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III. ABSTRACT 

Light Induced Modulation of Absorption, or LIMA, was discovered by 

E. J. Conway in cadmium sulfide in 1967. It holds promise as a non­

destructive test for material defect analysis. In 1969,·R. w. Major 

began studying LIMA in zinc selenide. This paper is an extension of 

his research and findings. 

The physical phenomenon of interest is optical absorption. ZnSe 

has a characteristic band gap of 2.7 ev with an equivalent wavelength 

3 

of 4770 K. Two light beams at longer wavelengths are passed through a 

ZnSe crystal, a low intensity monochromatic light and a higher intensity 

laser beam which modulates the former. Data are taken in the form of 

recorder charts showing changes in modulation of the former at various 

wavelengths by the latter versus time. 

Of primary interest is the role of impurities in the sample. Sim­

ilarities and differences are drawn from previous work done by Major and 

D. E. Everett, with the same crystal used by the author, and from work by 

Stringfellow and Bube in ZnSe containing copper as the main impurity. 

Conway has recently proposed a model for CdS to explain why LIMA does 

not immediately begin to decay upon laser shut-off. This will be dis­

cussed in trying to describe electron-hole recombination kinetics. 

The author was able to gain a better understanding regarding LIMA 

than in previous work. A narrower gate yielded improved time resolution 

of data, and a better interpretation of data followed. Further work 
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should be focused on longer wavelengths and longer times between laser 

pulses in order to better delineate decay kinetics. Studies should also 

be made at lower temperatures in an attempt to explain a possible modu­

lation component arising from laser heating of the sample. 
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IV. INTRODUCTION 

The band gap of zinc selenide (ZnSe) is about 2.7 ev at room temp­

erature, corresponding to 4770 K. When transmitted through a ZnSe crys-

tal, a low intensity monochromatic light exhibits a definite absorption 

coefficient for each wavelength having associated energy less than the 

gap energy. 

One way of changing the absorption coefficient is by simultaneous 

absorption of high intensity photons. If the energy of these photons 

exceeds the characteristic band gap, then the electrons in the valence 

band can absorb enough energy to cross the band gap directly. But this 

approach will reveal little or nothing about the role of energy levels 

within the gap. If the crystal were pure, then no energy levels could 

exist within the gap. Any photons with energy less than the gap energy 

could not be absorbed, and the transmission of monochromatic primary 

light would be unaffected. But no. perfect crystal exists; there are 

often energy levels within the gap which atfect this absorption, most 

likely impurities. 

One technique for changing the absorption coefficient is the effect, 

which is the b.asis for the work reported here, called Light Induced Mod-

ulation ot Absorption, or LIMA. 1 It was discovered by E. J. Conway , at 

NASA-Langley, in cadmium sulfide (CdS), perhaps the best-studied repre-

sentative of the II-VI semiconductors. 
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Conway used photons from two different lasers, one of 5308 X and 

the other of 6471 X, in studying CdS, which has a band gap of 2.42 ev, 

corresponding to 5127 X. He found, in studying wavelengths from 5000 X 

to 20,000 X for several CdS crystals, one region of decreased absorption, 

from just below the absorption edge to about 5800-7000 A depending on the 

crystal. Longer wavelengths showed increased absorption. The magnitude 

of change in optical absorption, Llo\, was strongly dependent upon laser 

intensity. In the former, llc:J.. varied linearly as laser intensity and 

sublinearly in the latter. This indicated "the transition between mono­

molecular and bimolecular recombination kinetics. 112 A c:J... was found to 

be negative at wavelengths near the absorption edge and positive for 

longer wavelengths. The transition wavelength, where A~ crosses from 

negative to positive, was unique to each crystal and independent of laser 

intensity. 

In 1969, R. W. Majo.r, the author's advisor, began studying LIMA in 

another II-VI compound, zinc selenide. The purpose of this paper is two­

fold. One is to report developments in this work in ZnSe. Earlier work 

by Major and D. E. Everett has shown the effect to be reproducible - even 

with a laser 1000 times less powerful than the laser Conway used. This 

work was concentrated in studying rise kinetics with time bases as short 

as 1 ms for a 2.5 ms laser pulse. The work reported here was concentrated 

on the signal kinetics with emphasis on decay at a series of wavelengths 

just below the fundamental. edge (4800 to 530U i). The second purpose is 

to try to construct a model which will be consistent with the results of 

these data. Later in this section, two possible models will be examined 

to show possible electron-hole recombination kinetics. 



Before any theory is discussed, an explanation should be given of 

what is being measured, the change in the absorption coefficient ~ 

versus time for each wavelength. Conway used the simplified equation 

-1 
L). °" = -x (~It/It) to present his results, where x is crystal thick-

ness, It is transmitted intensity, and6_It is the change in transmitted 

intensity. Consider a small cross-section of a crystal composed of 

homogeneous material implying constant c\: 

I~ 
0 

-~>I/I--) 
l~I I - dI I 

l~I 
1.....-/I 
1//, 
dx 

or (I - dI) - I = o{Idx 

· -dI = o{Idx 

dI/I = -(dx. 

7 

Thus for the whole crystal thickness, (It - I 0 )/It = -o(x. This approx­

-1 ima ti on is possible since o(_x is of the order of 10 where x is about 0.1 cm 

-1 
and °"'is less than 10. cm • 

Consider two different states of the crystal for the same wavelength 

characterized by o\ 1 , laser off, and o( 2 , laser on: For ~ 1 

Assume that Itl + 6 = It2 ~ Itl. This condition is met experimen­

tally in that the ratio is about 1 part in 103 , or 0.1 %. Therefore 

(o(2 -o(l) = -x-l (It2 - 1o)/It2 - (Itl - 1o)/Itl 

-1 Ao\= -x ( It2 - Itl )/It 

-1 
b, o\ = -x (-6.I/It). 
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The changes in transmitted intensity activate a photomultiplier 

tube. The output voltage from the PM tube at any given wavelength is 

assumed to vary linearly with transmitted intensity It;. that is, It= kV, 

then Alt= k.6.V, and 6o\= -x- 1(LlV/V). 

The laser used here produces photons ot 6328 ~' having energy of 

i.96 ev, which cannot cause electrons to jump the 2.7 ev gap. The thermal 

energy at room temperature is or the order of 0.026 ev which is negligible 

when compared to the laser "energy. Comments will be made later concerning 

laser heating of the sample. The ability to modulate absorption with such 

a laser photon energy suggests there must be participating energy levels 

due to impurities and/or imperfections lying in the gap. A look at pos-

sible processes may clarify the role of, and possibly identify, these 

levels. The main processes of interest involve a time rate of change in 

the electron and/or hole concentrations. 

In discussing possible models for LIMA, only models with impurities 

will be examined since nothing has been found to show that LIMA is caused 

by other defects within the gap. The simplest theoretical model that can 

be examined will contain one trap level (i.e. one energy level within the 

band gap which aids in the redistribution of electrons between the valence 

and conduction bands). ·Thermal effects or mechanical vibrations are not 

considered. This trap may be neutral or positively or negatively charged. 

For example, there may be an impurity atom such as copper which will give 

up an electron as it is ionized when it replaces a zinc atom in the lat-

tice. The co?per atom is then singly positively charged. 

Figure 1 shows the possible transitions that can occur within the 

band gap with one trap level. The photons from the laser interact with 

the monochromatic light via population changes in the trap level to cause 

a change in the absorption of the latter. 



Figure l. POSSIBLE ELECTRON TRANSITIONS IN A SEMICONDUCTOR WITH ONE 
TYPE OF TRAP (Ryvkin). 

N 

Conduction Band 

Trap Level 

A D F 

Valence Band 

Transitions A, B, and C can occur when light from the laser 
intersects the monochromatic light 

Transitions D, E, and F can lead to recombination and are 
accompanied by 'the emission of optical energy 

9 
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In studying CdS, Conway noted a transfer from monomolecular to bimo-

lecular recombination kinetics depending on the range ot wavelengths be-

ing absorbed. The main difference is that, in monomolecular recombination, 

electrons recombine directly with holes in the valence band after having 

come from the conduction band. Bimolecular recombination involves elec-

trons from the host substance recombining via an impurity in the band gap. 

Kittel3 offers a good treatment in the area of photoconductivity -

"the increase in electrical conductivity of an insulating crystal caused 

by radiation incident on the crysta1 114 - to enlighten us on the recombin-

ation kinetics. Upon illumination the number ot mobile charge carriers 

increases; that is, electron-hole pairs are created which will recombine 

after the illumination is shut-off. 

For monomolecular recombination, the change in electron concentra-

tion is L (the energy absorbed per unit volume per unit time) less the 

recombination rate Anp (where A is a proportionality constant), propor-

tional to the product of electron and hole concentrations, n and p re-

spectively. For the simple case where n = p, then dn/dt = L - Anp = 

L - An 2• Since the effect of laser photon absorption in the crystal is 

to generate electron-hole pairs, this case could be valid in the present 

work. To find what the decay should look like, solve the above for L = 0 

where n is the electron concentration at t = O. dn/dt = -An2 yields 
0 

n = n /(1 + Atn ). If Atn >"> 1, then n = l/At or n ~ l/t. A graph of 
0 0 0 

this is a series of curves of the form nt = k for any constant k. Note 

2 2 
that the steady state shows, for dn/dt = 0: L = An , or n = L/A. Thus 

no{L\ 

To look at bimolecular recombination, again use the above relation-

ship, this time substituting n+N for p where N is the trap level density, 
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or dn/dt = L - An(n+N). In the steady state, L = An(n+N). There are 

two limiting cases, n <.<. N and n ':>)N. In the case where the electron den-

sity is much less than the trap level density, n+N~N and L = AnN which 

yields n = L/AN. Thus n is directly proportional to L. If, on the other 

hand, n'>)N, or n+N-;:::::n, then L = An2 which yields n = (L/A)~. In this 

case where the trap level density is negligible when compared with the 

electron density, the result approximates that of monomolecular recombin-

ation where no traps exist. To consider system decay, solve as before: 

dn/dt = -An(n+N) which yields log [<n+N)/i:) - log [<n0 +N)/n;} = NAt. 

In this limiting case where the trap density is much greater than the 

electron density when illumination is shut off, n0 "-<. N implies n<< N 

and n = n0 exp(-NAt). The response time for the signal to decay to l/e 

of its initial value is t 0 = (NA)- 1• Such decay kinetics have been com-

5 
pared with decay data for a 5000 K primary beam by Major. The agreement 

is not perfect since the latter appears to be composed of two almost-linear 

portions. 

. 6 
To examine a more complex model, the reader is referred to Ryvkin 

who treats the model in Figure 1, which includes possible thermal effects. 

The solution of the resulting equations for the changes in electron, hole, 

and occupied trap densities requires complex mathematical techniques. 

Transition C does not apply here since the laser photons of 1.96 ev cannot 

bring about band-to-band transitions. 

A model will be discussed in the last section of this paper after 

the data have been analyzed and possible suggestions have been considered. 

For example, a recent proposal by Conway includes three different trap 



level types to explain why the rise kinetics continue for a definite 

time after laser shut-off, and Major has suggested that short-duration 

thermal effects may be involved. 

12 
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V. EXPERIMENTAL DESIGN AND INSTRUMENTATION 

The physical apparatus used to study LIMA in ZnSe is similar to 

that which Conway used in working with CdS, and consists of three sub-

systems, the constant-intensity monochromatic source, excitation beam, 

and detection system with necessary supporting electronics. (See Figure 2) 

The source subsystem includes all items necessary to get a monochro-

ma tic light to the crystal, namely the primary light, monochrometer, and 

focusing lenses. A GE 1497 tungsten-filament lamp operated at about 2.75 

volts DC is focused through a fixed lens into a Bausch and Lomb grating 

monochrometer. A second lens is then used to focus the light onto the 

sample. 

The excitation system includes items necessary to cause a change in 

the monochromatic light: the laser, beam chopper, and ZnSe crystal. A 

He-Ne continuous-wave laser, Spectra-Physics model 120, emits photons of 

{) 16 6328 A having energy of 1.96 ev with a flux of about 1.9 X 10 photons per 

second. The laser beam is pulsed by a mechanical chopper consisting of a 

disk with four slits cut in it placed on the shaft of an electric motor 

which yields an effective pulsing rate of 114 Hz. Considering the power of 

the laser of 6 mw with a beam diameter of 0.7 mm and a crystal edge of 6.0 mm 

13 
by 1.5 mm, e(fectively 4.8 X 10 photons hit the crystal with each pulse. 

The laser beam then passes through the crystal, modulating the pri-

mary beam, after which it activates a photodiode, used with the support-

ing electronics. This is used with the detection system which is the 
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Figure 2. EXPERIMENTAL ARRANGEMENT. 
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receiving monochrometer and photomultiplier tube. The supporting elec-

tronics include a low-noise preamplifier, amplifier, boxcar integrator, 

and chart recorder. 

After leaving the crystal, the modulated monochromatic beam passes 

through a collecting lens into a grating monochrometer made by the Amer-

ican Instrument Company and activates an RCA IP-28 photomultiplier tube. 

This PM tube is designed to oper~te over a range of 4500-5500 I at 500-

1200 volts DC and is presently operated in the range of 550-600 volts DC 

in an effort to minimize electronic noise. The tube response for each 

wavelength is assumed to be linearly proportional to the amount of light 

activating the tube. 

The output signal of the tube is now analyzed by the supporting elec-

tronics. Since the AC component is only a few thousandths of a volt, the 

signal is processed through two stages of amplification. The first is a 

low-noise, variable-band, solid-state preamplifier, Princeton Applied Re-

search Model CR-4. The second is an AC/DC tube amplifier, Furst Electron-

ics Model 220. 

latter at 101• 

2 The former has been operated with a gain of 10 and the 

These two gains can be reversed with little effective 

change in the unprocessed signal. Although a gain of 103 is available on 

the first-stage amplifier alone, the presence of high noise peaks which 

overdrive its final stages prevent use of this setting. 

The resulting signal of the order of 1 volt AC including noise is 

then fed into. a boxcar integrator, P. A. R. model CW-1, which uses a sam-

pling and averaging technique to extract synchronous wave forms from 

noise. The principle underlying this is that, if a large number of pulses 

are examined and averaged, the random noise will be averaged to zero and 
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the true wave form will survive. The output from the photodiode triggers 

the integrator to initiate scanning when the laser pulse begins and ends. 

The total scan time is that time necessary to extract a signal and 

depends upon the time constant, time base, signal repetition frequency, 

and gate width. All that need be said about the time constant is that it 

is an internal characteristic of the integrator which affects the quality 

of the final trace. The scan time is proportional to the laser pulse 

frequency. The time base is the duration of signal being examined, and 

the gate is that portion of the time base which is being examined at any 

instant. The gate moves uniformly from beginning to end of the time base 

in a time corresponding to the scan time. The gate affects both signal 

resolution and the scan time. The wider the gate, the shorter the scan 

time and the poorer the resolution, and vice versa. The integrator needs 

a minimum of one gate width to respond to a step function implying that 

the first and second gates on the trace must be considered with reserva-

tion. The output from the integrator is fed continuously to a Varian 

model G-llA strip-chart recorder. 

A typical run of data involves a gate of 0.2 ms and a scan time of 

500 minutes. Considering the chopping frequency of 114 Hz, each gate 

5 interval represents the average of about 1.4 X 10 pulses, and the inte-

6 
grater examines over 3.4 X 10 pulses. 
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VI. PRESENTATION OF DATA 

Table I in the appendix summarizes the latest data taken to inves­

tigate LIMA in ZnSe. All data were taken under the.same conditions, ex­

cept as follows: Halfway through the runs, the entrance slit on the sec­

ond monochrometer was widened from 0.20 mm to 0.25 mm, and the optical 

geometry of the laser incident on the sample was changed slightly. Only 

one set of data is shown for each wavelength due to their reproducibility. 

To obtain data for each wavelength, overlapping runs were made. With 

a 2.5 ms laser pulse and 8.8 ms between leading edges of pulses, one 5 ms 

run was made with the integrator triggered by leading edges, and a second 

5 ms run was made triggered by trailing edges. The data were reduced us­

ing a uniform procedure: Each continuous trace was read, and the values 

were plotted at 0.1 ms intervals. These values were then divided by the 

PM output voltage for normalization. The system gain is constant for all 

signals shown. This differs from the method Everett used where a first 

run was made with the laser on the sample. Then a second run was made 

with the laser off the sample, and the difference was plotted. This meth­

od was to allow for any synchronous shifts in the system; it was not used 

here for several reasons. With each run requiring eight to nine hours, 

any random V4riation was unlikely to reappear in a later run. A run was 

made at 5263 J? with the laser off the sample, shown in Figure 11, and is 

flat within system noise level. Thus, each of the graphs, Figures 3-10, 

shows an overlapping pair of runs; the overlap within error indicates 
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negligible system drift. The zero line on each graph, ~d..= O, represents 

the instrumental zero, but it does not necessarily represent zero excitation. 

The data represent total signal behavior for a range of wavelengths 

with associated energies less than the gap energy. At first glance, the 

graphs fall into a pattern resembling sinusoidal behavior in time. An 

extremum in amplitude occurs. at or soon after laser shut-off. A polarity 

reversal occurs near 4993 ~ in the sense that, for shorter wavelengths, 

the extremum is that of increased absorption, while, at longer wavelengths, 

the other extremum prevails. This will be covered in more detail in the 

next section. 

The quality of data is better than in previous work. Earlier, the 

apparatus was set up on two tables in a room with numerous windows; it 

was hard to control excess vibrations and outside light for both day and 

night runs. The present data were taken in a closed, ground-floor room 

in a temperature range of 88 to 90°F. With the equipment set on the 

floor, any effects due to vibrations were negligible. Everett used a 

gate of 0.9 ms to extract a 10 ms signal. With a 5 ms time base, a gate 

of 0.2 ms was used to gain better resolution. A slightly wider gate 

would have produced less apparent noise. 

Two possible things affected the results, the stabilities of the 

primary light and chart recorder. The former was affected by its power 

supply which produced a nonperiodic drift of 3-4 %. The recorder print­

out occasionally showed large high-frequency fluctuations; such data are 

not used for this paper. The cumulative RC, or characteristic response 

time of the 2M tube circuitry, was found to be of the order of 2-3 gate 

widths. ·This makes the first 0.5 ms of recorded signal of little value 

for analysis in cases where the signal achieves a relatively large magni­

tude in that time. 
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VII. ANALYSIS AND CONCLUSIONS 

A good starting point in analyzing these data is to examine work al-

ready done with this crystal. Everett concluded previously that the sig­

nal reversed polarity in the region of 4900 to 5000 i and reached its ex-

treme value after laser shut-off, whether it is a positive or negative 

change in absorption. Using a relatively wide gate made necessary in that 

work by limitations on the system, such a conclusion appeared valid. From 

Everett's data, each wavelength displayed a signal of form Type I, Fig­

ure 12, though it may be reversed at wavelengths longer than 5000 R as 

in Type II with the dashed line. 

From these data, the signals at 4823, 4873, and 4923 X are of form 

0 
Type I. But the signals at 4993 A and longer wavelengths are of Type II. 

This change, however, is gradual with wavelength. In trying to correlate 

corresponding features of the two forms, the beginning is the first extre-

mum at or after laser shut-off. This is the instant in time from which 

decay will start with no more excitation; a plot of wavelength versus 

time of occurance ot extremum will be helpful, as in Figure 13. Also of 

interest are the times when no change in transmission occurs; these sug-

0 
gest a discontinuity at 4993 A, as in Figure 14. At first, an attempt 

was made to r.·elate W and X to Y and Z (Figure 12) respectively as corres-

ponding times. But W and Z bear an apparently closer relation to each 

other. This implies for consistency that A and D are related (Fjgure 13 

is also consistent with this relation). Several characteristics of the 
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Figure 13. TIMES OF OCCURANCE FOR MAJOR FEATURES. 
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Figure 14. TIMES WHEN SIGNAL COINCIDES WITH NO CHANGE IN TRANSMISSION 
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general signal behavior at all wavelengths investigated can now be sum­

marized. There is a polarity reversal in the signals near 4993 ~ in the 

following sense: The signals 4823, 4873, and 4923 X ha~e a negative 

polarity - Type I, Figure 12 - the sign of .6.~ from which each signal 

apparently begins and ends. The signals at 4993 X and longer wavelengths 

show a positive polarity. 

The following may correlate the concept of polarity reversal with the 

appearance of feature D, Figure 12,_in the signals at 4993 to 5263 X. The 

experimental parameters of significance are the gate width and laser heat­

ing of the sample. Feature D may not have been observed in Everett's data 

due to his wider gate of 0.9 ms. The 0.2 ms gate used here produced much 

better signal resolution. More data should be taken at longer wavelengths 

to see if a transition wavelength exists, and, if so, what it is. 

Major and the author have observed an increase of 2-5 % in the DC 

voltage after the laser photons strike the sample. This implies that more 

light is being transmitted through the crystal. The instrumentation used 

here is not capable of displaying this component separately. Figure 15 

shows what this may be. However, the proper t.reatment is unclear at this 

time; more research is being done in this area. 

To find a suitable model to explain the author's data, he first turned 

to Stringfellow and Bube. 7 They have done a very extensive study on the 

photoeiectric properties or ZnSe. Figure 16 displays a general correlation 

between their study and previous work by Major. Thus it is possible that 

this crystal has properties similar to theirs. They found copper to be a 

major facto" in the photoelectric properties of II-VI semiconductors where 

it substitutes for zinc as an acceptor. Their primary ZnSe crystal had 
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Figure 15. POSSIBLE EFFECT OF LASER HEATING IN SAMPLE. 
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Figure 16. COMPARISON SKETCHES OF THE ABSORPTION COEFFICIENT AND 
LIMA FOR A SPECTRA OF PHOTON ENERGIES (Everett) 8• 
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+ two copper ions present, Cu , known as Cu 2n;' which was responsible for 

red luminescence and cu*, or Cuznx' responsible tor green luminescence. 

The former dominates the latter having a capture cross section, for elec-

3 trons, larger by a tactor o± 10 • Figure 17 displays their proposed multi-

valent copper model which consistently describes their findings. 

Most of the ZnSe:Cu crystals used by Stringfellow and Bube had a 

copper concentration of 30 ppm. The crystal used here was analyzed with 

l • b 9 d f d h 4 0 Of • 0 5 0 20 O an e ectron micropro e an was oun to ave • ,. iron.and .1 - • 7. 

nickel. Copper was not detected, but it may be present in amounts up to 

500 ppm. There may be more than enough copper in this crystal t~ produce 

effects similar to theirs, but a better crystal analysis is needed to be 

sure. 

lQ 
A recent model proposed by Conway- for CdS has several energy levels 

within the band gap to explnin why the change in the absorption coefficient 

continues to increase after laser shut-off. Even though it is a phenomeno-

logical model with no specific impurities identified and each signal is of 

one polarity only, the model may still be good for much of what is occurring 

inside this ZnSe crystal. Figure 18 displays the model which is based upon 

holes being redistributed over the trap levels after laser shut-off. The 

holes are first trapped at type 0 levels (N. designates type i trap con­
l. 

centrations and ~i trapped hole concentrations). The holes are trans­

ferred at 11 ra te ({ 1 to type 1 levels and (then) to both type 2 and 3 levels 

with rates "t 2 and )) 3• Holes disappear from type 2 and 3 levels by re­

combination w-:.th free electrons at rates {3 2 and f?, 3 , respectively. 

10 
Most of the excited electrons are trapped." ·.Conway assumed thermal ef-

fects to be negligible. He obtained good fits of his data to this model 
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Figure 17. MULTI-VALENT COPPER MODEL: ZnSe:Cu (Stringfellow and Bube) 
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Figure 18. PROPOSED MODEL FOR CONTINUED LIMA BUILDUP (Conway). 
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using a computer and trial parameters tor the \3 'sand )f' 1 s. This model 

is a good beginning, but other components must be added due to its handling 

only one polarity at a time. 

Further studies of this crystal should include data taken at longer 

wavelengths and with slower chopping frequencies. The frequency of 114 Hz 

limits signal duration to 8.8 ms. The signal appears to reach a steady 

state in 4.0 to 4.5 ms after laser shut-off, but this may continue for as 

long as 10-15 ms. Data should be taken in the infrared to see how ZnSe 

compares with CdS at longer wavelengths and at lower temperatures to ex­

amine the suggested role of laser-induced heating in the sample. 
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X. APPENDIX 

Monochromatic light of known wavelengths in the range of experimental 

interest were put through the detection system for calibration. Below 

is the data which implies an error of 23 ! 3 X which must be added to each 

wavelength read from the detection system monochrometer. 

Element Dial(,t) A. u True( ) 

Helium 4992 5016 
Helium 5855 5876 

Hydrogen 4838 4861 

Krypton 5850 5871 

Mercury 5440 5461 
Mercury 5770 5791 
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TABLE I 

DATE WAVELENGTH IDENTIFYING NARROW WIDE 
(In Angstroms) NUMBER SLIT SLIT 

DIAL TRUE R:Rise (u.20 mm) (0.25 rrun) 
( ±3 ?\.) D:Decay 

1/18-19/72 4900 4923 2R, lR x 
1/19/72 4900 4923 6R,2D x 
1/21-22/72 4900 4923 4R,5R,1D x 

1/23/72 4970 4993 lR x 
1/24/72 4970 4993 2D x 

1/26/72 4850 4873 lR, 2R x 
1/27/72 4850 4873 1D,2D x 

1/28/72 5040 5063 2R,3D,2D x 
1/31/72 5040 5063 lR, lD x 

2/ 1/72 510U 5123 3R,3D,4D x 

2/ 2/72 5170 5193 5R,5D,6D x 
2/ 3/72 5170 5193 lR, lD x 
2/ 4/72 5170 5193 2R x 
2/ 5/72 5170 5193 3R,3D,4D,4R x 

2/ 7/72 5100 5123 2R,1R,2D,!D x 

2/ 8/72 5U40 5U63 3R x 
2/ 9-lU//2 5040 5063 4R,5R,4D x 

2/11/72 4970 4993 2R,4D x 

2/12/72 4900 4923 3R,3D x 

2/16/72 4850 4873 3R,3D x 

2/17/72 4800 4823 lR, lD x 

2/20/72 5240 5263 1R,2R,1D x 
2/22/72 524U 5263 Background x 
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