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Abstract 

Recent studies have shown that various types of network traffic exhibit 

long-term dependency or self-similarity, or fractal-like behavior. Thus, to 

say that network traffic exhibits self-similarity means that if we look at 

the network traffic during a given time interval and choose a subinterval 

at random, the graph of the network traffic vs. time in the subinterval 

looks like the graph of network traffic vs. time in the original interval. 

This project will provide information on the pattern of the University of 

Richmond's network traffic and its self-similar properties. 

1 Introduction 

It is critical to properly understand the nature of network traffic in order to ef­

fectively design models describing network behavior. These models are usually 

used to simulate network traffic, which in turn are used to construct conges­

tion control techniques, perform capacity planning studies, and/or evaluate the 

behavior of new protocols. Using the wrong models could lead to potentially 

serious problems such as delayed packet transmissions or an increase in packet 

drop rates. 

Traditionally, packet arrivals were assumed to follow a Poisson arrival pro­

cess. Although Poisson processes have several properties that make them easy 

to work with, they do not accurately describe certain traits seen in network 

traffic. Recent studies such as [1] and [2] have shown that LAN and WAN 

traffic exhibits a different kind of behavior than one would expect to see from 
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Poisson processes. One characteristic that differs is burstiness. A burst, or a 

period of intense activity[3], has no natural length in network traffic. If net­

work traffic were to be a Poisson process, it would have a "characteristic burst 

length that would be smoothed by averaging over a long enough period of time" 

[1]. Instead, network traffic appears to be bursty in all time scales; it exhibits 

fractal-like behavior, a behavior described statistically by a self-similar process. 

A self-similar process by definition is one whose correlational structure remains 

unchanged regardless of the time scale being used. Thus, the burst lengths in 

a self-similar process will not be smoothed out. Instead, there will be bursty 

periods which themselves contain bursty periods, etc. 

In Section 2 we discuss the related work that has been previously done on the 

self-similarity of network traffic. After discussing the process used to capture 

data in Section 3, we will statistically determine the fractal-like behavior in 

Section 4 and present estimates for this behavior. In Section 5 we will examine 

the results of our analyses, and then summarize and compare these results to 

those from previous studies in Section 6. Finally, acknowledgements are made in 

Section 7 and an Appendix containing more detailed information on the analysis 

performed (including source code and sample input and output for all the scripts 

used) is presented in Section 8. 

2 Related Work 

Previous studies such as [1] have analyzed network traffic and found it to be 

self-similar. The authors also found that although a linear increase in buffer 

size results in exponentially decreasing packet loss for Poisson traffic, applying 

this technique to a self-similar process causes the packet loss to decrease at a 

very slow rate. Although [1] studied network traffic in general, others studied 

certain types of traffic in greater detail as well. 

For example, the authors in [2] focused on TELNET and FTP connections. 

They found that TELNET connections could be modeled as Poisson arrivals, 

but that the packet arrivals generated by these connections had a high degree 

of burstiness, and that the exponential arrival model that has been used greatly 

underestimated this. Similarly, FTP data connections were also found not to be 

faithfully modeled by a Poisson process. Finally, since interactive applications 

such as TELNET are usually favored by scheduling algorithms, applications 

such as FTP can be blocked for long periods of time. 
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In [4] a very in-depth analysis of HTTP traffic was done by modifying the 

web browsers. At the time, virtually everyone used the NCSA MOSAIC Web 

Browser to access the World Wide Web (WWW). The authors decided to modify 

the source code of MOSAIC so that it could provide them with extra information 

about each individual Web session. The authors then showed that while effective 

web browser caching, embedded images, sounds, and audio in html files did have 

an effect on self-similarity, the primary causes of self-similarity were user think 

time and available file sizes. User think time is just the time it takes a user to 

process the information the web page is displaying and make a decision as to 

where to click/ go next. Available files has to do with the fact that multiple user 

requests for the same file may occur. They showed that the distribution of the 

these files' sizes have a greater impact than user requests. 

We will examine (in addition to some of the previously discovered phenom­

ena) the implications that the new Peer-To-Peer (P2P) file sharing programs 

have on network traffic and self-similarity versus ftp. Although many of these 

P2P programs are used in non-academic endevours and therefore have been (in 

some cases) restricted by University, local, and/or international laws, many re­

searchers believe that using P2P software simplifies the collaboration process. 

The Packeteer PacketShaper software package [5] is installed in the University's 

network. Using this application traffic and bandwidth management system we 

learned that KaZaA [6]was (and still is) the most used P2P program. Packeteer 

also reported that KaZaA uses port 1214 for both inbound and outbound traffic. 

Therefore we analyzed all traffic on this port (we assumed that the number of 

people that change the default port number for an application is negligible) will 

give us insight into the properties of P2P traffic. 

Also in recent years, we have been experiencing an increase in the amount 

of multimedia content that is transmitted across the internet. For example, 

videoconferencing, videophones, and live video broadcasts have all become in­

creasingly popular due to the rise of high-speed internet connections. If we were 

really to have many virtual classrooms in the university in the future, where the 

class is really a video-conference, then we need to understand how video broad­

casts work, what kind of compression techniques are used in the broadcast, etc. 

Most of the video today uses variable bit-rate compression technique, and the 

authors in [7] studied in detail the self-similarity in various different types of 

broadcasts. However, we did not find that this type of traffic is as predominant 

as some of the other types of traffic on our network. Furthermore, it is difficult 

to determine that the network connection is of this type simply by looking at 
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the port numbers of the sender/receiver. Thus, we decided not to analyze this 

type of traffic at this time. 

The final type of traffic we looked at is America On Line Instant Messenger 

(AIM) [8] traffic. Even though AIM now has file-sharing capabilities, it is very 

popular in college campuses mainly for it's chatting capabilities. We do not 

expect AIM traffic to overload the server in terms of bytes transferred, but 

since it is very popular we do expect a substantial amount of packets being 

transferred. Furthermore, this type of traffic has user think time in between 

packet transmissions, and we would like to analyze what implications (if any) 

this has on self-similarity. 

It must be noted that in [9] the authors saw the traffic on the internet 

backbone smoothing out, which (as noted in Section 1) is what you expect from 

a Poisson process. More specifically, they found that "as the active connection 

load on an internet link increases, the long-range dependence of network traffic 

begins to disappear and ... the long-range dependence of the inter-arrivals and 

sizes goes locally to independence". We do not expect this to be the case in 

our analysis, for our network usually operates only at about 15 Mbps of the 

maximum 45 Mbps possible. 

3 Data Acquisition 

3.1 Hardware 

The University of Richmond's internet connection is a 45 Mbps DS3 link to 

Network Virginia that terminates on a Cisco 7206 router. All traffic passes from 

the router, through a Checkpoint firewall, to an Enterasys SSR8600 router. To 

monitor Internet traffic we mirrored the traffic onto a lOOMb Fast Ethernet port 

on porky, a Compaq Proliant DL320 server using RedHat Linux 7.2 with kernel 

2.4.9-21 and libpcap-0.6.2-9. A schematic diagram is shown in Figure 1. 
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F igure 1: Schematic diagram of University of Richmond's network configuration 

It must also be noted that Packeteer is used to limit certain types of out­

bound traffic, including P2P applications such as KaZaA, to a set number of 

Mbps. However, we were not able to study the impact that this limit has on 

self-similarity because this would have required reconfiguring the University's 

router structure. Packeteer calls setting this type of limit as "non-burstable 

traffic", and from what is explained in Section 4, we believe that this type of 

traffic would indeed have a lower degree of self-similarity. 

3.2 Software 

Much debate went into what piece of software should be used to capture net­

work traffic. The analysis portion requires the timestamp of each packet arrival 

in order to analyze the network traffic. However, in order to be able to analyze 

different types of network traffic such as http , ftp , etc., the software used to 

capture the traffic data must also record the port that the packet was trans­

mitted to/from. Furthermore, we also wanted to record the size of each packet. 

Since these kinds of demands are not uncommon, several software packages are 

able to record this type of information for each packet. At first we tried to 
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use the Open Source Intrusion Detection System, SNORT [10]. Snort had the 

advantage of being extremely flexible, but unfortunately all of the extra fea­

tures made SNORT too complex to use as well as unstable; segmentation faults 

occurred after a few minutes of capturing. A more reasonable option seemed 

to be Ethereal[ll]. Ethereal recorded exactly the pieces of information we were 

looking for, and it was able to output the information in various formats. Unfor­

tunately, after approximately thousand packets, Ethereal proved to be unstable 

as well. We also tried the text version of Ethereal, tethereal, hoping that the 

lack of the GUI would help, but we were still getting an inconsistent response 

with segmentation faults occurring from time to time. 

Instead of using one of these programs with nice output, we decided to 

use tcpdump[l2]. This program is much simpler than the others, but in order 

to obtain the information needed, a lot more of extra information was also 

captured. As a result, our data captures were larger and scripts had to be 

developed in order to extract the pieces (mentioned above) necessary for our 

analysis. 

We captured data for several days and then selected a set of files that would 

allow us to make the comparisons we wanted. The six time periods that we 

decided to present our results for are show below in Table 1. Unfortunately, due 

to our space limitations on the local hard drive, on average we could capture 

about 30 mins at one time, then had to stop capturing and spend 3 minutes to 

zip the file before we could continue. 

Traces of Network Traffic 
File Start End Trace Duration Packets Bytes 

Period 1 Thu Nov 29, 2001 4:17 pm Thu Nov 29, 2001 6:55 pm 158 min 43,965,632 18,982,480,200 

Period 2 Sun Dec 1, 2001 3:08 am Sun Dec 1, 2001 5:43 am 155 min 15,972,722 9,902,661,608 

Period 3 Mon Dec 3, 2001 8:48 pm Mon Dec 3, 2001 10:41 pm 113min 23,982,732 10,045,467,310 

Period 4 Tue Dec 4, 2001 3:35 pm Tue Dec 4, 2001 5:53 pm 138 min 31,974,774 17,019,364,843 
Period 5 Tue Dec 4, 2001 7:33 pm Tue Dec 4, 2001 9:23 pm 110 min 23,979,326 11,940,312, 168 

Period 6 Wed Dec 5, 2001 4:02 pm Wed Dec 5, 2001 6:02 pm 120 min 27,978,756 14, 124,925,478 

Period 7 Thu Dec 6, 2001 3:35 am Thu Dec 6, 2001 5:50 am 135 min 11,978,176 6,742,522,670 

Period 8 Thu Mar 14, 20022:41 pm Thu Mar 14, 2002 5:10 pm 149 min 37,548,395 16,941,178, 120 

Table 1: Details on each trace of network traffic 
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4 Mathematical Background 

For a more in-depth discussion of the mathematics behind self-similarity and its 

estimates refer to [1] and [2]. The following discussion follows closely those in 

these two sources. However, this discussion tries to give only enough information 

to be able to understand how to compute the estimates for self-similarity. A 

more mathematically inclined reader is encouraged to read [13]. 

4.1 Self-Similarity 

Intuitively, an arrival process that is self-similar is one whose arrivals exhibit 

fractal-like behavior. If we were to plot the number of packets vs. time unit 

on different time scales, the plots would be essentially the same. However, this 

intuitive description needs to be rigorously described mathematically. We begin 

by defining X = {Xt: t = 1, 2, 3, ... N} to be the network packet arrival process, 

where each Xt is the number of packets that arrived in the t-th time unit. Xis 

a covariant stationary stochastic process; that is, one with constant mean and 

finite variance. It's autocorrelation function (k = {1, 2, 3, ... })is: 

r(k) = E((X,-µ)(Xt;t•-µ)J 
E(X,-µ) j 

Now, for each m = {1, 2, 3, ... N}, if we were to average each set of m non­

overlapping arrivals, we would have an aggregated set, call it X(m) (for example, 

if X = {2, 4, 5, 9, 10, 10}, then X(2) = {3, 7, 10} and xl2l = 3, X~2 l = 7, X~2 ) = 

10 ). Note that X(m) is also a covariance stationary stochastic process, and let 

r(m) (k) be the corresponding autocorrelation function for X(m). If X is self­

similar, then the autocorrelation function r<ml(k) is the same for for all of the 
series x(m). 

As a result, such processes exhibits long-range dependence. A process with 

long-range dependence has an autocorrelation function r(k) - k-/3 as k -+ oo, 

where 0 < f3 < l. Thus, instead of having an exponential decay that traditional 

traffic models display, self-similar processes decay follows a power law. Fur­

thermore, since f3 < 1, the sum of autocorrelation values does not converge; it 

approaches infinity. As a result, the variances of X(m) do not decrease propor­

tionally to 1L as they do for uncorrelated datasets, but instead the variances 

decrease proportionally to N;;.13 (here, Nm denotes the number of elements in 

the set x(m) ). 
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Finally, it must be noted that X = { Xt : t = 1, 2, 3, ... N} could be any other 

type of arrival process, specifically a byte arrival process. That is, each Xt could 

represent the number of bytes received in the t-th time unit. Since most routers 

today employ congestion control techniques based on packet traffic instead of 

byte traffic, from here on we will be referring to packet traffic unless otherwise 

noted. 

4.2 Estimates of Self-Similarity 

Since slowly decaying variances and long-range dependence are both manifesta­

tions of the self-similarity in the covariance stationary stochastic process, there 

are several methods to estimate the degree of self-similarity. For practical con­

siderations such as computational efficiency and step-by-step explanations on 

how to compute these estimates, see [14]. 

4.2.1 Variance/time 

As noted in 4.1, the variances of xCmldecrease proportionally to Nm. Let µ(m) 

be the mean of xCml and S(m) the standard deviation of xCml, and the nor­

malized variance S(m) = S(m)/µ(m) 2 • In a log-log plot of S(m) vs. m, the 

resulting graph is a line with slope -(3, where 0 > -(3 > -1. The closer -(3 is to 

0 (the flatter the line is), the higher the degree of self-similarity. Table 2 shows 

data taken from Period 8 and Figure 2 shows its corresponding Variance-Time 

plot. 

M Variance Packets/10ms Normalized Variance Log(M) Log{Normalized Variance) 
1 349,3114 41,853533 0,199410715 0,00000 -0.70025151 
5 232 2376 41,853598 0, 132576636 0,69897 -OB77533006 
10 208,9637 41.853667 Q, 119289915 1,00000 -0 ,923396271 
25 182,3988 41,853745 0,104124584 1,39794 -0,982446719 
100 156,0729 41,854276 0,089093867 2,00000 -1,050152193 
125 153,3241 41,853745 0,087526942 2,09691 -1,057858247 
625 140,6278 41.859254 0,080257969 2,79588 -1.095511835 
1000 138,7352 41,856434 0,079188533 3,00000 -1.101337702 
3125 132,8126 41,932938 Q,075531607 3.49485 -1,121871276 
10000 131.0149 42,022792 0,07 4190945 4,00000 -1, 12964 9098 

Table 2: Variance-Time analysis data for Period 8 packet traffic 
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Figure 2: Variance-Time plot for Period 8 packet traffic compared to Poisson traffic 

and a self-similar process with {3 = 0 

Our analysis shows that our estimate for (3 is 0.0985, or very close to 0 and 

thus has high degree of self-similarity. We now have strong evidence that our 

network traffic is self-similar, but our R2 value (coefficient of determination, or 

how close our data points are to a straight line) for our least-squares fit is only 

about 0.85. We will now try a different method to estimate self-similarity. 

4.2.2 R / S 

In order to compute the degree of self-similarity using the R/ S method, we first 

calculate the mean µ and the standard deviation S of X. Next, define each 

W ={Wk: k = 1, 2,3, ... },where 

We then define R to be the maximum distance between any two W1c, that 

is , R = MAX(W) - MIN(W). 
We need to do this for several x(ml>s, so define w~m) = L Xkm ) - k * µ(m) 

and R(m) = MAX(W(m )) - MIN(W(ml). 

A log-log plot of R(m)/S(m) vs. m for produces a line with slope H (the 
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Hurst parameter), where 0.5 < H < 1. Here, the degree of self-similarity is 

higher when H is close to 1. Table 3 and Figure 3 are also from Period 8, only 

this time the R / S analysis is presented. 

!! R/S Estimate Log(N) Log{R/S Estimate} 
897138 251767.8153 5.9529 5.4010 
179427 61754.2684 5.2539 4.7907 
89713 32550.851 1 4.9529 4 .5126 
35885 13936.1 439 4.5549 4.1441 
8971 3765.9129 3.9528 3.5759 
7177 3039.9234 3.8559 3.4829 
1435 634.4809 3.1569 2.8024 

897 399.3332 2.9528 2.6013 
143 64.7979 2.1553 1.8116 
89 40.4143 1.9494 1.6065 

Table 3: R/ S analysis data for Period 8 packet traffic 

Figure 3: R / S analysis plot for Period 8 packet traffic compared to Poisson traffic 

and a self-similar process with /3 = 0 

Our estimate for H is 0.9536, only that R2 value is 0.9995, which is much 

higher. After repeating this procedure for various other traces I found that R/ S 

analysis proved to have a higher value for R2
• We must ask ourselves which 

estimate is better, H or (J? As it turns out, H is related to (J via H = 1 - (J /2. 
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Applying this to our previous estimate for (3 we get H = 1 - 0.0985/2 = 0.9508. 

Even though our estimate for (3 only had a coefficient of determination of about 

0.85, it agrees to within less than 13 of our estimate for H. We found that they 

usually agreed to within 33 for other files, so our decision on which estimate to 

use came to a matter of computational efficiency and convenience. 

One source (15]that not only described how they reproduced some of the 

results in [1], but also provided a link to some of the tools used [16] to calculate 

H using R/S analysis. Thus, the easiest estimate to compute was H, and since 

its R 2 value was higher than the one for (3, we decided to use H. After computing 

several values for R/S we used a modified version of the least-squares fit software 

in [17] to compute the slope of our data points and determined H this way. 

5 Results 

We obtained estimates for H for each data collection period for each type of 

traffic (see 8.2). We then ran Analysis of Variance tests (ANOVAs) as described 

in [18] and observed the following: 

5.1 Packets vs. Bytes 

We found that for our sample, the estimate for H for packets was slightly higher 

than that for bytes. However, there was not (enough) evidence to reject the null 

hypothesis Hpackets = Hbytes· That is, there wasn't evidence to support the 

claim that the degree of self-similarity of packet arrivals differs from the degree 

of self-similarity for byte arrivals. We found this to be true regardless of what 

type of traffic we were looking at. 

5.2 Different Network Usage 

In terms of packets per second, when the average number of packets/ s was 

high (Periods 1, 3, 4, 5, 6, and 8), our estimate for H was once again slightly 

higher than when the average number of packets/ s was low (Periods 2 and 7). 

Similarly, when the average number of bytes/ s was high (Periods 1, 4, 6, and 4) 

our estimate for H was slightly higher than when the average number of bytes/ s 

was low (Periods 2, 3, 5, and 7). Once again, there was not evidence to find 

that this is the case in general. Thus we conclude that we have no evidence that 

network usage has an effect on the degree of self-similarity in the University of 
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Richmond. We believe this to be due to the relatively low peak network usage. 

5.3 Different Types of Traffic 

We considered all of the network traffic, only HTTP traffic, only FTP traffic, 

only KaZaA traffic, and only AIM traffic, and found that their H estimates 

were not different for packet arrivals. That is, we did not find evidence that the 

degree of self-similarity of packet arrivals for each of these types of traffic differ. 

We did find evidence that for byte arrivals, network traffic overall and AIM 

traffic is more self-similar than KaZaA traffic (we cannot conclude anything 

about the degree of self-similarity of FTP and HTTP traffic in relation to the 

others). 

5.4 Different Types of Traffic (With Network Usage In­

teraction) 

Here we get to see what happens under certain specific conditions, without 

ignoring the interactions a condition could have. For example, when the average 

number of bytes/ s was high, we found evidence that the degree of self-similarity 

of KaZaA byte traffic was lower than that of AIM byte traffic. 

We also found that when the average number of packets/ s was low, we found 

evidence that the network packet traffic was more self-similar than AIM packet 

traffic. 

Finally, when the average number of packets/ s was high, the byte traffic 

produced by AIM was more self-similar than the byte traffic produced by FTP 

traffic, and that KaZaA's byte traffic's degree of self-similarity was lower than 

all other 4 types of traffic. 

6 Summary and Conclusions 

Recent studies have shown that long-range dependence is exhibited by network 

traffic. This long-range dependence, or self-similarity, is not captured in tradi­

tional Poisson models used to model network traffic. Since congestion control 

mechanisms rely on and exploit certain properties in the model that is being 

used, using the wrong models could lead to problems such as delayed packet 

transmissions or even starvation. 
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We confirmed the existence of self-similarity in the University of Richmond's 

network traffic. The observed self-similarity was quite robust in all the different 

aspects that we considered. Even though in our sample data we found that 

packet traffic was slightly more self-similar that byte traffic, we were unable to 

find evidence to support the claim that the University of Richmond's packet 

arrival process is more self-similar than its corresponding byte arrival process. 

We observed that our sample data also had a higher degree of self-similarity 

when the network usage was high than when network usage was low. However, 

this difference was not statistically sufficient to infer that there is a difference 

in the self-similarity during periods of high network usage versus periods of low 

network usage in the University of Richmond's network traffic. Also, we found 

no evidence that (in general) there is a difference in self-similarity between the 

different types of traffic that we studied. 

We did find evidence that, under certain circumstances, AIM traffic was 

more self-similar than KaZaA traffic. This leads us to speculate that a process 

with user think time has high degree of self-similarity, which supports one of the 

findings in [4]. Unfortunately we can say very little else. We were not able to 

directly detect possible causes of self-similarity (we did not have the ability to 

recompile the web browsers that everyone in the University uses or do something 

similar). 

We can, however, say that since current congestion control techniques are 

more efficient at handling less self-similar traffic, if the entire University wanted 

to share files in a particular way, P2P would be an efficient choice (more efficient 

than AIM!). 
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8 Appendix 

8.1 Trace Periods: Traffic Type-Specific Details 

The following table contains the total number of packets and bytes for the 

different classes of network traffic we analyzed during each Period. 

Trace Details 
Period 1 Petlod2 Perlodl Period4 PeriodS Period 6 Period7 Period 8 

All Traffic Packets 43965.632 15,972.712 23.982.732 31.974,774 23.979,326 27.978.756 11,978,176 JT.~.39: 

Bytes 18.982.480200 9.~::2.€01,tOB 10,045.467,310 17.019.364.843 11.943,312,168 14,124,925.478 6.742.522,670 16.s41.11a120 
HTlP Packets 17, 140,393 2,738.469 10.212.694 13,469,747 9,963,995 12,347,176 1,998)69 12,574.900 

Bytes 7029.963.138 1.085037,545 4.318.810878 6.385.768.745 4.543.461254 6.034076.026 705.733,193 4.977,843.622 
FTP Packeli 1,489,350 616.008 705.801 715.785 472.136 1.530165 1,08B,68J 60.733 

Bytes 1.241.841,316 511,Jc-8253 572.031.517 620.841.812 359039,672 1.252.131,271 1.000,431.186 9.(!18.321 
KfilAA Packets 7,466,917 3!l02.754 5081.170 3295.443 2.694,83C 3.182.218 2,167,857 2,919,171 

Bytes 3,153.854.421 2.974 556.534 2.283.897.244 2.202.973,931 1823.899.821 2.238E87.661 1,653,002.627 1m.66226r 
AIM Packets 2.907,813 739.855 2.328,383 2.871,682 2.570281 2.065.911 544.745 2.484.522 

Byres 782.200,367 78.28.:J.420 667.740435 Bil2.032,644 800.983]89 442.335.826 82.709,910 637.597. 19 

8.2 Trace Periods: Traffic Type-Specific Hurst Estimates 

The following table contains H estimates for the different classes of network 

traffic we analyzed during each Period. 

Hurst Parameter Estimates 
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 

All Traffic Packets 0.95520 0.96441 0.94868 0.85791 0.85799 0.86701 0.92651 0.95363 
Bytes 0.87642 0.96955 0.87710 0.87085 0.87137 0.85573 0.94464 0.95093 

HTTP Packets 0.94945 0.87780 0.80829 0.86990 0.83161 0.86392 0.83106 0.92036 
Bytes 0.87582 0.85648 0.82850 0.87987 0.86223 0.87063 0.87913 0.91627 

FTP Packets 0.89685 0.90562 0.91052 0.85216 0.84384 D.90293 0.95554 0.74845 
Bytes 0.88455 0.90333 0.90049 0.84905 0.83710 0.85200 0.95437 0.83282 

KAZAA Packets 0.93958 0.85491 0.98318 0.78898 0.76430 0.84411 0.82718 0.86670 
Bytes 0.83426 0.84666 0.75891 0.76551 0.72178 0.82841 0.81239 0.87403 

AIM Packets 0.86179 0.81462 0.92270 0.93367 0.90097 0.87278 0.84509 0.91522 
Bytes 0.90069 0.72204 0.94426 0.95015 0.91072 0.90382 0.86291 0.93200 

8.3 Capture Scripts 

We ran the following perl script on porky to obtain the data 

---begin perl capture script--
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#!/usr/bin/perl 

$count=O; 

while ($count<200) 

{ $date='date +%m-3d-3H-3M-3S'; 

chop $date; 

'tcpdump -i ethl -c 4000000 -v -tt > cap$date'; 

'gzip cap$date'; 

'mv cap$date.gz /mnt/saturn'; 

$count++;} 

----f>nd perl capture script--

This script just captures (about) 4,000,000 packets and saves it to a file 

whose name includes that date and time of the start time of the capture. The 

file then gets zipped and moved to a network drive. 

The output (before compression) was similar to: 

1007431864.359863 216.32.120.183.http > 141.166.228.124.2348: . 1460:2920(1460} 

ack 1 win 28322 (ttl 116, id 72, Zen 1500) 

1007431864.359863 141.166.228.124.2348 > 216.32.120.183.http: . [tcp sum 

okj 

ack 2920 win 4380 (DF) (ttZ 127, id 51788, Zen 40) 

1007431864.359863 141.166.224. 73.2015 > 152.17.90.80.5190: . [tcp sum 

okj 

ack 588 win 17520 (DF) (ttZ 127, id 39603, Zen 40) 

8.4 Refining Scripts 

8.4.1 Removing extra information 

In order to refine the captures I then decompressed each .gz file and ran it 

through the following gawk script: 

----begin test.gawk-­

#! /usr/local/bin/gawk -f 

$6 - /len/ {print $1 11 11 $2 " " $4 " 11 $7} 

$7 - /len/ {print $1 11 
" $2 " " $4 " " $8} 

$8 - /len/ {print $1 " " $2 " " $4 " " $9} 

$9 - /len/ {print $1 " 11 $2 " " $4 " " $10} 

$10 - /len/ {print $1 " " $2 11 
" $4 " 11 $11} 
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$11 - /len/ {print $1 11 11 $2 " " $4 " 11 $12} 

$12 - /len/ {print $1 11 
" $2 " " $4 11 11 $13} 

$13 - /len/ {print $1 II II $2 II II $4 II II $14} 

$14 - /len/ {print $1 II " $2 II II $4 II II $15} 

$15 - /len/ {print $1 II II $2 II II $4 II II $16} 

$16 - /len/ {print $1 II " $2 II II $4 II II $17} 

$17 - /len/ {print $1 11 
" $2 11 

" $4 11 11 $18} 

$18 - /len/ {print $1 II II $2 II II $4 II II $19} 

$19 - /len/ {print $1 II II $2 II " $4 II II $20} 

$20 - /len/ {print $1 11 
" $2 11 11 $4 " 11 $21} 

$21 - /len/ {print $1 II II $2 II II $4 II II $22} 

$22 - /len/ {print $1 II II $2 II II $4 II II $23} 

$23 - /len/ {print $1 II II $2 II II $4 II II $24} 

$24 - /len/ {print $1 " II $2 II II $4 II II $25} 

----end test.gawk--

This script finds which field the pattern len is in, and then prints the times­

tamp of each packet in number of seconds since 00:00:00 1970-01-01 UTC, the 

source IP and port, and the destination IP and port, and size (in kilobytes), 

respectively. 

Sample output was: 

1007431864.359863 

1007431864. 359863 

1007431864.359863 

1007431864.359863 

1007431864.359863 

1007431864.359863 

1007431865. 709863 

216.32.120.183.http 141.166.228.124.2348: 1500) 

216.32.120.183.http 141.166.228.124.2348: 1500} 

141.166.228.124.2348 216.32.120.183.http: 40) 

152.17.90.80.5190 141.166.224. 73.2015: 628} 

141.166.224.73.2015 152.17.90.80.5190: 40} 

141.166.188. 7.ssh 65.97.30.64.3474: 104} 

141.166.226.219 207.68.177.125: 68, 

We used a gawk script to eliminate commas ',' and right parentheses ')'. 

This was done in the command line for each trace in each time period. One of 

these commands would thus look like: 

gzip -de cap12-03-20-48-18.gz I test.gawk I \ 
gawk '{sub(/[),]/, 11 ");print}' I gzip -cvf - > P3-l.gz 
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8.4.2 Printing desired information 

I was now ready to just take each packet's timestamp and size. Thus, we need 

to print the 1st and the 4th field of 8.4.1 's output: 

gzip -de P3-1.gz I gawk '{print $1 "\t"$4}' 

If however, you wanted to look only at http traffic, you would run: 

gzip -de P3-l.gz I grep http I gawk '{print $1 "\t"$4}' 

You could search for ftp packets in a similar fashion, but if you are look­

ing for P2P traffic, you need to find the port number for the service and then 

look for that number in the second or third column. A gawk script that would 

acheive this (and prints the 1st and 4th field) is: 

----begin kazaa.gawk---­

#! /usr/loeal/bin/gawk -f 

$2 - /.1214/ {print $1 "\t" $4} 

$3 - /.1214/ {print $1 "\t" $4} 

----end kazaa.gawk----

The command looks like: 

gzip -de P3-l.gz I kazaa.gawk 

Similar scripts were written for AIM traffic by replacing 1214 with 5190. 

The output of 8.4.2 is similar to: 

1007431864.359863 1500 

1007431864.359863 1500 

1007431864.359863 40 

1007431864.359863 628 

1007431864.359863 40 

8.4.3 Removing undesired information (again) 

Tcpdump gave us extra information and each packet record was variable length, 

thus we did not see certain special cases earlier because they only occur once 

every 1,000 or 10,000 packets. The special cases were: 

WARNING: Short Try 
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1007431865. 709863 141.166.226.219 207.68.177.125: RA 

We don't want any lines that have any character that is not a number in the 

last field. The following script acheives this: 

----begin noA.gawk---­

#! /usr/local/bin/gawk -f 

{ if( $NF i- /[~0-9)/ ) print } 

----end noA.gawk----

So far we have: 

gzip -de P3-1.gz I gawk '{print $1 "\t"$4}' I noA.gawk 

gzip -de P3-1.gz I grep http I gawk '{print $1 "\t"$4}' I noA.gawk 

gzip -de P3-1.gz I kazaa.gawk I gawk '{print $1"\t"$4}' I noA.gawk 

Our output for each of them is still similar to: 

1007431864.359863 1500 

1007431864.359863 1500 

1007431864.359863 40 

1007431864.359863 628 

1007431864.359863 40 

8.4.4 Counting Packets and Bytes 

We are finally ready to count the number of packets and bytes in each 10 ms 

interval. I wrote a C program that would count the number of occurences of 

1007431864.35 (for example), and added the number of bytes that is next to 

each occurence. The source looks like: 

--begin CONTAR.C--­

#include <stdio.h> 

#include <ctype.h> 

main() 

{ 
char time_ old[18]; 

char time_ new(18]; 
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long lc=O; 

char size(8]; 

int total = O; 

int count = O; 

double avg = O; 

register int i = 0; 

register int c; 

time_ old(l 7]=time _ new(l 7]='\0'; 

while( i<l 7 ){ 

} 

time_ old(i] = time_ new(i] = O; 

i++; 

i=O; 

while( c=getchar() > 32 ){ 

i=O; 

time_ new(i] = '1 '; 

i++; 

while( i<lO ){ 

time_ new(i] = c = getchar(); 

i++; 

} 
getchar(); 

while( i<12 ){ 

time new(i] = c = getchar(); 

i++; 

} 
while( i<16){ 

getchar(); 

} 

time_ new(i] = '\O'; 

i++; 

time new(i]='\O'; 

c = getchar(); 

i=O; 

if(isdigit( c=getchar()) ){ 

size(i++]=c; 
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} 

while( isdigit( c=getchar()) ) 

size[i++J = c; 

} 
else{ 

} 

while{c > 32) c=getchar{); 

size[i++J='4';size[i++J='O'; 

size[i]='\O'; 

if(strncmp{time _ new,time _ old,13)!= O){ 

avg= (total*I.O)/count; 

if{ time_ old(O] != O){ 

printf("%s\t%d\t%d\n", time_ old,count,total); 

total=count=O; 

le++; 

} 
strcpy (time_ old, time_ new); 

} 

count++; 

total += atoi(size); 

i=O; 

} 
avg = {total*I.O)/count; 

printf{"%s\t%d\t%d\n", time_ old,count,total); 

-end CONTAR.C -----

This file is very dependent on the input it expects to receive. In general this 

is not the best solution, it was not meant to exhibit the best software engineering 

principles. It is, however, a practical one for this application that we believe is 

time-efficient. 

Sample output for the following input 

1007430498. 759863 1216 

1007430498. 759863 40 

1007430498. 769863 1500 

1007430498. 769863 40 

1007430498. 769863 576 
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1007430498. 769863 384 

1007430498. 769863 48 

1007430498. 789863 40 

1007430498.789863 1500 

1007430498. 799863 1500 

1007430498. 799863 1216 

1007430498. 799863 1500 

1007430498. 799863 1500 

1007430498. 799863 1216 

1007430498.819863 40 

1007430498.819863 40 

is: 

100743049875 2 1256 

100743049876 5 2548 

100743049878 2 1540 

100743049879 5 6932 

100743049881 2 80 

Our output is of the form: 

10-ms-interval packets bytes 

Unfortunately, we have overlooked something. 

8.4.5 Filling in the gaps 

What we overlooked was that CONTAR.C does not look for increments of 10 

ms, it just reads the next line of input and compares the timestamps up to the 

10 ms slot of the character array to see if the time has changed. The num­

bers were large so I used character arrays instead of numbers, and I did not 

catch this error until after writing a succesful CONTAR.C. I therefore decided 

it would be easier (and safer) to write yet another program that would convert 

each timestamp character array to a long number and then fill in each 10 ms 

interval with no activity. The program FILL.C accomplishes this. 

----begin FILL.C----­

#include <stdio.h> 

21 



#include <ctype.h> 

#include <stdlib.h> 

main() 

{ 
int MAX= 63; 

char line[MAX]; 

char oldline[MAX]; 

char time[14]; 

char oldtime[14]; 

char size[MAX]; 

char oldsize[MAX]; 

int length = O; 

char c='4'; 

int i,j,k=O; 

int SIZE , OLDSIZE, F , TOTAL=O; 

ulong TIME, OLDTIME =0; 

int dist = O; 

i=j=O; 

getline( oldline,63); 

i++;i++; 

while( oldline[i] >= 'O') oldtime[j++]=oldline[i++]; 

oldtime[j]='\O'; 

OLDTIME = atol( old time); 

printf("3d\t",OLDTIME); 

while(oldline[i++] != '\O') printf("3c",oldline[i]); 

while( getline(line,63) ){ 

i=j=O;k=l; 

i++;i++; 

while(line[i] >= 'O') time[j++] = line[i++]; 

time[j]='\O'; 

TIME = atol(time); 

dist= TIME-OLDTIME; 

for(k=l; k < dist; k++ ){ 

OLDTIME++; 

printf("3d\t0\t0\n",OLDTIME); 

} 
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printf("%d\t" ,TIME); 

while(line[i++] != '\O') printf("3c",line[i]); 

strcpy (old time, time); 

OLDTIME = atol(oldtime); 

} 
} 

/* The following program is from p. 29 in [19] * / 
int getline(char s[], int lim) 

{ 
int c,i; 

i=O; 

while(-lim > 0 && (c = getchar()) != EOF && c != '\n') 

s[i++] = c; 

if (c == '\n') 

s[i++] = c; 

s(i] = '\O'; 
return i; 

} 
-----end FILL.c.~----

We needed to get rid of the first few characters in order to stay within the 

limits of LONG_MAX as defined in [19]. Those digits we removed did not 

change in a given Period, thus losing them does not affect our calculations. 

Feeding FILL the output from 8.4.4, we get: 

743049875 2 1256 

743049876 5 2548 

743049877 0 0 

743049878 2 1540 

743049879 5 6932 

743049880 0 0 

743049881 2 80 

We are now ready to start R/S analysis! 

But first, let's recap. So far we have: 

tcpdump -i ethl -c 4000000 -v -tt > cap$date 
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gzip -de cap12-03-20-48-18.gz I test.gawk I \ 
gawk '{sub(/[),]/,"");print}' I gzip -cvf- > P3-1.gz 

gzip -de P3-1.gz I gawk '{print $1"\t"$4}' I \ 
noA.gawk I CONTAR I FILL > P3-1.ref.1 

gzip -de P3-1.gz I grep http I gawk '{print $1 "\t"$4}' I \ 
noA.gawk I CONTAR I FILL > P3-1.http 

gzip -de P3-1.gz I kazaa.gawk I noA.gawk I CONTAR I\ 
FILL > P3-1.kazaa 

8.4.6 RIS Analysis 

We now must strip only the packet counts or byte counts in order to proceed 

to R/S analysis. If we wanted the packets obtained from KaZaA traffic during 

Period 8, and the bytes obtained from all traffic from Period 3, we could execute: 

cat P3-?.kazaa I gawk '{print $2}' > P3.kazaa.packets.dat 

cat P3-?.ref.1 I gawk '{print $3}' > P3.bytes.dat 

Now we are ready to use a slightly modified version the hurst.c program 

found in [16]. 

----begin hurst.c----~ 

//=Program to compute the R/S statistic for a series Xof size N 

11=> Used to estimate the self-similarity Hurst parameter (H) 

/I= Notes: 

11= 1) Input from input file "in.dat" to stdin (see example below) 

I I= * Comments are bounded by " & " characters at 

I I= the beginning and end of the comment block 

11= 2) Output is to stdout 

11= 3) X should have a "large number" of values for a 

11= "good" RIS value to be computed. 

11= Example "in.dat" file: 

II= 
11= & Sample series of data which can be integers or reals. 

/I= There are 6 values in this file. & 

11= 12 

II= 56 

11= 99 
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11= 111 

II= 87 

II= 99 

11= Example output (for above "in.dat"): 

II= 
I I= hurst.c ----. 

11= RIS = 2.557638 for series X of 6 values 

II= 
11= Build: bcc32 hurst.c, cl hurst.c, gee hurst.c -Im 

I I= Execute: hurst2 < in.dat 

I I= Author: Kenneth J. Christensen 

11= University of South Florida 

11= WWW: http:l lwww.csee.usf.edul-christen 

11= Email: christen@csee.usf.edu 

11= History: KJC (09116198) - Genesis 

11= KJC (09I05IOO) - Removed inside double loop 

11= per advice from Sunwoo Lee. 

I I= Program runs much faster. 

11= KJC (10l31IOO) - Fixed a one-off error in main 

11= loop. See "Fix #1" tag. 

I I- Include files -----------­

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <string.h> 

I I Needed for printf() and feof() 

11 Needed for pow() 

I I Needed for exit() and atof() 

11 Needed for strcmp() 

I I- Defines --------

1 I Maximum size of time series data array 

#define MAX SIZE lOOOOOOOL 

I I- Globals------­

double X(MAX _SIZE]; 

long int N· ' 

11 Time series read from "in.dat" 

I I Number of values in in.dat 

I I- Function prototypes -----

void load X array(void); 11 Load X array from "in.dat" 
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double compute rs(void); I I Compute RIS for X of length N 

I I= Main program 

void main(void) 

{ 

} 

double rs value; 11 Computed RIS value 

I I Load the series X 

/ lprintf{"-------- hurst.c -\n"); 

load_ X _array(); 

11 Compute RIS value for series X of length N 

rs_ value= compute_rs(); 

I I Output RIS value 

printf("3ld\t3f\n" ,N,rs _value); 

I I= Function to load X array from st din and determine N 

void load_ X _array( void) 

{ 
char temp_ string[1024]; 

/ / Read all values into X 

N= O; 

while(l) 

{ 
scanf("3s", temp_ string); 

if {feof(stdin)) goto end; 

I I Temporary string variable 

I I This handles a comment bounded by " & " symbols 

while (strcmp(temp string, "&") == 0) 

{ 
do 

{ 
scanf("3s", temp_ string); 
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} 

} 

} 

if (feof(stdin)) goto end; 

} while (strcmp(temp _string, "&") != O); 

scanf("%s", temp string); 

if (feof(stdin)) goto end; 

I I Enter value in array and increment array index 

X[N] = atof(temp _string); 

N++; 

I I Check if MAX_ SIZE data values exceeded 

if (N >= MAX SIZE) 

{ 

} 

printf("*** ERROR - greater than %Id data values \n", 

MAX_SIZE); 

exit(l); 

I I End-of-file escape 

end: 

return; 

I I= Function to compute RIS value for series X of length N 

double compute_ rs() 

{ 
double moml; I I First moment 

double mom2; /I Second moment 

double x bar; 11 Mean (X bar value) 

double s· 
' 

11 Standard deviation (S value) 

double w· 
' 

11 W value 

double r• 
' 11 R value 

double min w· ' 
I I Minimum W value 

double max w· ' 
I I Maximum W value 

-
double rs value; I I RIS value to be returned 
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} 

double sum; I I Temporary sum value 

long int i, j; I I Loop counters 

I I Loop to compute mean and standard deviation of X 

moml = mom2 = 0.0; 

for (i=O; i<N; i++) 

{ 

moml = moml + (X[iJ I N); 

mom2 = mom2 + (pow(X(i], 2.0) IN); 

} 
x_bar = moml; 

s = sqrt(mom2 - pow(moml, 2.0)); 

I I Double loop to find minimum and maximum W values 

min w =max w = 0.0; 

sum= 0.0; 

for (i=O; i<N; i++) 

{ 

} 

sum = sum + X[i]; 

w = sum - ((i+l) * x bar); 

if(w > max_w) max_w = w; 

if (w <min_ w) min_ w = w; 

11 Fix #1 

I I Compute R value as maximum W minus minimum W 

r = max w - min w; 

I I Compute RIS value 

rs_ value= r Is; 

I I Return RIS value 

return( rs_ value); 

----end hurst.c-----

Thus, we ran the following commands: 
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hurst < P3.kazaa.packets.dat > P3.kazaa.packets.hurst.txt 

The file P3.kazaa.packets.hurst.txt contains the value of N (the size of the 

set of numbers) and the corresponding R/S estimate: 

558404 126310.199372 

8.4. 7 Estimating H 

In order to obtain an estimate H we need to aggregate the packet/byte counts 

and obtain a few R/S estimates for different values of N. To do this, we use a 

modified version of block.c, also from [16]. 

----begin block.c---

1 I= Program to block a time series X into block means 

11= Notes: 

II= 
II= 
II= 
II= 
II= 
II= 
II= 
II 

1) Input from input file 11 in.dat 11 to stdin 

* Comments are bounded by 11 & 11 characters at the 

beginning and end of the comment block 

2) The block size M is in the #define section 

3) If mod(N,M) is not zero, then the last remainder values 

are notblocked 

4) Output is to stdout 

11= Example 11 in.dat 11 file: 

II= 
I I= & Here is a series of 6 values to be blocked with M = 2 & 

11= 21 

II= 3 

11= 55 

II= 45 

11= 12 

II= 5 

II 
11= Example output (for above 11 in.dat 11 and M = 2): 

II= 
11= & -------- block.c - & 

I I= 12.000000 
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//= 50.000000 

//= 8.500000 

/ / = & Output 3 block means for a block size of 2 

II= - & 

II 
//= Build: gee block.c, bcc32 block.c, cl block.c 

II 
/ / = Execute: block < in.dat 

II 
/ / = Author: Kenneth J. Christensen 

/ / = University of South Florida 

//= WWW: http://www.csee.usf.edu/-christen 

//= Email: christen@csee.usf.edu 

II 
//= History: KJC (10/02/98) - Genesis 

//= KJC {02/24/99) - Fixed a compile error 

//= KJC {06/31/99) - Fixed error with not finishing series 

//-Include files----------­

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

//Needed for printf() and feof() 

//Needed for exit() and atof() 

//Needed for strcmp() 

//-Defines-----------­

/ /Max size of time series data array 

#define MAX SIZE lOOOOOOOL 

//Blocking size 

#define M lOL 

//-Globals•------------

double X[MAX _SIZE]; 

long int N· 
' 

/ / Time series read from "in.dat" 

/ / Number of values in X[] 

//-Prototypes:---------­

void load_ X _array( void); / / Load X array 
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/ / = Main program 

void main(void) 

{ 
long int count; 

double sum; 

double block mean; 

/ / Count of number of blocks 

/ / Temporary sum variable 

/ / Compute block mean 

long int i, j; / / Loop counters 

/ / Load the series X 

//printf("& ------ block.c --- & \n"); 

load_ X _array(); 

/ / Compute and output block means 

/ / (aggregated blocks of size M) 

count= O; 

for (i=O; i<N; i=i+M) 

{ 
sum= 0.0; 

for (j=i;j<(i + M);j++) 

{ 

} 

if (j > = N) goto end; 

sum = sum + X[j]; 

count = count + 1; 

block mean = sum / M; 

printf("%f\n", block mean); 

} 

/ / End of series escape 

end: 

/ / Output closing message 

printf{" & Output %Id block means for a block size of %Id \n", 

count, M); 
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} 

I I= Function to load X array from st din and determine N 

void load X array(void) 

{ 
char temp_ string[l024]; I I Temporary string variable 

I I Read all values into X 

N = O; 

while(l) 

{ 
scanf( 11 %s 11

, temp_ string); 

if (feof(stdin)) goto end; 

11 This handles a comment bounded by 11 & 11 symbols 

while (strcmp(temp string, 11 & 11
) == 0) 

{ 

} 

do 

{ 
scanf( 11 %s 11

, temp_ string); 

if (feof(stdin)) goto end; 

} while (strcmp(temp_string, 11 & 11
) != O); 

scanf( 11 %s", temp_ string); 

if (feof(stdin)) goto end; 

I I Enter value in array and increment array index 

X[N] = atof( temp_ string); 

N++; 

I I Check if MAX SIZE data values exceeded 

if (N >=MAX SIZE) 

{ 

} 

printf( 11 *** ERROR - greater than %ld data values \n", 

MAX SIZE); 

exit(l); 
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} 

} 

/ / End-of-file escape 

end: 

return; 

----end block.c----

We compiled this file and saved the output code to a file named block10. 

Then we changed the blocking size M to 5, recompiled, and saved the output 

to a file named block5. We can now run an analyze.sh script: 

----begin analyze.sh----

block5 < $1".dat" > $1".dat5" 

blocklO < $1".dat" > $1".datlO" 

block5 < $1".dat5" > $1".dat25" 

blocklO < $1".datlO" > $1".datlOO" 

block5 < $1".dat25" > $1".dat125" 

block5 < $1 ".dat125" > $1 ".dat625" 

blocklO < $1 ".datlOO" > $1" .datlOOO" 

block 5 < $1 ".dat625" > $1" .dat3125" 

blocklO < $1 ".datlOOO" > $1" .datlOOOO" 

hurst < $1 ".<lat" > $1 ".hurst.txt" 

hurst < $1".dat5" > > $1".hurst.txt" 

hurst < $1".datlO" > > $1".hurst.txt" 

hurst < $1".dat25" >> $1".hurst.txt" 

hurst < $1".datlOO" > > $1".hurst.txt" 

hurst < $1" .dat125" > > $1" .hurst.txt" 

hurst < $1".dat625" > > $1".hurst.txt" 

hurst < $1".datlOOO" > > $1".hurst.txt" 

hurst < $1".dat3125" > > $1".hurst.txt" 

hurst < $1".datlOOOO" >> $1".hurst.txt" 

----end analyze.sh----

Thus, we would execute: 

analyze.sh P3.kazaa.packets 
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analyze.sh P3.bytes 

The contents of the P3.kazaa.packets.hurst.txt file that is produced are: 

558404 126310.199372 

111680 28487.475111 

55840 14636.914452 

22336 5997 .506536 

5584 1530.838622 

4467 1226.322975 

893 246.440876 

558 153.981745 

89 25.168483 

55 14.997397 

Which is just a set of N's with their corresponding R/S estimates. Now we 

need to fit a line through these points. 

8.4.8 Least-Squares Line Fit 

We used following header file and made some changes to linreg.cpp so that it 

first sets x = Log(x) and y = Log(y) before fitting the line. Both of the original 

files can be found in [17]. 

---begin linreg.h--­

/* linreg.h * / 
#ifndef LINREG H 

#define LINREG H 

#include <iostream.h> 

/ / a class encapsulating a point in Cartesian coordinates 

class Point2D 

{ 
public: 

Point2D(double X = 0.0, double Y = 0.0) : x(X), y(Y) 

{ } 

void setPoint(double X, double Y) { x = X; y = Y; } 
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}; 

void setX(double X) { x = X;} 

void setY(double Y) { y = Y; } 

double getX() const { return x; } 

double getY() const { return y; } 

private: 

double x, y; 

/ / a linear regression analysis class 

class Linear Regression 

{ 
friend ostream& operator< <(ostream&, LinearRegression&); 

public: 

/ / Constructor using an array of Point2D objects 

/ / This is also the default constructor 

LinearRegression(Point2D *p = O, long size = O); 

LinearRegression(double *x, double *y, long size = O); 

virtual void addXY(const double& x, const double& y); 

void addPoint(const Point2D& p) 

{ addXY(p.getX(), p.getY());} 

// Must have at least 3 points to calculate 

/ / standard error of estimate. 

//Do we have enough data? 

int haveData() const { return (n > 2 ? 1 : O); } 

long items() const { return n; } 

virtual double getA() const { return a; } 

virtual double getB() const { return b; } 

double getCoeIDeterm() const {return coeID; } 

double getCoefCorrel() const { return coefC; } 
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double getStdErrorEst() const { return stdError; } 

virtual double estimateY(double x) const 

}; 

{ return (a + b * x); } 

protected: 

long n; I I number of data points input 

double sumX, sum Y; I I sums of x and y 

double sumXsquared, I I sum of x squares 

sumYsquared; 11 sum y squares 

double sumXY; I I sum of x*y 

double a, b; I I coefficients of f(x) = a + b*x 

double coefD, I I coefficient of determination 

coefC, I I coefficient of correlation 

stdError; I I standard error of estimate 

void Calculate(); I I calculate coefficients 

#endif I I end of linreg.h 

----end linreg.h----

-----begin linreg.cpp--­

#include <iostream.h> 

#include <iomanip.h> 

#include <math.h> 

#include "linreg.h" 

void main() 

{ 
int pts = 10; 

int j,i; 

double x[pts], y[pts]; 

i=j=O; 

while(j<pts){ 

} 

cin > > x[j] > > y[j]; 

j++; 
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} 

for(i=O;i<j;i++ ){ 

x[i] = Iog(x[i]); 

y[i] = Iog(y[i]); 

} 
LinearRegression Ir(x, y, pts); 

cout < < "Number of x,y pairs = " < < Ir.items() < < endI; 

cout < < Ir < < endI; 

cout < < "Coefficient of Determination = " 

< < Ir.getCoefDeterm() < < endI; 

cout < < "Coefficient of Correlation = " 
< < lr.getCoefCorreI() < < endI; 

cout < < "Standard Error of Estimate= " 

< < Ir.getStdErrorEst() < < endl; 

----end linreg.cpp---

We compiled linreg. cpp and saved the output to fitline _new and then ran: 

fitline new < P3.kazaa.packets.hurst.txt 

And the output produced is: 

Number of x,y pairs = 10 

f(x) = -1.18099 + ( 0.983177 * x) 

Coefficient of Determination = 0.999835 

Coefficient of Correlation = 0.999918 

Standard Error of Estimate = 0.0409876 

Our estimate for H is therefore 0.983177, and our is R2 value is 0.999918. 

8.4.9 Sum of Packets and Bytes of a Period 

Of course, finding out the total number of bytes and packets in a particular 

Period is useful. For this, we used summaryl.c from [16]. 

---begin summaryl.c--

/ / = Program to compute summary statistics for a series X of size 

N 

//= - Computes min, max, sum, mean, var, std dev, and cov 
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II= 
II= 

below) 

II= 
II= 
II= 

Notes: 

1) Input from input file "in.dat" to stdin (see example 

* Comments are bounded by "&" characters at the 

beginning and end of the comment block 

2) Output is to stdout 

I I= Example "in.dat" file: 

I I= & Sample series of data which can be integers or reals. 

11= There are 11 values in this file. & 

II= 50 

II= 42 

II= 48 

11= 61 

II= 60 

II= 53 

II= 39 

II= 54 

II= 42 

II= 59 

II= 53 
11= Example output (for above "in.dat"): 

II= 
II 
II= 
II= 
II= 
II= 
II= 
II= 
II= 
II= 
II 
II= 

----- summaryl.c ----· 

maryl.c 

II 

Total of 11 values 

Minimum = 39.000000 (position = 6) 

Maximum = 61.000000 (position = 3) 

Sum = 561.000000 

Mean = 51.000000 

Variance = 52.545455 

Std Dev = 7.248824 

CoV = 0.142134 

Build: gee summaryl.c -lm, bcc32 summaryl.c, cl sum-

11= Execute: summaryl < in.dat 

II 
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11= Author: Kenneth J. Christensen 

I I= University of South Florida 

11= WWW: http:l lwww.csee.usf.edul-christen 

11= Email: christen@csee.usf.edu 

II 
11= History: KJC (05l23IOO) - Genesis 

I I- Include files ----­

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

11 Needed for exit() and atof() 

11 Needed for strcmp() 

11 Needed for pow() 

I I- Defines ------

#define MAX SIZE lOOOOOOOL I I Maximum size of time series 

data array 

I I- Globals ------

double X[MAX _SIZE]; I I Time series read from 11 in.dat 11 

long int N; 11 Number of values in 11 in.dat 11 

I I-- Function prototypes --

void load_ X _array (void); I I Load X array 

11= Main program 

void main(void) 

{ 
double min, max; I I Minimum and maximum values 

long int minpos, maxpos; I I Positions of min and max 

double sum; I I Sum of values 

double moml, mom2; 

values 

I I First and second moments of 

double mean; 

double var; 

double stddev; 

double cov; 

long inti; 

I I Computed mean value 

I I Computed variance 

I I Computed standard deviation 

I I Computed coefficient of variation 

11 Loop counter 
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I I Load the series X 

printf(" summaryl.c -\n"); 

load X array(); 

I I Loop to compute min, max, sum, 

11 first moment (mean), and second moment 

min = max = X[O]; 

minpos = maxpos = O; 

sum = moml = mom2 = 0.0; 

for (i=O; i<N; i++) 

{ 
if (X[i] <= min) 

{ 

} 

min= X[i]; 

minpos = i; 

if (X[i] >= max) 

{ 

} 

max= X[i]; 

maxpos = i; 

sum= sum+ X[i]; 

moml = moml + (X[i] I N); 

mom2 = mom2 + (pow(X[i], 2.0) IN); 

} 

I I Compute mean, variance, standard deviation, and cov 

mean= moml; 

var= mom2 - pow(moml, 2.0); 

stddev = sqrt(var); 

cov = sqrt (var) I mo ml; 

printf(" Total of %Id values \n", N); 

printf(" Minimum = 3f (position= %Id) \n", min, minpos); 

printf(" Maximum = 3f (position= %Id) \n", max, maxpos); 

printf(" Sum 

printf(" Mean 

= 3f\n", sum); 

= 3f \n", mean); 
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} 

printf( 11 Variance = %f \n 11
, var); 

printf( 11 Std Dev = %f \n11
, stddev); 

printf( 11 CoV = %f \n11
, cov); 

printf( 11--------\n11
); 

/ / = Function to load X array from stdin and determine N 

void load X array(void) 

{ 
char temp string[1024]; / / Temporary string variable 

/ / Read all values into X 

N = O; 

while(l) 

{ 
scanf( 11 %s 11

, temp_ string); 

if (feof(stdin)) goto end; 

/ / This handles a comment bounded by 11 & 11 symbols 

while (strcmp(temp _string, 11 & 11
) == 0) 

{ 

} 

do 

{ 
scanf( 11 %s 11

, temp_ string); 

if (feof(stdin)) goto end; 

} while (strcmp(temp_string, 11 & 11
) != O); 

scanf( 11 %s 11
, temp_ string); 

if (feof(stdin)) goto end; 

/ / Enter value in array and increment array index 

X[N] = atof(temp _string); 

N++; 

/ / Check if MAX SIZE data values exceeded 

if(N >= MAX_SIZE) 

{ 
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} 

} 
} 

printf("*** ERROR - greater than %ld data values \n", 

MAX_SIZE); 

exit(l); 

/ / End-of-file escape 

end: 

return; 

---end summaryl.c---

References 

[1] W. Leland, M. Taquu, W. Willinger, and D. Wilson, "On the Self-Similar 

Nature of Ethernet Traffic", IEEE/ ACM Trans. Networking, vol. 2, no. 1, 

pp. 1-15, 1994. 

[2] V. Paxon and S. Floyd, "Wide-area traffic: The Failure of Poisson Model­

ing," IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226-244, 1995. 

[3] "Dictionary.com/burst", Dictionary.com, 2002. Lexico LLC. 

http://www.dictionary.com 

[4] M. E. Crovella and A. Bestavros, "Self-Similarity in World Wide Web Traf­

fic: Evidence and Possible Causes", IEEE/ACM Trans. Networking, vol. 5, 

no. 6, pp. 835-846, 1997. 

[5] "Application Performance Solutions from Packeteer'', 2002. 

http://www.packeteer.com 

[6] "KaZaA Media Desktop", 2002. http://www.kazaa.com/en/index.htm 

[7] Seung Hoon Hong, Rae-Hong Park, and Chang Bum Lee, "Hurst Parameter 

Estimation of Long-Range Dependent VBR MPEG Video Traffic Jin ATM 

Networks", Journal of Visual Communication and Image Representation, 

vol. 12, no. 1, pp. 44-65, 2001. 

42 



[8] "AOL Instant Messenger (TM)'', 2002. http:/ /www.aim.com/index.adp 

[9] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun. "The Effect of Statistical 

Multiplexing on Internet Packet Traffic: Theory and Empirical Study", 

Technical Report, Bell Labs, 2001. 

[10] "Snort - The Open Source Network IDS", 2002. http://www.snort.org 

[11] "The Ethereal Network Analyzer", 2002. http://www.ethereal.com 

[12] "TCPDUMP public repository", 2002. http://www.tcpdump.org 

(13] B. Tsybakov and N. Georganas, "On SelfSimilar Traffic in ATM Queues: 

Definitions, Overflow Probability and Cell Delay Distribution", IEEE/ ACM 

Transactions on Networking, vol. 5, no. 3, pp. 397-409, 1997. 

[14] T. Hagiwara, H. Doi, H. Tode, and H. Ikeda, "The High Speed Calculation 

Method of the Hurst Parameter Using Real Network Traffic'', Proceedings 

from the 25th Annual IEEE Conference on Local Computer Networks (LCN 

2000), pp. 662-669. 

[15] K.J. Christensen, "Reproduction of some key results 

in Leland et al.", 2001. University of South Florida. 

http://www.csee.usf.edu/-christen/tools/bellcore.pdf 

[16] K.J. Christensen, "Tools page for Kenneth J. Christensen", 1998. 

http://www.csee.usf.edu;-christen/toolpage.html 

[17] David C. Swaim II, "A Simple Linear Regression Class", 2000. 

http://www.cuj.com/articles/2000/0008/0008e/0008e.htm?topic=articles 

[18] J. L. Devore, "Probability and Statistics for Engineering and the Sciences" 

(fifth edition), Brooks/Cole, 2000. 

[19] B.W. Kernighan and D. M. Ritchie, "The C Programming Language" (sec­

ond edition), Prentice Hall, Inc., 1988. 

43 


	Self-similarity in network traffic
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46

