
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

Spring 1997

On the automatic generation of network protocol simulators On the automatic generation of network protocol simulators

Andrew Chen
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Chen, Andrew, "On the automatic generation of network protocol simulators" (1997). Honors Theses. 401.
https://scholarship.richmond.edu/honors-theses/401

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/401?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

!'fed kt t1c ... -f1 t{ cu-.. cf
(_ 0 '1 p u f L..r i c r-cJ\ c

G~e.-

On the Automatic Generation of Network Protocol
Simulators

Andrew Chen
Honors Thesis1

Department of Mathematics and Computer Science
University of Richmond

April 18, 1997

1. Under the direction of Dr. Lewis Barnett

This paper is part of the requirements for the honors program in computer science. The

signatures below, by the advisor, a departmental reader, and a representative of the depart-

mental honors committee, demonstrate that Andrew Chen has met all the requirements

needed to receive honors in computer science.

(advisor)

(honors committee representative)

1. Introduction

On The Automatic Generation of Network Protocol Simulators

On The Automatic Generation of Network Protocol Simulators

by

Andrew Chen

Computers communicate with each other over various communication networks via a

language known as a protocol. The design of the protocol can have a significant impact on the

efficiency (and effectiveness) of the network. Because building an actual network to test the

performance (and reliability) of a new protocol is rather expensive and time consuming, there is an

interest in simulating network protocols in order to determine how efficient the communication

network is. We are therefore interested in automatically generating simulators that could measure

the performance of the new protocols .

. There are two main parts to this project. The first part is designing and developing a library

of general simulation constructs for packet based networks. A packet based network is a network

where the information is transmitted in sometimes variable length units called packets. This library

should be useful in its own right for the construction of custom simulation programs, but it is

primarily intended to aid in the automatic generation of simulators. This library is called the Run­

Time Simulation Library (RTSL). The second part is to develop a process whereby a formal

specification of a protocol's behavior can be automatically translated into a program that simulates

the protocol's performance. Alternatively this could be viewed as an automatic simulator generation

tool that generates code which uses the library of general simulation constructs. In general such a

tool will be referred to as a Protocol Description Language (PDL) translator.

2. Goals

The main goal of this project is to support rapid generation of protocol simulators by

automatically translating a high level description of the protocol into actual C++ code that simulates

the performance of the protocol. A secondary goal was to produce a standalone library to aid in the

creation of most protocol simulators.

In short, one could phrase this as a "Network Protocol Performance Measuring Simulator

- 1 -

On The Automatic Generation of Network Protocol Simulators

Generator". This way of looking at it provides an outline of some of the issues that needed to be

addressed, namely networks, protocols, performance, measurement, simulation, and generation.

We would like to specify the protocol via a protocol description language. The automatic

simulation generation tool(s) would use the protocol description to create the simulator for a

network that used the described protocol. Thus protocol specific issues such as collision

resolution1 and the use or not of a token2 would be a concern. The goal of these generated

simulators would be to determine how well the protocol performs under various loads and traffic

patterns.

The notion of the network contains with it the ideas of structure (in terms of what parts

there are), layout (how these parts are connected), and behavior (how these parts functionally

relate). These will be covered in more depth in a later section.

Since the whole point of the generated simulators would be to measure performance, timing

issues (as relating to actually simulating the packet transmissions and collision times) are central to

their operation. Since we want to be able to measure the performance, we must be able to get

information about such things as transmission delays, collision rates and signal degradation.3 We

want to be able to measure the performance of the network (in terms of packets transmitted,

number of collisions and so on) under various traffic conditions. By "traffic" we mean how many

packets are sent (i.e., the packet traffic), by which station and when. Thus the code in our

simulator will make it a point to keep track of such things. The simulator should be able to read in

an experiment description file (EDF) that contains information about the various computers on the

network and how much information they are trying to send at what times and process that

accordingly.

As the generated code is to be for a simulator, much work needed to be put into the library

of general simulation constructs for packet based networks. This constituted the bulk of the

implementation.

-2-

On The Automatic Generation of Network Protocol Simulators

3. Design Issues

There were a number of design issues that were dealt with during the completion of this

work. Various event type management concerns severely affected the design methodology. Being a

large-scale project, there were some implementation ideas that are generally believed to be very

useful for large-scale projects but that I had never seen used. In part this project became an attempt

to learn and use these implementation ideas efficiently and effectively. One of these implementation

ideas was effective use of the Standard Template Library (STL) (see section 3.2.1). Another one of

these ideas was effective use of multiple inheritance. Finally, the powerful operator overloading

provided by the Standard Template Library (STL) presented the possibility that the high level

protocol design could be expressed as subclasses of various classes in the RTSL rather than as

input to the PDL translator. Subclassing is a C++ language feature (it is also present in one way or

another in all object-oriented languages) that enables one to inherit whatever is present in certain

user designed data types called classes into another and different class. These design issues

influenced this work greatly.

3.1 Variable Event Type Management Concerns

This simulator framework is based on the concept of events and event-based simulation. In

event-based simulation, each change of state in what we are simulating is thought of as an event.

Events occur in specific orders, and tend to give rise to other events. The central idiom of dealing

with the order of events and processing them correctly is a queue of some sort. In this simulator

framework a priority queue based on the event's relative simulated time is used.

3.1.1 Event Field Considerations

There were a variety of concerns relating to the management of the variable number of

different event types. One specific concern was that some events need to have certain data

associated with them, whereas others do not, or need different data associated with them. This is a

concern because we'd like to be able to queue all the events so that we can handle them one at a

time (potentially in an order different than how they were created), while still being able to treat

different events differently and access associated data only in appropriate contexts. For example,

-3-

On The Automatic Generation of Network Protocol Simulators

when an event is removed from the queue, it needs to be "downcast" (see below) to its appropriate

event subtype in order for event subtype specific members to be accessible.

3.1.2 Static versus Dynamic Event Type Management

There were a variety of approaches to dealing with this problem that were considered.

Most of the time these approaches involved type casting of one form or another. When unions are

used, normal casts are used via the union mechanism. When subclasses are used, the pointer to the

parent class needs to be cast down to the level of the child class. This is referred to as

downcasting.

3.1.2.1 "Safe" Downcasting

One approach we took to dealing with this problem was "safe" downcasting. In "safe"

downcasting, in the abstract4 parent class there are virtual void methods with the name of

"as_ <subclass_name>" that in appropriate subclasses either return a null pointer if they are not of

that subclass or "this" if they are. This method can be used to determine which subclass an object

belongs to after it has been cast to it's parent class. As such, this mechanism is a form of run-time

type identification. This sort of static enforcement of the downcasting process only requires the

programmer to declare additional appropriate pointers as well as to check to make sure the returned

pointer is not null. This declaration of additional pointers is so that whenever referring to an object

that uses this feature, in addition to needing a pointer of the type of the parent, a pointer that

corresponds to the child class is necessary for the return value of the "as_ <subclass_name>"

method. While this creates the additional work of having to declare and implement all these

methods, it literally forces programmers to not make the sort of errors that can result from things

like type codes and a union. The following example5 should illustrate this:

class System_Event;
class Placeholder_Event;

class Simulation_Event : public Ref_Cnt_Obj, public TimeStamp_Obj {
public:

Simulation_Event(); II the constructor

virtual System_Event* as_System_Event() = O;
II more elegant than plain downcasting
II returns a null pointer if it is not
II a system event

-4-

} i

On The Automatic Generation of Network Protocol Simulators

virtual Placeholder_Event* as_Placeholder_Event() = O;
II more elegant than plain downcasting
II returns a null pointer if it is not
II a placeholder event

class System_Event
{

public Simulation_Event

II
II Various data members
II (and their appropriate data hiding levels)
11 go here
II

II

public:

System_Event ()
{

II this constructor a dummy constructor to illustrate the concept
II this constructor not present in real implementation
II

} ;
II
II Various data member specific constructors go here
II

II
II Various accessor functions go here
II

} i

System_Event* as_System_Event()
{

return this;
} i

Placeholder_Event* as_Placeholder_Event()
{

return O;
} i

II And so code to actual do the downcast would look something like
I*

System_Event * bob;
Simulation_Event * fred;

II and now for the creation and upcast

bob = new System_Event;
fred = bob;

II and now for the safe downcast

-5-

On The Automatic Generation of Network Protocol Simulators

II (This is a trivial example,
II but it could be used if fred was an object placed in a queue.)

assert(bob = fred->as_System_Event());
*I

It should be noted that "safe" downcasting is actually a crude form of run-time type

information, and that the use of efficiently implemented run-time type information (or RTII, as the

C++ version of this is called) should be considered as a potential option instead, if the given C++

compiler supports it.

One possible way around the fact that all subclasses need to be known and that each

includes the "as_< ... >" method implementations is the following: the parent class have

implementations of all the "as_< ... >" methods and return a null pointer in all of them. This

decreases the amount of work needed to add in a new subclass.

3.1.2.2 Event Codes and Unions

Another approach was the use of event codes as a field to identify what the event was.

Event codes are typically used in conjunction with unions, but unions were not used here. Instead

we didn't share the same memory space within the event object for the various different data that

might be stored. The advantage of this was that prior to accessing appropriate fields, liberal uses of

the "assert" macro could be used to check to make sure that they were valid. This checking serves

to help prevent the sorts of errors typically involved in the type code and union approach. While

the "assert" macro can also be used in the type code and union approach, the possibility that an

improper member of the union was initiallized can not be checked with the "assert" macro,.

However if the memory spaces for the various different data that might be stored are not shared,

the use of the "assert" macro helps verify that the proper data type is being used and that improper

data types for that event code are null.

3.1.2.3 Type Management Final Decision

A combination of the two above techniques were used. In the current implementation,

however, use of "safe" downcasting is not necessary because there is only one type of subclass of

the abstract parent event class. A second subclass type6 was planned but would oniy be necessary

in a much more ambitious implementation.

-6-

On The Automatic Generation of Network Protocol Simulators

The one subclass type of the abstract parent event class is called System_Event and uses

event codes specific to "system events". Alternatively we could have not used event codes at all,

but this would have required writing additional classes which was not easy during the development

process. For all practical purposes we essentially only used event codes here, however with the

abstract parent class in place, the support for creating additional subclasses is much easier to

provide.

3.1.3 Event Life, Death, and Rebirth

The life cycle of the typical event in this simulator framework begins with an event sender

creating an appropriate instance of a subclass of the event class. By using the appropriate

constructor the relevant fields in the new instance can be set appropriately. The event instance is

then placed on the priority queue (priority by time stamp). At an appropriate time, the event is

removed from the priority queue. The removal is to facilitate processing by an instance of a

subclass of the event receiver class. The subclass takes the event and interprets any appropriate

associated data and takes any appropriate action associated with the occurrence of the event.

Presently the event queue is only used part of the time, and sometimes the events are sent directly

from the event sender to the event receiver. It is anticipated that this "feature" of direct event

transmission (by bypassing the queue) will go away.

The queue is a priority queue that uses the ordering conferred by the inherited behavior of

the TimeStamp_Obj class to order the events via their timestamps.

3.2 Effective use of the STL

In C++ there exists the handy language feature of operator overloading. This can be used to

specify how various operators should work on programmer defined types. Also in C++ there

exists the language feature of templates, which supports generic programming. Generic

programming is the specification of the algorithm irrespective of the type it is being applied to. This

enables one to write code that is irrespective of the intended type, so long as the given operators

and functions that deal with such types exist for the type. The Standard Template Library, or STL

[Musser96], is a collection of routines using these language features to provide much of the

common functionality of various abstract data types such as lists, queues, stacks, dequeues,

- 7-

On The Automatic Generation of Network Protocol Simulators

vectors, mappings, and sets.

One of the implementation ideas that are generally believed to be useful is effective use of

the Standard Template Library (STL). This has been shown to be useful in this project via the time

saved not having to implement most of the event queue and most of the Data_ Obj class.

3.3 Effective use of multiple inheritance

Another of these ideas was an approach to class library design involving non-trivial

productive use of multiple inheritance. In this approach to class library design, the various

possible aspects that one might want a particular class to have are separated into parent classes for

use in the particular class that is being presently written and for reuse in classes that may be written

in the future. For example, in this class library there is a class called "TimeStamp_Obj" which is a

class of objects that have a timestamp and are ordered by their timestamp, and a class called

"Ref_Cnt_Obj", which is a class which has a reference count and methods supporting helping

maintain the reference count appropriately. Thus if we wanted an object with a timestarnp and we

wanted to keep track of it with reference counts, we would merely construct a subclass of both

"TimeStarnp_Obj" and "Ref_Cnt_Obj". This technique has been useful in this project in the

amount of code that is reused. I claim that it has made the code more compact, modular,

maintainable, and has saved development time.

3.4 Choosing subclassing over separate language translation

3.4.1 A description of the plans for the PDL translator and desirable attributes in

proposed separate language

The PDL translator was originally designed with ambitious plans in mind. Specifically, it

was intended to translate from a separate language that supported C++ style expression evaluation

and multiple inheritance in a goal-directed context(see section 6.4.3.1) into C++.

There were several desirable attributes in the original proposed separate PDL. One of these

desired attributes was the ability to check the contents of the packet at the byte level because some

protocol actions require this ability (for example, a router or a hub might need to look at header

information in a packet before sending it on the appropriate line). Another of these attributes was

the ability to check the present state of the line (such as busy or idle). The ability to refer to the

-8-

On The Automatic Generation of Network Protocol Simulators

present state of the station and/or the node (such as in the process of receiving a packet, sending a

packet, or idle) was also desired. Another desired attribute was the ability to use the information

available through all these checks to determine what action to take in terms of transmitting a packet,

receiving a packet, canceling a transmission, delaying a transmission, changing internal state, or

changing the contents of the packet. Conciseness and relatively familiar syntax were also things

that were considered desirable attributes. The C++ style expressions have byte-level checking

support and are well suited for management state information and indicating appropriate actions at

appropriate junctures. C++ style expressions also aid in conciseness and familiar syntax. Multiple

inheritance aids in code reusability and therefore in conciseness. A goal-directed context can aid in

conciseness.

3.4.2 What we lose by choosing subclassing over having a translator for a

separate language

A full grammar and lex and yacc specifications for a proposed PDL were developed. These

were never incorporated into a working translator because we found that the power of operator

overloading enabled most of the features of this proposed PDL to be represented directly in C++.

By choosing to use subclassing instead of having a translator, we lose some of the features that we

were hoping for, specifically the level of conciseness that would have been derived in part through

object-oriented goal-directed techniques (see section 6.4.3.1). C++ lacks goal-directed evaluation,

and implementing such a thing in C++ via operator overloading would be a formidable task. We

also lose a layer of abstraction that prevents us from really needing to know much about the

underlying class structure.

3.4.3 What we gain by choosing subclassing over having a translator for a

separate language

What we gain is freedom from having to write a translator, faster development time (we

need to neither write nor use the translator), and more powerful potential protocol descriptions

(i.e., they have access to anything that any normal piece of C++ code does, so they could access

the file system, open sockets to receive directions from a client, or even use part of an existing

network as part of the simulation).

-9-

On The Automatic Generation of Network Protocol Simulators

3.4.4 The decision

Given the utility of the operator overloading provided in the Standard Template Library, it

was concluded that the bulk of the PDL translation could be trivial, with the non-trivial aspects

being parts that were there to deal with non-essential language features of the proposed PDL such

as various goal-directed flow of control techniques(see section 6.4.3.1). As a result, the PDL

translator7 was scaled back to having the user of such a simulator write an appropriate subclass

and link it with the RTSL.

3.5 EDF structural issues

The experiment description file (EDF) is used by the generated simulators to determine the

setup of the various computers on the network, how much information the computers are trying to

send at what times, and how the simulator should process the measured data accordingly.

3.5.1 EDF yesterday

The EDF of Barnett's NetSim[Barnett92] and DQDBsim[Barnett95] packages was

structured as a way of specifying where the stations on a given segment of cable would be, how

long the cable would be, and various traffic patterns in terms of how much would be transmitted

from which nodes at what times and so on.

3.5.2 EDF today

The EDF of our framework exists in two forms.

One of these is implemented and is a text file that contains a series of numbers. The first

number is the number of events represented in the file, and the remaining numbers are the event

codes for the various events. This is primarily intended for testing purposes.

The other EDF of today is called the revised EDF and resembles the EDF of NetSim and

DQDBsim packages, but with various syntactic differences that happen to (presently,

unfortunately) decrease readability somewhat while increasing conciseness and modularity.

3.5.3 EDF tomorrow - NDL?

Originally the revised EDF was intended as a gateway to the NDL8 , or Network

Description Language. The NDL was intended to be able to describe the network layout and

structure at a higher level than the EDF. The EDF was anticipated to actually specify all the stations

- 10-

On The Automatic Generation of Network Protocol Simulators

and nodes and how they were connected to each other. It was hoped that the NDL would be able to

specify the necessary information for a reliable simulation, but not at such a detailed level.

Assuming the problems found in designing the NDL can be overcome, that may eventually

replace the EDF. Otherwise, a completed version of the presently revised EDF would probably

evolve into a more syntactically pleasing form and then rest there. For example, the following are

some lines from the present form of the revised EDF and a hypothetical conception of what the

NDL might be:

#Revised EDF
*lOBase-T copper_wire new thin
+stationl Default_Station lOBase-T Om
+station2 Default_Station lOBase-T 12m
+station3 Default_Station lOBase-T 24m
+station4 Default_Station lOBase-T 36m
+stations Default_Station 10Base-T 48m

#Hypothetical NDL
#should do same as above Revised EDF
new media lOBase-T is thin copper wire
create 5 new stations of type Default_Station on lOBase-T with names
"station<station_number>" at 12 meter distances.

3.6 For future consideration in the design

3.6.1 Virtual machines for simulated behavior

An actual virtual machine for the stations, and nodes, to simulate their behavior would, of

course, require a compiler with the virtual machine being the target platform. The advantage of

such a virtual machine would be that it may very well ease implementation of certain design issues

such as support for protocol layering as well as aid in support of multiple processes at the same

station (a long file transfer and web-browsing at the same time, for example).

4. Network setup and representation

4.1 Network layout

Most network layouts are tree-like in structure, including stars. Some were rings, and some

were even doubled-up rings (i.e., biconnected). The NDL was intended to be a higher level

representation of network layout than the EDF, but a suitable design for the NDL is yet to be

forthcoming. The idea was that we know some information about the network, but want to be able

to specify additional details if we feel like it. One example might be a ring based network with a

- 11 -

On The Automatic Generation of Network Protocol Simulators

fixed number of nodes on it. After specifying that much information, we already know a

substantial amount of information about the network topology. The design difficulty behind the

NDL was how to concisely specify the information about a network that is not found in a general

description like "ring based network with five nodes on it".

4.2 Open-Ear Decomposition, Biconnectivity, and FDDI-1

Open-ear decomposition is a way of decomposing a graph. It seems to be useful (at least in

part) in determining if a graph has a two-to-one mapping onto it. At the very least, it is appropriate

to finding a way to efficiently traverse a graph in parallel, and as such has connections to

networks, as network layouts can be represented in graphs.

Biconnectivity, or the existence of a two-to-one mapping onto a graph, can be used to

ensure reliable message synchronization. This biconnectivity in FDDI-1 (a packet-based network

protocol designed for a ring topology) is a way of achieving a high degree of reliability. It does this

via using the an alternate possible routing through it in the event that it detects that a line adjacent to

it is down. FDDI-1 is an example ring based network that we would like to be able to specify in the

NDL. This protocol could potentially be simulated via our framework.

There may be an as of yet unexplored connection between open-ear decomposition and

possible NDL design.

5. Class Hierarchy Details and History

The class hierarchy for the RTSL and complete source code appear in Appendix A. The

class hierarchy changed throughout the design process as a greater understanding of some

advantageous ways of using the STL and multiple inheritance were learned. For different class

hierarchy diagrams as represented throughout the design process, see Appendix B.

5.1 Events

There are five classes that deal with events.

5.1.1 Simulation_Event

This abstract class is the parent of all events in this simulator. All events should override

the virtual void methods of Simulation_Event. The virtual void methods that begin with "as_"

- 12-

On The Automatic Generation of Network Protocol Simulators

should be used for the "safe" downcasting mentioned in section 2.2.2.1. Likewise, this class (and

perhaps its subclasses) need(s) to be edited to support a new "as_" virtual method anytime any new

subclasses of this class are written. This does seem at times to defeat the "library" concept. This

could be avoided by use of RTTI, or this could be worked around by having a subclass of the class

that the "library" knows about, but that the library user implements which would contain all the

appropriate "as_< ... >" methods and so on.

5.1.2 System_Event

Presently this is the only subclass of the Simulation_Event class. This class can be used

directly and need not be subclassed. This class has a rather fat interface (the many constructors and

access functions in this class frequently have arguments that would be more appropriate for more

specific subclasses of Simulation_Event) and presently is a catch-all event type primarily used

during the development phase of this framework. Something to consider is potentially breaking

this class up into different subclasses of Simulation_Event. By breaking this class up we would

gain more memory efficiency (each event instance would only have memory allocated to it that

corresponded to what it needed, as opposed to now, when each event instance has memory

allocated to it for everything it could possibly need) as well as compile-time type checking as

opposed to the run-time type checking provided via the liberal uses of the assert macros presently

being used.

5.1.3 Event_Receiver

All classes that receive events should be a subclass of this abstract class, and should

override the appropriate virtual void method, which is "Handle_Event(Simulation_Event *)".

Presently most subclasses of this class will implement the overridden method with a safe downcast

to "System_Event *" and then dispatches to various other methods declared and defined in the

subclass. However, for any other subclass type that they should be able to handle they should

process the appropriate safe downcast to that class. Presently these other various methods that are

dispatched to correspond to the various appropriate event codes.

5.1.4 Event_Sender

All classes that send events should be a subclass of this abstract class. When we want to

- 13 -

On The Automatic Generation of Network Protocol Simulators

refer to a class that sends an event we can just refer to it as an "Event_Sender *" and not via what it

actually is. Most of the methods provided by this class are to associate a string with a given "Event

Receiver *"instead of having to refer to it directly. This functionality is anticipated to be useful in

conjunction with the revised EDF as the revised EDF is anticipated to refer to specific nodes and

stations via a name which is most easily represented as a string.

5.1.5 Event_Queue

This is a subclass of a templated instantiation of a priority queue class of Simulation_Event

pointers. The priority queue class came from the STL.

5.2 Simulation_Agent

This class is for managing the entire simulation process. In a sense, one could refer to this

as the class that embodies the "big picture" of what's going on in the simulation. This is the class

that reads in the EDF and sets up the event queue initially based on that. This is also the class that

manages the event queue.

This class contains a lot of utility functions to manage the simulator overall, such as

ReadEDF, Do_Simulation, and various others.

5.2.1 Queue Management

The event queue is a data member of the Simulation_Agent class, and all accesses of the

event queue are through the Simulation_Agent class. This makes changing the queue interface

easy, as only this class deals with the queue.

5.2.2 ReadEDF

This is the method that reads in the EDF and sets up the queue appropriately. Sometimes it

is convenient to override this method so that the EDF is not read, but certain other events are put

directly on the event queue. This is useful for testing event types for which the input convention

has not yet been defined or implemented. A new version of ReadEDF is needed for the revised

EDF to be implemented.

5.2.3 Do_Simulation

This pops an event off of the event queue, processes the event, makes sure the processing

of the event was successful, checks to make sure the event queue isn't empty, and repeats. If any

- 14 -

On The Automatic Generation of Network Protocol Simulators

of the checks fail, it exits out of the loop and returns to its caller.

5.2.4 Name2Node

This method of Simulator_Agent would serve as a mechanism for keeping track of the

nodes via a name (a "char *"). This would aid the workings of the revised EDF.

5.3 Timing

5.3.1 Time_Class

This is an extensible, encapsulated class for dealing with time. Its interface is presently

rudimentary. The central focus of its interface is the support for the operators"<" and">" for

comparison of two Time_ Class instances to determine which represents an earlier or later time.

The time class presently is only accurate to seconds. Accuracy to billionths of a second would be

useful10
•

5.3.2 TimeStamp_Obj

This class has an instance of the Time_ Class as a data member. This class also has the"<"

and">" operators overloaded to call the appropriate operators in the instance of the Time_ Class

object. TimeStamp_Obj is different than Time_ Class because the (public) subclassing mechanism

is intended to represent "is a" relationships, and so subclasses of TimeStamp_Obj "are"

TimeStamp_Obj, whereas a public subclass of Time_ Class would "be" a Time_ Class, and we

wouldn't want events to "be" Time_ Class, as events aren't time, they merely have a time

associated. This problem with meaning in subclassing could be remedied with private or protected

inheritance instead of public inheritance, but that would render the overloaded operators

inaccessible to functions outside of the scope of the (private or protected) subclass of Time_ Class.

This would not be desirable because the whole point of providing these overloaded operators was

so they could be used by functions outside of the scope of subclasses to order the elements of the

classes. Thus we have the following two classes: Time_ Class and TimeStamp_Obj.

5.4 Logger

In essence, this is a library that one can inherit which is designed for use reporting

information such as errors. The only data member is a reference to the "ostream" to be used to

report the information to.

- 15-

On The Automatic Generation of Network Protocol Simulators

Logger foo{cerr);
foo.log{"Error","some error");

would write "Error: some error" to cerr. The logger class is intended to aid in the generation of

trace information about protocols that may not have been proven correct11 so that their flaws, if

any, may be diagnosed. The logger class is also suitable for, and intended to aid in, the reporting

of performance data.

5.5 Station

In the context of the simulators based on this framework, a station is an origin or

destination of packets. As a subclass of the Event_Receiver class, The Handle_Event method is

implemented in the Station class and calls appropriate virtual void methods for the various events.

The Station class is also a subclass of Event_Sender. Typically it will respond to various events by

sending various events.

Presently the only subclass is the Default_Station class, which provides minimal

implementations of the event handling routines that the Handle_Event method in the Station class

dispatches to. Default_Station is also a subclass of the Logger class so that activity noted by any

Default_Station will be "logged". Other appropriate subclasses might be subclasses that generate

events appropriate to transmissions at appropriate times.

5.6 Nodetype

In the context of the simulators based on this framework, a node is a connection to at least

one piece of media that neither originates nor serves as the destination for any packet, but instead

passes the packet along (processing it in some ways where applicable) when that is what will aid in

the packet arriving at its intended destination (as far as the node can tell).

As a subclass of the Event_Receiver class, The Handle_Event method is implemented in

the Nodetype class and calls appropriate virtual void methods for the various events. The nodes

play the various roles of serving as the connection between the station and the media as well as

connecting different sections of media (as in a hub, router, or repeater).

The Nodetype class is also a subclass of Event_Sender. Typically nodes respond to various

events by sending various events.

- 16-

On The Automatic Generation of Network Protocol Simulators

5.6.1 Station_Connection Subclass

This abstract class responds appropriately to the various events that might apply to nodes

that are connected to stations.

5.6.2 Station_ Connection_Echo Subclass

This is a subclass of the Station_ Connection class and merely sends back to the station any

events that it receives.

5.6.3 Station2Station_Connection12 Subclass

This class was created to test the design structure of a prototype. Instances of this class are

intended to serve as a gateway between two stations, with no media. At present this class receives

events from two stations and always sends them to the same one of them. The one that always

receives the events is specified in the use of the class.

5.7 Ref_Cnt_Obj

This class is intended to be inherited by any class for which we want to use reference

counts to do memory management.

5.7.1 Static Methods

There are a number of static methods in this class which are intended to make it easier to

manage and manipulate the reference count values. These include methods to increment the

reference count, decrement the reference count (and destroy if it becomes less than one)13
, and

safely destroy (checking to make sure the reference count is one or less)14
•

5.7.2 Event Destruction

As events are subclasses of Ref_Cnt_Obj, it was intended that the reference count

mechanism be used to determine when to delete the events.15

- 17-

On The Automatic Generation of Network Protocol Simulators

5.8 Data_Obj

The Data_ Obj class is intended to represent variable amounts of potentially changing data.

The Data_ Obj class is a child class of a templated instantiation of an STL mapping from unsigned

long integers to characters. This means that anyone can refer to a specific character by providing an

instance of this class with an unsigned long integer that corresponds to the character that one wants

to refer to. The Data_ Obj class inherits most of its behavior from its parent, but contains a few

methods to facilitate transferring its contents to other instances of the same class or to character

arrays. By using the mapping, the amount of memory used to represent this is only dependent on

the number of unique characters accessed via the mapping mechanism, and not dependent on some

constant fixed upper bound.

5.9 Sim_Packet

The Sim_Packet class is a child class of the Data_ Obj and Ref_ Cnt_ Obj classes. The

Sim_Packet class is a class designed to simulate packets in this simulator. All of its behavior was

inherited from its parents.

5.10 Medium1
'

The medium class handles medium properties and interactions such as signal degradation

over time as well as how long it takes for a signal to get from one node to another based on their

distances.

5.11 Control_Region17

The control region class handles interactions between the protocol and the medium,

translating things like two signals traveling through the same location into a collision and signal

degradation into a higher probability of a transmission error (and altered data in the packet). In

essence, one could think of the Control_Region class as representing the world of the protocol

(which is medium independent and "thinks" in terms of packets) to the world of the medium

(which is protocol independent and "thinks" in terms of signals), and vice versa.

- 18-

On The Automatic Generation of Network Protocol Simulators

6. Summary

6.1 Accomplishments

What we have is a framework for a simulator, which means we don't have a generator or a

simulator because we opted to subclass and haven't completed enough of the framework. The

present implementation can handle simple event and packet transmissions from various created

stations and nodes to themselves and sometimes others.

Creation of a simple simulator should merely consist of subclassing the appropriate classes

to add in protocol specific behavior as well as to establish that those classes should be instantiated.

This could then be compiled and linked with the rest of the library of simulation constructs to create

a simulator for the network protocol that would read in a description of the experiment to be run

and then run an appropriate simulation.

The structure of an event-based simulator poses considerably complexity and challenge.

This suggests to me the need for well developed, flexible, portable libraries of routines and classes

to deal with event handling.

I found effective use of multiple inheritance in the process of abstracting properties required

for simulation into parent classes and then inheriting those desired properties into appropriate

subclasses. The Sim_Packet class is an excellent example of this because it inherits its behavior

from both the Data_ Obj class as well as the Ref_Cnt_Obj. Some other examples are the Station and

Nodetype classes, as they are both subclasses of both Event_Sender and Event_Receiver.

The greatest obstacle to not using the STL effectively is not knowing what is in the STL.

Most traditional data structures have been implemented in the STL, as have many algorithms as

well. The STL was very useful, as it provided the queue in the event queue and the mapping in the

Data_ Obj.

6.2 Completed goals

The timing related classes are well used and robust, if not complete. The Sim_Packet class

is complete. What we have so far can be measured well, and reported well via the Logger class.

The event management scheme was the bulk of the problem, and seems to be sufficiently robust

right now for further development on other sections of this project.

- 19 -

On The Automatic Generation of Network Protocol Simulators

6.3 Uncompleted goals

We have no generator right now, nor do we have a simulator yet. No actual network has

been created, not even in demo prototypes with hard-coded events. (It's hard to have a network

with no medium.) No protocols have been tested because there has been no network to test them

on.

6.4 Where to go from here

6.4.1 Complete remaining classes

When the remaining classes are complete, we should have an appropriate framework for a

simulator. Note that the Medium class will still need to be subclassed to provide support for a

specific medium, and that a subclass of both the subclassed medium class and the Control_Region

class will need to be created in order to provide a suitable interface to the other classes for sending

packets as signals through the medium.

6.4.2 Complete remaining design issues

There are still several design issue questions that remain to be dealt with such as proper use

of the N ame2N ode method, how to keep track of medium specific information that would be

associated with the packet as it travels, as well as what sort of interface the user of such a

framework would find suitable to subclass. Also unaddressed, although the structure is in place for

it, is the level of description of traffic load as should be described in the EDF.

6.4.3 Support for protocol layering?

6.4.3.1 Object-Oriented Goal-Directed Techniques And Their Applicability Here

The idea behind aiming for goal-directed specifications (a la Prolog; see Appendix C for

more details) was that the designer of appropriate protocol simulation implementations might be

more able to focus on the behavior of the components involved in the implementation of the

protocol and less on how they would go about behaving that way.

The idea behind aiming for this to be done in an object-oriented context was that since

various protocols share certain common characteristics, it should be possible to easily implement

new protocols in the simulator by inheriting into the new protocol the behavior of the most similar

existing protocol and then overriding or providing the differences.

-20-

On The Automatic Generation of Network Protocol Simulators

6.4.3.2 Implementation of Protocol Layering

The problem of protocol layering is an awkward one at best. Protocols typically exist in

layers, with one protocol using the services of a lower-level protocol to implement itself and

provide additional functionality. Presently this design is not suited for protocol layering. However,

once the issue of how to represent protocol layering is adequately addressed, the interface of that to

the rest of this simulator should not be all that difficult to implement, as this simulator contains

those classes intended for low-level simulation (media, for example) as well as those classes that

are appropriate at any level (stations, for example). Layering would merely provide additional

layers of interfaces between additional classes.When this is represented as merely providing

additional subclasses, it is not difficult to implement, but requires that the writer of the subclass be

aware of much more of the class structure of this simulator than would be presently required if the

framework were complete.This would seem to suggest that at this level the use of a PDL translator

would be appropriate. In fact, given not only that but the multi-tasking nature of certain protocols

in terms of having multiple layers simultaneously layered on top of them (for example, having TCP

or UDP on top of PPP), this would seem to suggest at least considering the virtual machine idea

found in section 3.6.1

6.5 Related Work

There exist similar systems that instead of translating into a program that simulates the

protocol's performance, translate into actual implementations of the protocol. Among these

systems are LOTOS and Estelle [Hoffman93, Manas88, Oechslin95, Vuong88].

-21 -

On The Automatic Generation of Network Protocol Simulators

[Barnett92] Barnett, Lewis, 1993 SIGCSE Paper: An Ethernet Peiformance Simulator for
Undergraduate Peiformance Networking, Proceedings of the ACMSIGCSE Technical
Symposium 1993, pp. 145-150

[Barnett95] Barnett, Lewis, DQDBsim User's Manual, University of Richmond Math and
Computer Science Department Technical Report TR-95-01June1995

[Hoffman93] Hoffman, B. and Effelsberg, W., Efficient implementation of Estelle specification.
Techincal Report 3/93, Universitat Mannheim, Mannheim, Germany, March 1993

[Manas88] Manas, J. A. and de Miguel, T., From LOTOS to C, in Proceedings of the
International Conference on Formal Description Techniques for Distributed Systems and
Communications Protocols, pages 79-84, 1988

[Musser96] Musser, David R., STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library, Addison-Wesley Publishing Company Inc., 1996

[Oechslin95] Oechslin, Philippe, Implementation Optimisee de Protocoles a Haut Debit. PhD
thesis, EPFL Lausanne, Lausanne, Switzerland, 1995

[Vuong88] Vuong, Son T., Lau, Allen C., and Chan, R. Issac, Semiautomatic implementation
of protocols using an Estelle-C compiler. IEEE Transactions on Software Engineering,
14(3):384-393, March 1988

-22-

1 Collision resolution is the method whereby a protocol handles the situation where packets collide and
thereby prevent the information in the packets from being reliably determined.
2 A token is a special signal used to indicate that the receiver of the token may safely transmit information.
Typically tokens are used in a ring configuration network.
3 Collision rates are the rate at which collisions occur. Ideally, we want the collision rates to be very low while
still transmitting and receiving as many packets as possible. Signal degradation is the weakening of the
signal (and therefore of the ability to get information from the signal) over time and distance. Signal
degradation causes problems because packets are transmitted via signals.
4 An abstract class is a class with some virtual void methods. Virtual void methods are methods that are
declared as part of the class but are never defined. The class is called abstract because it never exists in
reality. Only subclasses that implement the necessary declared methods can be instantiated.
5 This example is based on actual code, but was trimmed down to illustrate the concept of "safe"
downcasti ng.
6 The second subclass type was intended for keeping track of the internal state of the various nodes and
stations so that the actual processing of the events that would occur there could occur in as faithful as
possible a simulation (i.e., that two nodes might actually be processing different events "at the same time"
so that emulated time-slicing between them might occur, with the second subclass type intended to keep
track of which "clock cycle" (so to say) the respective nodes and stations were on).
1 Granted, it's not much of a translator anymore, but still, we refer to it as a PDL translator for historical
reasons.
0 At the time this document was prepared, the NDL was not designed.
9 This revised version of the ReadEDF method has not been implemented at the time this document was
prepared.
10 The implementation of this feature was incomplete at the time this document was prepared.
11 There are various techniques that have been developed for proving protocol correctness.
12 The implementation of this class was not entirely complete at the time this document was prepared.
13 This aspect of the design had not been fully tested as of the time this document was prepared.
14 This aspect of the design had not been fully tested as of the time this document was prepared.
15 This aspect of the design has not yet been fully implemented as of the time this document was
prepared.
16 The implementation of this class was incomplete at the time this document was prepared.
11 The implementation of this class was incomplete at the time this document was prepared.

Appendix A: Source Code

I*
Run-Time Sumulation Library version O.Olpa
(c) 1996 Andrew Chen

No guarrantees.

Control_Region.h

*I

iifndef CONTROL_REGION_H

tdef ine CONTROL_REGION_H

tinclude •config.h•
iinclude "Event_Sender.h"
tinclude "Event_Receiver.h•

class Control_Region public Event_Receiver, II it receives events
public Event_Sender

it sends events
{

protected:
-control_Region(); II it's protected because we never want to

~;;p~~2E~~1~~~z:]~~E~~~t~~lC'3?1~,~t::~;~l~I~,,,,,

II and

II implicitly destruct one of these

public:

} ;

iendif

Control_Region(); II the contructor

virtual Result_Code* Handle_Event(Simulation_Event* the_Event);

II all subclasses of Event_Receiver must provide their own version
II of Handle_Event

I*

*I

Run-Time Sumulation Library version O.Olpa
(cl 1996 Andrew Chen

No guarrantees.

Data_Obj.C

iinclude •oata_Obj.h•

Data_Obj::Data_Obj(void)
{
II do nothing constructor - nothing to initialize
}

bool Data_Obj::Copyin(unsigned long offset, Data_Obj* the_data)

II Copyin copies the Data_Obj that is the_data to the offset
II in this Data_Obj

iterator i;
for (i = the_data->begin(); i != the_data->end(); i++l {

(*this) [(*i) .first+ offset] = (*the_data) [(*il .first);
} ;
return true;

bool Data_Obj::Copyin(
unsigned long offset,
unsigned long amount,
char* the_data
)

II Copyin copies the actual memory contents that the_data points to
II to the the offset in this Data_Obj.
II Only •amount• characters are copied.
II Roughly corresponds to memcpy(c std) or BlockMove(MacToolBox)

unsigned long i;
for (i = O; i < amount; i++l {

(*this) Ci+ offset] = the_data(i];
} ;
return true;

bool Data_Obj::CopyOut(
unsigned long source_offset,
unsigned long amount,
Data_Obj* the_destination_area,
unsigned long destination_of fset
)

II CopyOut copies amount characters (using default values if necessary
II for the unaccessed parts of Sparse_Data_Objects) starting at
II source_offset from this Data_Obj instance to the_destination_area
II at destination_offset

iterator i;
for (i = find(source_offset);

(i != end())&&((*i) .first< (source_offset+amount));
i++)

(*the_destination_area) [(*il .first+ destination_offset] (*this) [(*i
l .first];

} ;
return true;

bool Data_Obj::Copyin(

stJ;

unsigned long source_of fset,
unsigned long amount,
Data_Obj* the_source_data,
unsigned long destination_of fset
)

II Copyin copies amount characters (using default values if necessary
II for the unaccessed parts of Sparse_Data_Objects) starting at
II source_offset from the_source_data to this Data_Obj
II at destination_offset

iterator i;
for (i = the_source_data->find(source_offset);

(i != end())&&((*il .first< (source_offset+amount));
i++)

(*this) [(*il .first+ destination_offset] (*the_source_data) [(*il .fir

} ;
return true;

bool Data_Obj::CopyOut(
unsigned long source_offset,
unsigned long amount,
char* the_destination_area
)

II CopyOut copies amount characters (using default values if necessary
II for the unaccessed parts of Sparse_Data_Objects) starting at
II source_offset from this Data_Obj to the_destination_area

unsigned long i;
for (i = O; i < amount; i++) {

the_destination_area[i)
} ;

return true;

(*this) [i + source_offset);

I*

*I

Run-Time Sumulation Library version O.Olpa
(c) 1996 Andrew Chen

No guarrantees.

Data_Obj.h

iifndef DATA,_OBJ_H

#define DATA,_OBJ_H

iinclude <bool.h>
#include <map.h>
iinclude •config.h"

class Data_Obj : public map< unsigned long , char, less<int> > {

private:

protected:

public:
Data_Obj(); II default constructor
virtual bool Copyin(

unsigned long offset,
unsigned long amount,
char* the_data
);

II Copyin copies the actual memory contents that the_data points to
II to the the offset in this Data_Obj.
II Only •amount• characters are copied.
II Roughly corresponds to memcpy(c std) or BlockMove(MacToolBox)

virtual bool CopyOut(
unsigned long source_of fset,
unsigned long amount,
char* the_destination_area
);

II CopyOut copies amount characters (using default values if necessary
II for the unaccessed parts of Sparse_Data_Objects) starting at
II source_offset from this Data_Obj to the_destination_area

virtual bool Copyin(unsigned long offset, Data_Obj* the_data);

II Copyin copies the Data_Obj that is the_data to the offset
II in this Data_Obj (if the_data is a Sparse_Data_Obj,
II presumably some sort of default value would get returned,
II and the object would seem to be of range from teh first
II access to the last access

virtual bool CopyOut(
unsigned long source_offset,
unsigned long amount,
Data_Obj* the_destination_area,
unsigned long destination_of fset
);

II CopyOut copies amount characters (using default values if necessary
II for the unaccessed parts of Sparse_Data_Objects) starting at
II source_offset from this Data_Obj instance to the_destination_area
II at destination_offset

} ;

iendif

virtual bool Copyin(
unsigned long source_of fset,
unsigned long amount,
Data_Obj* the_source_data,
unsigned long destination_of fset
);

II Copyin copies amount characters (using default values if necessary
II for the unaccessed parts of Sparse_Data_Objects) starting at
II source_offset from the_source_data to this Data_Obj
II at destination_offset

... : ·,~~ '.S0:/'·-~<-N;x&\7Zs"'>'~:::t::0s;~~::-v.,c·. ,~,r~~~.,;.~~{~;;~;;.~:~~:~.~.·i~~< :.. '.·:;~\ :Default ta ion~ 'l30iltd&iik•0M::. ··' '·>"'"'·"··' ····"~'""''F''" .. ""'·"u ..• " return o;
I*

To Do:

*I

Run-Time Sumulation Library version O.Olpa
(c) 1996 Andrew Chen

No guarrantees.

Default_Station.C

An off-the-shelf working Station subclass.

I need to make sure that this deals with the reference counts of
my_connectiOI\JlOde properly.

#include "Globals.h"
#include •systE!llL.Event.h".
#include •oefault_Station.h"

•);

Default_Station::-oefault_Station()
{

II does nothing

Default_Station::Default_Station(ostream& log_to,Nodetype* connection_node)
{

my_connectiOI\JlOde = connectioI_Jlode;
destination = log_to;

Default_Station::Default_Station(ostream& log_to)
{

my_connection_node = O;
destination = log_to;

Result_Code* Default_Station::Receive_Data(Sim_Packet* the_Data)
{

log("A default station got the data•,•oefault_Station Message");
return O;

Result_Code* Default_Station::Sen<l_Data(Sim_Packet* the_Data)
{

log("A default station was told to send data•,•oefault_Station Message

return gSimulation_Agent->Send_Event(
new SystE!llL.Event(receive_data_event,the_Data),
my_connectioI_Jlode);

Result_Code* Default_Station::Break_Connection(void)
{

log("A default station was told to break it's connection•,
"Default_Station_Message");

my_connection_node = O;
return O;

Result_Code* Default_Station::Enable_Receive(void)
{

log("A default station was told to enable receive•,•oefault_Station Me
ssage");

Result_Code* Default_Station::Disable_Receive(void)
{ .

log("A default station was told to disable receive","Default_Station M
essage");

return O;

Result_Code* Default_Station::New_Connection_Node(Nodetype* my_new_connection)
{

log("A default station was told to create a new connection","Default_S
tation Message");

II in addition to worrying about reference counts, I think we should
II worry also about creating a new connection between a station
II and another node
my_connection_node = my_new_connection;
II but for now we aren't worrying about it.
return O;

I*

To Do:

*/

Run-Time Surnulation Library version O.Olpa
(c) 1996 Andrew Chen

No guarrantees.

Default_Station.h

An off-the-shelf working Station subclass.

;{;~~1iu1~r~~~11;::;p~f.~~1!~!§]i!11Ii!I!i~fa~~~:,';

I need to make sure that this deals with the reference counts of
rny_connection.Jlode properly.

iifndef DEFAULT_STATION_H

idefine DEFAULT_STATION_H

#include •station.h"
iinclude "Logger.h•

class Default_Station public Station,

} ;

protected:
-oefault_Station();

Nodetype* rny_connection_node;

public:

public Logger

Default_Station(ostrearn& log_to,Nodetype* connection.Jlode);

Default_Station(ostrearn& log_to);

virtual Result_Code* Receive_Data(Sirn_Packet• the_Data);

virtual Result_Code* Send_Data(Sirn_Packet• the_Data);

virtual Result_Code* Break_Connection(void);

virtual Result_Code* Enable_Receive(void);

virtual Result_Code* Disable_Receive(void);

virtual Result_Code* New_Connection_Node(Nodetype* rny_new_connection);

iendif

#include "Event_Queue.h"

Event_Queue: : Event_Queue ()
{

II a do nothing constructor

bool Event_Queue:: not_empty()
{

return (!(pq.empty()));

0~'87~~71S~~rt~:=:~:~~~J;y~J!t!~~~l~~~~~~~:

void Event_Queue::push(Simulation_Event * si111....evnt_item)
{

pq.push(si111....evnt_item);

Simulation_Event * Event_Queue::pop()
{

Simulation_Event * t;
if (pq.empty()) return O; II maybe I should do a throw here?
t = pq.top();
pq.pop();
return(t);

iifndef EVENT_QUEUE_H

iinclude <bool.h>
#include <function.h>
tinclude <deque.h>

iinclude <stack.h>

~~~!~x~~c9~9~¥sr~~kt:,~:, 

II supposedly stack.his the one that has the priority_queue template in it 

iinclude •simulation,_Event.h" 

fdef ine EVENT_QUEUE_H 

II presently unimplemented 
II an old version that I don't know if it works 
II can be found in old/ 

class Event_Queue 
private: 

} ; 

protected: 
priority_queue< deque<Simulation,_Event*>, greater<Simulation,_Event*> > pq; 

public: 

Event_Queue(); 
bool not_empty(); 
void push(Simulation,_Event * sim.....evnt_item); 
Simulation,_Event *pop(); 

#endif 



iinclude <stdlib.h> 
#include <stdio.h> 
tinclude <assert.h> 

tinclude "Event_Receiver.h" 

Event_Receiver::Event_Receiver() 
{ 

,::?'. .·. '"'.'.fJr~;t~f1.E':·:c",,,"1'r,~w~O~~: ..• · ...•. ''·.··· ·.· 
:;[:,lW§>>:c::':::Li:,,,,,,, .. ,,". V.~!! .. ~.,,$S~~y~~:.-%$.~L:>J\>:1+,.;'",;;,_,;;,\:: 



/* 

*I 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Event_Receiver.h 

tifndef EVENT_RECEIVER_H 

tdef ine EVENT_RECEIVER_H 

tinclude •config.h" 
tinclude •simulation_Event.h" 
#include "Result_Code.h" 

class Event_Receiver 

private: 

protected: 

public: 

Event_Receiver(void); 

'.'':l3~v'2e·"""n:"Ft'·:'*R::::me:~c:v,e'>'1·v'·· ~e'· ·r''cli~"'~".'''0" 
~:lj}£~,x~ ,xx0x«~~~,; ~~,. 0.,~~,,,,£,·~~'~"·'~~~;,, ~»~~i~~~t~~~;:.)~·-

virtual Result_Code* Handle_Event(Simulation_Event* the_Event) = O; 

} ; 

tendif 



I* 

*I 

Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Event_Sender.C 

#include "Event_Sender.h" 

Result_Code* Event_Sender::Sencl..Event( 
Simulation-Event* the_Event, 
char* Receiver_:Name 

/''E ,.t;S~~~~;;?i. 
LL,~l"',,;.Y£!'t:""''~!l, .~~·"'"~t::r~:;:.c;; 

l II sends the event to the reciever indicated by the name 

return the_Event_Receivers.lookup(vec(Receiver_:Namell->Handle_Event(the_Event); 
II eventually want Simulator_Agent to queue this 
II but this should work for now as a quick hack 
} 

bool Event_Sender::Adcl..Event_Receiver( 
Event_Receiver& another_Event_Receiver, 
char* Receiver_:Name 
) II adds to the list of possible recievers •another_Event_Receiver• 
II returns 1 if the addition occured, 0 if the name already existed 

return the_Event_Receivers.add(&another_Event_Receiver,vec(Receiver_:Name)); 
II again, another quick hack 
II (the pairing class hasn't been written yet, has it?) 
II yet this should reduce our link errors 
} 

bool Event_Sender::Remove_Event_Receiver(char* Receiver_;Name) 
II removes from the list of possible recievers "Receiver_Name• 
II returns 1 if the removal occured, 0 if no such receiver existed 

return the_Event_Receivers.remove(vec(Receiver_:Name)); 
II again, another quick hack •.. 
} 

Event_Sender::Event_Sender() II the constructor 
{ 
II nothing for this constructor to do, 
II as far as I can tell 
} 



I* 

*I 

Run-Time Sumulation Library version 0.0lpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Event_Sender.h 

fifndef EVENT_SENDE!LH 

tdef ine EVENT_SENDER..J{ 

tinclude <vector.h> 
#include •config.h" 
tinclude "Simulation_EVent.h" 
#include "Result_Code.h" 
#include "Event_Receiver.h• 
#include •pairings.h" 
#include "RTSLUtils.h" 

class Event_Sender 

} ; 

private: 
pairings<EVent_Receiver*,vector<char> > the_Event_Receivers; 

protected: 

II a list of all the Event Receivers this sender can send to, 
II along with their •names• whereby they are identified 

virtual Result_Code* Send_Event( 
Simulation_Event* the_Event, 
char* Receiver~ame 
); II sends the event to the reciever indicated by the name 

virtual bool Add_EVent_Receiver( 
Event_Receiver& another_Event_Receiver, 
char* Receiver~ame 
); II adds to the list of possible recievers •another_Event_Receiver• 
II returns 1 if the addition occured, 0 if the name already existed 

virtual bool Remove_Event_Receiver(char* Receiver~ame); 
II removes from the list of possible recievers "Receiver~ame• 
II returns 1 if the removal occured, 0 if no such receiver existed 

public: 
Event_Sender(); II the constructor 

llendif 



#include •simulator_.Agent.h" 

Simulator_.Agent* gSimulation_.Agent; 



~ 
.. ..... ,. ::s 

R> n g ...... 
c: 
0. 

Ill R> ..... 
~ . 

Ill 
...... ..... 
I» ~ ,. 
0 ...... 

c I» ,. 
0 

4Q c ~ ,. 4Q • ~ 
4Q ,. 
Ill ... =!' 
~ ...... 
I» ,. ... 
0 

~ 
~ ,. 



I* 

Note: 

*I 

Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Logger.C 

This should be a parent class of any class that wants to 
access a log or log files. 

#include "Logger.h• 

II. ostream& destination; 

Logger::Logger(void) :destination(cerr) 
( 

II this should be protected, and do nothing 

Logger::Logger(Logger &the_Logger) 
onstructor 
( 
} 

:destination(the_Logger.destination) II copy c 

II or if •thy_string• threw an error. 

if (!(aResultCode I I category)) return O; 
destination<< (category?category:•No category•) << •: • 
<< (aResultCode?aResultCode->thy_string() :•No Result Code to log•) << endl; 
return l; 
II still need to put in code to check and see 
II if the logging actually went through well 

bool Logger::error(Result_Code* aResultCode) 
I* just like the code 

log(aResultCode,•Error•); 
*I 

return log(aResultCode,"Error•); 

bool Logger::warning(Result_Code* aResultCode) 
I* just like the code 

log(aResultCode,•warning•); 
*I 

return log(aResultCode,•warning•); 

bool Logger::die(Result_Code* aResultCode) 
Logger::Logger(ostream_withassign &log_to) 
, takes where to log to as argument 

:destination(log_to) II constructor I I* just like the code 

bool Logger::log(char* something_to_log,char* category) 
II log logs the something_to_log as of type category to the log file. 
II For example, if the something_to_log was •execution table invalid" 
II and the category was "Error• 
II then the line "Error: execution table invalid" 
II would be appended to the log file 
I* a la the code 

destination<< category<< •: • << something_to_log << endl; 
*I 
II returns 1 is succesfull, 
II 0 if either pointer argument is null, 
II or if the ostream was closed or had some other error. 

if (!(something_to_log I I category)) return O; 
destination<< (category?category:"No category") << •: • 
<< (something_to_log?something_to_log:"Nothing to log•) << endl; 
return l; 
II still need to put in code to check and see 
II if the logging actually went through well 

bool Logger::log(Result_Code* aResultCode,char* category) 
II log logs the description string as of type category to the log file. 
II For example, if the description string was •execution table invalid" 
II and the category was "Error• 
II then the line "Error: execution table invalid• 
II would be appended to the log file 
I* a la the code 

destination<< category<<•: • << aResultCode.thy_string() << endl; 
*I 
II returns 1 is succesfull, 
II 0 if either pointer argument is null, 
II or if the ostream was closed or had some other error 

*I 

log(aResultCode,"Fatal"); 
exit(aResultCode.thy_icl_number()); 

II designed to emulate the effect of perl's "die• command 

bool result; 
result= log(aResultCode,•Fatal"l; 
exit(aResultCode->thy_icl_number()); 
return result; 
II need to change prototype - this should be declared void, right? 

bool Logger::error(char* some_error) 
I* just like the code 

log(some_error,"Error•); 
*I 

return log(some_error,"Error"); 

bool Logger::warning(char* some_warning) 
I* just like the code 

log(some_warning, •warning•); 
*I 

return log(some_warning,•warning•); 

bool Logger::die(char* something_fatal) 
I* just like the code 

log(something_fatal,"Fatal"); 
exit(l); 

*I 
II designed to emulate the effect of perl's "die• command 

bool result; 
result= log(something_fatal,"Fatal"l; 





I* 

Note: 

•1 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Logger.h 

This should be a parent class of any class that wants to 
access a log or log files. 

fifndef LOGGER_H 

fdef ine LOGGER_H 

#include •config.h" 
#include <iostream.h> 
#include "Result_Code.h" 

class Logger 

protected: 
ostrea?1Lwithassign& destination; 

public: 
Logger(); 
Logger(Logger &the_Logger); II copy constructor 
Logger(ostrea?1Lwithassign &log_to); II constructor, takes where to log to 

as argument 

endl; 

bool log(char• something_to_log,char* category); 
II log logs the something_to_log as of type category to the log file. 
II For example, if the something_to_log was •execution table invalid• 
II and the category was "Error• 
II then the line "Error: execution table invalid" 
II would be appended to the log file 
I* a la the code 

destination<< category<< •: • << something_to_log << endl; 
•1 
II returns 1 is succesfull, 
II 0 if either pointer argument is null, 
II or if the ostream was closed or had some other error. 

bool log(Result_Code* aResultCode,char* category); 
II log logs the description string as of type category to the log file 

II For example, if the description string was •execution table invalid 

II and the category was "Error• 
II then the line "Error: execution table invalid" 
II would be appended to the log file 
I* a la the code 

destination<< category<< •: • << aResultCode.thy_string() << 

*I 
II returns 1 is succesfull, 
II 0 if either pointer argument is null, 
II or if the ostream was closed or had some other error 
II or if "thy_string• threw an error. 

bool error(Result_Code* aResultCode); 
I* just like the code 

} ; 

fendif 

log(aResultCode,"Error"); 
*I 

bool warning(Result_Code* aResultCode); 
I* just like the.code 

log(aResultCode,•warning•); 
•1 

bool die(Result_Code* aResultCode); 
I* just like the code 

log(aResultCode,"Fatal"); 
exit(aResultCode.thy_i<l_number()); 

•1 
II designed to emulate the effect of perl's "die• command 

bool error(char* some_error); 
I* just like the code 

log(some_error,"Error•); 
*I 

bool warning(char• some_warning); 
1• just like the code 

log(some_error,•warning"); 
•1 

bool die(char* something_fatal); 
I* just like the code 

log(some_error,"Fatal"); 
exit(l); 

•1 



/* 
Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Medium.h 

*I 

tifndef MEDIUM_H 

fdefine MEDIUM_H 

tinclude •config.h" 
tinclude "Event_Sender.h" 
#include "Event_Receiver.h• 

class Medium : public Event_Receiver, 

protected: 
~Medium(); 

public: 
Medium(); 

public Event_Sender 

virtual Result_Code* Handle_Event(Simulation_Event• the_Event); 

} ; 

tendif 



/* 
Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Network.h 

*/ 

lifndef NETWORK_H 

tdefine NETWORK_H 

tinclude •config.h• 
tinclude "Event_Sender.h" 
tinclude "Event_Receiver.h• 

class Network : public Event...Receiver, 

protected: 
-Network(); 

public: 
Network(); 

public Event_Sender 

virtual Result_Code* Handle_Event(Simulation_Event* the_Event); 

} ; 

iendif 



/* 

*/ 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Nodetype.h 

fifndef NODETYPE_H 

fdef ine NODETYPE_H 

#include •config.h" 
#include "Event_Sender.h" 
#include "Event_Receiver.h" 
#include "Result_Code.h" 
#include •control_Region.h" 
#include "Si111....Packet.h" 

class Nodetype : public Event_Receiver, 

} ; 

protected: 
-Nodetype ( ) 
{ 

} ; 

public: 
Nodetype() 
{ 
} 

public Event_Sender 

virtual Result_Code* Handle_Event(Simulation_Event* the_Event) = O; 

virtual Result_Code * Connect_Control_Region(Control_Region*) = O; 
virtual Result_Code * Disconnect_Control_Region(Control_Region*) = O; 
virtual Result_Code * Observe_Begin_Transmit(Si111....Packet*) = O; 
virtual Result_Code * Observe_Encl..Transmit(Si111....Packet*) = O; 
virtual Result_Code * Observe.J\bort_Trasmit(Si111....Packet*) = O; 

llendif 



I* 

*I 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Protocol.h 

#ifndef PROTOCOL.JI 

idefine PROTOCOL_H 

#include •config.h• 
#include "Ref_Cnt_Obj.h• 
iinclude "Event_Sender.h" 
#include "Event_Receiver.h• 

class Protocol : public Event_Receiver, 

protected: 
-protocol(); 

public: 
Protocol(); 

public Event_Sender, 
public Ref_Cnt_Obj 

virtual Result_Code* Handle_Event(Simulation_Event* the_Event); 

} ; 

#endif 



#include <stdlib.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <assert.h> 
#include <stdio.h> 
#include "RTSLUtils.h• 
iinclude •systetLEvent.h" 

int die(char* death,_string) 
( 

cerr << death._string; 
exit(l); 
return O; 

vector<char> vec(char * s) 
II Return vector<char> containing the characters of s 
II (not including the terminating null). 

vector<char> x; 
while (*s != '\0') 

x.push._back(*s++); 

} ; 
return x; 



#include <vector.h> 
#include "Event_Queue.h" 

int die(char*); 

vector<char> vec(char * s); 



I* 

Notes: 

*I 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Ref_Cnt_Obj.C 

Reference Count Objects can only be created via pointers; 
The code used to deal with the Reference Count Object must manually 

1) keep track of when to increment/decrement the count 
2) be very careful that if the controlling/using object is duplicated 

that the resulting counts are kept accurate. 

#include "Ref_Cnt_Obj.h" 

Ref_Cnt_Obj::Ref_Cnt_Obj() 
{ 

my_count = O; 
II I'll figure out what (if anything) this is supposed to do later. 
} 

Ref_Cnt_Obj::-Ref_Cnt_Obj() 
{ 
II presently a do nothing destructor -
II we should, however, implement error checking 
II to make sure that we're not destroying this 
II when something is actually referencing it 
} 

Result_Code • Ref_Cnt_Obj::Destroy(Ref_Cnt_Obj* to_die) 
{ 

delete to_die; 
return O; 

Result_Code * Ref_Cnt_Obj::Decrement_Count(Ref_Cnt_Obj* to_decrement) 
{ 

(to_decrement->my_count)--; 
if (to_decrement->my_count 
return O; 

0) delete to_decrement; 

Result_Code • Ref_Cnt_Obj::Increment_Count(Ref_Cnt_Obj* to_increment) 
{ 

(to_increment->my_count)++; 
return O; 



I* 

Notes: 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Ref_Cnt_Obj.h 

Reference Count Objects can only be created via pointers; 
The code used to deal with the Reference Count Object must manually 

1) keep track of when to increment/decrement the count 
2) be very careful that if the controlling/using object is duplicated 

that the resulting counts are kept accurate. 
*I 

#ifndef REF_CNT_OBJ_H 

tdefine REF_CNT_OBJ_H 

#include •config.h" 
#include "Result_Code.h" 

class Ref_Cnt_Obj 

} ; 

private: 

protected: 
unsigned long my_count; 
-Ref_Cnt_Obj(); 

public: 
Ref_Cnt_Obj(); 
static Result_Code * Destroy(Ref_Cnt_Obj* to_die); 
static Result_Code * Decrement_Count(Ref_Cnt_Obj* to_decrement); 
static Result_Code * Increment_Count(Ref_Cnt_Obj* to_increment); 

llendif 



finclude <string.h> 
finclude <bool.h> 
finclude "Result_Code.h" 

II the static data members 

pairings<char*,unsigned long> Result_Code::Result_Codes; 

II the Result_Code class has a single 
II associative array of id numbers and 
II description strings, 
II for referencing a description of the 
II instance's value's meaning or 
II for automatic creation of id numbers 
II based on description strings that 
II one wants to _dynamically_ enter into 
II the associative array. 

unsigned long Result_Code::curr_i<l.;nax = O; 

II at any given point during execution 
II is an upper bound for the 
II id numbers in the associative array. 

II the non-static member functions 

Result_Code::Result_Code() 
{ 
} 

Result_Code::Result_Code(char * arg) II must be a string constant that is arg 
{ 

bool done = false; 
for (int i = O; i < curr_i<l.;nax; i++) { 

} ; 

if (0 == strcmp(Result_Codes.lookup(i),arg)) 
my_id_number = i; 
done = true; 
break; 

} ; 

if (!done) { 
Result_Codes.add(arg,curr_i<l.;nax); 
my_id._number = curr_i<l;nax; 
curr_id_;nax++; 

} ; 
II there's got to be a better way to implement this 
II but this is the best that I can think of for now 

char* Result_Code::thy_string(void) 
{ 

return Result_Codes.lookup(my_id_number); 

unsigned long Result_Code::thy_id_number(void) 
{ 

return my_id_number; 



I~ 
Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Result_Code.h 

Notes: 

*I 

a 0 for a Result_Code * should be interpretted as ok 
(or as execution should never have reached that point). 
"ok" will be the standard •ok" message string. 

fifndef RESULT_CODE_H 

#define RESULT_CODE_H 

iinclude •config.h" 

#include •pairings.h" 

#include <bool.h> 

class Result_Code 

private: 

protected: 

unsigned long my_id_number; 

II each Result_Code instance has an id number 
II that represents it's value. 

static pairings<char*,unsigned long> Result_Codes; 

II the Result_Code class has a single 
II associative array of id numbers and 
II description strings, 
II for referencing a description of the 
II instance's value's meaning or 
II for automatic creation of id numbers 
II based on description strings that 
II one wants to _dynamically_ enter into 
II the associative array. 

static unsigned long curr_id_Jnax ; 

II at any given point during execution 
II is an upper bound for the 
II id numbers in the associative array. 

bool query_id_number_exists(unsigned long); 

II determines whether or not the given 
II id number exists in the associative array 
II of id numbers and description strings. 

bool query_desc_string_exists(char*); 

II determines whether or not the given 
II description string exists in the associative 
II array of id nUmbers and description strings. 

unsigned long id_number_of_desc_string(char*); 

II looks up in the associative array of 
II id numbers and description strings the 
II id number corresponding to the description 
II string that is it's argument. 
II Throws an error if the given string is not found. 

unsigned long unique_i<l_number(void); 

II returns an id number that presently is not 
II in the associative array. 

char* desc_string_of_id_number(unsigned long); 

II looks up in the associative array of 
II id numbers and description strings the 
II description string corresponding to 
II the id number that is it's argument. 
II Allocates new memory for the string, 
II copies it over, and returns a pointer to 
II the copy, to prevent unauthorized access to 
II the description strings. 
II Throws an error if the id number is not found. 

bool add._pairing(unsigned long, char*); 

public: 

II adds the given pairing represented by the arguments 
II to the associative array of description strings 
II and id numbers. 
II May or may not perform checks to maintain internal 
II consistancy. 
II If it does, throws errors when serious problems arise. 
II If the operation was successful, a non-zero value is returned. 
II If the operation was unsuccessful, but no serious errors 
II occurred, then a zero value is returned. 

Result_Code(char* description_string); 

II normal constructor for the Result_Code class 
I* automatic creation and management of id numbers, 

checks argument to see if it exists, 
if not adds it with new id number, 
otherwise just sets id numebr correctly. 

*I 

Result_Code(Result_Code& the_Result_Code); 

II copy constructor for Result_Code class 

Result_Code(void); 



} ; 

#endif 

II default constructor 

Result_Code( 

I* 

*I 

unsigned long desired.....icl..number, 
char* description_string, 
bool& completion); 

constructor that tries to add the given 
id number and description string pairing 
to the associative array. 
The reference to the boolean value completion 
is where it will store whether or not 
it succeded in adding that description string and 
id number to the associative array. 
At present, it's behavior if it can't 
because the icl..number is already taken is 
to not change the associative array at all 
and completion will be zero. 
However, if the icl..number is not already taken 
but the description string is, 
the behavior of this constructor is undefined. 
--read as, there may be associative array inconsistancies 

or a call to assert may be made to terminate execution 
or completion may be zero, 
or an error may be thrown 

const Result_Code& operator=(Result_Code& another_Result_Code); 

II assigns the other instance's value to the 
II current instance's value. 
II May or may not check to see that the value actually exists 
II in the associative array. 

const bool operator==(Result_Code& another_Result_Code); 

II Compares two instances to see if their values 
II are the same. 
II May or may not check to see if the value actually exists 
II in the associative array. 

char• thy_string(void); 

II returns the description string corresponding to 
II the id number of the current instance. 
II If the instance is invalid and the id number 
II doesn't actually exist in the associative array, 
II then an error is thrown. 

unsigned long thy_icl..number(void); 

II returns the id number of the current instance. 



#include •oata_Obj.h" 
finclude "Ref_Cnt_Obj.h• 

iifndef SI!LPACKET_H 
#define SI!LPACKET_H 

class Sim_Packet : public Data_Obj, public Ref_Cnt_Obj 
{ 

public: 

} ; 

llendif 

Sim_Packet I ) 
II do nothing constructor 
{ 
) ; 



I* 

*I 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Simulation._Event.C 

#include "Simulation._Event.h• 

Simulation._Event::Simulation._Event(voidl 
{ 

"'\'~~~rm~IE~~~Ii1~~!~:~,~~k,0,.,,,,,, 

my_count = 1; II as this is a Ref_Cnt_Obj, should initilize my_count properly 



I* 

*I 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 J>.ndrew Chen 

No guarrantees. 

Simulation_Event.h 

iifndef SIMULATION_EVENT_H 

idef ine SIMULATION_EVENT_H 

iinclude •config.h• 
#include "Ref_ent_Obj.h" 
iinclude "Timestamp_Obj.h" 

class System,_Event; 
class Placeholder_Event; 

class Simulation_Event public Ref_Cnt_Obj, public TimeStamp_Obj ( 

} ; 

private: 

protected: 

public: 
Simulation_Event(); II the constructor 
virtual SystenLEvent* as_SystenLEvent(l = O; 

II more elegant than downcasting 
II returns a null pointer if it is not 
II a system event 

virtual Placeholder_Event• as_Placeholder_EVent(l = O; 
II more elegant than downcasting 
II returns a null pointer if it is not a placeholder event 

static inline bool operator<(Simulation_Event• a,Simulation_Event* bl 
( 

return (*a< •bl; 

static inline bool eperator>(Simulation_Event* a,Simulation_Event* bl 
{ 

return (*a> *bl; 

iendif 



. lll1UlaJ9r'''!\.& ... :-- __ .-. 
~.,., ,,~_,_,$',.,.~;..V-'"'&'iiXX0.-.-%¥'>.:<x:-.>i%-f<i- ~d><lY.1".&>~x'<'-"'"',.;"'>:~ 

I* 

*I 

Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Simulator_,Agent.h 

#include <fstream.h> 
#include •simulator_,Agent.h• 
#include "Event_Queue.h" 
#include "RTSLUtils.h" 
#include •systeDLEvent.h" 
#include •sim_Packet.h" 

Simulator_,Agent::-simulator_,Agent() 
{ 

II destroys the event queue 
delete my_event_queue; 

Simulator_,Agent::Simulator_,Agent(char• the_file) 
{ 

my_event_queue = new Event_Queue; 

ReadEDF(the_file); llRead,_EDF reads the file 
II and places everything in the file in the event queue of 
II Simulator_,Agent 

void Simulator_,Agent::ReadEDF(char• filename) 
{ 

II this still needs some work, but at least it's no longer a dummy function 
unsigned long how__;nany_events,i; 
long temp_event_code; 
ifstream • the_file; 
assert(the_file =new ifstream(filename)); 
(*the_file) >> how_Jl\any_events; 
for(i = O; i < how_Jl\any_events; i++) { 

(*the_file) >> temp_event_code; 
II teh following if statement is a hack for now 
II this whole thing I intend to replace my a more 
II elegant EDF format and reader 

} ; 

if ((temp_event_code != send,_data_event)&& 
(temp_event_code != receive_data_event)) 
my_event_queue->push(new System_Event(temp_event_code)); 

} else { 

} ; 

my_event_queue->push(new System_Event(temp_event_code, 
new Sim_Packet)); 

Simulator_,Agent::Do_Simulation() 
{ 

bool ok = true; 
while (my_event_queue->not_empty() && ok) { 

ok = Process_Event(my_event_queue->pop()); 

return ok; 

bool Simulator_.Agent::Process_Event(Simulation_Event• the_Event) 

{ 
SysteDLEvent • sys_evnt_ptr; 

if (the_Event == 0) { 
return false; 

} else { 

} ; 

if (sys_evnt_ptr = the_Event->as_System_Event()) 
return Process_Event(sys_evnt_ptr); 

} else { 

} ; 

die("Hey, this shouldn't be happening!\n•); 
return false; 

Result_Code • Simulator_,Agent::Send,....Event(Simulation_Event • event,Event_Receiver •de 
stination) 
{ 

return destination->Handle_Event(event); 



,. 

•/ 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Simulator....Agent.h 

lifndef SIMULATOR_AGENT_H 

ldef ine SIMULATOR_AGENT_H 

#include •config.h" 
linclude "Event_Sender.h" 
#include "Event_Queue.h" 
#include "Nodetype.h" 

class Simulator_.Agent 
{ 

protected: 

public Event_Sender 

-simulator....Agent(); 
Event_Queue • my_event_queue; 

public: 
Simulator....Agent(char•); 
int Do_Simulation(); 
bool Process_Event(Simulation_Event•); 
virtual bool Process_Event(System_Event•) =O; 

. ~,uml~G~~g~~~~t· 

virtual Result_Code • Send_Event(Simulation_Event *,Event_Receiver •); 
virtual Nodetype• Name2Node(char•) =O; 
void ReadEDF(char*); 

} ; 

lendif 



iinclude <stdlib.h> 
iinclude <stdio.h> 
#include <assert.h> 
#include <string.h> 

finclude •station.h• 
#include "Globals.h• 

iinclude •simulation.._Event.h" 
iinclude •systeI11....Event.h' 
#include •sim.....Packet.h" 

static char* const_test_event = "Test Event•; 

Result_Code* Station::Handle_Event(Simulation.._Event* the_Event) 
{ 

SysteI11....Event * sys_evnt_ptr; 
pair<int,char**> * its_args; 

sys_evnt_ptr = 0; 

event.new Sim,_Packet),this 

ection")) { 

eive"ll { 

ceive•)) { 

ndling. \n• 

de")) { 

); 

} else if (0 == strcmp(its_args->second[O),"Break Conn 

return Break_Connection(); 
} else if (0 == strcmp(its_args->second[O),"Enable Rec 

return Enable_Receive(); 
} else if (0 == strcmp(its_args->second[O),"Disable Re 

return Disable_Receive(); 
} else die(•Apparently Invalid Argument Based Event Ha 

case 2: 
if (0 

•argc = 1\n•); 

strcmp(its_args->second[O),"New Connection No 

return 
New_Connection.._Node( 

gSimulation._.Agent->Name2Node(i 
if (the_Event && (sys_evnt_ptr = the_Event->as_SysteI11....Event())) { I ts_args->second[l]) 

event),this); 

Test Event• )) 

t_event) 

Test Packet")) { 

switch (sys_evnt_ptr->thy_Event_Code()) { ); 

case send_self_test_event: } else die("Apparently Invalid Argument Based Event Ha 
return gSimulation._.Agent->Send_Event(new SysteI11....Event(a_test_ I ndling.\n• 

break; 
case a_test_event: 

Test_Event_Received(); 
return O; 
break; 

case receive_data_event: 
return Receive_Data(sys_evnt_ptr->get_Packet()); 

case send_data_event: 
return Send_Data(sys_evnt_ptr->get_Packet()); 

case break_connection_event: 
return Break_Connection(); 

case enable_receive_event: 
return Enable_Receive(); 

case disable_receive_event: 
return Disable_Receive(); 

case new_connection_node_event: 
return New_Connection.._Node(sys_evnt_ptr->get~ode()); 

case arg_based_event: 
its_args = &(sys_evnt_ptr->thy_Args()); 
switch (its_args->first) { 

case 1: 
if (0 == strcmp(its_args->second[OJ,const_test_event)) 

Test_Event_Received(); 
return O; 

} else if (0 == strcmp(its_args->second[OJ, •send Self 

return 
gSimulation._.Agent->Send_Event( 

); 

new SysteI11....Event( 
make_pair(l,&const_tes 

), 

this 

} else if (0 == strcmp(its_args->second[OJ,•send Self 

return 
gSimulation._.Agent->Send_Event( 

new Syste!ll..Event(receive_data_ 

•argc = 2\n"); 
default: 

die("Apparently Invalid Argument Based Event Handling. 
\n• 

} ; 
} ; 

assert(O); 
return(O); 
break; 

default: 
assert(O); 
return O; 

Station::Station(void) 
{ 
II do nothing, as far as I can tell 
} 

•argc != 1, argc != 2\n"); 

Station::Station(Nodetype• my_connection_node) 
{ 

New_Connection.._Node(my_connection_node); 

Station::-station(void) 
{ 

II do nothing, as far as I can tell 

void Station::Test_Event_Received(void) { 
cout << "Test Event Received• << endl; 
II this was just a hack for the demo 



/* 

*I 

Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Station.h 

This is an abstract class. 
For an off-the-shelf working Station subclass, use Default_Station. 

iifndef STATION_H 

tdef ine STATION_H 

#include •config.h" 
iinclude "Event_Sender.h" 
iinclude "Event_Receiver.h" 
#include "Si!!LPacket.h" 
#include "Nodetype.h" 

class Station : public Event_Receiver, 

} ; 

protected: 
-station ( l ; 

public: 

public Event_Sender 

Station(Nodetype* my_connection....node); 
Station(); 

virtual Result_Code* Handle_Event(Simulation_Event* the_Event); 
virtual Result_Code* Receive_Data(Si!!LPacket* the_Data) =O; 
virtual Result_Code* Sen<l._Data(Si11LPacket* the_Data) =O; 
virtual Result_Code* Break_Connection(void) =O; 
virtual Result_Code* Enable_Receive(void) =O; 
virtual Result_Code* Disable_Receive(void) =O; 
virtual Result_Code* New_Connection_Node(Nodetype* my_new_connection) =O; 
void Test_Event_Received(void); 

iendif 



#include •station2Station_Connection.h• 

tinclude •systeDL.Event.h• 
tinclude "Globals.h" 

#include •oefault_Station.h• 
II that's just a hack 

Station2Station_Connection::-station2Station_Connection() 
{ 
} 

Station2Station_Connection::Station2Station_Connection():other_station((Station*)0) 
{ 
} 

Result_Code * Station2Station_Connection: :Attach_to(Station * some_station) 
{ 

if (my_station) { 
assert(!other_station); 
other_station = some_station; 

} else { 
my_station = some_station; 

I; 
return (new Result_Code(•ok"ll; 

Result_Code * Station2Station_Connection::Handle_Event(Simulation_Event* the_Event) 
{ 

II presently this function is a back for the demo 
II as are all of the following 

SysteDL.Event * the_sys_evnt; 

assert(the_sys_evnt = the_Event->as_SysteDL.Event()); 
assert( 

(the_sys_evnt->thy_Event_Code() 
(the_sys_evnt->thy_Event_Code() 
); 

send_data_event) I I 
receive_data_event) 

assert(my_stationl; 
if (!other_station) 

} ; 

other_station =new Default_Station(cerr,this); 
assert(other_station); 

return gSimulation_,Agent->Send_Event( 

); 

new SysteDL.Event( 
the_sys_evnt->thy_Event_Code(), 
the_sys_evnt->get_Packet() 

), 
other_station 

II so as I understand it, in the demo the send data event gets sent to the fir 
st station, 

} 

II which creates a packet and sends it to the Station2Station_Connection node, 
II which creates another station and sends it there, 
II which then sends a receive data event (wl packet) to the s2s_c_n which then 

sends it back. 

Result_Code * Station2Station_Connection::Connect_Control_Region(Control_Region*) 
{ 

die("Station2Station_Connection::Connect_Control_Region(Control_Region*)\n• 
•unimplemented.\n"); 

return O; 

Result_Code * Station2Station_Connection::Disconnect_Control_Region(Control_Region*) 
{ 

die("Station2Station_Connection::Disconnect_Control_Region(Control_Region*)\n• 
•unimplemented.\n•); 

return O; 

Result_Code * Station2Station_Connection::Observe_Begin_Transmit(SiDL.Packet*) 
{ 

die("Station2Station_Connection::Observe_Begin_Transmit(SiDL.Packet*l\n• 
•unimplemented.\n•); 

return O; 

Result_Code * Station2Station_Connection::Observe_End_Transmit(SiDL.Packet*) 
{ 

die("Station2Station_Connection::Observe_End_Transmit(SiDL.Packet*)\n• 
•unimplemented.\n•); 

return O; 

Result_Code * Station2Station_Connection::Observe_Abort_Trasmit(SiDL.Packet*I 
{ 

die("Station2Station_Connection::Observe_Abort_Trasmit(SiDL.Packet*l\n• 
•unimplemented.\n•); 

return O; 



II not presently debugged nor tested 
tifndef STATION2STATION_CONNECTION_Ji 

#define STATION2STATION_CONNECTION_li 
#include •station....Connection.h" 

class Station2Station....Connection 
{ 

public Station._Connection 

} ; 

protected: 
-station2Station....Connection(); 
Station* other_station; 

public: 
Station2Station....Connection(); 

virtual Result_Code * Handle_Event(Simulation._Event* the_Event); 
virtual Result_Code * Attach..,.to(Station* some_station); 
virtual Result_Code * Connect_Control_Region(Control_Region*); 

virtual Result_Code * Disconnect_Control_Region(Control_Region*); 
virtual Result_Code * Observe_Begin._Transmit(Sim._Packet*); 
virtual Result_Code * Observe_Encl..Transmit(Si111..Packet*); 
virtual Result_Code * Observe_Jlbort_Trasmit(Sim,_Packet*); 

#endif 



#include •station.._Connection.h" 

Station.._Connection::-station.._Connection() 
{ 
} 

Station.._Connection::Station.._Connection():my_station((Station *)0) 
{ 
} 

Result_Code • Station.._Connection::Handle_Event(Simulation.._Event* the_Event) 
{ 

II this function is incomplete and unimplemented 
II presently, as a hack, it is exprected to be over-ridden 
II ideally in the complete implementation this should not be necessary 
die("Station.._Connection::Handle_Event(Simulation.._Event• the_Event)\n• 

•not implemented yet.\n•); 
return O; 

Result_Code • Station.._Connection::Attach_to(Station* some_station) 
{ 

assert(!my_station); 
my_station = some_station; 
return new Result_Code("ok'); 



,. 
Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Station_Connection.h 

Note: 

A station connection node can only be connected to one station at a time . . , 
iifndef STATION_CONNECTION_H 

idef ine STATION_CONNECTION_H 

#include •config.h• 
#include "Event_Sender.h• 
#include "Event_Receiver.h• 
#include "Nodetype.h" 
#include •station.h• 

class Station_Connection 
{ 

protected: 
-station_Connection(); 
Station • my_station; 

public: 
Station_Connection(); 

public Nodetype 

virtual Result_Code • Handle_Event(Simulation_Event• the_Event); 
virtual Result_Code • Attach._to(Station• some_station); 

) ; 

virtual Result_Code • Connect_Control_Region(Control_Region•) = O; 
virtual Result_Code • Disconnect_Control_Region(Control_Region*) = O; 
virtual Result_Code • Observe_Begin_Transmit(Sil!l..Packet•) = O; 
virtual Result_Code • Observe_End_Transmit(Sil!l..Packet•) = O; 
virtual Result_Code • Observe_Abort_Trasmit(Sil!l..Packet•) = O; 

llendif 



#include •station.._Connection.._Echo.h" 

iinclude •systE!ll\....EVent.h" 
#include "Globals.h• 

Station.._Connection....Echo::-station.._Connection._Echo() 
{ 
} 

Station.._Connection....Echo::Station.._Connection.._Echo() 
{ 
} 

Result_Code * Station.._Connection.._Echo::Handle_Event(Simulation.._Event* the_Event) 
{ 

II presently this function is a hack for the demo 
II as are all of the following 

SysteJJLEvent * the_sys_evnt; 

assert(the_sys_evnt = the_Event->as_Systet1....Event()); 
assert( 

(the_sys_evnt->thy_Event_Code() 
(the_sys_evnt->thy_Event_Code() 
); 

assert(my_station); 
return gSimulation_Agent->Send,_Event( 

send,_data_event) II 
receive_data_event) 

new SysteJJLEvent( 
the_sys_evnt->thy_Event_Code(), 
the_sys_evnt->get_Packet() 

); 

), 
my_station 

Result_Code * Station.._Connection.._Echo::Connect_Control_Region(Control_Region*) 
{ 

die(•station.._Connection_Echo::Connect_Control_Region(Control_Region*)\n• 
•unimplemented.\n"); 

return 0; 

Result_Code * Station.._Connection.._Echo::Disconnect_Control_Region(Control_Region*) 
{ 

die(•Station.._Connection.._Echo::Disconnect_Control_Region(Control_Region*)\n• 
•unimplemented.\n•); 

return O; 

Result_Code * Station.._Connection.....Echo::Observe_Begin.....Transmit(Sim.....Packet*) 
{ 

die(•station_Connection_Echo::Observe_Begin_Transmit(Sim,_Packet*)\n• 
•unimplemented.\n•); 

return O; 

Result_Code * Station.._Connection.....Echo::Observe_End,_Transmit(Sim,_Packet*) 
{ 

die("Station.._Connection.....Echo::Observe_End,_Transmit(Sim,_Packet*)\n• 
•unimplemented.\n"); 

return O; 

Result_Code * Station.....Connection....Echo::Observe...llbort_Trasmit(Sim,_Packet•) 
{ 

die(•station.....Connection.._Echo::Observe...llbort_Trasmit(Sim.....Packet*)\n• 
"unimplemented.\n•); 

return O; 



/* 

Note: 

Run-Time Sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Station....Connection....Echo.h 

atton;;~€onrt~l.Onsii-'-"" .... "'•--
c,:;..>t';(,.'j.;~','..>(<..'~'x~;V.i>.~,"h'i<~A':-:~A/,0 .. .,,~.,,~ .. ~~~·~: 

A station connection node can only be connected to one station at a time. 
*/ 

lifndef STATION_CONNECTION_ECHO_H 

idef ine STATION_CONNECTION_ECHO_H 

linclude •config.h• 
linclude "Event_Sender.h" 
linclude "Event_Receiver.h" 
linclude "Nodetype.h" 
iinclude •station.h• 
iinclude •station....Connection.h" 

class Station,_Connection,_Echo 
{ 

public Station....Connection 

protected: 
-station....Connection....Echo(); 

} ; 

public: 
Station....Connection....Echo(); 

virtual Result_Code * Handle_Event(Simulation....Event* the_Event); 
virtual Result_Code * Connect_Control_Region(Control_Region*); 

virtual Result_Code * Disconnect_Control_Region(Control_Region*); 
virtual Result_Code * Observe_Begin_Transmit(Sim_Packet*); 
virtual Result_Code * Observe_End_Transmit(Sim_Packet*); 
virtual Result_Code * Observe_Abort_Trasmit(Sim_Packet*); 

iendif 



/* 
Run-Time Sumulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Systel!LEvent.h 

*/ 

fifndef SYSTEM_EVENT_H 

#define SYSTEM_EVENT_H 

finclude <bool.h> 
#include <vector.h> 
#include <stdio.h> 
#include <assert.h> 
#include <stdlib.h> 
#include •config.h• 
#include •simulatioIL.Event.h" 
#include "RTSLUtils.h" 
#include "Si111_Packet.h• 
finclude "NodetJ1Pe.h• 

II here are the defines for various event codes 
II (this is presently just a hack for the demo prototl!Pe 
II a more elegant system needs to be devised •.• ) 

#define send_self_test_event 1001 
#define a_test_event 1002 
#define new_station 1003 
fdefine sen<l.Jnost_recently_created_station_test_event 
#define receive_data_event 1005 
#define send_data_event 1006 
#define break_connection_event 1007 
#define enable_receive_event 1008 
#define disable_receive_event 1009 
#define new_connection_node_event 
#define new_echo_node 
#define new_s2s_conn_node 

1010 
1011 
1012 

#define arg_based_event 1000 

1004 

//hopefully arg__based_event is the more elegant system which we needed 

class System_Event 
( 

protected: 

public SimulatioIL.Event 

long the_Event_Code; 
bool has_args; 
pair<int,char**>& args; 
Si111_Packet * the_Packet; 
NodetJIPe * the__Node; 

virtual -system....Event() 
( 

if (the_Packet) Si111....Packet::Decrement_count(the_Packet); 
} ; 

public: 
System....Event(long Event_Code) 

the_Packet ( 0 I , 
the__Node(O), 
args(make_pair(O, (char**)O)) // arg is currently just a hack 

(II this whole function here is just a hack for the demo prototype 

} ; 

the_Event_Code = Event_code; 
has_args = false; 
assert( 

(Event_Code != send_data_event)&& 
(Event_Code != receive_data_event)); 

System....Event(long Event_Code,SiDLPacket * Packet) 
the_Packet(Packet), 
the_Node(O), 
args(make_pair(O, (char**)O)) // arg is currently just a hack 

{// this whole function here is just a hack for the demo prototype 
the_Event_Code = Event_Code; 

} ; 

has_args = false; 
assert( 

(Event_Code == send_data_event) I I 
(Event_Code == receive_data_eventll; 

if (the_Packet) Si11LPacket::Increment_Count(the_Packet); 

System_Event(long Event_Code,Nodetype * Node) 
the_Packet(O), 
the__Node(Node), 
args(make_pair(O, (char**)O)) // arg is currently just a hack 

(II this whole function here is just a hack for the demo prototl/Pe 
the_Event_Code = Event_Code; 
has_args = false; 
assert(Event_Code == new_connection_node_event); 

} ; 

System....Event(pair<int,char**> &argargs) :args(argargs) 
( 

} ; 

has_args = true; 
args = argargs; 
II do I need that above line? 
the_Event_Code = arg__based_event; 

Sim....Packet * get_Packet(void) 
( 

} ; 

assert(the_Packet); 
return the_Packet; 

NodetJIPe * get_Node(void) 
( 

} ; 

assert(the_Node); 
return the__Node; 

pair<int,char**>& thy__,Args() 
( 

} ; 

assert(has_args); 
return args; 

long thy_Event_Code() ( 
return the_Event_Code; 

system....Event• as_System....Event() 
{ 

return this; 



} ; 

#endif 

Placeholder_Event* as_Placeholder_Event() 
{ 

return O; 

' void Destroy() 
( 

delete this; 



finclude "TimeStamp_Obj.h" 

TimeStamp_Obj::TimeStamp_Obj() 
{ 
II do nothing constructor 
} 

bool const TimeStamp_Obj::operator<(const TimeStamp_Obj& other_time_stamp) 
{ 

return (my_time < other_time_stamp.my_time); 

bool const TimeStamp_Obj::operator>(const TimeStamp_Obj& other_time_stamp) 
{ 

return (my_time > other_time_stamp.my_time); 



II timestamp class - plug-in time-has-a-ordering 

Ufndef TIMESTAMP_OBJJi 

#define TIMESTAMP_OBJJi 
iinclude "Time_Class.h• 
#include <bool.h> 

class TimeStamp_Obj 
private: 

protected: 
#ifdef SUPPORTS_MUTABLE 

mutable 
flendif 

Time_Class my_time; 

public: 

TimeStamp_Obj(l; 

void operator+=(Time_Class& time_adjl 
II to augment it's current time-value 
{ 

my_time += time_adj; 
} ; 

bool const operator<(const TimeStamp_Obj& other_time_stampl; 
bool const operator>(const TimeStamp_Obj& other_time_stampl; 
friend 

#ifdef STATIC_.AND_INLINE 
static 
#endif 

inline bool operator<(const TimeStamp_Obj& a,const Timestamp_Obj& bl; 
friend 

#ifdef STATIC_.AND_INLINE 
static 
#endif 

inline bool operator>(const TimeStamp_Obj& a,const Timestamp_Obj& bl; 

} ; 

#ifdef STATIC_.AND_INLINE 
static 
#endif 
inline bool operator<(const TimeStamp_Obj& a,const TimeStamp_Obj& b) 
{ 

return (a.my_time < b.my_time); 

lifdef STATIC_.AND_INLINE 
static 
#endif 
inline bool operator>(const TimeStamp_Obj& a,const Timestamp_Obj& b) 
{ 

return (a.my_time > b.my_timel; 

flendif 



I* 

Note: 

*I 

Run-Time Swnulation Library version O.Olpa 
(c) 1996 Andrew Chen 

No guarrantees. 

Time.c 

The Time class can either be the time since a certain time, 
or a particular amount of elapsed time. 
The exact usage may vary throughout the code, 
as a consequence, this file may be incomplete. 

#include "Time_Class.h• 
#include <stdlib.h> 
tinclude <stdio.h> 
tinclude <assert.h> 

Time_class::Time_Class() 
( 

the_time = time(NULL); 

void Time_Class::operator+=(Time_Class& time_adj) 
II to augment it's current time-value 
II - needs be modified if more than seconds are being kept track of 
{ 

the_time += time_adj.the_time; 
} ; 

bool Time_Class::operator==!Time_Class* a_time) 
{ 

if (a_time) C 
if (the_time == a_time->the_time) 

} else 

} ; 
} else C 

return true; 

return false; 

return false; 
II maybe we want to throw an error here ? 

} ; 

bool Time_Class::operator<(Time_Class& a_time) 
{ 

return (the_time < a_time.the_time); 

bool Time_Class::operator>(Time_Class& a_time) 
{ 

return (the_time > a_time.the_time); 

void Time_Class::operator=(Time_Class* the_other_time) 
{ 
II later on we want more robust error handling with throw statements and stuff 
II but for now this should do. 
assert(the_other_time); 
II if (the_other_time) { 

the_time = the_other_time->the_time; 

II 
} 

else { 

void Time_Class::out(ostream& the_out) 
{ > 

the_out << ctime(&the_time); 



/* 

Note: 

*/ 

Run-Time sumulation Library version O.Olpa 
(cl 1996 Andrew Chen 

No guarrantees. 

Time.h 

The Time_Class class can either be the time since a certain time, 
or a particular amount of elapsed time. 
The exact usage may vary throughout the code, 
as a consequence, the header here may be incomplete. 

llifndef TIME_H 

#define TIME_H 

#include •config.h• 
#include <bool.h> 
iinclude <time.h> 
#include <iostream.h> 

class Time_Class 

private: 

protected: 
time_t the_time; 

public: 
Time_Class(); 
virtual bool operator==ITime_Class• a_time); 
virtual bool operator<(Time_Class& a_time); 
virtual bool operator>(Time_Class& a_time); 
virtual void operator+=(Time_Class& time_adj); 

virtual void operator=( 
Time_Class• the_other_time 
); 

virtual void out(ostream& the_out); 

friend 
llifdef STATIC_.AND_INLINE 
static 
llendif 

inline bool operator<(const Time_Class& a,const Time_Class& b); 
friend 

llifdef STATIC_.AND_INLINE 
static 
llendif 

inline bool operator>(const Time_Class& a,const Time_Class& b); 
} ; 

llifdef STATIC_.AND_INLINE 
static 
iendif 
inline bool operator<(const Time_Class& a,const Time_Class& b) 
{ 

return (a.the_time < b.the_time); 

llifdef STATIC_J>JID_INLINE 
static 
llendif 
inline bool operator>(const Time_Class& a,const Time_Class& bl 
{ 

return (a.the_time > b.the_time); 

llendif 



...... ...... 
n g ... ... 
IQ 

::r 
I 

'tl 
11 
CD .. 
~ 
l'T 

l< 



ll·pairings.h - not yet implemented 

tifndef PAIRINGS_H 
#define PAIRINGS_H 

tinclude <pair.h> 
linclude <bool.h> 
#include <stdlib.h> 
finclude <assert.h> 
tinclude <stdio.h> 
finclude <map.h> 

template <class T, class U> 
class pairings 

} ; 

private: 

protected: 
map< U , T , less<U> >it; II we may want to change this later - I hope not 

public: 
pairings (void) ; 
T& lookup (U) ; 
bool add(T&,U); 
bool remove (U) ; 

template <class T,class U> 
bool pairings<T,U>::add(T& what,U key) 
{ 

it[key) = what; 
II I should put in the error checking and handling that I was 
II planning on, but I doubt anyone will use it 
II and I don't know how to do it using the STL 
return true; 

template <class T,class U> 
pairings<T,U>::pairings(void) 
II a do nothing constructor 
} 

template <class T,class U> 
T& pairings<T,U>::lookup(U key) 
{ 

return it[key]; 

template <class T,class U> 
bool pairings<T,U>::remove(U key) 
{ 

} 
iendif 

it.erase(key); 
II I should put in the error checking and handling that I was 
II planning on, but I doubt anyone will use it 
II and I don't know how to do it using the STL 
return true; 



/* 

*/ 

Run-Time Sumulation Library test simulation agent and station class 
(c) 1996 Andrew Chen 

No guarrantees. 

main.c for 

iifndef SLASH_CAN_BE_IN_FILENJ\MES 

#include • •• /rtsl/config.h• 
#include "demo_Sil!L}.g.h• 
llinclude • •• /rtsl/RTSLUtils.h• 
#include • •. /rtsl/Globals.h• 

II else 

llinclude •config.h' 
#include "demo_Sil!L}.g.h• 
#include "RTSLTUtils.h• 
llinclude "Globals.h• 

#define NEED_CONSOLE 
#include <console.h> 

llendif 

int main(int argc,char** argv) 
{ 
llifdef NEED_CONSOLE 

llendif 
argc = ccommand(&argv); 

if (argc < 2) die("Need a simulation file.\n•); 

gSimulation_Agent =new demo_Sil!L}.g(argv[l)); 
gSimulation_Agent->Do_Simulation(); 



'.;;j2i:1~~~~~!ii~&~£~:~:\'. 
#include "demo_Sim,_Ag.h" 
#include • •. lrtsllGlobals.h" 

#include • •. lrtsllStation.h• 
II that was included only for this hacked demo 
#include • .• lrtsllSystem_Event.h• 
II as was that 
#include <iostream.h> 
II and that 
#include • •. lrtsllDefault_Station.h" 
II and that 
#include • •. lrtsllStation_Connection_Echo.h• 
//and that 
#include • .. lrtsl1Station2Station_Connection.h" 
II and that 

Result_Code* demo_Sim,_Ag::Handle_Event(System_Event* the_Event,Station* a_Station) 
{ 
II this function is just a quick hack for the demo prototype 
II ideally it should queue the events based on a timestamp into the event queue 
II but here it just send them as soon as they come in 

II also, ideally that would be a Simulation Event * as an argument and 
II not a System Event * 

return (a_Station->Handle_Event(the_Event)); 

bool demo_Sim,_Ag::Process_Event(System_Event* the_Event) 
{ 
II should process the event - unimplemented in reality right now. 
II the code here is just for the demo. 

if (the_Event) { 
switch (the_Event->thy_Event_Code()) 

case new_station: 
the_Station =new Default_Station(cout); 
return 1; 
break; 

case send,Jnost_recently_created_station_test_event: 
the_Event =new System_Event(sencl..self_test_event); 
assert(the_Station); 
the_Station->Handle_Event(the_Event); 
the_Event->Destroy(); 
return 1; 
break; 

II the following is just a hack 
II that's why the reference counts on these are probably off 

case sencl..data_event: 
gSimulation_Agent->Sencl..Event( 

new System_Event(sencl..data_event, 
new Sil!\.._Packet), 

the_Station) ; 
return l; 
break; 

II same here 

case new_echo_node: 
Station_Connection_Echo * TSCE; 
TSCE = new Station_Connection_Echo; 
TSCE->Attach_to(the_Station); 

gSimulation_;.gent->Sencl..Event( 
new System_Event(new_connection_node_event,TSCE), 
the_Station 

); 

return l; 
break; 

II and here 

case new_s2s_conn_node: 
Station2Station_Connection * S2SC; 
S2SC = new Station2Station_Connection; 
S2SC->Attach_to(the_Station); 

gSimulation..;.gent->Sencl..Event( 
new System_Event(new_connection_node_event,TSCE), 
the_Station 

); 

} else { 

); 
return 1; 
break; 

default: 
assert(the_Station); II just a hack right now ... 
the_Station->Handle_Event(the_Event); 
the_Event->Destroy(); 
//return l; 
return O; 
break; 

switch (state) { 
case 0: the_Station 

state = l; 
return l; 
break; 

case 1: 

new Default_Station(cout); 

the_Event =new System_Event(sencl..self_test_event); 
the_Station->Handle_Event((Simulation_Event*)the_Event 

); 
the_Event->Destroy(); 
state = 2; 
return l; 
break; 

case 2: return O; 
break; 
default: return O; 
break; 

static char* SSTE = •send Self Test Event•; 
static char* SSTP = •send Self Test Packet•; 
static int one = l; 

demo_Sim,_Ag::demo_Sim,_Ag(char * thefile) 
{ 
II delete my_event_queue; 

Simulator_Agent(thefile) 

/*********************************************************************************** 
* 

* 
my_event_queue = new Event_Queue; 

* II sacrifice the read in EDF file so we can put our own 
events on there, 



•, 
e. 
• 

• 

,,.;,,{714;~.c.,;E~~~~~~~·.~~i€~I~~~:~~:s;:~,~,. 
II the arg-based ones that Read.EDF presently doesn't know how to handl 

my_event_queue->push(new SysteI!\...Event(new_station)); 

* 
my_event_queue->push(new SysteI!\...Event(make_pair(one,&SSTP))); 

***********************************************************************************/ 
II the above commented out because we actually do want thd old-style EDF 
II for now 

Nodetype * demo_Sim..J\.g::Name2Node(char* the_node_name) 
( 

cerr << •demo_Sim..)\.g::Name2Node not implemented yet•<< endl; 
cerr << •could not look up node name: • << the_node_name << endl; 
die("Internal error - unimplemented function demo_Sim....Ag::Name2Node• 

•was called.\n"); 
return O; 



#ifndef DEMO_SIM_.AG_H 

#define DEMO_SIM_.AG_H 
#include • .. /rtsl/Simulator_J>.gent.h" 

#include • .. /rtsl/Station.h" 

#include • .• /rtsl/Nodetype.h" 

class demo_Sim.._Ag : public Simulator_J>.gent 
{ 

protected: 
int state; // this is only here as a quick hack right now 
Station* the_Station; // as is this 

public: 
bool Process_Event(System....Event*); 

f:~~i!!2~§E!l~~i::~~:2!, 

Result_Code* Handle_Event(System....Event*,Station*); //this is just a quick hac 
k 

demo_Sim.._Ag(char*); 
Nodetype * Name2Node(char*); 

) ; 

iendif 



Appendix 81: Original Class Hierarchy 

Event_ Sender 

Ref_Cnt_Obj 

Event_Mask 

Result_ Code 

Simulation_Engine 

Logger 

Protocol Unidirectional 

Control_Region Bidirectional 

Network Multidirectional 

Simulator_Agent 

Simulalion_Event<ystem_Event 

Object_Event 

Data_Obj~parse_Data_Obj 

Full_Data_Obj 

List Lambda_List 

Table Execution_ Table 

Time_Class 

Clock 



Appendix 82: Intermediate Class Hierarchy 

Event_Receiver 

Event_ Sender 

Event_Mask 

Result_ Code 

Logge 

Time_Class 

Clock 

Unidirectional 

Control_Region Bidirectional 

Network Multidirectional 

Nodetyp~ 

Statiorl....._ Station_ Connection 

Default_ Station 

Simulation_Event----System_Event 



Appendix 83: Latest Class Hierarchy 

Event_ Sender 
,,, , ,, " , ~','~ ..Control_Region (unimplemented) 
;; 
,,,~ 
",''Network (unimplemented) 
~ 
-',Medium (unimplemented) 

Result_ Code 

Event_ Queue 

Logge 
Simulation_Event System_Event 

Time_Class 

Data_ Obi---------· 



Appendix C1: Introduction to Prolog 

line 1 

line 2 

Prolog: 

a:-b. 

Q. 
These are prolog statements. 

a:-b. 

is a "rule". 

"a" is the left-hand side (or precedent), 

"b" is the right-hand side (or antecedent). 

Q. 
is an "axiom". 

After those prolog statements are entered, 

a user might be dealing with the prolog front end and might ask: 

Q. 
This "matches" with the axiom in line 2, 

so this would "return" ''true". 

The user might ask 

g. 

This "matches" with the precedent of the rule in line 1 , 

so now the prolog interpretter tries to "mathc" the right hand side of line 1. 

The right hand side of line 1 is "b". 

This is matched by the axiom Q. in line 2, 

so the result would be "true". 

Another user might ask 

Q. 

This doesn't match with anything, 

so the result of that query would be "false". 

Prolog rules can have variables, 

which always begin with a capital letter. 

line 3 or(X.Y):-X. 

line 4 or(X.Y):-Y. 

line 5 and(X.Y):-X.Y. 

line 6 istrue(X):-X. 



A user might query 

istrue(b). 

which would match with line 6, 

and so "X" would become bound to "b". 

Line 6 would then be interpretted as an intention to try to match "b". 

"b" would be matched on line 2, so the query would return "true". 

Another user might query 

or(c.d). 

this would match with line 3 and try to satisfy "c" 

(with "X" bound to "c") in this case. 

This would fail, so line four would be attempted to be matched. 

This would try to satisfy "d" (with "Y" bound to "d"). 

This too would fail, 

so "or(c,d)" would evaluate to "false". 

Another user might query 

and(a.or(b.c)}. 

To show what would happen for this query, 

we will adopt a trace notation. 

goal and(a.or(b.cV. 

match line 5 subgoals: .e, or(b.c) 

goal _g 

true. 

match line 1 subgoal: /l.. 
match line 2. 

true. 

goal or(b.c). 

match line 3 subgoal: /l.. 
match line 2. 

true. 

true. 

We've just about implemented the normal boolean logic predicates, 



{which, as you can see, are practically built into Prolog). 

We're just missing "not". 

To implement "not" though, we need to mention several more things. 

First amoung those is the matter of bound and unbound variables. 

An example of bound and unbound variables is the following: 

line 7 parent(bob,jane). 

line 8 parent(bob,jim). 

A user might query 

parent(X.Y). 

And the query would match line 7 first, 

and the "X" would become bound to "bob", 

and the "Y" would become bound to "jane". 

Then it would return "true" with X ="bob" and Y = "jane", 

and it would ask the user if another solution should be searched for. 

If the user says no, the query stops. 

If the user says yes, then the next line is matched (line 8) 

and "X" is bound to "bob" and "Y" is bound to "jim". 

Again the user would be told this and asked if another result is desired. 

Presently there is no other result, 

so the query would stop regardless of what the user answered. 

Then there is the "=" operator. 

line 9 assignOrEgual(X.Y):-X=Y. 

So if a user queried: 

assignOrEgual(X.a). 

The result would be (with "a" bound to "Y") an "X = a. Continue?" 

where the "Continue?" is the asking 

if we want to look for another solution. 

Likewise, if a user queried: 

assignOrEgual(a.b). 

The result would be "true" because the "a:-b" rule would be used. 

So if a user queried: 

assignOrEgual(a.a). 



line 10 

line 11 

line 12 

line 13 

line 14 

The result would be ''true" because a= a. 

If a user queried: 

assignOrEqual(a.c). 

the prolog interpretter would return "false" 

because there is no rule that it can match to either a or c 

to get them to be the same. 

If a user queried: 

assignOrEgual(X. Y). 

the prolog interpretter would try all the axioms that it knew about 

in order of their entry, 

and see which ones would be found equal to each other. 

The solutions it would probably present to the user, in order, would be 

X=a, Y=a 

X=a, Y=b 

X=b, Y=a, 

X=b, Y=b. 

Then there is "cut" or "I". 

Cut does not allow backtracking to go to before it. 

male(jim). 

isfather1 (X.Y):-parent(X.Y).male(Y). 

isfather2(X.Y):-l.parent(X.Y).male(Y). 

So the query: 

isfather1 (bob.Z). 

would return "Z = jim" 

but ther query: 

isfather2(bob.Z). 

would return "false" because the parent rule would match the first one, 

and then the male rule would fail, 

so the rule would fail and the "I" would prevent backtracking. 

Thus the "not" can be represented as: 

not(X):-X.1.fail. 

not(X):-. 

If "X" is true, then the first rule proceeds past the cut, 



and "fail"s, returning a "false". 

If "X" is false, the first rule doesn't match and so the second rule is tried. 

There it matches (because it doesn't require anything, 

so it's true by default), so it returns "true". 



Appendix C2: Differences between Prolog and the POL 

I. The variations to Prolog that I plan to make in the rule-specifications are the 

following: 

A. Perl-style "&" in front of all rule-names, everywhere. 

B. Perl-style "$" in front of all variable references, 

but not in front of variable declarations. 

C. C-style expressions can be used in the clauses. 

1. As in C, zero would be false, non-zero true. 

2. No keeping track of which variables are "bound". 

3. The expressions would be post-fix. 

0. The rules have precedence over each other in accordance with what 

would be expected of the object-class hierarchy of protocols and 

nodetypes. 

II. Some examples of the above variations would be as in the following: 

A. parent(bob,jim). 

would instead be 

&parent(bob,jim):-. 

B. add(X, Y,Z):-Z=X+ Y. 

would instead be 

&add{x,y,z):-$z $x $y + =. 
C. equal()(, Y):-X=zero, Y=zero. 

equa/(succ(X),succ(Y)):-equal(X, Y). 

would instead be 

&equa/(x,y):-$x $y ==. 
D. The functionality of the Prolog "add" in example B would require that it be 

split in two - one for the case where Z is bound and "add" is just testing 

the val~dity of the statement - the other for the case where Z is not bound 

and the "add" rule is binding a value to Z. The later is the one actually 

specified above. The former would be done via the following: 

&check_sum_equa/(x,y,z):-$z $x $y + ==. 



Appendix 81: Original Class Hierarchy 

Event_ Sender 

Ref_Cnt_Obj 

Event_Mask 

Result_ Code 

Simulation_Engine 

Logger 

Unidirectional 

Control_Region Bidirectional 

Multidirectional 

Simulator_Agent 

Simulation_Event<ystem_Event 

Object_Event 

Data_Obj~Sparse_Data_Obj 

Full_Data_ Obj 

List Lambda_List 

Table Execution_ Table 

Time_Class 

Clock 



Appendix 82: Intermediate Class Hierarchy 

Event_ Sender 

Event_Mask 

Result_ Code 

Logge 

Time_Class 

Clock 

Unidirectional 

Control_Region Bidirectional 

Multidirectional 

Default_ Station 

Simulation_Event----System_Event 



Appendix 83: Latest Class Hierarchy 

Event_Receiver 

Event_ Sender 

Result_ Code 

Event_ Queue 

Logge 

Time_Class 

,.; ,, 
~ .;,, 
'~ ,,, 
. .,,,,, ... :.;io ...Control_Region (unimplemented) 
;; 

~~ 
',';Network (unimplemented) 
~ 
"'Jv1edium (unimplemented) 

Simulation_Event System_Event 

Data_ Obj----.--



Appendix C1: Introduction to Prolog 

line 1 

line 2 

Pro log: 

a:-b. 

Q. 
These are prolog statements. 

a:-b. 

is a "rule". 

"a" is the left-hand side {or precedent}, 

"b" is the right-hand side {or antecedent). 

Q. 
is an "axiom". 

After those prolog statements are entered, 

a user might be dealing with the prolog front end and might ask: 

Q. 
This "matches" with the axiom in line 2, 

so this would "return" "true". 

The user might ask 

g. 

This "matches" with the precedent of the rule in line 1, 

so now the prolog interpretter tries to "mathc" the right hand side of line 1. 

The right hand side of line 1 is "b". 

This is matched by the axiom Q. in line 2, 

so the result would be "true". 

Another user might ask 

Q. 

This doesn't match with anything, 

so the result of that query would be "false". 

Prolog rules can have variables, 

which always begin with a capital letter. 

line 3 or(X.Y):-X. 

line 4 or(X.Y):-Y. 

line 5 and(X.Y):-X.Y. 

line 6 istrue(X):-X. 



Appendix C2: Differences between Prolog and the POL 

I. The variations to Prolog that I plan to make in the rule-specifications are the 

following: 

A. Perl-style "&" in front of all rule-names, everywhere. 

B. Perl-style "$" in front of all variable references, 

but not in front of variable declarations. 

C. C-style expressions can be used in the clauses. 

1. As in C, zero would be false, non-zero true. 

2. No keeping track of which variables are "bound". 

3. The expressions would be post-fix. 

D. The rules have precedence over each other in accordance with what 

would be expected of the object-class hierarchy of protocols and 

nodetypes. 

II. Some examples of the above variations would be as in the following: 

A. parent(bob,jim). 

would instead be 

&parent(bob,jim):-. 

B. add(X, Y,Z):-Z=X+ Y. 

would instead be 

&add(x,y,z):-$z $x $y + =. 
C. equal()(, Y):-X=zero, Y=zero. 

equal(succ(X),succ(Y)):-equal(X, Y). 

would instead be 

&equal(x,y):-$x $y ==. 
D. The functionality of the Prolog "add" in example B would require that it be 

split in two - one for the case where Z is bound and "add" is just testing · 

the validity of the statement - the other for the case where Z is not bound 

and the "add" rule is binding a value to Z. The later is the one actually 

specified above. The former would be done via the following: 

&check_sum_equal(x,y,z):-$z $x $y + ==. 


	On the automatic generation of network protocol simulators
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93

