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ABSTRACT  
  
 Sponges are considered the oldest and most basal part of the metazoan lineage and 

therefore possess a unique set of gene families that are highly conserved among all animals. One 

of these gene families is known as Sox transcription factors. Sox genes are known to play 

important roles in complex animals such as the specification of the primary layers of the body, 

determination of sex, and most recently induction of induced pluirpotent stem cells (iPS cells) 

from both human and mouse fibroblasts with the help of three other transcription factors. We 

have found that two different demosponge species Halichondria bowerbanki and Ephydatia 

muelleri already possess at least three distinct Sox transcription factors using evolutionary PCR 

and bioinformatic approaches. This supports the hypothesis that eumetazoans possessed at least 

three distinct Sox genes. To better understand the role that each of these Sox transcriptions may 

have played during the evolution and development of complex body plans we conducted both 

temporal and spatial expression analysis. We performed both RT-PCR and Real Time RT-PCR 

on all Sox genes isolated from both marine and freshwater sponges. These studies demonstrated 

that Sox genes are expressed during larval and adult development in marine sponges and during 

the development of gemmules to fully functioning adult stages in freshwater sponges. In situ 

hybridization studies have revealed that one of the Sox genes is expressed in developing embryos 

of the marine sponge. Furthermore, at least one Sox gene in both the marine and freshwater 

sponges shows distinct expression in archeocytes, the sponge stem cell. The presence of Sox 

expression in archeocytes suggests a role in cell specification or differentiation, as well as 

suggests a possible role in evolution of multicellularity. Therefore this study provides an 

establishment for future studies aimed at testing the hypothesis that the Sox transcription factor 

family had a crucial role in the evolution of animal multicellularity.  
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INTRODUCTION 
 
 Recent studies demonstrate that both human and mouse fibroblasts can be reprogrammed 

in vitro into induced pluripotent stem cells (iPS cells) through retroviral transduction of the same 

four transcription factors Sox2, c-Myc, Oct3/4, and Klf4 (Takashashi et al, 2007; Yu et al, 2007; 

Park et al, 2008). These iPS cells are similar to human embryonic stem cells in a variety of ways 

including morphology and gene expression. Furthermore, the iPS cells are comparable to 

embryonic stem cells because these cells can differentiate into cell types from all three germ 

layers, the mesoderm, ectoderm, and endoderm (Takashashi et al, 2007). Although human iPS 

cells are important for understanding human diseases and developing methods of treatment, this 

research can also lead us to ask questions about how multicellularity evolved in the metazoan 

branch of the tree of life and elucidate the role of the development of undifferentiated cells into a 

fully functional adult with many distinct cell types (Mueller, 2006).  

 One way to study the question of multicellularity and the evolution of the metazoan is by 

looking at the oldest and most living animals, the porifera. Sponges are an excellent model 

organism, especially for evolutionary studies in development because they evolved at least 580 

million years ago. They can be considered a living fossil because they represent a basal metazoan 

phylum that existed prior to the Cambrian explosion 542 millions years ago. The Cambrian 

explosion was a time period when most of the complex animal body plans appeared in the fossil 

record (Carroll et al, 2005). The sponges were in existence before this occurred and are the most 

ancient and basal member of the complex animal lineage. It is because the sponge is basal and 

less complex in body plan they can be used as a model to help reveal the genetic and molecular 

events that may have occurred from the transition from one-celled eukaryotes to complex 

animals (Cetkovic and Lukic-Bilela, 2003). In order to study the evolution of multicellularity and 
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the differentiation of one cell into many types of cells I focused on one of the four transcription 

factor families that induce pluripotent stem cells, Sox, to see if sponges already possessed 

members of this transcription factor family.  

 The Sox transcription factor family contains a large number of genes that possess the 79-

amino acid DNA binding domain known as the High Motility Group or the HMG Box (Figure 

1). The Sox family is divided into eight groups (A-H) based on their primary sequence and 

structure and have been found in a variety of metazoans including approximately 30 vertebrate 

genes and 14 invertebrate genes. Furthermore, the mouse and human genomes contain 20 

orthologous pairs of Sox genes (Jager et al, 2006; Magie et al, 2005; Schepers et al, 2002). Sox 

proteins are known for a variety of roles in the metazoan lineage especially in developmental 

processes, including neural crest specification, gastrulation, the development of the central 

nervous system, and chondrogenesis (Magie et al, 2005; Schepers et al, 2002). These 

transcription factors are also known to play roles in cell differentiation, cell specification, and 

germ layer formation (Jager et al, 2006). Furthermore, the Sox family is also commonly known 

to be related to the mammalian SRY genes, or the sex-determining genes (Collignon et al, 1996; 

Magie et al, 2005).   

 Recent studies indicate the presence of Sox genes in the basal lineages of the metazoans 

including 14 Sox genes in the cnidarian, Nematostella vectensis, 3 Sox genes in Amphimedon 

queenslandica, a type of marine demosponge found only on the Great Barrier Reef in Australia, 

and 3 Sox genes in Ephydatia muelleri, a freshwater demosponge. (Larroux et al, 2006; Jager et 

al, 2006, Magie et al 2005) These were the first studies that revealed the presence of Sox 

transcription factors in basal metazoans. It was also recently reported that there is one Sox family 

member also present in the genome of the choanoflagellate, Monosiga brevicollis, the most 
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common ancestor to the metazoans (King et al, 2008). In the cnidarian, Nematostella vectensis, 

spatial expression analysis studies indicate Sox is present in early polyp stages, ectodermal cells, 

and the endodermal lining of the pharynx, implicating roles of neural cell differentiation and 

germ layer specification (Magie et al, 2005). However, to this date no spatial or developmental 

expression has been reported on the Sox genes in sponges.    

 Therefore, based on these foundations, this study has two main focuses. First, to 

determine the minimal number of Sox genes present in the demosponge genome through 

bioinformatic and PCR-based approaches, using two different species Ephydatia muelleri and 

Halichondria bowerbanki, a marine demosponge. Second, I also want to characterize the 

expression patterns of Sox genes using both temporal and spatial expression analysis.  My 

hypothesis is that the common ancestor to the demosponges possessed 3-4 Sox gene family 

members and that at least one of these genes is involved in stem cell determination and/or 

specification in sponges. These studies will also help us to learn more about all the roles Sox 

genes play in the basal metazoans. Therefore this study will give us further insight into the 

evolution of multicellularity and the first roles that these transcription factor families played in 

the evolution of animals. 

 

MATERIALS AND METHODS 

Collection of Sponges 

Halichondria bowerbanki was collected during the adult and larval stages from the 

Cheseapeake Bay at Virginia Institute of Marine Science, Gloucester Point, Virginia. Ephydatia 

muelleri was collected by Sally Leys in Canada. Tissue was processed at designated 

developmental stages and stored at –80oC. 
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Isolation of Sox sequences 

Halichondria bowerkbanki and Ephydatia muelleri genomic DNA was isolated using the 

CTAB method and mRNA from either free-swimming larvae or aggregated adult tissue was 

isolated using the RNAeasy Kit (Qiagen) according to manufacture’s protocol.  cDNA was 

formed using Thermoscript Reverse Transcriptase (Invitrogen) using an oligo(dT) primer. 

For EmSox2 gene isolation in Ephydatia muelleri intial degenerate PCR primers were 

designed using the Sox gene sequences from Amphimedon queenslandica through a local basic 

alignment search tool (BLAST) using the trace archives of the Amphimedon queenslandica 

genome provided by the Joint Genome Institute.  The amino acid sequence of Nematostella 

vectensis Sox family protein 1 was intially used in a tblastn search against the trace archives of 

Amphimedon queenslandica.  The retrieved nucleotide sequences were then confirmed and 

translated into protein sequences to design the degenerate primers. The primer combination 

VKRPMN (foward) and (YKYKPKR) reverse was designed for isolation of the Sox conserved 

domain and produced a band of the expected size (201 bp). The PCR conditions that yieleded 

these results were 2 min at 95 oC followed by 30s at 95 oC, 30s at 40 oC, 1 min at 72 oC for 35 

cycles, followed by 5 min at 72 oC.   

For HbSox3 gene isolation in Halichondria bowerbanki intial degenerate PCR reactions 

were performed using the same degenerate primers as described above again for the isolation of 

the Sox conserved domain and produced a band of the expected size (201 bp). The PCR 

conditions that yielded these results were 2 min at 95 oC followed by 30s at 95 oC, 30s at 40 oC, 1 

min at 72 oC for 35 cycles, followed by 5 min at 72 oC.   
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For the EmSox1 and EmSox3 gene isolation in Ephydatia muelleri initial gene specific 

PCR reactions were performed using nucleotide sequenced described in Jager et al. (2006) for 

isolation of EmSox1 and EmSox3 family members from the sponge Ephydatia muelleri.  The 

primer combination used was 5’-TCAATCGAGCGCAAGAAG-3‘ (forward) and 5‘-

CCTGGAGAGAACACCCGGA-3‘ (reverse) were designed for EmSox1 class sequences and 

produced a band of the expected size (162 bp). The primer combination used was 5‘-

GCTGGAACGGAGGAAGATGA-3‘ (foward) and 5‘-CACATGAAGCAGTACCCCG-3‘ 

(reverse) were designed for EmSox3 class sequences and produced a band of the expected size 

(159 bp).  The PCR conditions that yielded these results were 2 min at 94oC followed by 30s at 

94oC, 30s at 58oC, 1 min at 72oC for 30 cycles, followed by 5 min at 72 oC. 

All resulting PCR products described above were visualized via agarose gel 

electrophoresis and bands of expected sizes were excised and cloned using the TOPO TA 

Cloning Kit (Invitrogen).  Clones were sequenced using the SequiTherm EXCEL II kit 

(Epicenter) on a LiCor DNA Sequencing System. 

Isolation of 3‘ ends of Sox genes 

 Halichondria bowerkbanki and Ephydatia muelleri 3' RACE pools were created 

according to Clontech's SMART RACE 3' cDNA Isolation Protocol from Halichondria larvae 

and Ephydatia tissue.  The Clontech procedure was followed using the AUAP primer provided 

for the poly-A tail in combination with gene specific primers for each of the Sox genes.  The 

primer for EmSox1 was 5'-TCAATCGAGCGCAAGAAG-3’ followed by a nesting with the 

primer 5'-GCCGAGAGAGAACCGCGCTTG-3'. The primer for EmSox2 was 5'-

ACGCCTTCATGGTGTGGTCT-3' followed by a nesting with the primer 5'-

CGGTTGGGGGCGCAGTGGAAAG-3'. The primer for EmSox3 was 5'-
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GCTGGAAAGGAGGAAGATGA -3' followed by a nesting with the primer 5'-

TGGGCAAGCTGTGGCGGTTACTC-3'. The reactions were performed under the following 

PCR conditions: 3 min at 94°C, followed by 30s at 94°C, 30s at 58°C, 1 min at 72°C- for 35 

cycles, followed by 5 min at 72°C.  The primer for HbSox3 was 5'-

CGCATTTATGGTCTGGGCTCA -3' followed by a nesting with the primer 5'-

AACTGGAGAGGAGAAAGATG-3'.  The reactions were performed under the following PCR 

conditions: 3 min at 94°C, followed by 30s at 94°C, 30s at 60°C, 1 min at 72°C- for 35 cycles, 

followed by 5 min at 72°C. All resulting PCR products described above were visualized via 

agarose gel electrophoresis. A Southern blot was performed in order to determine which 

hybridized bands were the 3' end of both EmSox and HbSox sequences.  These bands were 

excised and cloned using the TOPO TA Cloning Kit (Invitrogen). Plasmids were sent to Virginia 

Commonwealth University for sequencing in both directions. 

RNA Isolation, RT-PCR, and Real Time RT-PCR   

Halichondria bowerbanki larvae were collected by placing individual sponges in beakers 

of sterile, filtered seawater.  Reproductive sponges released larvae into the water column and 

newly released larvae were collected by pipetting.  Larvae were cultured in 24-well plates in 

filtered, sterile seawater, which was replaced daily.  Tissue was collected from five 

developmental stages of Halichondria:  free swimming larvae (Free Swim), larvae skating across 

the surface of the plate (Skate), larvae attached to the plate surface (Attached), larvae that had 

begun to grow and spread across the plate surface (Spread), and small adults that had formed a 

water pumping chamber (Rhagon).  Adult sponge tissue was also collected. Tissues were stored 

in RNAlater (Ambion) overnight and then placed at -80oC for subsequent RNA isolation.   
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Ephydatia muelleri gemmules were obtained and collected from six development stages 

of Ephydatia: resting gemmule, cells in stasis (Stage 0), growth begins and cells migrate out 

from the gemmule coat (Stage 1), archeocytes begin to differentiate cell types (Stage 2), 

choanocyte chambers form, sponge begins to filter water (Stage 3), oscule forms, sponge fully 

functional (Stage 4), sponge grows in size (Stage 5). Tissues were stored in RNAlater (Ambion) 

overnight and then placed at -80oC for subsequent RNA isolation.   

Halichondria bowerbanki and Ephydatia muelleri RNA was isolted using the RNAeasy 

Kit (Qiagen) and treated with DNase I to eliminate contaminating genomic DNA.  For RT 

reactions, 500 ng of RNA was reverse transcribed using the Thermoscript RT kit (Invitrogen) 

and subsequent PCR reactions were carried out using Platinum Taq DNA polymerase 

(Invitrogen).  To amplify HbSox3 from Halichondria bowerbanki the primers used were 

forward: 5‘-CGCATTTATGGTCTGGGCTCA-3‘ and reverse: 5‘-

AACACATGAAGCAATACCCCG-3‘ under PCR conditions: 94oC for 3 min followed by 15s at 

94oC, 25s at 60oC, 1 min at 72oC for 30 cycles and then 2 min at 72oC. To amplify EmSox2 from 

Ephydatia muelleri the primers used were forward 5‘-ACGCCTTCATGGTGTGGTCT-3‘ and 

reverse: 5‘-TACATCGAGGAGGCCAAGCG-3‘ under PCR conditions:  94oC for 3 min 

followed by 15s at 94oC, 25s at 58oC, 1 min at 72oC for 30 cycles and then 2 min at 72oC.  RT-

PCR positive controls reactions were performed using actin gene primer sequences (as described 

in Hill et al., 2004).  

Real Time RT-PCR was performed using RT reactions and stages described above and 

subsequent PCR reactions were carried out using SYBR Green ER (Invitrogen). Ephydatia 

muelleri and Halichondria bowerbanki RT stages were used in a 1:2 dilution for EmSox2 and 

EmSox3, and 1:1 dilution for EmSox1 and HbSox3. The same primer reactions and PCR 
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conditions for HbSox3 and EmSox2 were used as described above. PCR amplication of three 

dilutions of the cDNA of each of these genes (HbSox3: 41.4 pg/uL, 4.14 pg/uL, 0.414 pg/uL and 

EmSox2: 25 pg/uL, 2.5 pg/uL, and 0.25 pg/uL) were used to generate a standard curve. To 

amplify EmSox1 from Ephydatia muelleri three dilutions of the cDNA were also used (27.6 

pg/uL, 2.76 pg/uL, 0.276 pg/uL). The primers used were forward 5‘-

TCAATCGAGCGCAAGAAG-3‘ and reverse: 5‘-CCTGGAGGAACACCCGGA-3‘. To amplify 

EmSox3 from Ephydatia muelleri three dilutions of the cDNA were used (19.5 pg/uL, 1.95 

pg/uL, 0.195 pg/uL).  The primers used were forward 5‘-GCTGGAAAGGAGGAAGATGA-3‘ 

and reverse: 5‘-CACATGAAGCAGTACCCCG-3‘. Both EmSox1 and EmSox3 reactions were 

performed under PCR conditions described above from EmSox2.  RT-PCR positive controls 

reactions were performed using actin gene primer sequences from Halichondria and elongation 

factor-1 from Ephydatia.  

In situ hybridization  

Halichondria bowerbanki tissues (adult, reproductive adult, larvae) were fixed overnight 

in 4% paraformaldehyde, 0.035% glutaraldehyde in 1X PBS and then transferred into ascending 

concentrations of ethanol, and stored in 100% ethanol at –80oC. In situ protocol was developed 

from several labs including Nipam Patel for Parhyale in situ hybridizations and Scott Nichols’s  

RNA in situ hybridization protocol on paraffin embedded tissues were both used with some 

modifications.  Fixed tissues were rehydrated through two xylene washes and an ethanol and 

DEPC water series. Tisses were prepared for prehybridization through the following series of 

washes: one wash of 1X PBS, two washes of 1X PBS with 100 mM glycine, one wash 1x PBS 

containing 0.3% Triton X-100, two washes 1X PBS, one wash of 1X TE (pH 8) containing 

Proteinase K (1 ug/mL) at 37 oC. The tissues were then re-fixed in 4% paraformaldehyde in PBS.  
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Subsequently, tissues were washed in two washes of 0.1 TEA buffer (pH 8) containing 0.25% 

acetic anhydride, followed by two washes of 1X PBS. Tissue was then prehybridized in 

hybridization buffer (50% formamide, 5X SSC, 50 µg/ml heparin, 0.25% Tween-20, 1% SDS, 

100 µg/ml single-stranded DNA; pH 5) for one hour at 42 oC.  All probes were labeled using the 

Dig RNA labeling kit (Roche®). For HbSox3, the region between foward: 5‘-

CGCATTTATGGTCTGGGCTCA-3‘ and reverse: 5‘-AACTGGAGAGGAGAAAGATGA-3‘ 

was cloned and used as a riboprobe.  All products were cloned in the TOPO TA Dual Promoter 

Cloning Vector (Invitrogen) prior to probe preparation and both sense and antisense products 

were generated for each probe.  After overnight hybridization at 42oC tissue was washed in three 

washes of 2X SSC, two washes of 1X SSC, one wash of NTE buffer containing 20 ug/mL 

RNAse A at 37 oC , and followed by two washes of 0.1X SSC at 37 oC. After tissue was 

incubated in Buffer 1 (100 mM Tris-HCl (pH 7.5), 10 mM EDTA), followed by Buffer 1 

containing 0.1% Triton X-100, 2% normal sheep serum to block nonspecific binding of antibody 

and then processed for staining.  In cases where sections are shown, tissue was processed 

through alcohols and xylene, embedded in parrafin wax, and cut on a Leica Microsystems 

RM2245 rotary microtome. 

Ephydatia muelleri tissues were fixed overnight in 4% paraformaldehyde, 0.035% 

glutaraldehyde in 1/4 HS (Holtfrer Solution) and then transferred into ascending concentrations 

of ethanol, and stored in 100% ethanol at –80oC. In situ protocol was adapted from Funayama et 

al and CSH with some modifications. Fixed tissues were rehydrated through an ethanol and 1/4 

HS series, followed by one wash of PTw (1X PBS containing 0.1% Tween-20), subsequently re-

fixed in 4% paraformaldehyde in 1X PBS at 4 oC, and washed twice with PTw. Tissue was then 

prehybridized in hybridization solution (50% formamide, 5X SSC, 50 µg/ml heparin, 0.25% 
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Tween-20, 1% SDS, 10 mM DTT, 100 µg/ml single-stranded DNA; pH 5) at 50 oC for 2 hours.  

All probes were labeled using the Dig RNA labeling kit (Roche®). For EmSox2, the region 

between : 5‘-ACGCCTTCATGGTGTGGTCT-3‘ and reverse: 5‘-

TACATCGAGGAGGCCAAGCG-3‘ was cloned and used as a riboprobe.  All products were 

cloned in the TOPO TA Dual Promoter Cloning Vector (Invitrogen) prior to probe preparation 

and both sense and antisense products were generated for each probe.  After overnight 

hybridization at 50oC tissue was washed 7 times in hybridization solution at 50oC and gradually 

processed to room temperature through half washes in 1/4 HS and hybridization solution.  After 

a few washes in Maleic acid buffer 1 (0.1M maleic acid, 0.15M NaCl, 0.1% Tween-20) tissue 

was incubated in Maleic acid buffer 1 containing 1% BSA to block nonspecific binding of 

antibody and then processed for staining.   

 
 

RESULTS 
 

How many Sox genes are present in demosponges? 

 One distinct Sox gene (HbSox3) so far has been isolated from the marine sponge 

Halichondria bowerbanki using degenerate PCR (Figure 2). This particular Sox gene is most 

similar to the Amphimedon queenslandica Sox C-like gene on the amino acid level when 

compared to Sox sequences in GenBank in NCBI. Currently, we have not yet isolated other Sox 

genes from Halichondria; however, this does indicate other Sox genes are not present. Further 

work needs to be done by developing new degenerate PCR primers and using other stages of 

development to search for additional Sox genes in this particular demosponge.  

Three distinct Sox genes were isolated from the freshwater sponge Ephydatia muelleri 

using both degenerate PCR and gene specific primers adapted from Jager et al, (2006). Both 
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EmSox2 and EmSox3 sequences obtained were identical on the amino acid level to the partial Sox 

sequences obtained by Jager et al, (2006) in Ephydatia muelleri (Figure 4A-B; Figure 5A-B). 

Furthermore, we also obtained part of the 3' end of EmSox3 using 3' RACE (Figure 5C-D).  The 

EmSox1 sequence was also identical on the amino acid level to the sequence obtained by Jager et 

al, (2006) (Figure 3A, 3C). However, we also found an alterative form of the gene, possibly 

caused by alternative splicing (Figure 3B). Each of the three Sox genes are similar to a particular 

Sox gene in Amphimedon queenslandica, as stated above on the amino acid level. EmSox1 is 

most similar to AqSoxF, EmSox2 is most similar to AqSoxB, and EmSox3 is most similar to 

AqSoxC. 

What is the spatial and temporal expression pattern of each of the Sox genes in sponges?   

 We used both Reverse Transcriptase-PCR and Real Time Reverse Transcriptase-PCR to 

determine the stages of development HbSox3 is expressed. HbSox3 is expressed in all stages of 

development; however it most highly expressed in the free swimming larval stages and larval 

attachment stage (Figure 6; Figure 7).  

 In order to determine where HbSox3 is expressed in both developing and adult tissue in 

situ hybridization was performed. HbSox3 is expressed in both early stage embryos (Figure 8A-

B; Figure 8E-F) and pre-release larvae (Figure 8C-F) of the reproducing adult sponge. 

Furthermore, HbSox3 appears to be expressed in the archeocyte cells or the putative stem cells of 

the adult sponge (Figure 9A-D).   

 In Ephydatia, Real Time Reverse Transcriptase-PCR was completed on both EmSox1 and 

EmSox3 to determine the stages of development these genes are present during metamorphosis 

from gemmule to hatched adult. Both EmSox1 and EmSox3 are present in all stages of 
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development however EmSox1 is most highly expressed at stage 0 (Figure 11) and EmSox3 is 

most highly expressed at stage 1 (Figure 12). 

We also performed Reverse Transcriptase-PCR and Real Time Reverse Transcriptase-

PCR to determine the stages of development EmSox2 is expressed. EmSox2 is expressed in all 

stages of development; however it is also most highly expressed at stage 0 (Figure 13; Figure 

14).  

 In order to determine where EmSox2 is expressed in the developing sponge in situ 

hybridization was also performed. EmSox2 is expressed in one distinct group of cells 

surrounding the developing canal system of the sponge (Figure 15A, 15C). These specific cells 

are believed to be archeocyte cells (Figure 15B) that are present in the regions that will develop 

into the feeding and pumping chambers (Figure 15E-H). However, EmSox2 expression is not 

present in the choanocyte chambers themselves (Figure 15D).     

 
 

DISCUSSION 
 

Eumetazoans contained at least three Sox genes 

 Sponges contain a unique set of genes because of their basal position in the animal 

lineage. Sox transcription factors are a part of this group of genes that play roles in the 

development not only in sponges but the entire metazoan lineage. In this particular study, 

through bioinformatics and evolutionary PCR approaches, we were able to demonstrate the 

presence of at least three Sox genes from the freshwater sponge Ephydatia muelleri, and the 

presence of at least one Sox gene from Halichondria bowerbanki. These results verify the 

presence of at least three Sox genes from two Demospongiae class sponges, including Ephydatia 

muelleri and Amphimedon queenslandica. Three Sox genes also have been found in the 
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Calcispongia class of sponge (Larroux et al, 2006; Jager et al, 2006). The presence of at least 

three Sox genes in sponges suggests that the Sox transcription factors duplicated and diversified 

early in the animal lineage. Therefore this implies the common ancestor of eumetazoans already 

had a set of three Sox genes. Additionally, the presence of these three ancestral Sox genes in 

sponges suggests that it was these three Sox gene families throughout animal evolution 

duplicated and diversified into the eight different subclasses of Sox genes present in the 

metazoan lineage today. 

HbSox3 expression suggest roles in embryonic and larval stages of development 

 We have demonstrated using in situ hybridization, expression of HbSox3 shown in both 

developing embryos, as well as pre-release larvae. Therefore our preliminary evidence suggests 

that Sox may play a role in the early development of sponge embryos. However, further studies 

need to be done in order to determine the specific role HbSox3 is playing in the development of 

the embryo since the expression of HbSox3 was throughout the early embryo and not only in a 

particular cell type. It may play a more generalized role in early cell proliferation or 

communication.  

 Furthermore, we also have demonstrated the possible role of HbSox3 involvement in 

larval stages of Halichondria from both RT-PCR and Real-Time RT-PCR. The high expression 

at the free swim stage and attached stage could suggest further roles in the development of the 

larvae at the free swim stage and a possible role in the differentiation of sponge cells as the 

larvae grows across its substrate at the attached stage, before it develops into a rhagon. However, 

further studies such as in situ hybridization at each larval stage needs to be performed to help 

determine the specific role of HbSox3 at each stage of larval development. 
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EmSox1-3 expression during freshwater sponge metamorphosis  

 We also have established the possible role of Sox involvement in the gemmule hatching 

stages of Ephydatia from both RT-PCR and Real-Time RT-PCR. EmSox1-3 expression is seen in 

every stage of Ephydatia development and metamorphosis from gemmule to adult; however each 

gene is turned on at different levels during each stage. This suggests that each EmSox gene is 

playing a distinct role in the development of the Ephydatia tissue. However, further studies are 

necessary to understand the specific role each Sox gene is playing at every stage. Ephydatia 

stages 1-5 gemmule hatching and metamorphosis most closely resemble Halichondria larval 

attachment through rhagon stages. Future experiments should closely evaluate Halichondria and 

Ephydatia orthologs during this developmental time frame to compare if roles and patterns are 

possible conserved.  

HbSox3 and EmSox2 expression in adult sponge tissue suggest role in archeocyte 

differentiation 

 We have established by using in situ hybridization, expression of both HbSox3 in 

Halichondria and EmSox2 in Ephydatia shown in archeocyte cells surrounding the choanocyte 

chambers. Archeocytes cells are putative stem cells of the sponge that differentiate into at least 

ten cell types (Funayama et al, 2005). Our preliminary evidence implies the expression of Sox 

orthologs in the archeocyte cells of the sponge and suggests that Sox genes may play roles in cell 

differentiation and specification. 

Sox transcription factors and the evolution of multicellularity 

 We have demonstrated that at least two Sox orthologs HbSox3 and EmSox2, are expressed 

in archeocyte cells or putative sponge stem cells, which as mentioned above suggests a possible 

role in cell differentiation. A possible role of Sox genes in sponges in cell differentiation would 
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imply that Sox may have had a role in the evolution of multicellularity. This is further supported 

in the recent report of one Sox family member in the genome of the choanoflagellate, Monosiga 

brevicollis. This data demonstrates that Sox is one of the oldest transcription factor families in 

animal genomes. Therefore Sox could be involved in regulating gene expression to allow more 

than a single cell type to exist in one organism (King et al, 2008).  

 Further evidence to support this hypothesis of Sox gene involvement in the evolution of 

multicellularity is based on recent evidence involving stem cells. It was recently reported that a 

Sox ortholog is one of the four transcription factors that are able to induce pluripotent stem cells 

from both human and mouse fibroblasts. In one particular study they aimed to induce pluripotent 

stem cells without the addition of a Sox transcription factor. They discovered the cell had 

embryonic stem-like morphology but it was nullipotent and could not differentiate into any other 

cells (Yamanaka, 2008). This study further supports Sox transcription factors having a critical 

role in the evolution of multicellularity because in order to get multiple cell types in a single 

organism, a signal must be sent to tell one cell (such as a stem cell) to differentiate into multiple 

types of cells.  

 However, at this point our results do not indicate whether or not the Sox transcription 

factor family had a crucial role in the evolution of multicellularity. Additional studies need to be 

conducted in both the sponge and choanoflagellate to further test this hypothesis. 

 This study has demonstrated that the common ancestor to all metazoans possessed at least 

three distinct Sox gene family members. The expression of Sox genes in developing embryos, 

larval, and gemmule stages suggests that Sox plays a critical role in the development stages of 

the adult sponge tissue. Furthermore, the expression of Sox in sponge archeocyte cells and its 
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possible role in cell differentiation can help lead to further studies on testing the hypothesis of 

Sox transcription factors having a crucial role in the evolution of animal multicellularity.  
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FIGURE LEGENDS 

 

Figure 1  

Schematic of the Sox transcription factor with the HMG-Sox Domain.  

Figure 2 

(A) Nucleotide sequence of Halichondria bowerbanki Sox3 and (B) the corresponding 

amino acid sequence.  

Figure 3 

(A) Nucleotide sequence of Epyhdatia muelleri Sox1, (B1) the corresponding amino acid 

sequence, and (B2) the alternate amino acid sequence possibly caused by alternative 

splicing in the EmSox1 gene.  

Figure 4 

(A) Nucleotide sequence of Epyhdatia muelleri Sox2 and (B) the corresponding amino 

acid sequence. 

Figure 5  

(A) Nucleotide sequence of Epyhdatia muelleri Sox3 and (B) the corresponding amino 

acid sequence obtained from gene specific primers designed from Jager at el, 2006). (C) 

Nucleotide sequence of Epyhdatia muelleri Sox3 3' end and (D) the corresponding amino 

acid sequence obtained by 3' RACE.  

Figure 6  

RT-PCR expression analysis of HbSox3 in the stages of development of Halichondria. 

Actin expression is shown as a reference control for expression that is similar in all stages 

of development. 
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Figure 7 

Real Time RT-PCR expression analysis of HbSox3 in the stages of development of 

Halichondria. All stages of development are standardized to the control gene actin.  

Figure 8  

In situ hybridization to paraffin sectioned Halichondria adult tissue with HbSox3 

riboprobe. (A) Cross section (30 uM) of Halichondria adult tissue with embryos using 

HbSox3 antisense probe, staining in the early stage embryos (red arrow). (B) DAPI stain 

showing the nuclei of each cell (white arrow) corresponding to the tissue in (A). (C) 

Cross section (30 uM) of Halichondria adult tissue with embryos using HbSox3 antisense 

probe, staining in the pre-release larvae (black arrow), (D) DAPI stain showing the nuclei 

of each cell (white arrow) corresponding to the tissue in (C). (E) Cross section (30 uM) of 

Halichondria adult tissue with embryos using HbSox3 antisense probe, staining in both 

early stage embryos (red arrow) and pre-release larvae (black arrrow), (F) DAPI stain 

showing the nuclei of each cell (white arrow) corresponding to the tissue in (E).  All 

sections are shown at 100X.  

Figure 9 

In situ hybridization to paraffin sectioned Halichondria adult tissue with HbSox3 

riboprobe. (A, C) Cross section (30 uM) of Halichondria adult tissue using HbSox3 

antisense probe, staining in the archeocyte cells (red arrows). (B, D) DAPI stain showing 

the nuclei of each cell (white arrows) corresponding to the tissue in (A, C). Sections (A-

B) are shown at 200X, and sections (C-D) are shown at 100X.  

Figure 10  

Epyhdatia muelleri stages of development adapted from Funayama et al, (2005).  
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Figure 11  

Real Time RT-PCR expression analysis of EmSox1 in the stages of development of 

Ephydatia. All stages of development are standardized to the control gene elongation 

factor-1. 

Figure 12 

Real Time RT-PCR expression analysis of EmSox3 in the stages of development of 

Ephydatia. All stages of development are standardized to the control gene elongation 

factor-1. 

Figure 13 

 RT-PCR expression analysis of EmSox2 in the stages of development of Ephydatia. Actin 

expression is shown as a reference control for expression that is similar in all stages of 

development. 

Figure 14  

 Real Time RT-PCR expression analysis of EmSox2 in the stages of development of 

Ephydatia. All stages of development are standardized to the control gene elongation 

factor-1. 

Figure 15 

 Whole mount in situ hybridization to Ephydatia tissue with EmSox2 riboprobe. (A,C) 

Ephydatia tissue using EmSox2 antisense probe, staining in cells around choanocyte 

chambers. (B) Cross section of Ephydatia tissue stained with vital dye to show cell types, 

archeocytes are indicated with black arrows. (Photo courtesy of Dr. Sally Leys) (D) 

DAPI stain showing where choanocyte chambers are present. (E, G) Cross section (30 

uM) of Ephydatia tissue using EmSox2 antisense probe, staining in the archeocyte cells 
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(red arrows). ). (F, H) DAPI stain showing the nuclei of each cell (white arrows) 

corresponding to the tissue in (E, G). Section (A) is shown at 10X, sections (C-D) are 

shown at 100X, sections (E-F) are shown at 200X, and sections (G-H) are shown at 

400X.  
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HMG Sox Domain 

Figure 1 

Figure 2 
 

B. Translated amino acid sequence:  

VKRPMNAFMVWAQLERRKMTLEYPDMHNAEISRRLGKLWRLLGEDEKQPFIEESERLRI

QHMKQYPDYKYKPKR 

Halichondria bowerbanki  Sox3  
A: Nucleotide sequence:  

5’GTGAAGCGCCCGATGAACGCATTTATGGTCTGGGCTCAACTGGAGAGGAGAAAGATG

ACGTTAGAATACCCCGATATGCACAATGCTGAAATTAGCAGGAGACTGGGCAAGTTATG

GCGGTTACTCGGAGAAGACGAGAAACAACCGTTCATCGAGGAATCCGAGAGGCTACGCA

TCCAACACATGAAGCAATACCCCGACTACAAGTACAAGCCCAAGAGG 3’ 
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Figure 3 

Ephydatia muelleri  Sox1 
A. Nucleotide Sequence:  

5’TCAATCGAGCGCAAGAAGCTAGCCGAGAGAGAACCGCGCTTGCACAACACGCGGTTG

GGCCAGATGTGGAAATGCATGACAGAGGAAGACAAGAAGCCTTTCCGGCTAGAAGCGGA

GAAGCTCAAGACTAAGCTCCTGGAGGAACACCCGG 3’ 

B1. Translated amino acid sequence:  

SIERKKLAEREPRLHNT----RLGQMWKCMTEEDKKPFRLEAEKLKTKLLEEHP 

 

B2. Translated amino acid sequence:  

SIERKKLAEREPRLHNTELSKRLGQMWKCMTEEDKKPFRLEAEKLKTKLLEEHP 

Epyhdatia muelleri  Sox2  
A. Nucleotide sequence:  

5’GTGAAGCGGCCGATGAACGCCTTCATGGTGTGGTCTCGCAAAATGAGAAAGAAGATA

GCGGACGAGAATCCCAAGATGCACAATTCCGAGATCAGCAAACGGTTGGGGGCGCAGTG

GAAAGCCTTATCGGATGAGGAGAAGCGACCTTACATCGAGGAGGCCAAGCGGCTCAGAG

AGGCGCACATGAAGAAGCATCCAAACTACAAGTACAAGCCCAAGAGGAAGGGC 3’ 

B. Translated amino acid sequence:  

VKRPMNAFMVWSRKMRKKIADENPKMHNSEISKRLGAQWKALSDEEKRPYIEEAKRLRE

AHMKKHPNYKYKPKRKG 

 

Figure 4 
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Figure 5 

C. Nucleotide Sequence:  

5’TGGGCAAGCTGGGGCGGTTACTCACTGATGCAGAAAAGCAGCCCTACGTGGACGAGT

CGGAGCGGCTAAGAGTGATGCACATGAAACAGTACCCCGACTACAAGTACAGGCCGCGC

AAGCGCGGGACCAAGAAGACGTGTAAGCAAACCGCGAACAGCAGCGTCGCTGCTGGTGG

TTGCAAACCTTCCACGACGGCGGCAGACTCTCCCTGCGCGCCTTGCGTGTGCGGGAACA

AGACGGCGGAAAAGTGCACGGTGGGTATCCAGTGTACGCTCGATACGAACGGCTCTGAC

ATCATCGAGCGTCACGCTATGGACTGCAGCAGCACCGTCAAGCGTACGGCAGAGATCTC

CATCCAAGTAGGAAATGGTTTGGCCACGGTGAAGGCCGTGACCGCCACAAGTAAACAAC

AGAGCAGCGCGATGCAAACCAAGTACCCGGTCGTCACCGGTGGGAAACGGGTTCGTCTG

GGCTCGGACGGGTCGACAAGACCGCCCAAGCAGGTCAGAAGCGATCAGCAGCACCAGAT

GATGTGCAGATCCCCGACGTTGAGCAAACAGCAGACCAAGGTACCCGACGGTCGCCTAC

CCCTATCTCCGCCGAATTCACTCGACGATCTGGACATGTCTCTCTCGCCAACAGAGGTC

GACCTCTGCCTTCTTCCTGGTCTCAACTTCGTGGACTTGTTGGAACCCATATTCATGTC

GGGGCCTATTCTAACCAGCGCGACCATCTCCCCTCCTCTGAGTGCGACCGGATCAGGAT

TGCAACTGCCGAACTGTTATTCGCCATCGGACATCTCGCAAGATGACAAATCTGTTTTC

GACTTCCCAGACATAAGCCCAGACTTTGCAGAGCTATTCGTCCAAAATCCTTATTCACA

ACTGGACTCGACCATTTCTCCACTTCTCTCGAACTAGTGAGACAGCATACGGTAATTCC

AGCGCCTGTGCTATTCAAATTCAACACCACACAGGATAGGTGACTTGGTGAACACAAAT

ATTCACTTTTTGTGTCACCAAAATAGAAATAAAGTCACTTTCTGTGTATACATGTGTTT

GTACAAACACGTCACTGGATGTGTCCGCGTTTCATCCCGTGCTAGTTGTTCTTGTTCTA

TGATCACTTTATGCATCATTTGAATTGCCACAAAAAAAAGAAAAAGACATAACGAAGAT

CTATTGCTCCCACGCGTTGG 3’ 

Ephydatia muelleri  Sox3  
A. Nucleotide sequence:  

5’GCTGGAAAGGAGGAAGATGACCCTGGAATACCCGGACATGCACAACGCGGAGATCAG

CAGGCGCCTGGGCAAGCTGTGGCGGTTACTCACTGATGCAGAAAAGCAGCCCTACGTGG

ACGAGTCGGAGCGGCTAAGAGTGATGCACATGAAGCAGTACCCCG 3’ 

B. Translated amino acid sequence:  

LERRKMTLEYPDMHNAEISRRLGKLWRLLTDAEKQPYVDESERLRVMHMKQYP 

D. Translated amino acid sequence:  

GKLWRLLTDAEKQPYVDESERLRVMHMKQYPDYKYRPRKRGTKKTCKQTANSSVAAGGC

KPSTTAADSPCAPCVCGNKTAEKCTVGIQCTLDTNGSDIIERHAMDCSSTVKRTAEISI

QVGNGLATVKAVTATSKQQSSAMQTKYPVVTGGKRVRLGSDGSTRPPKQVRSDQQHQMM

CRSPTLSKQQTKVPDGRLPLSPPNSLDDLDMSLSPTEVDLCLLPGLNFVDLLEPIFMSG

PILTSATISPPLSATGSGLQLPNCYSPSDISQDDKSVFDFPDISPDFAELFVQNPYSQL

DSTISPLLSN**DSIR*FQRLCYSNSTPHRIGDLVNTNIHFLCHQNRNKVTFCVYMCLY

KHVTGCVRVSSRASCSCSMITLCII*IATKKRKRHNEDLLLPRV 
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Figure 10 
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Figure 11 

EmSox1 Real Time RT-PCR
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Figure 12 

Figure 13 
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Figure 14 
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Figure 15 
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