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Preliminaries

1.1 Measure and integral

1.1.1 Borel sets and measures

Most of the “measuring” in this book will take place on the unitcircle T = {z €
C : |zl = 1}. Since we assume that the reader has a background in graduate
analysis, we quickly review the standard definitions without much fanfare.

We let m:=d6/2n denote Lebesgue measure on T, normalized so that
m(T) = 1. A subset of T is called a Borel set if it is contained in the Borel
o-algebra, the smallest o-algebra of subsets of T that contains all of the open
arcs of T. A Borel measure on T is a countably additive function that assigns
a complex number to each Borel subset of T. Unless otherwise stated, our
measures will always be finite. A Borel measure is positive if it assigns a non-
negative number to each Borel set. We let M(T) denote the set of all complex
Borel measures on T and we let M, (T) denote the set of all positive Borel
measures on T. A function f 1 T — [ (where C denotes the Riemann sphere
C U {oo}) satisfying the condition that f~1(U) is a Borel set for any open set
U c Cis called a Borel Sfunction.

We often need to distinguish between the “support” and a “carrier” of a
measure. For u € M, (T), consider the union U of all the open subsets U ¢ T
for which u(U) = 0. The complement T \ U is called the support of y. On the
other hand, a Borel set £ C T for which

H(E N A) = p(A) (1.1)

for all Borel subsets A < T is called a carrier of u. The support of y is certainly
a carrier, but a carrier need not be the support. Indeed, a carrier of a measure
might not even be closed. For example, if f > 0 is continuous and du = fdm,
then a carrier of i is T \ £~!({0}) (which is open) while the support of y is the
closure of this set. The support of a measure is unique while a carrier is not.
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