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ABSTRACT 

Lactate dehydrogenase (LDH) isozyme patterns of seven 

tissues in each of five species of snakes are described from 

their polyacrylamide gel electrophoretic characteristics. 

The tissues examined included vibratory tail muscle, non­

vibratory tail muscle, body epaxial muscle, heart muscle, 

whole blood, liver and kidney. The species of snakes 

included Crotalus adamanteus, C. h. horridus, Agkistrodon 

piscivorus and Sistrurus miliarius barbouri from the family 

Crotalidae and Natrix taxispilota from the family Colubridae. 

These snakes show a decreasing continuum of tail vibratory 

activity, respectively, to N. taxispilota, which has a non­

vibratory tail muscle. 

Crotalus adamanteus, C. h. horridus and A. piscivorus 

have similar LDH isozyme patterns. They represent a case of 

restricted subunit association and have only four isozymes 

rather than five which are characteristic of the majority of 

vertebrates. The missing heteropolymer was determined to be 

LDH-4 (A3B1). This is the first time that the 11 four-isozyme 11 

system has been reported in Crotalid snakes. Sistrurus ill.:. 

barbouri and N. taxispilota show non-restricted subunit 

association and have the five-isozyme LDH pattern. 

Muscles which contract rhythmically tend to show LDH 

patterns like those in heart muscle, therefore it was 
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anticipated that rattlesnake vibratory muscle would exhibit 

a similar pattern. However, this was not the case as 

vibratory muscle LDH patterns resembled non-rhythmical body 

epaxial muscle patterns and not those of heart muscle. 

Vibratory muscle and body epaxial muscle differed in 

heteropolymer bands LDH-2 (A1B3) and LDH-3 (A2B2) 1 which 

were wider in vibratory muscle than in body epaxial muscle. 

There were positive correlations between muscle vibratory 

activity and increases in heteropolymer band width and 

intensity. 

Vibratory muscle LDH patterns were found to be like the 

white skeletal muscle LDH patterns in most vertebrates and 

similar to liver LDH isozyrnes. Vibratory muscle and liver 

have LDH characteristic of anaerobic respiration, however 

both function in an aerobic environment. Vibratory muscle 

LDH could represent an alternate energy route during 

prolonged vibration when oxygen may not be readily available. 
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INTRODUCTION 

The purpose of this study was to determine the lactate 

dehydrogenase(LDH) isozyme patterns of rattlesnake vibratory 

muscle and compare them with those of heart and epaxial 

muscle of rattlesnakes. Snakes other than rattlesnakes were 

examined to give a comparison between vibratory and non­

vibratory tail muscles. 

Lactate dehydrogenase catalyzes the last step in 

glycolysis; i.e. the reduction of pyruvate to lactate 

(Lehninger, 1975). The LDH isozymes are tetrameric molecules 

composed of four subunits from two parent molecules. In the 

past, parent molecules have been designated as M (muscle) 

and H (heart) for the organs in which they occur 

predominantly (Dawson, et al., 1964). Current researchers 

(Everse and Kaplan, 1975; Markert, et al., 1975; Vesell, 

1975) replace M and·H designations with A and B, respec­

tively. The latter format will be followed in the present 

study. The two parent molecules A and B are coded by two 

separate structural genes whose monomeric products combine 

to form five isozymes. In most vertebrates, these five 

possible tetramer combinations are: B4 (LDH-1); A1 B3 (LDH-2); 

A2 B2 (LDH-3); A3B1 (LDH-4) and A4 (LDH-5) (Appella, et al., 

1961; Cahn, et al., 1962; Markert, 1962, 1963a, 1963b; 

Markert, et al., 1975). 



Each of the multiple forms of LDH appears to have 

different functions. They are involved in different modes 
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of metabolism and are specifically characteristic of specific 

tissues. The LDH present in muscles is characteristic of 

their physiological function. Muscles which contract 

tonically or rhythmically tend to have LDH patterns like the 

heart (B type), whereas muscles which contract more abruptly 

have LDH patterns consisting primarily of A type molecules 

(Dawson, et al., 1964). 

In the present study, five species of snakes which 

demonstrate a decreasing continuum of tail vibratory behavior 

were used to determine muscle LDH patterns. The largest of 

North American rattlesnakes, Crotalus adamanteus (eastern 

diamondback rattlesnake), displays a high degree of vibratory 

activity. A physically smaller species, Crotalus horridus 

horridus (timber rattlesnake), can be juxtaposed to C. 

adamanteus in vibratory behavior. A third species, Sistrurus 

miliarius barbouri (Florida or dusky pigmy rattlesnake) is a 

dwarf rattlesnake. Although it possesses a rattle, the 

vibratory muscles are not as well developed as those in 

Crotalus and it can be considered a primitive rattlesnake 

(Klauber, 1956). A fourth species, Agkistrodon piscivorus 

piscivorus and Agkistrodon piscivorus conanti (cottonmouth), 

is a member of the family Crotalidae, the pitvipers, which 
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includes Crotalus and Sistrurus, but is a tail vibrator 

without a rattle. The last species, Natrix taxispilota 

(brown watersnake), is a non-vibrating member of the family 

Colubridae (Schaefer, 1978, pers. comm.). 

Rattlesnake vibratory muscle eventually may be shown to 

be the fastest contracting vertebrate muscle (Martin and Bagby, 

1973). Because vibratory muscles can contract with a very 

high frequency over a long period of time it is considered a 

very highly specialized muscle (Martin and Bagby, 1972, 1973). 

For seventeen species of rattlesnakes the average rattling 

frequency is 48 cycles per second (Klauber, 1956) and it has 

been proposed that frequencies up to 100 cycles per second 

are possible (Chadwick and Rahn, 1954). Crotalus atrox 

(western diamondback rattlesnake) has been observed rattling 

for three hours without stopping and to show little fatigue 

(Martin and Bagby, 1972). Schaefer (1978, pers. comm.) has, 

on two separate occasions, observed C. adamanteus rattling 

continuously for four hours with no signs of fatigue. 

Forbes (1967) and Kerins (1969), using tissue oxygen 

consumption (002), succinic dehydrogenase activity and 

cytochrome oxidase activity, have concluded that rattlesnake 

vibratory muscles are specialized for high respiratory 

activity. The metabolic specialization is supported by 

morphological evidence for a high rate of activity. 
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Vibratory muscle has more glycogen granules and mitochondria 

than epaxial muscle (Pastore, 1967), which indicates that 

vibratory muscle has a larger reserve energy supply and a 

higher capacity for respiration than does ordinary skeletal 

muscle. 

Heart muscle and rattlesnake vibratory muscle have 

several common properties. Heart muscle is very red and 

high in enzymes of aerobic metabolism (Prosser and Brown, 

1971). The vibratory muscle is also red with high enzyme 

levels and a02 (Forbes, 1967; Kerins, 1969), as in heart 

muscle. Both heart and vibratory muscles contract 

rhythmically and are capable of contracting for long periods 

with~ut fatigue. These relationships help lend credence 

to the prediction that rattlesnake heart and vibratory 

muscle may have similar LDH patterns. 



MATERIALS AND METHODS 

Five species of snakes were used in this study of LDH 

tissue patterns (Table l}. Nine C. adamanteus and one 
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A. ~ conanti were collected at Cherokee Plantation in Leon 

County, Florida during March, 1977. Four s. !!h. barbouri 

were obtained commercially from Ray Singleton, Tampa, 

Florida during April, 1977. Four of the C. h. horridus 

were collected in Wyoming County, Pennsylvania during June, 

1977 and one in Highland County, Virginia during May, 1976. 

The remaining A. 12..!.. piscivorus (three) were collected in 

Virginia Beach near Creeds at the Trojan Station, Virginia 

Commission of Game and Inland Fisheries, Virginia during 

April, 1976. Six specimens of N. taxispilota were collected 

in Baileys Creek, Prince George County, Virginia during 

July, 1977. 

Each snake was ·decapitated and blood collected in a 

beaker as it was pumped out of the severed dorsal aorta. 

The animals were skinned and dissected tissues placed in 

beakers on ice. Vibratory muscle was dissected from the 

three species of rattlesnakes and tail muscle was removed 

below the cloaca! aperture to the tip of the tail from 

h.:_ piscivorus and N: taxispilota. Body epaxial muscle was 

dissected from midway between the cloacal aperture and the 

head from all snakes. Midsection$ of the kidney and liver 



6 

and the whole heart were also removed. 

Tissues from freshly killed animals were washed in ice 

cold 0.05 M Tris-glycine buffer (pH 9.2), minced and then 

homogenized in four volumes of the buffer with a glass on 

glass homogenizer attached to a power stirrer. The 

homogenizer was placed in an ice bath to help prevent protein 

deterioration. Homogenates were centrifuged at 5 C and 

100,000 g for 15 minutes. Lipoproteins were removed from 

the supernatant by filtering it through buffer-moistened 

glass wool. An electrophoretic marker of 0.2 ml 0.05 % 

Bromphenol blue in 20 % sucrose was added per ml of filtrate. 

Filtrate samples of 10 ul were applied to polyacrylamide 

gel surfaces using micropipets (Towle, 1977, pers. comm.). 

Remaining samples were then frozen for experimental rerun. 

purposes. Frozen samples were stored for only two weeks. 

Freezing for longer periods results in decreased LDH isozyme 

activity and may cause LDH isozyme band splitting (Gordan, 

1969). 

Polyacrylamide gels were prepared using the method 

developed by Hjerten (1962). The synthetic polymer, poly­

acrylamide, can be prepared to give an effective median 

pore radius of 0.5 to 3 nm (Fawcett and Morris, 1966) by 

adjusting the total acrylamide concentration (acrylarnide 

plus Bis), designated% T, and the concentration of cross-
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linking agent (Bis), designated o/r:C. (Hjerten, 1962; Fawcett 

and Morris, 1966). Thus a 16 %T x 1.5 %C gel was prepared 

from a solution containing 15.76 g of acrylamide and 0.24 g 

of Bis per 100 ml of distilled water. 

The working gel solution involves use of three stock 

solutions: (A) 15.76 g of acrylamide; 0.24 g of N,N'-Methyl­

ene-bis-Acrylamide; (B) 48 ml of lN HCl; 36.3 g of Tris(Hy­

droxyrnethyl)Aminomethane; 0.46 ml of N,N,N',N',-tetramethyl­

ethylenediamine and; (C) 0.14 g of ammonium persulfate. 

Stock solutions were made in 100 ml amounts with distilled 

water and then deaerated under vacuum to remove atmospheric 

oxygen. Oxygen is the most important polymerization 

inhibitor (Chrambach and Rodbard, 1971) and needs to be 

removed to insure consistant polymerization. 

The working gel solution was prepared using 2 parts A, 

1 part B, 4 parts C and 1 part distilled water. The exact 

amount of solution to be used can be prepared by determining 

the total volume necessary to fill the gel tubes (2 ml per 

tube) and divide that volume by 8. The result is a volume 

equal to 1 part of the gel working solution. The working 

solution can be kept on ice to retard polymerization, but 

if allowed to warm up, ammonium persulfate will achieve 

polymerization in 15 to 20 minutes (Chrambach and Rodbard, 

1971). Bio-Rad gel tubes were filled to 8 cm with gel 



working solution and then topped with 5 nun of distilled 

water to produce a flat interface. 
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After polymerization, the tubes were placed in 

electrophoretic gel chambers. The upper chamber was filled 

with 500 ml of 0.025 M Tris-glycine (pH 9.5) top buffer and 

the lower chamber with 650 ml of 0.025 M Tris-HCl (pH 8.2) 

bottom buffer. Buffer temperature was approximately 8 to 

10 C at the start of the experiment. Air bubbles were 

removed from inside and below the gel tubes with pasteur 

pipets. For each tissue, 10 ul samples were applied to four 

tubes between the gel surface and top buffer with micropipets. 

Gel chambers were connected to a power supply and the current 

regulated at 25 mA per chamber. The average run time per 

chamber was two hours. 

Gels were removed from tubes with a 20 guage 6 inch 

hypodermic needle by injecting distilled water between the 

gel and the inner surface of the tube. Sterile gloves or 

3 x 5 cards were used to handle the exposed gels. After 

removal, gels were placed in petri dishes and stained for 

20 minutes in an oven at 37 C. The LDH activity stain 

contained 8.0 ml of 0.5 MDL-Lactic acid, 6.0 ml of 0.001 M 

nicotinamide adenine dinucleotide (NAD), 4.0 ml of 0.1 M 

NaCl, 4.0 ml of 0.005 M MgCl, 8.0 ml of 0.5 M Tris-HCl 

(pH 7.8), 10.0 ml of nitroblue tetrazolium (1 mg/ml) and 



1.0 ml of phenazine methosulfate (1 mg/ml) (Towle, 1977, 

pers. comm.). 
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When the gels were removed from the stain, a hypodermic 

needle coated with india ink was stabbed into the gel marker 

dye to permanently designate its position and the length of 

the marker dye migration (MD2) was recorded. All species 

except S. l!!..:.. barbouri had the marker dye designated with 

india ink. Gels were stored in 7% acetic acid where they 

expand due to the uptake of water (Gordan, 1969). After gel 

expansion, the marker dye migration length (MD1 ) was again 

recorded. Measurements of each gel were recorded for the 

length of each LDH isozyme band migration and band width. 

All measurements were taken with a micrometer. 

Values were calculated for the coefficient of LDH band 

migration (Rf) by dividing LDH band migration by the marker 

dye migration. The S. l!!..:.. barbouri sample had no MD1 values 

and all calculations were done using MD2 , therefore the LDH 

migration is designated Rt2· Calculations for the other 

species were with MD1 , and their LDH migration is recorded 

as Rfl' a more accurate value than Rf2 • Bands in different 

tissues with similar Rf values are considered to be the 

same isozyme. Bands were labeled by designating the most 

anodal band in heart muscle as LDH-1 and the most cathodal 

band in body epaxial muscle as LDH-5. 
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A one-way analysis of variance test (ANOVA) was used to 

detect differences in LDH band width between tissues and to 

detect differences in Rf values between tissues. ANOVA 

tests were then subjected to Duncan's new multiple range 

test at the 0.05 level of confidence to determine which 

groups differed significantly from each other. All 

calculations and statistics were processed by Statistical 

Package for the Social Science (SPSS) computer programs 

(Nie, et al., 1975). 



11 

RESULTS 

Diagrams of muscle LDH isozyme patterns (electrophoretic 

zymograms) indicate that vibratory muscle LDH patterns 

resemble body epaxial muscle, not heart muscle (Figures 1-5). 

Figures 6 through 10 show 95 percent confidence intervals 

for the mean Rf values of LDH bands. Natrix taxispilota 

(Figures 5 and 10) has all five LDH isozymes in tail muscle, 

body epaxial muscle, liver and kidney, whereas s. ill.!.. barbouri 

(Figures 3 and 8) has all five LDH isozymes in heart muscle, 

body epaxial muscle and kidney. Only 4 LDH isozymes are 

present in C. adamanteus (Figure 1), c. h. horridus (Figure 2) 

and A. piscivorus (Figure 4) in all tissues except heart 

muscle and blood, which have less than 4 LDH isozymes. It 

is proposed that the missing LDH isozyme in these tissues is 

LDH-4 because of the wide gap between the LDH-5 and LDH-3 

95% confidence intervals shown in Figures 6, 7 and 9. If 

LDH-4 were present, it would be positioned between LDH-5 

and LDH-3. 

Individuals of all species had LDH-1 bands in blood. 

One S. ill.!.. barbouri had both LDH-1 and LDH-2 bands in blood 

(Figure 3). 

Heart muscle isozymes consist of LDH-1, LDH-2 and LDH-3 

in C. adamanteus (Figure 1), C. h. horridus (Figure 2) and 

A. piscivorus (Figure 4). The heart LDH pattern of 
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~ill..:... barbouri (Figure 3) showed all 5 LDH isozymes, whereas 

the heart LDH pattern of N. taxispilota (Figure 5) showed 

only LDH-1 and LDH-2. In all species investigated, LDH-1 

was the predominant band in heart muscle, whereas LDH-5 was 

the predominant band in vibratory muscle, tail epaxial 

muscle and body epaxial muscle. 

The predominant band in liver for C. adamanteus (Figure 

1) and C. h. horridus (Figure 2) was LDH-5. Isozyme band 

intensity of liver resembles body epaxial muscle intensity 

in C. adamanteus. 

There is a general resemblance between tissue LDH patterns 

in C. adamanteus, C. h. horridus and A. piscivorus. Using 

LDH band widths as a partial indicator of LDH isozyme 

quantity, all three species show a significant difference· in 

band widths between vibratory and body epaxial muscles for 

LDH-3 (Tables 3, 5 and 9). Vibratory muscle LDH-3 bands are 

wider than those of body epaxial muscle. The vibratory 

muscle and body epaxial muscle LDH-3 bands appear near equal 

in intensity in A. piscivorus and C. h. horridus, but in 

c. adamanteus vibratory muscle LDH-3 is more concentrated 

than that of epaxial muscle (Figure 1). 

There was no significant difference between vibratory 

and body epaxial muscle LDH band widths.for LDH-2 and LDH-5 

in A. piscivorus (Table 9), for LDH-1 in C. h. horridus 
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(Table 5), for LDH-5 in C. adamanteus (Table 3), for LDH-3, 

LDH-4 and LDH-5 in s. ~ barbouri (Table 7) and for all 5 

LDH isozymes in N. taxispilota (Table 11). There was a 

significant difference between vibratory and body epaxial 

muscle band widths for LDH-1, LDH-2 and LDH-3 in C. adamanteus 

(Table 3) and for LDH-2, LDH-3 and LDH-5 in C. h. horridus 

(Table 5). Both have vibratory muscle LDH-2 and LDH-3. bands 

wider than those of body epaxial muscle, however C. adamanteus 

LDH-1 and C. h. horridus LDH-5 vibratory muscle bands are 

thinner than those of body epaxial muscle. 

Some LDH bands were too small to measure their exact 

widths and therefore were recorded as shadows: vibratory 

muscle LDH-2 and heart LDH-3 bands of S. ~ barbouri 

(Figure 3): vibratory muscle LDH-1 of A. piscivorus (Figure 4): 

and tail and body epaxial muscle LDH-4 of N. taxispilota 

(Figure 5). Vibratory LDH-1 in S. 1lli.. barbouri was missing, 

but body epaxial muscle LDH-1 was present. 

There were no significant differences in all tissues in 

Rf values for LDH-3 in C. adamanteus (Table 12), for LDH-2, 

LDH-3 and LDH-5 in C. h. horridus (Table 14)~ for LDH-5 in 

s. !!!..!.. barbouri (Table 16), for LDH-2, LDH-3 and LDH-5 in 

A. piscivorus (Table 18) and for LDH-3 in N. taxispilota 

(Table 20). For all species there were no significant 

differences between vibratory and epaxial Rf values (Tables 
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13, 15, 17, 19 and 21) except for LDH-4 Rf2 in S. !!h. barbouri 

(Table 17). The greatest variability in Rf values occurred 

in the Rf2 values of S. ill.!.. barbouri and is indicated by the 

large 95% confidence intervals in Figure 8. 
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DISCUSSION 

The tissue distribution of LDH isozymes in snakes and 

other vertebrates appears to be homologous. Each tissue has 

characteristic LDH patterns and relative amounts of isozymes. 

The amount of isozyme present reflects the equilibrium of 

synthesis and degradation for each of the A and B subunits 

(Markert and Ursprung, 1962; Markert, 1968; Fritz, et al., 

1969; Markert and Masui, 1969; Markert, et al., 1975). 

Throughout the vertebrates, including the snakes used in 

this study, the A subunits predominate in white skeletal 

muscle and B subunits predominate in heart muscle (Schwantes, 

1973; Markert, et al., 1975). This uniformity of subunits 

implies that they perform specific metabolic actions 

characteristic of each tissue (Markert, et al., 1975). 

The homologies of A and B subunits in all vertebrates 

is based on theories of gene evolution. The hypothesis was 

proposed that most proteins have evolved by gene duplication 

from an originally small number of "ancestral genes" 

(Bridges, 1935; Stephens, 1951; Weltman and Dowben, 1973; 

Watts and Watts, 1968; Markert, et al., 1975). The ancestral 

LDH molecule in vertebrate evolution was coded for by a 

single gene (A) and produced a homotetramer with actions 

similar to the A4 (LDH-5) isozyme of skeletal muscle. The 

A gene duplicated, resulting in two A-like genes which 
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diverged by mutation to produce two different genes, A and 

B. It is believed that the two genes diverged early in 

vertebrate evolution because of all the vertebrates 

investigated to this date, the only vertebrates which do 

not have two genes coding for LDH polypeptides are the 

agnathans Petromyzon marinus (sea lamprey) and Lampetra 

lamottei (American brook lamprey) (Markert, et al., 1975). 

Mammals and birds characteristically have a two-gene, 

f ive-isozyrne system. All other vertebrates also have at 

least these two genes coding for LDH but unrestricted subunit 

association does not always occur (Markert, et al., 1975). 

The present study has revealed that in the species of snakes, 

£.:.. adamanteus, C. h. horridus and A. piscivorus, only four 

isozyrnes occur, indicating a case of restricted subunit 

association. The four isozyrne pattern is common in fish and 

has been observed in some amphibians and lizards (Markert, 

1968; Whitt, 1970a, 1970b; Markert and Faulhaber, 1965; 

Markert, et al., 1975). These same four-isozyrne LDH patterns 

also occur in many sharks, e.g. Carcharhinus springeri, the 

reef shark. The LDH homopolymers (A4 and B4) of the reef 

shark have been isolated, then dissociated and allowed 

to recombine. The result always produced two intermediate 

heteropolymers of LDH isozyrnes. This indicates that all 

sharks have two genes for LDH, but in some the association 
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of the corresponding subunits produces only two heteropolyrners 

and not the anticipated three (Markert, et al., 1975). In 

the present study the missing heteropolymer was determined 

to be A3B1 (LDH-4). This is the first evidence presented 

for a "four-isozyme" pattern occurring in Crotalid snakes. 

A previous study has shown the same four-isozyme pattern, 

missing the heteropolyrner A3B1 in the South American 

Colubrid snake, Dryadophis·melanolomus (Markert, 1968). 

It has been proposed by Markert, et al., (1975) that 

the intersubunit binding sites of the subunits have been 

altered during evolution to cause specific restricted 

subunit associations for certain species while all subunit 

associations of distantly related species still occur. This 

shows a significant difference between mammals and birds and 

may indicate a primary difference between the LDH patterns 

of ectotherms and endotherms. Natural selection has given 

rise to an enzyme system in endotherms that allows random 

subunit association, but in ectotherms, the random subunit 

association has been limited and may have been selected 

against in some species (Markert, et al., 1975). 

Gorman, et al., (1971) with immunological tests, has 

shown that lizard and snake LDH isozyrnes are closely related. 

Antisera from Iguana iguana (iguana) B4 !.DH reacted with LDH 

isozymes from both lizards and snakes. The lizard LDH antisera 



reacted less with crocodilian, bird, turtle and 

rhynchocephalian LDH isozyrnes than with that of snakes. 

Therefore lizards and snakes (Order Squamata) have 

immunologically similar LDH isozyrnes and both have some 

species with the four-isozyrne pattern for LDH (Markert, 

et al., 1975). 
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The LDH isozyrnes of the five species of snakes used in 

the present study and of the thirteen species of snakes used 

in an investigation by Schwantes (1973) have shown a smaller 

net negative charge difference between the isozymes than that 

of mammals. Consequently the snake isozymes migrated more 

slowly towards the anode and showed less separation than the 

corresponding mammalian isozymes. In all mammals, nearly all 

birds, and in most reptiles and amphibians (Balek, 1967; 

Moyer, 1968; Zinkham, 1968; Holmes, 1973), electrophoresis 

of LDH isozymes has .shown that the B subunit is more 

negatively charged than the A subunit. Fishes exhibit the 

greatest variation in relative net charge on the A and B 

subunits and in some species the charge may be reversed, 

thus the A subunit is more negatively charged than the B 

subunit (Markert, 1968; Markert and Holmes, 1969; Whitt, 

1970a; Markert and Faulhaber, 1965). 

In previous studies the species differed from those of 

the present investigation. Individuals of the families 
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Crotalidae and Colubridae have exhibited an LDH system with 

all five isozymes, but LDH-1 was not found in liver or body 

epaxial muscle. Crotalus durissus terrificus (Cascabel or 

South American rattlesnake) has this pattern and is the 

species most closely related to those in the present study, 

but only one specimen was examined (Aleksiuk, 1971; Schwantes, 

1973). The present study has shown LDH-1 present in all 

tissues of all species examined, except the vibratory muscle 

of s. ~ barbouri. 

The kidney of S. !!L!. barbouri has an erratic LDH pattern. 

Two of the specimens had only four isozymes, lacking LDH-1. 

The remaining two specimens had all five isozymes, but the 

migration of LDH-1 is significantly greater in kidney than 

in the other tissues used. It may be possible in the 

specimens with a high LDH-1 migration that a third subunit 

c, may have been introduced into the homopolymer by molecular 

hybridization of C with the A and B subunits (Schwantes, 

1973: Whitt, 1970b). Since all specimens of this species 

didn't have a large LDH-1 (B4 ) migration in kidney, it may 

be due to structural modifications of A or B subunits 

instead of having an additional subunit formed. It is known 

that mutants at the B locus in several vertebrates can cause 

the migration of the isozyme to be vastly changed by a single 

amino acid substitution (Markert, et al., 1975). 
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Another variation occurred in blood LDH patterns. The 

LDH found in erythrocytes of different species is known to 

be quite variable (Everse and Kaplan, 1975), but in the 

snakes examined in the present study a species variation 

also occurred. In C. h. horridus all five specimens showed 

LDH-1 and one specimen of s. !!!.:... barbouri had both LDH-1 and 

LDH-2, whereas in the remaining species some had only LDH-1 

present and the rest lacked LDH in blood. A similar result 

has been found in certain rodents where the expression of the 

LDH B gene is restricted in erythrocytes. Red blood cells 

from several inbred mouse strains have low levels of LDH B 

while other strains have no B subunits in their red 

corpuscles. Evolutionary studies have also shown that 

particular families of rodents characteristically display 

different proportions of B subunits in their erythrocytes, 

whereas other tissue.s of these rodents show no such variation 

and are virtually identical in LDH patterns (Baur and Pattie, 

1968; Shows and Ruddle, 1968; Shows, et al., 1969; Engel, 

et al., 1972; Markert, et al., 1975). The evidence suggests 

that the expression of the B gene in rodent erythrocytes is 

specifically controlled by a regulator gene. Therefore the 

mutational variations and natural selection which occurs for 

the structural A and B genes, may also effect the regulatory 

gene (Shows and Ruddle, 1968; Markert, et al., 1975), 
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possibly resulting in expression or suppression of the B gene 

in snake erythrocytes. Another possible cause for LDH to 

appear in blood is from tissue degeneration. When tissue 

is damaged or degenerating the disrupting cells release their 

LDH isozymes into the blood. It is common practice to test 

for LDH in blood for many disease states in humans(Vesell, 

1975). Since LDH-1 is found in snake blood it suggests 

damage to the heart in those specimens, but that is unlikely. 

The fundamental difference between vibratory muscle and 

body epaxial muscle LDH patterns appears to be in the 

proportions of LDH heteropolymers. As the degree of 

vibratory activity in snakes increases, the band width of 

LDH-2 and LDH-3 increases with a concurrent increase in band 

intensity. Crotalus adamanteus, with the highest degree of 

vibratory activity, displays the greatest difference between 

vibratory muscle and body epaxial muscle, whereas s. ill..!.. 

barbouri and N. taxispilota, show the greatest similarity 

between vibratory muscle and epaxial muscle. In the latter 

two species it appears that vibratory muscle isozymes are 

less concentrated than body epaxial muscle isozymes, 

consequently a correlation exists between muscle activity 

and LDH isozyme concentration. Highly active muscle exhibits 

higher concentrations of LDH heteropolymers while less active 

muscles have lower concentrations of LDH heteropolymers. 
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Rattlesnake vibratory muscle is a specialized form of 

epaxial muscle that can be considered analogous to heart 

muscle. The degree of activity which occurs in these muscles 

is achieved in some instances by similar enzyme systems 

(Forbes, 1967: Kerins, 1969), but heart LDH is composed 

primarily of B molecules, whereas vibratory muscle primarily 

A molecules. Evidently the metabolic action of vibratory 

muscle LDH is characteristic of body epaxial muscle. Thus, 

the high degree of activity in vibratory muscle is not 

entirely the result of utilizing the aerobic energy pathway 

as does the heart muscle. The highly vascular nature of the 

vibratory muscle along with the high concentration of 

mitochondria probably give the muscle it's ability to function 

for periods of time utilizing aerobic energy pathways (Martin 

and Bagby, 1973; Pastore, 1967). The predominance of LDH-5 

in vibratory muscle .provides the muscle with an alternate 

energy route for anaerobic respiration during periods of 

sustained vibration when oxygen may not be readily available. 

In this characteristic vibratory muscle parallels liver 

(Vesell, 1975) as both tissues exhibit an aerobic environment 

but possess LDH isozymes for anaerobic respiration. 
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Table 1. Species of snakes used for LDH isozyme study. 

Number 
Species 

Male Female Total 

Crotalidae 

Crotalus adamanteus 6 3 9 

Crotalus h. horridus 5 0 5 

Sistrurus miliarius barbouri 3 1 4 

Agkistrodon E..:.. pisc i vorus 2 1 3 

Agkistrodon piscivorus conanti 1 0 1 

Colubridae 

Na tr ix taxis12ilota 5 1 6 



Table 2. Analyses of variance for the mean LDH isozyme 
band widths for all tissues from Crotalus adamanteus. 

A. LDH-1 

Source* df ss ms Fr Fp 

Between Groups 5 1.6900 0.3380 360.79 o.o 

Within Groups 227 0.2127 0.0009 

Total 232 1.9027 

B. LDH-2 

Source* df ss ms Fr Fp 

Between Groups 4 0.0705 0.0176 32.85 o.o 

Within Groups 204 0.1095 0.0005 

Total 208 0.1801 

C. LDH-3 

Source* df ss ms Fr Fp 

Between Groups 4 0.5378 0.1345 210.94 0.0 

Within Groups 210 0.1339 0.0006 

Total 214 0.6717 

D. LDH-5 

Source* df ss ms Fr Fp 

Between Groups 3 0.1063 0.0354 26.40 o.o 

Within Groups 171 0.2295 0.0013 

Total 174 0.3358 

*Legend. df, degrees of freedom; ss, sum of squares; ms, 
mean squares; Fr, F ratio; Fp, F probability. 
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Table 3. Results of Duncan's new multiple range test for 
the mean LDH isozyme band width in all tissues of Crotalus 
adamanteus. Means underscored by the same line do not differ 
significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* B v E L K H 

Mean 0.14 0.15 0.17 0.21 0.21 0.39 

B. LDH-2 

Tissue* H L E v K 

Mean 0.12 0.12 0.15 0.16 0.17 

C. LDH-3 

Tissue* H L E K v 

Mean 0.13 0.14 0.17 0.21 0.26 

D. LDH-5 

Tissue* K E L v 

Mean 0.29 0.34 0.35 0.35 

*Legend. B, whole blood: E, body epaxial muscle: H, heart 
muscle: K, kidney: L, liver: T, tail epaxial 
muscle: V, vibratory muscle. 
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Table 4. Analyses of variance for the mean LDH isozyrne 
band widths for all tissues from Crotalus h. horridus. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 5 0.8456 0.1691 129.95 o.o 

Within Groups 125 0.1627 0.0013 

Total 130 1.0083 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0057 0.0014 3.90 0.009 

Within Groups 43 0.0157 0.0004 

Total 47 0.0213 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 4 0.0810 0.0203 10.58 o.o 

Within Groups 67 0.1283 0.0019 

Total 71 0.2093 

D. LDH-5 

Source* df SS ms Fr Fp 

Between Groups 3 0.1250 0.0417 20.79 0.0 

Within Groups 62 0.1243 0.0020 

Total 65 0.2493 

*See Legend, Table 2. 
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Table 5. Results of Duncan's new multiple range test for 
the mean LDH isozyme band width in all tissues of Crotalus 
h. horridus. Means underscored by the same line do not 
differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* v B E K L H 

Mean 0.13 0.14 0.15 0.21 0.22 0.36 

B. LDH-2 

Tissue* E L H v K 

Mean 0.10 0.10 0.11 0.12 0.12 

c. LDH-3 

Tissue* H E K v L 

Mean 0.13 0.17 0.19 0.21 0.30 

D. LDH-5 

Tissue* K L v E 

Mean 0.21 0.23 0.28 0.32 

*See Legend, Table 3. 
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Table 6. Analyses of variance for the mean LDH isozyme 
band widths for all tissues from Sistrurus miliarius barbouri. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 3 0.3129 0.1043 103.48 o.o 

Within Groups 25 0.0252 0.0010 

Total 28 0.3381 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0131 0.0033 3.48 0.019 

Within Groups 34 0.0326 0.0010 

Total 38 0.0458 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 3 0.0050 0.0017 1.62 0.196 

Within Groups 48 0.0496 0.0010 

Total 51 0.0546 

D. LDH-4 

Source* df SS ms Fr Fp 

Between Groups 4 0.0470 0.0117 3.15 0.023 

Within Groups 46 0.1716 0.0037 

Total 50 0.2186 



Table 6, cont. 

E. LDH-5 

Source* 

Between Groups 

Within Groups 

Total 

*See Legend, Table 2. 

df 

4 

52 

56 

ss ms Fr 

0.3833 0.0958 112.73 

0.0442 0.0008 

0.4275 

36 

Fp 

o.o 
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Table 7. Results of Duncan's new multiple range test for 
the mean LDH isozyme band width in all tissues of Sistrurus 
miliarius barbouri. Means underscored by the same line do 
not differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* K E B H 

Mean 0.11 0.12 0.13 0.33 

B. LDH-2 

Tissue* H B E K L 

Mean 0.10 0.10 0.13 0.15 0.16 

C. LDH-3 

Tissue* E v L K 

Mean 0.13 0.13 0.14 0.15 

D. LDH-4 

Tissue* H E K v L 

Mean 0.11 0.14 0.15 0.15 0.21 

E. LDH-5 

Tissue* H K v E L 

Mean 0.11 0.16 0.27 0.27 0.38 

*See Legend, Table 3. 
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Table 8. Analyses of variance for the mean LDH isozyme 
band widths for all tissues from Agkistrodon piscivorus. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 4 0.2456 0.0614 85.64 o.o 

Within Groups 70 0.0502 0.0007 

Total 74 0.2958 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0048 0.0012 3.23 0.017 

Within Groups 73 0.0271 0.0004 

Total 77 0.0319 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 4 0.0440 0.0110 32.38 o.o 

Within Groups 62 0.0211 0.0003 

Total 66 0.0651 

D. LDH-5 

Source* df SS ms Fr Fp 

Between Groups 3 0.0590 0.0197 19.30 o.o 

Within Groups 42 0.0428 0.0010 

Total 45 0.1018 

*See Legend, Table 2. 
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Table 9. Results of Duncan's new multiple range test for 
the mean LDH isozyrne band width in all tissues of 
Agkistrodon piscivorus. Means underscored by the same line 
do not differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* B L E K H 

Mean 0.14 0.15 0.17 

B. LDH-2 

Tissue* v E L H K 

Mean 0.14 0.15 0.16 0.17 0.17 

C. LDH-3 

Tissue* H E K L v 

Mean 0.10 0.16 0.16 0.18 0.19 

D. LDH-5 

Tissue* K L E v 

Mean 0.13 0.18 0.21 0.21 

*See Legend, Table 3. 
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Table 10. Analyses of variance for the mean LDH isozyme 
band widths for all tissues from Natrix taxispilota. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 5 0.7178 0.1446 73.80 o.o 

Within Groups 124 0.2412 0.0019 

Total 129 0.9591 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0504 0.0126 13.06 o.o 

Within Groups 109 0.1051 0.0010 

Total 113 0.1556 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 3 0.0046 0.0015 1.79 0.155 

Within Groups 86 0.0731 0.0008 

Total 89 0.0776 

D. LDH-4 

Source* df SS ms Fr Fp 

Between Groups 1 0.0004 0.0004 4.65 0.063 

Within Groups 8 0.0007 0.0001 

Total 9 0.0012 



Table 10, cont. 

E. LDH-5 

Source* 

Between Groups 

Within Groups 

Total 

*See Legend, Table 2. 

df 

3 

74 

77 

ss ms 

0.0201 0.0067 

0.2422 0.0033 

0.2623 

Fr 

2.05 

41 

Fp 

0.115 
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Table 11. Results of Duncan's new multiple range test for 
the mean LDH isozyme band width in all tissues of Natrix 
taxispilota. Means underscored by the same line do not 
differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* B L T E K H 

Mean 0.12 0.19 0.20 0.21 0.22 0.37 

B. LDH-2 

Tissue* H E T L K 

Mean 0.14 0.18 0.19 0.19 0.20 

C. LDH-3 

Tissue* E L T K 

Mean 0.18 0.18 0.19 0.20 

D. LDH-4 

Tissue* K L 

Mean 0.10 0.11 

E. LDH-5 

Tissue* K E T L 

Mean 0.25 0.28 0.28 0.29 

*See Legend, Table 3. 
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Table 12. Analyses of variance for the mean Rfl values of 
LDH isozyrnes in all tissues from Crotalus adamanteus. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 5 0.0030 0.0006 7.25 o.o 

Within Groups 97 0.0080 0.0001 

Total 102 0.0110 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0013 0.0003 3.74 0.007 

Within Groups 94 0.0081 0.0001 

Total 98 0.0094 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 4 0.0006 0.0001 1.90 0.118 

Within Groups 94 0.0070 0.0001 

Total 98 0.0076 

D. LDH-5 

Source* df SS ms Fr Fp 

Between Groups 3 0.0008 0.0003 3.91 0.012 

Within Groups 75 0.0052 0.0001 

Total 78 0.0060 

*See Legend, Table 2. 
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Table 13. Results of Duncan's new multiple range test for 
the mean Rfl values of LDH isozymes in all tissues of 
Crotalus adamanteus. Means underscored by the same line do 
not differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* B v L E K H 

Mean 0.512 0.521 0.521 0.524 0.526 0.534 

B. LDH-2 

Tissue* H L K v E 

Mean 0.483 0.488 0.491 0.492 0.492 

C. LDH-3 

Tissue* H L v E K 

Mean 0.453 0.455 0.458 0.458 0.459 

D. LDH-5 

Tissue* v E K L 

Mean 0.394 0.397 0.397 0.403 

*See Legend, Table 3. 
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Table 14. Analyses of variance for the mean Rfl values of 
LDH isozymes in all tissues from Crotalus h. horridus. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 5 0.0044 0.0009 6.88 o.o 

Within Groups 135 0.0173 0.0001 

Total 140 0.0218 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0010 0.0002 1.19 0.322 

Within Groups 77 0.0154 0.0002 

Total 81 0.0163 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 4 0.0022 0.0006 1.93 0.113 

Within Groups 84 0.0243 0.0003 

Total 88 0.0265 

D. LDH-5 

Source* df SS ms Fr Fp 

Between Groups 3 0.0002 0.0001 0.66 0.579 

Within Groups 72 0.0060 0.0001 

Total 75 0.0061 

*See Legend, Table 2. 
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Table 15. Results of Duncan's new multiple range test for 
the mean Rf l values of LDH isozymes in all tissues of 
Crotalus h. horridus. Means underscored by the same line 
do not differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* v E B L K H 

Mean 0.508 0.514 0.517 0.520 0.523 0.525 

B. LDH-2 

Tissue* v H E L K 

Mean 0.476 0.476 0.479 0.483 0.484 

c. LDH-3 

Tissue* v H L E K 

Mean 0.444 0.448 0.448 0.449 0.458 

D. LDH-5 

Tissue* K L v E 

Mean 0.390 0.392 0.393 0.394 

*See Legend, Table 3. 
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Table 16. Analyses of variance for the mean Rf2 values of 
LDH isozymes in all tissues from Sistrurus miliarius barbouri. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 3 0.0147 0.0049 17.02 0.0 

Within Groups 32 0.0092 0.0003 

Total 35 0.0240 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 5 0.0074 0.0015 5.31 o.o 

Within Groups 54 0.0150 0.0003 

Total 59 0.0224 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 4 0.0082 0.0020 7.06 o.o 

Within Groups 59 0.0171 0.0003 

Total 63 0.0253 

D. LDH-4 

Source* df SS ms Fr Fp 

Between Groups 4 0.0109 0.0027 6.12 o.o 

Within Groups 51 0.0227 0.0004 

Total 55 0.0336 



Table 16, cont. 

E. LDH-5 

Source* 

Between Groups 

Within Groups 

Total 

*See Legend, Table 2. 

df 

4 

63 

67 

ss ms 

0.0017 0.0004 

0.0162 0.0003 

0.0179 

Fr 

1.66 

48 

Fp 

0.169 
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Table 17. Results of Duncan's new multiple range test for 
the mean Rf2 values of LDH isozyrnes in all tissues of 
Sistrurus miliarius barbouri. Means underscored by the same 
line do not differ significantly at the 0.05 level of 
confidence. 

A. LDH-1 

Tissue* E H B K 

Mean 0.613 0.620 0.622 0.666 

B. LDH-2 

Tissue* H v E L B K 

Mean 0.574 0.574 0.585 0.590 0.590 0.605 

c. LDH-3 

Tissue* v H E L K 

Mean 0.544 0.548 0.548 0.553 0.576 

D. LDH-4 

Tissue* v L H E K 

Mean 0.496 0.509 0.520 0.521 0.537 

E. LDH-5 

Tissue* v E K H L 

Mean 0.459 0.460 0.462 0.467 0.473 

*See Legend, Table 3. 
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Table 18. Analyses of variance for the mean Rfl values of 
LDH isozymes in all tissues from Agkistrodon piscivorus. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 5 0.0033 0.0007 3.30 0.009 

Within Groups 96 0.0191 0.0002 

Total 101 0.0224 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0004 0.0001 0.55 0.702 

Within Groups 78 0.0157 0.0002 

Total 82 0.0162 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 4 0.0012 0.0003 0.76 0.556 

Within Groups 62 0.0245 0.0004 

Total 66 0.0257 

D. LDH-5 

Source* df SS ms Fr Fp 

Between Groups 3 0.0007 0.0002 1.19 0.325 

Within Groups 43 0.0080 0.0002 

Total 46 0.0086 

*See Legend, Table 2. 
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Table 19. Results of Duncan's new multiple range test for 
the mean Rf l values of LDH isozyrnes in all tissues of 
Agkistrodon piscivorus. Means underscored by the same line 
do not differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* L E v K B H 

Mean 0.512 0.515 0.518 0.526 0.526 . 0. 526 

B. LDH-2 

Tissue* v L H E K 

Mean 0.476 0.479 0.480 0.480 0.484 

c. LDH-3 

Tissue* L H E v K 

Mean 0.432 0.434 0.438 0.442 0.443 

D. LDH-5 

Tissue* K L E v 

Mean 0.361 0.362 0.369 0.369 

*See Legend, Table 3. 
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Table 20. Analyses of variance for the mean Rf l values of 
LDH isozymes in all tissues from Natrix taxispilota. 

A. LDH-1 

Source* df SS ms Fr Fp 

Between Groups 5 0.0012 0.0002 4.29 0.001 

Within Groups 126 0.0071 0.0001 

Total 131 0.0083 

B. LDH-2 

Source* df SS ms Fr Fp 

Between Groups 4 0.0007 0.0002 2.90 0.025 

Within Groups 115 0.0072 0.0001 

Total 119 0.0079 

c. LDH-3 

Source* df SS ms Fr Fp 

Between Groups 3 0.0003 0.0001 1.86 0.142 

Within Groups 91 0.0053 0.0001 

Total 94 0.0056 

D. LDH-4 

Source* df SS ms Fr Fp 

Between Groups 3 0.0009 0.0003 3.66 0.020 

Within Groups 40 0.0032 0.0001 

Total 43 0.0041 



Table 20, cont. 

E. LDH-5 

Source* 

Between Groups 

Within Groups 

Total 

*See Legend, Table 2. 

df 

4 

79 

83 

ss ms 

0.0017 0.0004 

0.0041 0.0001 

0.0058 

Fr 

8.08 

53 

Fp 

o.o 
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Table 21. Results of Duncan's new multiple range test for 
the mean Rf 1 values of LDH isozymes in all tissues of 
Natrix taxis2ilota. Means underscored by the same line do 
not differ significantly at the 0.05 level of confidence. 

A. LDH-1 

Tissue* E B T K L H 

Mean 0.532 0.533 0.533 0.534 0.535 0.541 

B. LDH-2 

Tissue* H E T K L 

Mean 0.473 0.476 0.478 0.479 0.480 

c. LDH-3 

Tissue* E T K L 

Mean 0.419 0.421 0.422 0.424 

D. LDH-4 

Tissue* T E K L 

Mean 0.353 0.354 0.361 0.364 

E. LDH-5 

Tissue* H K E T L 

Mean 0.306 0.313 0.313 0.314 0.322 

*See Legend, Table 3. 



55 

Figure 1. Electrophoretic LDH zymograms of tissues* 

from Crotalus adamanteus. 

*Legend. B, whole blood; E, body epaxial 
muscle; H, heart muscle; K, kidney; L, liver; 
T, tail epaxial muscle; V, vibratory muscle; 
MD1, marker dye migration after gel expansion; 
MD2, marker dye migration before gel expansion1 
relative band shading indicates relative band 
concentration. 
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Figure 2. Electrophoretic LDH zymograms of tissues* 

from Crotalus h. horridus. 

*See'Legend, Figure 1. 
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Figure 3. Electrophoretic LDH zymograrns of tissues* 

from Sistrurus rniliarius barbouri. 

*See' Legend, Figure 1. 
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Figure 4. Electrophoretic LDH zymograms of tissues* 

from Agkistrodon piscivorus. 

*See-Legend, Figure 1. 
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Figure 5. Electrophoretic LDH zymograrns of tissues* 

from Natrix taxispilota. 

*See' Legend, Figure 1. 
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Figure 6. A comparison of 95 percent confidence 

intervals for mean Rfl values relating 

similar LDH isozymes from tissues* from 

Crotalus adamanteus. 

*See Legend, Figure 1. 
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Figure 7. A comparison of 95 percent confidence 

intervals for mean Rfl values relating 

similar LDH isozymes from tissues* from 

Crotalus h. horridus. 

*See Legend, Figure 1. 
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Figure 8. A comparison of 95 percent confidence 

intervals for mean Rf2 values relating 

similar LDH isozymes from tissues* from 

Sistrurus miliarius barbouri. 

*See Legend, Figure 1. 
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Figure 9. A comparison of 95 percent confidence 

intervals for mean Rfl values relating 

similar LDH isozymes from tissues* from 

Agkistrodon piscivorus. 

*See Legend, Figure l. 



0.7 

0.6 

0. 5 ~ 

I ______ ... !............... I ---+-- I ~,I -- ........ _____ .. .................... _,,' 
.... ~ ... 

I-------- I--------I----- ----------I- ------I 

1- ...... ____ 'I -----I-- ... -- I ---~I .... --- ---------- - ..,,,,,,.--

0 .4 .. 

.. 

I----------- -----I------ --- -- ----+-------I LDHS 

0 .3 .. 

. . 

v H E B L K 

Tissue samples 



73 

Figure 10. A comparison of 95 percent confidence 

intervals for mean Rfl values relating 

similar LDH isozymes from tissues* from 

Natrix taxispilota. 

*See Legend, Figure 1. 
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