other constructs in the HPF language which are intrinsically parallelized. These

consist largely of array operations, which were first overloaded in the Fortran 90 language. These

show a much higher level of logic. The assignment and arithmetic operators have been

overloaded along with many others provided externally. Array operations do not need to be

declared independent, as they are assumed to be. These operations will also be distributed

according to the specified scheme.

Beyond these constructs, HPF has also added many other new high level concepts. For

one, programmers have the added capabilities to create structures of data very similar to those in

C. The Complex class, complete with overloaded operators is predefined in High Performance

Fortran. This made the logic of the parallel Fast Fourier Transform in High Performance Fortran

much more succinct than the identical C and MPI code. This Complex class can be defined with

elements to be of any numeric datatype, another convenient feature.

Fortran 90 simultaneously introduced recursion into its arsenal. Any recursive function or

subroutine is defined according to the following pattern:

RECURSIVE FUNCTION FOO(N) RESULT(ANS)
INTEGER ::ANS

Because of the early Fortran conventions, the RESULT clause had to be added to the language.

Instead of assigning the return value to the name of the function, the programmer must define the

new return variable. Assignment to that variable ends the execution of the function. This had to

be done so that the name of the function would not refer to both a variable and a function. Since

the type of the return value is not defined in the function header, it has to be specified as a

variable declaration. If this is not done, it will obey the Fortran 1-through-N rule.

Over the course of the semester, I wrote numerous programs in both of the languages

described above in order to compare them. Numerical integration was the first of these programs.

In each program, I integrated 4/(1 + x2
) from 0 to 1 splitting the region into 10,000 intervals.

This algorithm is very parallelizable, because instead of one processor calculating the areas of all

10,000 regions, each of the N processors do 10,000/N of them. This method is then sped up by a

factor ofN, not including the time spent on message passing. In order to more closely compare

the two, I have split the algorithms into three parts. These parts are the initialization,

calculation, and collection of the data. Following is the code for the initialization written in C

using MPI:

#include <stdlib.h>
#include <stdio.h>
I/include "mpi.h"

I/define NUMRECS 10000
#oefine MASTER 0

MPl_Stotus status;
MPl_Request request;

double f(double x) l
double y;

y = 4.0/ (1.0 + X*X);
return y;

moin(int orgc, char **orgv) l
double h, mypi, pisum, piave, pirecv,

rec_areo[NUMRECS];
int i, n, mytid, nproc, source,

mtype, msgid, nbytes, mystart,
rcode;

MPl_lnit(&orgc, &orgv);
MPl_Comm_rank(MPl-'-COMM_WORLD, &mytid);
MPl_Comm_size(MPl_COMM_WORLD, &nproc);

And in High Performance Fortran:

PROGRAM PLEXAMPLE
! Compute the value of pi by numerical integration

INTEGER, PARAMETER :: N = 10000
DOUBLE PRECISION, PARAMETER :: H = 1.0 / N
DOUBLE PRECISION :: MYPI
f)(\11:)1 I nn101c:1n~: l\l~Al~IC'lr\~!(~1\ .. [)cr'T ~PL~

\ I

!HPF$ PROCESSORS, DIMENSION(8) :: PROCS
!HPF$ DISTRIBUTE (BLOCK) ONTO PROCS :: RECLAREA

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION :: X
F = 4 I (1.0 + X*X)

END FUNCTION F

Much less initialization is necessary in the Fortran version. While the variable declarations are

the same, there are some important differences. The PROCESSOR and DISTRIBUTE directives in HPF

serve to initialize the parallelism. For this reason, the dimension of the processors must be

hardcoded into the declarations in HPF. The number must be either an integer or an integer

constant. This means that if a programmer wished to run the application on only four processors,

the code would have to be altered and recompiled. In the C version, the calls to the MPUnit(),

MPl_Comm_source(), and MPl_Comm_ronk() extract this information from the environment.

Therefore it does not have to hardcoded, but can instead be done on the command line. This is

very important because it makes the application more flexible. In addition to the number of

processors, the rank of each processor is returned by these function calls. This information is

very important in the next section of the algorithm, the calculation.

In both programs, I have split up the work to be done in a BLOCK manner. Since this is not

predefined in MPI, I have simulated it. Below is the code:

mystort = NUMRECS/nproc * mytid;
h = 1.0/NUMRECS;
'I 1Jf-1' - u.u,

for(i = O; i < (NUMRECS/nproc) - 1; i++)l
rec_areo[i + mystort]= h* f(h*((i + mystort)- .5));
mypi += recoreo[i + mystort];

In order to simulate the block distribution of the work in C, one must assign the work to each

processor. This is facilitated by the use of the variable mytid. With 10,000 elements of the array to

do work on, and assuming 8 processors are being used, each processor will calculate the area of

1,250 rectangles. Since the ranks of the processors range from 0 to 7, each processor calculates

the area of the blocks starting with NUMRECS/nproc * mytid. The variable mystort is used to store

this number in the code. Therefore processor 0 will calculate blocks 0 through 1,249; processor

1, 1,250 through 2499; and so on. Each array element is set to the area of the corresponding

rectangle, with h representing the width of the rectangle, and the value returned by f () being the

height. Each processor has a local copy of mypi, which holds its subtotal of the overall area. Since

this value is not communicated between processors, it only holds the total for the local 1250

subregions.

The calculation section of the HPF code is much more succinct, as shown below:

!HPF$ INDEPENDENT
DO I = 1, N

RECLAREA(I) = H * F(H*(l-0.5))
END DO

Since RECL.AREA was declared as BLOCK distributed in the initialization stage, the programmer

need only tell th~ compiler that this section of the code can be parallelized. The work will still be

done in the exact same manner as in the C version. This section in the Fortran code does not,

however, do any summation, which is partly done in the C code. That part is inseparable from the

final summation, which is done in the final stage of the program.

To illustrate more the effectiveness of the Fortran method, let's pretend that it was found

later that a CYCLIC distribution of the data would be more efficient. In order to change the Fortran

code, only one word in the code would need to be changed, RI nrv to rvr11r in the n1~rn1R1 !ff

directive line. Unfortunately, it is not quite so easy in C. The actual logic of the for loop must be

altered. These changes are shown below:

mystort = mytid;
h = 1.0/NUMRECS;
mypi = 0.0;

for(i = O; i < NUMRECS- nproc; i += nproc)f
rec_area[i + mystart]= h* f(h*((i + mystart)- .5));
mypi += rec_area[i + mystart];

The for loop must be changed to increment by the number of processors every iteration. At each

loop i -t mytid will be calculated by each processor. While this is not a drastic alteration, it calls

for somewhat more thought than changing one word.

The final stage of this algorithm is the collection of the data, and the printing of the result.

It is at this stage where the MPI message passing can become logically difficult.

if(mytid != MASTER) j
MPl_Send(&mypi, 1, MPl_DOUBLE, MASTER,

mtyid, MPl_COMM_WORLD);

else

!

. .
p1sum = myp1;
' I • I \

' I' "''' I (

MPl_Recv(&pirecv, 1, MPl_DOUBLE.
MPLANY_SOURCE, n,
MPl_COMM_WORLD, &status);

pisum += pirecv;

if(mytid == 0)
printf("Mypi is approximately %10.8f\n",

pisum); MPl_Finolize();
/*End of the program*/

As mentioned in my overview of MPI, I designate the processor with rank 0 as the "master"

process. This is done in the initialization step by creating the constant MASTER = 0. For the first

time this convention comes into use. Every non-root process sends its subtotal to the master

process. The master in turn collects them all and totals the subregions. The total for the area

under the curve is then printed out. Notice that in the MPl_Send() and MPl_Receive() I used the tag to

match up the calls. In this instance even matching tag numbers was not necessary, since all

messages were processed in the exact same way. On the contrary, I could have made the source

parameter n for the call on MPl_Receive(), rather than MPL.ANY_SOURCE, and it would have had the

same effect on the program. The last action of this application is to print out the final value of pi,

held in pisum. Since only the root has the correct value of pisum, only the master is allowed to

print. This is important, because all non-root process copies of the variable will contain garbage

since they have not been assigned a value.

The final piece of the Fortran program looks like this:

MYPI = SUM(RECLAREA)
PRINT *,MYPI

END PROGRAM Pl_EXAMPLE

This is infinitely more simplified than the C program. The collection and summation of the areas

are done in only one line of code as opposed to seven for in the C code. The SUM() function was

not defined by myself, it is predefined. It adds together the contents of each element of the array

passed to it, and returns the result. Unlike the C version, mypi will have only on value, as it is a

shared variable. The print statement is also executed only once, in direct contrast to the MPI print

statement.

Notice that while these two programs do the exact same thing, the C code consists of

twice as many lines of code as does the Fortran (36 to 18). These numbers do not count spaces,

lines consisting solely of a curly bracket, or line continuations. This is a tribute to the power of

the High Performance Fortran constructs. While it takes seven statements in C to collect and sum

up the areas of the 10,000 rectangles, this is achieved by a call to a single predefined function in

HPF. Since HPF passes messages automatically when needed, no message passing needs to be

programmed. This is in direct contrast to C in which the programmer must specify all message

passing. The modifiability of the Fortran code as was shown in the BLOCK, CYCLIC example is also

superior to that of C. However, C does allow for better program flexibility, especially in the

example of changing the number of processors.

Another example application to illustrate the differences between the two languages is

Dom's nth_ Order Homer's method. Homer's method is an algorithm used to quickly find the

value of a polynomial at a given point. Dom's Method is a parallelized version of the algorithm

using the recurrence relations shown below:

p(x) = ao + a1x + azxz + + a1sx15

po(xn) = ao + an xn + azn x 2n + asn x 3n

can be broken up into

p1 (xn) = a1 + an+l xn + azn+l xZn + a3n+l x3n
pz(xn) = az + an+2 xn + azn+2 xZn + a3n+2 x3n
p3(xn) = a3 + an+3 xn + azn+3 x 2n + a3n+3 x3n

Clearly then :

p(x) = po(xn) + PI (xn) x + pz(xn) x 2 + p3(xn) x3

In order to most easily test the outcome, I used a 15th degree polynomial with all coefficients

equal to one. When evaluated at two, this will be adding the first sixteen powers of two, giving

216 -1 or 65,535. This algorithm is most effectively parallelizable when the degree of the

polynomial is divisible by the number of processors. For this application I used only four

processors, although it would still work with eight. Using a 151
h degree polynomial, and 4

processors, the time needed to compute the total will be cut in half. Sequentially this method

would need enough time to execute 120 multiplications and 15 additions. Executing part of the

algorithm in parallel means that once the first 24 multiplications and 3 additions are done by

each of the processors, only 6 further multiplications and 3 additions must be executed. In terms

of operations then, the parallel algorithm is better by almost a factor ofN, 135 to 36. This does

not mean that less operations are actually done, but rather that since so many are done

simultaneously, this is how many are essentially sequential.

The initialization stage of the two programs do not have many differences from the first

stage of the numerical integration programs. The C code begins:

ff include <stdlib.h>
Jf;nrl,,rln (c\rl;(\ h')

#include ''mpi.h"

/fdefine N 4
#define MASTER 0

MPl_Status status;
MP!_Request request;

oouore power(double base, int exp) l
double answer = 1;
int I;
if(exp < 0)

return O;
if(exp > 0)

for(I = 1; I <= exp; I++)
answer *= base;

return answer;

rnain(int argc, char **orgv) l
double a[NtN], temp, rnyfinal = 0.0,

final, x= 2.0;
int i,j,k, rnytid, nproc, source,

rntype, rnsgid, nbytes, rcode;

MPUnit(&orgc, &argv);
MPl_Cornrn_ronk(MPl_COMM_WORLD, &mytid);
MPl_Corn rn_size(MPLCOMM_WORLD, &nproc);

The Fortran code also looks much the same:

PROGRAM HORNER

INTEGER :: I, J
INTEGER, PARAMETER :: N = 4
REAL, DIMENSION (N*N) :: A
REAL, DIMENSION (O:N-1, N) :: P
REAL, DIMENSION(O:N-1) :: POWERS
REAL, DIMENSION (N) :: XN, SUMS
REAL :: X, ANSWER

!HPF$ PROCESSORS, DIMENSION(N) :: PROCS
!HPF$ DISTRIBUTE(BLOCK) ONTO PROCS :: POWERS, XN, SUMS
!HPF$ DISTRIBUTE(BLOCK, *) ONTO PROCS :: P

The only new concept in these two sections of code is the final statement of the Fortran piece.

The DISTRIBUTE directive has a two dimensional argument. In this case it is BLOCK, *· A two

dimensional array being distributed must have the same number of arguments in the directive.

These arguments, however can be blank, or*· The two dimensional distributions are shown

below with a four by four array and four processors, and pl meaning processor 1:

DISTRIBUTE A(BLOCK BLOCK) • DISTRIBUTE A(* BLOCK) •
pl pl p2 p2 pl p2 p3 p4
pl pl p2 p2 pl p2 p3 p4
p3 p3 p4 p4 pl p2 p3 p4
p3 p3 p4 p4 pl p2 p3 p4

CYCI IC can also be used in a multidimensional distribution. DISTRIBUTE(*, CYCLIC) with the above

parameters it is exactly the same configuration as the DISTRIBUTE(*, BLOCK), which is shown

above, but this is a rare case. A much larger two dimensional array would be needed to illustrate

the differences. Below is the scheme presented by DISTRIBUTE(CYCLIC, CYCLIC):

pl p2 pl p2

p3 p4 p3 p4

pl p2 pl p2

p3 p4 p3 p4

Knowing how the P array is distributed, the computations can now be examined.

Stage two consists of the calculation of the powers of x, in this case 2.0, and the

summation of the Pi 's. In C the code consists of the following:

forr i = O· i < N*N· it+) \ ' '
o[i] = 1;

for(j= O; j < N*N/ nproc; j++)
myfinol += o[(N*j)+mylid] *power(x, N*j);

myfinol *= power(x, mytid);

In the C version of the code, instead of using an array POWER as in the Fortran code, I merely

created a power function. In the above code, each processor finds the sum of Pmytid from the

recurrence relations shown above. Myfinol is then multiplied by xmytid before returned. While it

would have been easy to implement the power() function in the Fortran code, I did not in order to

illustrate the use of the overloaded array operators. The code is as follows:

x = 2.0

POWERS(0) = 1

!HPF$ INDEPENDENT
DO I = 1, N*N

A(I) = 1
END DO

DO I = 1, N
POWERS(I) = POWERS(l-1) * X

END DO

XN(:) = 1

DO I = 2, N
XN(I) = XN(l-1)* POWERS(N)

END DO

!HPF$ INDEPENDENT
DOl=O,N-1

P(I, :) = A(1:N*(N-1)+1:N) * XN(1:N)
END DO

!HPF$ INDENPENDENT
DO I = 1, N !GET SUMS OF P[l]'S

SUMS(I) = SUM(P(l-1,:))
END DO

The first two DO loops are merely for initializing the A and POWER arrays. This also applies to the

next~~· loop. Notice that the loop for initializing the POWER array is not designated as

\ j[NDENT. This is the first instance of a dependent loop. Since each element of the array is x

times the previous element they are dependent, and therefore must be done in sequence. To

clarify the meaning of some of the arrays, XN(I) holds x i*n, POWER(!) holds xi, and SUMS(I)

represents the sum of each Pi· Perhaps the most confusing piece in this logic is the array

assignment. This statement' P(l, :) = A(1:N*(N-1)+1:N) * XN(1:N),' meansthateachelementof

the one-dimensional array P(l,) gets the product of the corresponding elements of the A() and

XN() arrays. Any arrays used in statements such as these must have the same shape. This is

checked by the compiler. The colon in the subscript of the array makes this a multiple

assignment. The numbers on either side of the colon represent the upper and lower bounds of the

selected section of the array to be used. If a second colon appears the final parameter is a step

variable. So the subscript of the A() array above means 1, N+l, 2N+ 1, etc.. This type of

statement is implicitly parallelized, even without the use of an INDEPENDENT directive.

Finally, the collection stage of Dom's method consists merely of adding together all of

these intermediate sums and printing the result. Once again, the Fortran code is infinitely more

succinct than the C code. The Fortran,

and the C,

SUMS = SUMS(:) * POWERS(:)
ANSWER = SUM(SUMS)

PRINT *, ANSWER

END PROGRAM HORNER

if(mytid != MASTER) j
MPl_Send(&myfinal, 1, MPJ_DOUBLE, MASTER, mytid, MPLCOMM_WORLD);

!
elsej

final = myfinal;
for(k = 1; k < nproc; kt+) l

MPLRecv(&temp, 1, MPl_DOUBLE,

!
~

MPl_ANLSOURCE, k, MPl_COMM_WORLD,
&status);

final += temp;

:r(rn11t:ri -- UAqr:-p\ l

!
printf("The answer is % 10.81\n", final);

MPl_Finolize();

!
Once again, these statements send all of the intermediate totals back to the master process which

sums them up, and prints out the total. The Fortran code includes another implicitly parallelized

array operation, the results of which are simultaneously being summed.

A more complicated example which I worked on is the Fast Fourier Transform. The Fast

Fourier Transform is an improvement to the Discrete Fourier Transform using a complicated set

of recurrence relations. The Discrete Fourier Transform is based on the matrix equation c = Fy.

In this equation, y is the input, a vector with N components. F represents an N x N matrix in

which all entries are complex numbers. The k,j component ofF is computed by e
2
7tjki/N. In this

equation i represents the imaginary root, .Y-1. These values can be more easily represented as rokj

or cos(2njk/N) + i sin (2njk/N). The real and imaginary components of the complex number rojk

are the x and y coordinates of the point which falls jk/N of the way around the unit circle

traversing counterclockwise. The inverse of this function is almost the same, except that the k,j

components ofF are found from e-Z7tjki/N' or cos(-2njk/N) + i sin (-2njk/N). In 1965 J.W. Cooley

and J.W. Tukey found a complicated set ofrecurrence relations which, when solved cut the

number of calculations needed from N2 to N. This is commonly referred to as the Fast Fourier

Transform.

In order to implement this program 1, the use of a complex type is needed. In HPF the

Complex class is predefined as described previously, but in C and MPI it needed to be

constructed. The code for these constructions was included earlier.

One of the problems facing a C and MPI implementation of this program is the lack of

explicitly shared memory. During each iteration of the main loop in the program, which is shown

later, each processor updates the element of the c[] array corresponding to its mytid. Since all of

these arrays are local, each processor only has the updated copy of the element it computed. In

order to correctly do its work in the next iteration, however, each processor needs all of the

updated elements. Shared memory must therefore be mimicked using message passing in this

program. Unfortunately the speed of the program will be slowed significantly because of the

need for this additional communication. Since the recurrence relation is log2 N steps deep, the

main loop iterates this many times, and so the data must to be 'shared' log2 N times. Therefore,

without the support for shared memory in MPI, this program will take much longer than merely

the time for the N calculations. The code for the sharing function in MPI is shown below:

void share(struct Complex y[], int mytid, int k, int b, MPLDatotype m_complex) !

int i,j;
struct Complex temp;

if(mytid != MASTER)
MPLSend(&y[k], 1, m_complex, MASTER, (N*k) + b, MPLCOMM_WORLD);

for(i = 1; i < N; it+)
if(rnytid == MASTER) l

MP/_Recv(&temp, 1, m_complex, MPLANY_SOURCE, (N*i) + b, MPl_COMM_WORLD,
&status);

y[i] = temp;

1 Since the code for the Fast Fourier Transfonn is lengthy and hard to follow in both languages, I have only
included some important pieces of it. The full code for both versions of this program is included in the appendix.

The above code uses the master process to collect and redistribute all of the updated data. In this

instance, the tag parameters are used to ensure the correct message is received. Because the

master process has to collect all data first, it must execute N-1 blocking receives. The master

process is thus not synchronized with the rest of the processo~s, and in fact falls well behind. For

this reason, a message sent in the first iteration may be received by the master process in the

second round unless it has a unique tag value. For this reason, b has been figured into the tag

value. Furthermore, unless the source of the message is also known, the value sent cannot be

placed in the correct position in the array. The tag value then has become k*N + b, which will be

unique for all iteration and source combinations. Once all pieces are collected, the broadcast

function quickly redistributes the array to all nodes.

T.he main loop in the C using MPI is as follows:

while(b >= 1)
k = mytid;
...

/*assignments */

~[k].re = y[sub].re + sign*((y[sub+b].re*w[exp].re) -(y[sub].im* y[subtb].im));
c[k].im = y(sub].im +sign*((y[sub+b).re * w(exp].im) +(y(sub].im* y(sub+b].re));

y[k] = c[k];
share(y, mytid, k, b, m_complex);
b /= 2;
!

The HPF main loop is as follows:

DO WHILE(B >= 1)
82 = N/ 2*B

DO MYTID = 0, N-1
K = MYTID

!assignments

C(K) = Y(SUB) + SIGN*(Y(SUB + B) * W(EXP))
END DO

Y(:) = C(:)
B = B/2

L~D DO

The HPF version of this program needs a second embedded DO loop. In the C code, however,

the work is completely distributed even without a second loop, but the effect is the same. The

assignment to c[k] where k = mytid spreads this work out over all of the processors. The

distribution of the data in MPI in this example is done much differently than in the to previous

examples.

Overall, each of these languages has certain strengths and weaknesses. Using C with MPI

allows the programmer more flexibility than High Performance Fortran. Since distribution

schemes are predefined in HPF, there only a small number of them. The power ofMPI comes

from being able to specifically program the work to be done by each processor. The fact that

each processor will execute the same program, but with different local information provides the

programmer with significant flexibility. Virtually any distribution scheme could be implemented

using MPI. There is a tradeoff in providing this much flexibility, however. Since the distribution

is programmed rather than declared in MPI, it becomes more difficult to modify, which is a clear

advantage for HPF.

Providing automatic data communication also brings tradeoffs. The logic of the HPF

programs are greatly simplified by not having to include message passing. On the other hand

specifying communications allows the programmer to picture the efficiency of the scheme

better, since the number of messages actually sent can be seen in the code. For example in the

Fast Fourier Transform, 2N messages are being passed during each oflog2 N iterations. In the

HPF version of the FFT, close inspection must be made to determine the amount of

intercommunication, which is this case in none.

These are only two of the several parallel languages currently available. Although this is

a somewhat incomplete comparison of the two languages, the important techniques have been

covered. My research is ongoing, particularly with regard to the distribution of the complex

arrays in the Fast Fourier Transform. I expect to learn more of the important distinctions of these

two languages as I continue my research.

REFERENCES

1. Numerical Analysis, Richard L. Burden and J. Douglas Faires, 5th Edition, PWS-KENT
Publishing Company, 1993.

2. Practical Parallel Processing, Alan Chalmers and Jonathan Tidmus, International Thompson
Computer Press, New York, 1996.

3. MPI The Complete Reference, Snir, Otto, Huss-Lederman, Walker and Dongarra, MIT Press,
Cambridge, MA, 1996.

4. Using MPI: Portable Parallel Programming with the Message Passing Interface, Gropp, Lusk,
and Skjellum, MIT Press, Cambridge, MA, 1994.

5. The Design and Analysis of Parallel Algorithms, Justin R. Smith, Oxford University Press,
New York, 1993.

6. Fundamentals of Sequential and Parallel Algorithms, Kenneth A. Berman and Jerome L.
Paul, PWS Publishing Company, Boton, MA, 1997.

7. Analysis and Design of Parallel Algorithms, S. Lakshmivarahan and Sudarshan K. Dhall,
McGraw-Hill Publishing Company, New York, 1990.

8. The High Performance Fortran Handbook, Koelbel, Loveman, Schreiber, Steele and Zosel,
MIT Press, Cambridge, MA, 1994.

9. Frontiers in Applied Mathematics: Computational Frameworks for the Fast Fourier
Transform, Charles Van Loan, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1992.

c·:-J " ~'\:;:;;'';,/'~ ~;:~:~t~~~:~,~~~i~~;:;;;: ~:;;,~~
;; Listing for Peter Daile
i~~:J;~i~~~}~~~~ 5'.~}~~ti~~~:,ii~~;1~~~l1JP~i,

Script command is started on Wed Apr 23 13:36:49 EDT 1997.speOl\ cat -n picyc.c
l
2
3
4
5

finclude <stdlib.h>
finclude <stdio.h>
finclude "mpi.h"

6 fdefine NUMRECS 10000
7 fdefine MASTER 0
8
9 MPI Status status;

10 MPI-Request request;
11 -
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

double f (double
double y;
y - 4.0/ (1.0
return y;

x) I

+ x*x);

main(int argc, char ••argv)
I
double h,

mypi,
pis um,
piave,
pirecv,

27 int
28

rec area[NUMRECS];
1,n;
mytid,

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

nproc,
source,
mystart;

MPI Init(&argc, &argv);
MPI-Comm rank(MPI COMM WORLD, &mytid);
MPI:comm:size(MPI:coMM:woRLD, &nproc);

mystart - mytid;
h - 1.0/NUMRECS;
mypi - o.o;
for(i - O; i < NUMRECS - nproc + 1; i+- nproc) {

rec area[i + mystart] - h* f(h* ((i + mystart) + .5));
mypI +- rec_area[i + mystart];

if(mytid !- MASTER) {
45
46
47
48
49
50
51
52
53

MPI Send(&mypi, 1, MPI DOUBLE, MASTER, mytid, MPI COMM WORLD);
) - - - -

else(

, &status);
54

l

pisum - mypi;
for (n - 1; n < nproc; n++) I

MPI_Recv(&pirecv, 1, MPI_DOU8LE, MPI_ANY_SOURCE, n,

pisum +- pirecv;
) 55

56
57
58

if(mytid -- MASTER)
printf("Mypi is approximately \19.17lf\n•, pisum);

MPI_COMM_WORLD

59 MPI Finalize();
60) - /*End of the program.*/

speOl\ mpcc -o picyc picyc.c
speOl\ picyc
Mypi is approximately 3.14159265442312430
speOl\ exi
Script command is complete on Wed Apr 23 13:37:30 EDT 1997.

("';)

N I v# i &; -,----, r---" ,.-..........,...,,........

l
I

I Page
Listing tor Peter Dalley Wed Apr 9 15:05:41 1997 I

1
~ \... ,

Script
1
2
3
4
5
6
7
8
9

command is started on Wed Apr 9 15:00:01 EDT 1997.speOH cat -n mypi.f
PP.OGP.AM PI_EXAMPLE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

! Compute the value of pi by numerical integration

INTEGER, PARAMETER : : ll = 10000
DOUBLE PRECISION, PARAMETER : : H = 1.0 ! N
DOUBLE PRECISION : : MYPI
DOUBLE PRECISION, DIMENSION (II) : : P.ECT_AP.EA

!HPF$
!HPF$

PROCESSOP.S, DIMENSION(8) : : PROCS
DISTRIBUTE (BLOCK) O!ITC PROCS : : RECT_AREA

!HPF$ INDEPENDENT
DO I = 1, N

RECT__.AREA(I) = H * F(H*(I-0.5))
END DO

MYPI = SUM(RECT_,AREA)

PRINT *,MYPI

CONTAINS

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION :: X
F = 4 I (1. 0 + X* X)

END FUNCTION F

END PP.OGRAM PI_EXAHPLE

spe01% xlhpf90 -L/usr/lpp/ssp;css/libip/ -o mypif mypi. f
** pi_example === End of Compilation 1 ===
1501-510 Compilation successful for file mypi. f.
spe01% mypif

3.14159265442312741
spe01% exit
Script command is complete on Wed Apr 9 15:00:51 EDT 1997.

(J

Listing tor Peter Dailey Wed Apr 9 15:05:24 1997 tJ
Script coll'Jl\and is started on Wed l>.pr 9 l.J:53 :56 EDT 1997 .spe01% cat -n horner.c

1
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include "mpi.h"
5
6 #define N 4
7 #define MASTER 0
8
9 MPI_Status status;

10 MPI_Request request;
11 double power(double base, int expJ (
12 double answer = 1.0;
13 int l;
14 if(exp < O)
15 return O;
16 if(exp > 0)
17 for(l = 1; 1 <=exp; l++)
18 answer * = base;
19 return answer;
20
21
22
23 main(int argc, char ••argv)
24 (
25 double a[N*NJ,
2 6 temp,
27 myfinal = o .o,
28 final,
29 X=2.Q;
30 int i,j,k,
31 mvtid,
32 nproc,
33 source,
34 mtype,
3 5 msgid,
36 nbytes,
37 mystart,
38 rcode;
39
40 MPI_Init(&argc, &argv);
41 MPI_Comm_rank (J.IPI_COMM_WORLD, &mytid);
4 2 MPI_Comm_si ze (l·IPI_:::C!J.IH_\·!OP.LD, &nproc) :
43
44 for(i = O; i < ll*!l; i++)
45 a[i] = 1:
46
47 for(j= O; j < ll'll:nproc; j++)
48 myfinal += a[(tl*j) + mytid] 'power(x, Jl*j);
B
50 myfinal *= power(x, mytid);
51
52 if (mytid ! = HASTEP.) (
53 MPI_Send (&myf in al, 1, MPl_DOUBLE, MASTEP., myt id, MPI_CC!!·ll·LWORLD) :
54 l
55
56 else(
57 final my final;
58 tonk 11 k < nproc; k++! (

c---- ------ ----- ------ ----- ---- -]

~ Listing tor Peter Dailey Wed Apr 9 15:05:24 1997 ~

59
&status):

60
61
62
63

HPI_P.ecv (&temp, 1, HPI_DOUBLE, MPI_AIJ"i_SCUP.CE, k, HPI_::t·!M_:·J:P.LD

final += temp:
}

6.J if (mytid == J.!hSTEP.)
65 printf("The ans~ ... 1er is approximatel:i· %10.af,_n", final);
66
67 MPI_Finalize():
68 l

spe01% mpcc -o horner horner.c
spe01% horner -procs .J
The answer is approximately 65535.00000000
spe01% exit
Script command is complete on \•led Apr 9 14:54:29 EDT 1997.

(-----J

Listing tor Peter Dalley ~ Wed Apr 9 15:05:59 1997 I l.....:_J

Script command is started on ':led Apr 9 14:58:34 EDT 1997.spe01% cat -n pic::c.f
1 PP.OGP.AH PI_EXAMPLE

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

! Compute the \'alue of pi by numerical integration

INTEGER, PAP.AMETER : : N = 10000
DOUBLE PP.ECISIO!l, PARAMETEP. :: H = 1.0 / IJ
DOUBLE PHECISION : : MYPI
DOUBLE PP.ECISIOtl, DIMENSIOtl (ti) : : P.ECT_AREA

PROCESSOP.S, DIMEllSION (8) : : PP.OCS !HPF$
!HPF$ DISTRIBUTE (CYCLIC) ONTO PP.OCS : : P.ECT_AP.EA

! HPF$ INDEPEtlDEtlT
DO I = 1, N

RECT_AP.EA(I) = H • F(H*(I-0.5))
END DO

MYPI = SUM(P.ECT_AP.EA)

PRINT *,MYPI

CONTAINS

DOUBLE PP.EC IS ION FUNCTION F (X)
DOUBLE PRECISION : : X
F = 4 I (1.0 + X*X)

END FUtlCTIOll F

ElJD PP.OGRAM PI_EXAHPLE

speOH xlhpf90 -L/usr/lpp/ssp/css/libip/ -o picycf pic:;c. f
•• pi_example === End of Compilation 1 ===
1501-510 Compilation successful for file picyc.f.
speOll setenv MP_PP.OCS 8
speOH picycf

3.14159265442312430
speOH exit
speOll
Script command is complete on Wed Apr 9 14:59:50 EDT 1997.

(-- - - -- -- - ·- J

-1

c·:-J
Script command is started on Wed Apr 23 13:32:36 EDT 1997.speOl\ cat -n mypi.c

1
2
3
4
5

finclude <stdlib.h>
#include <stdio.h>
finclude •mpi.h"

6 fdefine NUMRECS 10000
7 #define MASTER 0
8
9 MP! Status status;

10 MPI-Request request;
11 -
12
13
14
15
16
11
18
19
20
21
22
23
24
25
26

double f (double
double y;
y = 4.0/ (1.0
return y;

x) {

+ x*xl;

main(int argc, char ••argv)
{
double h,

mypi,
pis um,
piave,
pirecv,

27 int
28

rec area[NUMRECS];
i,n;
mytid,

29
30
31
32
33
34
35
36

nproc,
source,
mystart;

MPI Init(&argc, &argv);
MPI-Comm rank(MPI COMM WORLD, &rnytid);
MPr:comm:size(MPI:coMM:woRLD, &nproc);

37 mystart - NUMRECS/nproc • mytid;
38
39 h - 1.0/NUMRECS;
40 mypi - 0.0;
41
42
43
44
45

for(i - O; i < (NUMRECS/nproc); 1++) {
rec area[i + mystart) - h* f(h*((i + mystart) + .5));
mypT +• rec_area[i + rnystartJ;

if(rnytid !•MASTER) {
46
47
48
49
50
51
52
53
54

MP! Send(&mypi, 1, MP! DOUBLE, MASTER, mytid, MPI COMM WORLD);
I - - - -

else{

, &status);
55
56
57)

pisum - mypi;
for(n - l; n < nproc; n++) {

MPI_Recv(&pirecv, l, MPI_DOUBLE, MPI_ANY_SOURCE, n,

pisurn +- pirecv;
I

58 if(mytid ••MASTER)

MPI_COMM_WORLD

t: ;., : ', ,,,~~'- :., ····· ·.······· ·<. • ·. ·.. ; . ~D G

59 printf("Mypi is approximately \19.17lf\n•, pisum);
60 MPI Finalize();
61 I - /*End of the program.•/

speOl\ mpcc -o mypi mypi.c
spe01% mypi
Mypi is approximately 3.14159265442312741
spe01% exit
Script command is complete on Wed Apr 23 13:33:04 EDT 1997.

(P•;)

;;;;;;;;;u i;;;;;;;.=it c;,:;;;;;;;z, c::::::::a ~ ~ ~____
-

~
Page

I Listing tor Peter Dailey Wed Apr 9 15:06:08 1997
1

~ \. ,J

Script command is started on \·Jed Apr 9 14:57:21 EDT 1997.spe01% cat -n horner.f

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

PP.OGP.AM H·JP.llEP.

I!JTEGEH
INTEGEP., PAP.AJ.!ETEP.
HEAL, DIMEtlSION (N*ll)
P.EAL, DU!EtlSION (O:t!-1, II)
P.EAL, DIMENSIOll(O:N)
HEAL, DIMENSION (N)
HEAL

: : I, J
: : !! = 4
:: A

: : p
: : POWEP.S

: : XN, SUMS
: : x

HPF$ PP.OCESSOP.S, DU!EllSION(N} : : PP.OCS
HPF$ DISTP.IBUTE(BLOCK) ONTO PP.OCS :: POWEP.S, XN, SUMS
HPF$ DISTP.IBUTE (BLOCK, *) ONTO PHOCS : : P

x = 2.0

POWEP.S (0} = 1

! HPF$ INDEPENDENT
00 I = 1, N*ll

A(I} • 1
END DJ

00 I = 1, II
POWEP.S (I)

END 00

XN(:) =

001=2,N

POWEP.S (I-1) * X

XII (I) = XII (I -1) * PO\·iEP.S (N)
END DO

! HPF$ INDEPEIWENT
D() I = 0, 11-1

P(I, :) = A(l +l:N*(ll-l)+I +l:N) * XN(l:N)
El!D DO

! HPF$ Il!DEPEl!DEl!T
DO I = 1, II ! GET SUMS OF P [I] 'S

SUMS (I) = SUH I P (I -1, :))
END [".)

SUMS(:)= SUMS(:)* POWEP.S(O:!l-1)
DO I = 1, N

AllS':!EP. = SUM (SUMS)
EJ!D CO

PP. It!T * AJ!Sl·iEP.

51 EllD PP.CGP.AM H::·P.tlEP.
spe01% xlhp!90 -L!usr. lpp.'ssp:css. libip: -o horner! horner. f
•• horner •== End of Compilation 1 =•=
1501-510 ·:ompi lat ion successful for file horner. f.
speOH setenv MP_PP.C"2S
spe01% horner!

65535.00000
spe01% exit

c-------------- -- J

-- -- -- -

Listing tor Peter Dailey Wed Apr 9 15:06:08 1997

\.. IT
Script command is complete on Wed Apr 9 U:58:17 EDT 1997.

[- ~ --~----]

!
~1~;;r;;~ii£¥ti1 c·;J

Script
1
2
3

conunand is started on
finclude <stdlib.h>
finclude <stdio.h>
finclude "mpi.h"
finclude <math.h>

Thu Apr 10 15:17:14 EDT 1997.speOl\ cat -n fft.c

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S
46
47
48
49
so
Sl
S2
S3
54
SS
56
57
58
S9

fdefine N 4
fdefine MASTER 0

canst double PI • 3.1415926;

MPI Status status;
MPI=Request request;

struct Complex{
double im;
double re;
J;

int log2 (int n)
(

int log - O;
if(n < ll

return -1;
if(n -- 1)

return O;
while (n > 1)

n - n/2;
log +• 1;
if (n -- 1)

return log;
I

return log;

void initomegas(struct Complex w[], struct Complex winv[])
{

int i - O, j;
for(i; i < N; 1++) {

w[i].re • cos(i*(-2.0/N) *PI);
w[iJ.im • sin(i*(-2.0/N) *PI);
winv[i] .re - cos(i* (2.0/N) *PI);
winv[i].im • sin(i*(2.0/N) *PI);

I

int power(int base, int n) (
int x - 1, i;

int

for (i - l; i <• n; i++)
x *•base;

return x;

binaryreverse(int p, int n) (
int m, r;
if (n -- 0)

r - O;
else (

m • power(2, p-1);
if(n < m)

' '

60
61
62
63
64
65
66
67

omplex)
68
69
70
71
72
73
74
75

r • {2* binaryreverse(p-1, n));
else

r - (1+ binaryreverse{ p, n-m));

return r;

('":)

void share(struct
I

Complex y[], int mytid, int k, int b, MPI_Datatype m c

int i,j;
struct Complex temp;
if(mytid != MASTER)

MPI_Send(&y(k], 1, m_complex, MASTER, (N*k) + b, MPI_COMM_WORLDJ;

{
1, m_complex, MPI_ANY_SOURCE, (N*i) + b, MPI_CO

for(i = l; i < N; i++J
if(mytid ==MASTER)

MPI Recv(&temp,
&status); -MM WORLD,

- 76
77
78

y[i] - temp;
l

79 MPI Bcast(y, N, m complex, MASTER, MPI COMM WORLD);
80 - - - -
81
82

mytid,
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

void fft(struct Complex y[J, struct Complex c[), struct Complex w[J, int
int nproc, MPI Datatype m complex)
I - -
int b • N/2,b2,

i,
k,j,
binrev[NJ,
exp,
sign,
sub;

double temp;
struct Complex comp;

for(i - O; i < N/2; i++) {
binrev[iJ - binaryreverse(log2(N), i);
if(i != binrev[i)){

temp - y[i).re;
y[i) .re - y[binrev[ij].re;
y[binrev[iJ).re - temp;
I

while (b >• 11 {
b2 • N/ (2*b);
k - mytid;
sub - (mytid \ (2*b));
if((mytid \ (2*b)) >• b)

sub -- b;
if(mytid >• (N/ b2))

sub+• mytid - (mytid \ (2*b));
sign • ((mytid \ (2*b)) < b) *2 -1;
if(mytid < (N/b2))

exp - O;
else

exp• binaryreverse(b2/2,mytid/ (2*b)) • (N/b2);

[IfE,~····· .~>ji~~s;f: ... 1·~:·~ ::"h~~f~~

I

i---

t~~~fia~··· (7)
117 c[k) .re •

w[exp).im));
c[kJ.im

w[exp).re));

y[subJ.re + siqn *((y[sub + bJ.re * w[exp).re) - (y[sub
+ b].im •

118 y[sub).im + siqn*((y[sub + b].re* w[exp].im) +
b].im*

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

y[kJ.re - c[k].re;
y[k).im - c[kJ.im;
share(y, mytid, k, b, m_complex);

b ,_ 2;

for(i - O; i < N/2; i++) I
c[2*i].re - y[2*iJ.re;
c[2*1 +l} .re - y[2*i +l] .re;
}

main(int argc, char ••argv)
I
double temp,

start time,
endtime;

139 struct
140

Complex w[N],
winv[N],
y[NJ,
yinv[N),
c[N);

141
142
143
144
145 int
146

i,j,k,b-1,
binrev[NJ,
mytid, 147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

nproc, nurnpr,
source,
mtype,
msqid,
nbytes,
mystart,
rcode,
size;

MPI Datatype m complex;
MPI-Datatype type[2J • {MPI DOUBLE, MPI DOUBLE);
int-blocklength[2J - {1,1);-
MPI_Aint disp[2l - (0, sizeof (double));

MPI Init(&arqc, &arqv);
MPI-Comm rank(MPI COMM WORLD, &mytid);
MPr:comm:size(MPI=COMM=WORLD, &nproc);

MPI Type struct(2, blocklength, disp, type, &m complex);
MPI=Type:commit(&m_complex); -

if(mytid ••MASTER)
for(i - O; i < N; i++) I

scanf("Uf", &y[iJ.re);
y[iJ.im - 0.0;
c[iJ.im - o.o;
yinv[i) .im - 0.0;

(y[sub+

-~1~·:J

175 }
176 MPI Bcast(&y, N, m complex, MASTER, MPI COMM WORLD);
177 - - - -
178 starttime• MPI Wtime();
179 -
180 initomeqas(w, winv);
181
182 fft(y, c, w, mytid, nproc, m complex);
183 if(mytid -- MASTER) { -
184 for(j • O; j < N; j++)
185 printf("%5.3lf •x•\d +•, c[jJ.re, j);
186 c[jJ .im - 0.0;
187 I
188 MPI Bcast(y, N, m complex, MASTER, MPI COMM WORLD);
189 - - - -
190 fft(c, yinv, winv, mytid, nproc, m complex);
191 -
192 endtime - MPI Wtime();
193 -
194 if(mytid -- MASTER) I
195 printf("\nThis is the second equation: \n");
196 for (j - O; j < N; j++)
197 printf("%5.3lf •x•\d +", yinv[jJ.re/N, j);
198 printf("\nThis took \5.3f seconds\n", endtime - starttime);
199 I
200
201 MPI Finalize();
202 l -

speOl\ mpcc -o fft.c fftc -lm
cc: 1501-218 file fft.c contains an incorrect file suffix
speOl\ mpcc -o fftc fft.c -lm
speOl\ fftc -procs 4
1
2
3
4
10.000 •x•o +-4.000 •x•1 +-0.000 •x•2 +-2.000 •x•3 +
This is the second equation:
1.000 •x•o +2.000 •x•1 +3.000 •x•2 +4.000 •x•3 +
This took 0.002 seconds
speOl\ ! !
fftc -procs
99.99
53.10
40.22
965.33
1158.640 •x•o +-852.460 •x•1 +972.000 •x•2 +-878.220 •x•3 +
This is the second equation:
99.990 •x•o +53.100 •x•1 +40.220 •x•2 +965.330 •x•3 +
This took 0.005 seconds
speOH exit
speOH
Script command is complete on Thu Apr 10 15:18:41 EDT 1997.

I
~~>::,:,,.~;{<~,-,~ \:;?i5,':-~f ~t ~,z;~~, -;:~, >,~,-:~~{ .~~ ~~z '"
F~iLfitfng'forReterDa/le

:~;1£t~!:~;;~~;:1~~~~k2i~~ti~; ~~~
~.CT« <¥· •. •• '•' '" 4. "''"'·•1 I-I
~~?:fl:±~~:J&~~~~f!ltl!Jt ~

Script colllll\and is started on Thu Apr 10 15:20:41 EDT 1997,speOl\ cat -n fft.f
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
SB
59

PROGRAM FFT

DOUBLE PRECISION, PARAMETER :: PI • 3.1415926535
INTEGER, PARAMETER :: N • 4
DOUBLE COMPLEX, DIMENSION(O:N-1) :: Y, W, WINV
DOUBLE PRECISION, DIMENSION(O:N-1) :: IN
DOUBLE COMPLEX :: TEMP

!HPFS
!HPF$

PROCESSORS, DIMENSION(N) :: PROCS
DISTRIBUTE (CYCLIC) ONTO PROCS :: Y

DO I - O, N-1
READ * / IN (I}
Y(I) - (IN(!), 0)

END DO

CALL INITOMEGAS(W, WINVI

CALL FASTFOURIER(Y, WI

DO I - O, N-1
PRINT *, Y(I)

END DO

CALL FASTFOURIER(Y, WINV)

DO I • O, N-1
PRINT *, Y(I)/N

END DO

CONTAINS

INTEGER FUNCTION LOG2(L)
LOG - 0
IF(L .LT. 1) THEN

LOG2 - 0
END IF
IF(L -- 1) THEN

LOG2 • 0
END IF
DO J • l,L/2

L • L/2
LOG • LOG + 1
IF(L •• 1) THEN

LOG2 • LOG
END

ENODO
IF

LOG2 • LOG
END FUNCTION LOG2

SUBROUTINE INITOMEGAS(W, WINV)
DOUBLE COMPLEX, DIMENSION(O:N-1), INTENT(INOUT)

!HPF$ INDEPENDENT
DO I • 0, N -1

•• W, WINV

[r,:> , :m .~:._·:.···.······ ;:·,7 :·:<:~d

60
61
62
63
64
65
66
67
68
69
70
71
?2
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

W(l) • (COS(I*(-2,0/N)*PI), SIN(I*(-2.0/N)*PI))
WINV(I) • (COS(I*(2,0/N)*PI), SIN(I*(2.0/N)*Pl))

ENDDO
END SUBROUTINE INITOMEGAS

INTEGER FUNCTION POWER(L, J)
INTEGER, INTENT (IN) : : J / L
INTEGER :: X • 1
IF(J •• 0) THEN

POWER • 1
END IF
IF(J .LT. 0) THEN

POWER • 0
END IF
DO I • 1, J

X = X * L
ENDDO
POWER - X
END FUNCTION POWER

RECURSIVE FUNCTION REVERSE(P, L)
INTEGER :: P, L
INTEGER :: ANS
INTEGER :: M
IF(L -- 0) THEN

ANS - 0
ELSE

M - POWER(2, P-1)
IF(L .LT. M) THEN

ANS - 2* REVERSE(P-1, L)
ELSE

ANS• 1 + REVERSE(P, L-M)
ENDIF

ENDIF
RETURN
END FUNCTION REVERSE

SUBROUTINE FASTFOURIER(Y, W)

RESULT (ANS)

DOUBLE COMPLEX, DIMENSION(O:N-1), INTENT(INOUT) :: Y
DOUBLE COMPLEX, DIMENSION(O:N-1), INTENT(IN) :: W
INTEGER :: I, J, B, B2
INTEGER :: SUB, EXP, MYTID, K, SIGN
DOUBLE COMPLEX :: TEMP
DOUBLE COMPLEX, DIMENSION(O:N-1) :: C
INTEGER, DIMENSION(3,0:7) :: BINREV

BINREV(l,0) • 0
BINREV(l,l) • 1
BINREV(2,0l - 0
BINREV(2,1) • 2
BINREV(2,2) - 1
BINREV(2,3) • 3
BINREV(3,0) - 0
BINREV(3,1) • 4
BINREV(3,2) • 2
BINREV(3,3) • 6
BINREV(3,4) • 1

c··=-J

C ·::_: ~-~· :)·.s··i~[1~.;;i;;~ ·-,~i-'tE~: :~~


~~~~f~7~r 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 

BINREV(3,5) - 5 
BINREV(3,6) - 3 
BINREV(3,7) - 7 
DO I - O, (N/2) -1 

IF( .NOT. (I -
TEMP - '!(I) 

BINREV(LOG2(N), I))} 

'!(I) - '!(BINREV(LOG2(N), I)) 
Y(BINREV(LOG2(N),I)) •TEMP 

END IF 
ENDDO 

B = N/2 
DO WHILE( B >= 1) 

B2 = N/ (2*B) 

DO MYTID - O, N-1 
K • M'!TID 
L - MOD (M'!TID, (2 *B)) 
SUB • L 
IF (SUB .GE. B) THEN 

SUB • SUB -B 
END IF 
IF (MYTID .GE. (N/B2)) THEN 

SUB = SUB + M'!TID - L 
END IF 
IF (L .LT. B) THEN 

SIGN • 1 
ELSE 

SIGN - -1 
END IF 
IF(MYTID .LT. (N/B2)) THEN 

EXP • 0 
ELSE 

THEN 

!32 

EXP• (N/ B2) * BINREV(B2/2, MYTID/(2*B)) 
END IF 
C(K) - Y(SUB) + SIGN*(Y(SUB +B)*W(EXP)) 

END DO 

Y(:) - C(:) 
B • B/2 

END DO 
END SUBROUTINE FASTFOURIER 

163 END PROGRAM FFT 
speOl\ xlhpf90 -L/usr/lpp/ssp/css/libip/ -o fftf fft.f 
•• fft --- End of Compilation 1 ---
1501-510 Compilation successful !or file f!t.f. 
speOl\ f!t -procs 4 
!!t: Command not found. 
speOl\ f!t! -procs 4 
1 
2 
3 
4 

110.0000000000000000,0.ooooooooooooooooooE+Oo) 
(-4.00000000000000000,0.000000000000000000E+OO) 
(-0.377475B28372553224E-14,-0.874227800037247454E-07) 
(-l.99999999999999623,0.874227800037247454E-07) 
(l.00000000000000000,0.000000000000000000E+OO) 
12.00000000000000000,0.ooooooooooooooooooE+OO> 

(7] 

~ •;· -,:,~~(~- ~t~~-.J 

;_/./;: ·:-; ,'.> ·· .. •·.·· :.;; '> :· -~· 

~~~~~---~~~~~~, [•; J 
(3.ooooooooooooooooo,-o.436191007918135621E-24l
(4.ooooooooooooooooo,0.43619100191e13s621E-241

speOl\ !!
f!tf -procs 4
99.99
53.10
36.22
965.33

(1154.64000000000010,0.000000000000000000E+OO)
(-848.460000000000036,0.000000000000000000E+OO)
(975.999999999996416,-0.812253791292606963E-04)
(-882.219999999996503,0.812253791292606963E-04)
(99.9900000000000091,0.000000000000000000E+OO)
(53.1000000000000227,0.000000000000000000E+OO)
(36.2199999999999704,-0.332191231834828516E-20)
(965.330000000000155,0.332791231834828516E-20)

spe01% exit
Script command is complete on Thu Apr 10 15:22:42 EDT 1997.

,'"<''

l
I

	Parallel programming
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44

