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A SURVEY ON REVERSE CARLESON MEASURES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

ABSTRACT. This is a survey on reverse Carleson measures for various Hilbert spaces of analytic
functions. These spaces include the Hardy, Bergman, certain harmonically weighted Dirichlet,
Paley-Wiener, Fock, model (backward shift invariant), and de Branges-Rovnyak spaces. The
reverse Carleson measure for backward shift invariant subspaces in the non-Hilbert situation is
new.

1. INTRODUCTION

Suppose thatH is a Hilbert space of analytic functions on the open unit diskD = {z ∈ C :
|z| < 1} endowed with a norm‖ · ‖H . If µ ∈ M+(D

−), the positive finite Borel measures on the
closed unit diskD− = {z ∈ C : |z| 6 1}, we say thatµ is aCarleson measurefor H when

(1.1) ‖f‖µ . ‖f‖H ∀f ∈ H ,

and areverse Carleson measurefor H when

(1.2) ‖f‖H . ‖f‖µ ∀f ∈ H .

Here we use the notation

‖f‖µ :=

(∫

D−

|f |2dµ
)1

2

for theL2(µ) norm off and the notation‖f‖µ . ‖f‖H to mean there is a constantcµ > 0 such
that‖f‖µ 6 cµ‖f‖H for everyf ∈ H (similarly for the inequality‖f‖H . ‖f‖µ). We will use
the notation‖f‖µ ≍ ‖f‖H whenµ is both a Carleson and a reverse Carleson measure. There is
of course the issue of how we definef µ-a.e. onT = ∂D so that‖f‖µ makes sense; but this will
be discussed later.

Carleson measures for many Hilbert (and Banach) spaces of analytic functions have been well
studied for many years now. Due to the large literature on this subject, it is probably impossible
to give a complete account of these results. Carleson measures make, and continue to make,
important connections to many areas of analysis such as operator theory, interpolation, boundary
behavior problems, and Bernstein inequalities and they have certainly proved their worth. We
will mention a few of these results as they relate to the lesser known topic, and the focus of this
survey, of reverse Carleson measures.

2010Mathematics Subject Classification.30J05, 30H10, 46E22.
Key words and phrases.Hardy spaces, model spaces, Carleson measures, de Branges-Rovnyak spaces.
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2 FRICAIN, HARTMANN, AND ROSS

Generally speaking, Carleson measuresµ are often characterized by the amount of mass thatµ
places on aCarleson window

SI :=
{
z ∈ D− : 1− |I| 6 |z| 6 1,

z

|z| ∈ I
}

relative to the length|I| of the sideI of that window, i.e., whether or not there exists positive
constantsC andα such that

µ(SI) 6 C|I|α.(1.3)

for all arcsI ⊂ T = ∂D. We will write this asµ(SI) . |I|α.

WhenH is a reproducing kernel Hilbert space, it is often the case that the Carleson condition in
(1.1) can be equivalently rephrased in terms of the, seemingly weaker, testing condition

(1.4) ‖kH

λ ‖µ . ‖kH

λ ‖H ∀λ ∈ D,

wherekH
λ is the reproducing kernel function forH . This testing condition (where (1.4) implies

(1.1)) is often called thereproducing kernel thesis(RKT).

It is natural to ask as to whether or not reverse Carleson measures onH can be characterized by
replacing the conditions in (1.3) and (1.4) with the analogous “reverse” conditions

µ(SI) & |I|α or ‖kH

λ ‖µ & ‖kH

λ ‖H .

We will explore when this happens.

Reverse Carleson measures probably first appeared under thebroad heading of “sampling mea-
sures” forH , in other words, measuresµ for which

‖f‖H ≍ ‖f‖µ ∀f ∈ H ,

i.e.,µ is both a Carlesonanda reverse Carleson measure forH . Whenµ is a discrete measure
associated to a sequence of atoms inD, this sequence is often called a “sampling sequence” for
H and there is a large literature on this subject [53]. Equivalent measures have also appeared in
the context of “dominating sets”. For example, it is often the case thatH is naturally normed
by anL2(µ) norm, i.e.,

‖f‖H = ‖f‖µ ∀f ∈ H ,

as is the case with the Hardy, Bergman, Paley-Wiener, Fock, and model spaces. For a Borel set
E contained in the support ofµ, one can ask whether or not the measureµE = µ|E satisfies

(1.5) ‖f‖H ≍ ‖f‖µE
∀f ∈ H .

Such setsE are called “dominating sets” forH . Historically, for the Bergman, Fock, and Paley-
Wiener spaces, the first examples of reverse Carleson measures were obtained via dominating
sets which, in these spaces, are naturally related with relative density, meaning thatE is never
too far from the set on which the norm of the space is evaluated.

Though we will give a survey of reverse Carleson measures considered on a variety of Hilbert
spaces, our main effort, and efforts of much recent work, will be on the sub-Hardy Hilbert spaces
such as the model spaces and their de Branges-Rovnyak space generalizations. We will also
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comment on certain Banach space generalizations when appropriate, and in particular in connec-
tion with backward shift invariant subspaces. As it turns out the corresponding result from [8]
generalizes to1 < p < +∞. Indeed, this novel result follows from Baranov’s proof as presented
in [8] and which we will reproduce in a separate appendix withthe necessary modifications.

2. THE HARDY SPACE

We assume the reader is familiar with the classicalHardy spaceH2. For those needing a review,
three excellent and well-known sources are [17, 21, 29]. Functions inH2 have radial boundary
values almost everywhere onT andH2 can be regarded as a closed subspace ofL2 via the
“vanishing negative Fourier coefficients” criterion. Ifm is standard Lebesgue measure onT,
normalized so thatm(T) = 1, thenH2 is normed by theL2(m) norm‖ · ‖m. As expected, the
subject of Carleson measures begins with this well-known theorem of Carleson [21, Chap. I,
Thm. 5.6].

Theorem 2.1(Carleson). For µ ∈ M+(D) the following are equivalent:

(i) ‖f‖µ . ‖f‖m for all f ∈ H2;

(ii) ‖kλ‖µ . ‖kλ‖m for all λ ∈ D, wherekλ(z) = (1 − λz)−1 is the reproducing kernel for
H2;

(iii) µ(SI) . |I| for all arcs I ⊂ T.

This theorem can be generalized in a number of ways. First, the theorem works for theHp

classes forp ∈ (0,∞) (with nearly the same proof). In particular, the set of Carleson measures
for Hp does not depend onp. Furthermore, notice that the original hypothesis of the theorem
says thatµ ∈ M+(D) and thus places no mass onT. SinceH2 ∩ C(D−) is dense inH2 (finite
linear combinations of reproducing kernels belong to this set), one can replace the condition
‖f‖µ . ‖f‖m for all f ∈ H2 with the same inequality but withH2 replaced withH2 ∩ C(D−).
This enables an extension of Carleson’s theorem to measuresµ which could possibly place mass
onT where the functions inH2 are not initially defined. In the end however, this all sorts itself
out since the Carleson window conditionµ(SI) . |I| implies thatµ|T ≪ m and so the integral
in ‖f‖µ makes sense when one definesH2 functions onT by theirm-almost everywhere defined
radial limits. Stating this all precisely, we obtain a revised Carleson theorem.

Theorem 2.2.Supposeµ ∈ M+(D
−). Then the following are equivalent:

(i) ‖f‖µ . ‖f‖m for all f ∈ H2 ∩ C(D−);

(ii) ‖kλ‖µ . ‖kλ‖m for all λ ∈ D;

(iii) µ(SI) . |I| for all arcs I ⊂ T.

Furthermore, when any of the above equivalent conditions hold, thenµ|T ≪ m; the Radon-
Nikodym derivativedµ|T/dm is bounded; and‖f‖µ . ‖f‖m for all f ∈ H2.



4 FRICAIN, HARTMANN, AND ROSS

We took some time to chase down this technical detail since, for other Hilbert spaces, we need
to include the possibility thatµ might place mass on the unit circleT and perhaps even have
a non-trivial singular component (with respect tom). In fact, as we will see below when one
discusses the works of Aleksandrov and Clark, there are Carleson measures, in fact isometric
measures, for model spaces which are singular with respect to m.

The reverse Carleson measure theorem forH2 is the following [23]. We include the proof since
some of the ideas can be used to obtain a reverse Carleson measure for other sub-Hardy Hilbert
spaces such as the model or de Branges-Rovnyak spaces (see Section 7).

Theorem 2.3.Letµ ∈ M+(D
−). Then the following assertions are equivalent:

(i) ‖f‖µ & ‖f‖m for all f ∈ H2 ∩ C(D−);

(ii) ‖kλ‖µ & ‖kλ‖m for all λ ∈ D;

(iii) µ(SI) & |I| for every arcI ⊂ T;

(iv) ess-infdµ|T/dm > 0.

Proof. (i) ⇒ (ii) is clear.

(iii) ⇒ (iv): Define

C = inf
I

µ(SI)

|I| .

Let I be an arc onT and take any (relatively) open setO in D− for which I ⊂ O. Then there
exists an integerN such thath = |I|/N satisfiesSI,h ⊂ O whereSI,h is the modified Carleson
window defined by

SI,h =
{
z ∈ D− : 1− h 6 |z| 6 1,

z

|z| ∈ I
}
.

Divide I into N sub-arcsIk (suitable half-open except for the last one) such that|Ik| = h (and
henceSIk,h = SIk). Then

µ(SI,h) = µ(

N⋃

k=1

SIk,h) =

N∑

k=1

µ(SIk,h) > C

N∑

k=1

|Ik| = C|I|.

For every (relatively) open setO in D− for which I ⊂ O there existsh > 0 such thatSI,h ⊂ O.
Sinceµ ∈ M+(D

−) is outer regular (see [47, Theorem 2.18]) we have

µ(I) = inf{µ(O) : I ⊂ O open inD−} > inf
h>0

µ(SI,h) > C|I|.

We deduce thatm is absolutely continuous with respect toµ|T and the corresponding Radon-
Nikodym derivative ofµ is (essentially) bounded below byC.

(iv) ⇒ (i): Let
A = ess-infdµ|T/dm.
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For allf ∈ H2 ∩ C(D−),
∫

D−

|f |2dµ >

∫

T

|f |2dµ > A

∫

T

|f |2dm.

(ii) ⇒ (iii): Let

(2.4) Kλ(z) =
kλ(z)

‖kλ‖m
be the normalized reproducing kernel forH2 and observe that since

‖kλ‖m =
1√

1− |λ|2
,

the quantity

|Kλ(z)|2 =
1− |λ|2
|1− λz|2

is the Poisson kernel for the disk. Let

B = inf
λ∈D

‖Kλ‖2µ
and note thatB > 0 by hypothesis.

Integrating overSI,h with respect to area measuredA onD we get

(2.5) B|I| × h 6

∫

SI,h

∫

D−

|Kλ|2dµ dA(λ) =

∫

D−

∫

SI,h

1− |λ|2
|1− λz|2

dA(λ)dµ(z).

Set

ϕh(z) =
1

h

∫

SI,h

1− |λ|2
|1− λz|2

dA(λ).

We claim that

lim
h→0

ϕh(z) =





1 if z ∈ I◦

1
2

if z ∈ ∂I

0 if z ∈ D− \ I−,
whereI− denotes the closure,I◦ the interior, and∂I the boundary of the arcI. Indeed, when
z /∈ I−, there are constantsδ, h0 > 0 such that for everyh ∈ (0, h0) and for everyλ ∈ SI,h, we
have|1− λz| > δ > 0. The result now follows from the estimate

0 6 ϕh(z) =
1

h

∫

SI,h

1− |λ|2
|1− λz|2

dA(λ) 6
1

δ2
|I| × h

h
× (2h) . h.

Whenz = eiθ0 ∈ I◦, then settingλ = reiθ for λ ∈ SI,h we have

ϕh(z) =
1

h

∫

SI,h

1− |λ|2
|1− λz|

dA(λ) =
1

h

∫ 1

1−h

∫

I

1− r2

|1− re−iθz|2dθrdr.
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Since dist(z,T \ I◦) > 0 we see that whenr → 1 we have, via Poisson integrals,
∫

I

1− r2

|1− re−iθz|2dθ = 1−
∫

T\I

1− r2

|1− re−iθz|2dθ → 1.

Similarly, if can be shown that at the endpoints ofI, ϕh converges to1
2
. Henceϕh converges

pointwise to a function comparable toχI , andϕh is uniformly bounded inh. From (2.5) and the
dominated convergence theorem we finally deduce that

µ(I) =

∫

D−

χIdµ ≃
∫

D−

lim
h→0

ϕh(z)dµ(z) = lim
h→0

∫

D−

ϕh(z)dµ(z) & |I| . �

This theorem was proved in [23] and extends to1 < p < ∞ with the same proof. There is a
somewhat weaker version of this result in [31], appearing inthe context of composition operators
on H2 with closed range, where the authors needed to assume from the onset thatµ was a
Carleson measure forH2. Observe that in this theorem we do not require absolute continuity
of the restrictionµ|T. However, if we want to extend‖f‖µ & ‖f‖m, originally assumed for
f ∈ H2 ∩ C(D−), to all of H2, then, in order for the integral in‖f‖µ to make sense for every
function inH2 (via radial boundary values), we need to impose the condition µ|T ≪ m. Note
that we are allowing the possibility that the integral‖f‖µ be infinite for certainf ∈ H2 when the
Radon-Nikodym derivative ofµ|T is unbounded.

Whenµ ∈ M+(D
−) one can combine Theorem 2.2 and Theorem 2.3 to see that

‖f‖µ ≍ ‖f‖m ∀f ∈ H2 ⇐⇒ ‖kλ‖µ ≍ ‖kλ‖m ∀λ ∈ D ⇐⇒ µ(SI) ≍ |I| ∀I ⊂ T.

One might ask what are the “isometric measures” forH2, i.e., ‖f‖µ = ‖f‖m for all f ∈ H2.
Notice how this is a significantly stronger condition than‖f‖m ≍ ‖f‖µ. As it turns out, there is
only one such isometric measure.

Proposition 2.6. Supposeµ ∈ M+(D
−) and ‖f‖µ = ‖f‖m for all f ∈ H2 ∩ C(D−). Then

µ = m.

Proof. Indeed for eachn ∈ N ∪ {0} we have

1 = ‖zn‖2m =

∫

D

|z|2ndµ+ µ(T).

Clearly, lettingn → ∞, we getµ(T) = 1. Whenn = 0 this yields

µ(D) = 0 and µ = µ|T.
By Carleson’s criterion we see thatµ ≪ m and sodµ = hdm, for someh ∈ L1(m). To
conclude thath is equal to one almost everywhere, apply the fact thatµ is an isometric measure
to the normalized reproducing kernelsKλ (see (2.4)) to see that

1 =

∫

T

1− |λ|2
|1− ζλ|2

h(ζ)dm(ζ) ∀λ ∈ D.
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If we express the above as a Fourier series, we get

1 = ĥ(0) +
∞∑

n=1

ĥ(−n)λ
n
+

∞∑

n=1

ĥ(n)λn, λ ∈ D,

and it follows thath = 1 m-a.e. onT. Thusµ = m. �

3. BERGMAN SPACES

TheBergman spaceA2 is the space of analytic functionsf onD with finite norm

‖f‖A2 :=

(∫

D

|f |2dA
)1

2

,

wheredA = dxdy/π is normalized area Lebesgue measure onD [18, 26]. As with the Hardy
space, we begin our discussion with the Carleson measures for A2. This was done by Hastings
[24]:

Theorem 3.1.For µ ∈ M+(D) the following are equivalent:

(i) µ(SI) . |I|2 for every arcI ∈ T;

(ii) ‖f‖µ . ‖f‖A2 for everyf ∈ A2.

We also refer to [26] for further information about Carlesonmeasures in Bergman spaces, includ-
ing an equivalent restatement of this theorem involving pseudo-hyperbolic disks. In particular
(see [26, Theorem 2.15]) condition (i) is replaced by the condition: there exists anr ∈ (0, 1)
such that

µ(D(a, r)) . A(D(a, r)), a ∈ D,

where

D(a, r) =

{
z ∈ C :

∣∣∣∣
z − a

1− za

∣∣∣∣ < r

}

denotes a pseudo-hyperbolic disk of radiusr centered ata. Observe that sincer is fixed, we have
A(D(z, r)) ≍ (1 − |z|2)2. Again, the geometric condition measures the amount of massthatµ
places on a pseudohyperbolic disk with respect to an intrinsic area measure of that disk. Hastings
result was generalized by Oleinik and Pavlov, and Stegenga (see [36] for the references).

Reverse Carleson embeddings for the Bergman spaces, and other closely related spaces, were
discussed by Luecking [34, 36, 37]. One of his first results inthis direction concerns dominating
sets, i.e., measures of the typeχGdA (see (1.5)). Here we have the following “reverse” of the
inequality in Hasting’s result (see [34]).

Theorem 3.2.SupposeG is a (Lebesgue) measurable subset ofD. Thenµ = χGdA is a reverse
Carleson measure forA2 if and only ifµ(SI) & |I|2 for all arcs I ⊂ T.
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A similar result holds for the harmonic Bergman space [35]. We will discuss dominating sets
again later when we cover model spaces (see Definition 6.12).

As it turns out, the general reverse Carleson measure resultfor Bergman spaces is more delicate
[36, Thm. 4.2].

Theorem 3.3. Let δ, ε > 0. Then there exists aβ > 0 with the following property: Whenever
µ ∈ M+(D) for which

(3.4) c = sup
a∈D

µ(D(a, 1/2))

A(D(a, 1/2))
< ∞,

and for which the set

(3.5) G = {z : µ(D(z, β)) > εcA(D(z, β))}
satisfies

(3.6) m(G ∩ SI) > δ|I|2,
then‖f‖A2 . ‖f‖µ for all f ∈ A2.

Notice how this theorem requiresa priori thatµ is a Carleson measure forA2 (via (3.4)). The
next two conditions tell us that the reverse Carleson condition (3.5) must be satisfied on a set
which is, in a sense, relatively dense. Moreover, the relative density condition in (3.6) should
hold close to the unit circle.

For simplicity we stated the results for theA2 Bergman space. Analogous theorems (with the
same proofs) are true for theAp Bergman spaces forp ∈ (0,∞).

4. FOCK SPACES

We briefly discuss Carleson and reverse Carleson measures for a space of entire functions - the
Fock space. Here the conditions are a bit different since thefunctions are entire and there are no
“boundary conditions” or “Carleson boxes”.

Let ϕ be a subharmonic function onC (often called the weight) such that

1

c
6 ∆ϕ 6 c

for some positive constantc. Theweighted Fock spaceF 2
ϕ is the space of entire functionsf with

finite norm

‖f‖ϕ =

(∫

C

|f(z)|2e−2ϕ(z)dA(z)

)1
2

.

Recall thatdA is Lebesgue area measure onC. Whenϕ(z) = |z|2, this space is often called the
Bargmann-Fock space. A good primer for the Fock spaces is [56]. There is also a suitableLp

version of this space denoted byF p
ϕ and the results below apply to these spaces as well.
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The Carleson measures forF 2
ϕ were characterized by several authors (for variousϕ) but the final,

most general, result is found in Ortega-Cerdà [41]. Below letB(a, r) = {z ∈ C : |z − a| < r}
be the open ball inC centered ata with radiusr.

Theorem 4.1. For a locally finite positive Borel measureµ on C, a weightϕ as above, and
dν = e−2ϕdµ, the following are equivalent:

(i) ‖f‖ν . ‖f‖ϕ for all f ∈ F 2
ϕ;

(ii) supz∈C µ(B(z, 1)) < ∞.

The discussion of reverse Carleson measures for Fock spaceswas begun by Janson-Peetre-
Rochberg [27], againvia dominating sets.

Theorem 4.2.For a weightϕ, a measurable setE ⊂ C, anddν = e−2ϕχEdA, the following are
equivalent:

(i) ‖f‖ϕ . ‖f‖ν for all f ∈ Fϕ;

(ii) there exists anR > 0 such thatinfz∈CA(E ∩ B(z, R)) > 0.

Condition (ii) is a relative density condition which, in a way, appeared in Theorem 3.2. We will
meet such a condition again in Theorem 5.1 below when we discuss the Paley-Wiener space.

In [41] Ortega-Cerdà examined the measuresµ onC for which

‖f‖2ϕ ≍
∫

C

|f(z)|2e−2ϕ(z)dµ(z) ∀f ∈ Fϕ,2.

in other words, the “equivalent measures” forF 2
ϕ. He called such measuressampling measures.

A special instance is when
µ =

∑

n>1

δλn
,

whereΛ = {λn}n>1 is a sequence in the complex plane. In this case,{λn}n>1 is called a
sampling sequence, meaning that

‖f‖2ϕ ≍
∑

n>1

|f(λn)|2e−2ϕ(λn) ∀f ∈ Fϕ,2.

Contrary to the approach in Bergman spaces, where Luecking characterized Carleson and reverse
Carleson measures which, in turn, yielded information on sampling sequences, Ortega-Cerdà dis-
cretizedµ to reduce the general case of sampling measures to that of sampling sequences. These
were characterized in a series of papers by Seip, Seip-Wallstén, Berndtsson-Ortega-Cerdà and
Ortega-Cerdà-Seip (see [53] for these references). The main summary theorem is the following:

Theorem 4.3.A sequenceΛ ⊂ C is a sampling sequence forF 2
ϕ if and only if the following two

conditions are satisfied:

(i) Λ is a finite union of uniformly separated sequences.
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(ii) There is a uniformly separated subsequenceΛ′ ⊂ Λ such that

lim
r→∞

inf
z∈C

#(B(z, r) ∩ Λ′)∫
B(z,r)

∆ϕdA
>

1

2π
.

To state the result in terms of sampling measures, we need to introduce some notation. For a
large integerN and positive numbersδ andr, decomposeC into big squaresS of side-lengthNr
and each squareS is itself decomposed intoN2 little squares of side-lengthr. Let n(S) denote
the number of little squaress contained inS such thatµ(s) > δ. In terms of sampling measures,
we have the following:

Theorem 4.4. The measureµ is a sampling measure if and only if the following conditionsare
satisfied:

(i) supz∈C µ(B(z, 1)) < ∞;

(ii) There is anr > 0 and a grid consisting of squares of side-lengthr, an integerN > 0
and a positive numberδ such that

(4.5) inf
S

n(S)∫
S
∆ϕdA

>
1

2π
,

where the infimum is taken over all squaresS consisting ofN2 little squares from the
original grid.

Notice how (i) is a Carleson measure condition while (ii) is areverse Carleson measure condition.

To deduce Theorem 4.3 from Theorem 4.4, Ortega-Cerdà first showed that it is sufficient to
consider the measureµ1 which is the part ofµ supported only on the little squaress for which
µ(s) > δ and then he discretizedµ1 byµ∗

1 =
∑

n µ1(sn)δan , wherean is the center ofsn. In order
to show thatµ1 is sampling exactly whenµ∗

1 is sampling, he used a Bernstein-type inequality.
This naturally links the problem of sampling measures to thedescription of sampling sequences.
Note that Bernstein inequalities also appear in the contextof Carleson and reverse Carleson
measures for model spaces (see Section 6).

5. PALEY-WIENER SPACE

Though the Paley-Wiener space enters into the general discussion of model spaces presented in
Section 6, we would like to present some older results which will help motivate the more recent
ones. ThePaley-Wiener spacePW is the space of entire functionsF of exponential type at most
π, i.e.,

lim sup
|z|→∞

log |F (z)|
|z| 6 π,
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and which are square integrable onR. The norm onPW is

‖F‖PW =

(∫

R

|F (t)|2dt
)1

2

.

A well-known theorem of Paley and Wiener [16] says thatPW is the set of Fourier transforms of
functions inL2 which vanish onR \ [−π, π]. Authors such as Kacnelson [28], Panejah [42, 43],
and Logvinenko [33] examined Lebesgue measurable setsE ⊂ R for which

∫

R

|F |2dt ≍
∫

E

|F |2dt ∀F ∈ PW.

Following (1.5), such sets will be calleddominating setsfor PW . Clearly we always have
∫

E

|F |2dt 6
∫

R

|F |2dt ∀F ∈ PW.

The issue comes with the reverse lower bound. The summary theorem here is the following:

Theorem 5.1.For a Lebesgue measurable setE ⊂ R, the following are equivalent:

(i) the setE is a dominating set forPW ;

(ii) there exists aδ > 0 and anη > 0 such that

(5.2) |E ∩ [x− η, x+ η]| > δ, ∀x ∈ R.

Notice how condition (ii) is a relative density condition wehave met before when studying the
Bergman and Fock spaces.

Lin [32] generalized the above result for measuresµ onR. We say that a positive locally finite
measureµ onR is h-equivalent to Lebesgue measureif there exists aK > 0 such that

µ(x− h, x+ h) ≍ h ∀x ∈ R, |x| > K.

Theorem 5.3.Supposeµ is a locally finite Borel measure onR.

(i) There exists a constantγ > 0 such that ifµ ish-equivalent to Lebesgue measure for some
h < γ then ∫

R

|F |2dt ≍
∫

R

|F |2dµ ∀F ∈ PW.

(ii) If ∫

R

|F |2dt ≍
∫

R

|F |2dµ ∀F ∈ PW,

thenµ is h-equivalent to Lebesgue measure for someh > 0.
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6. MODEL SPACES

A bounded analytic functionΘ onD is called aninner functionif the radial limits ofΘ (which
exist almost everywhere onT [17]) are unimodular almost everywhere. Examples of inner func-
tions include the Blaschke productsBΛ with (Blaschke) zerosΛ ⊂ D and singular inner functions
with associated (positive) singular measureν onT. In fact, every inner function is a product of
these two basic types [17].

Associated to each inner functionΘ is amodel space

KΘ := (ΘH2)⊥ =

{
f ∈ H2 :

∫

T

fΘgdm = 0 ∀g ∈ H2

}
.

Model spaces are the generic (closed) invariant subspaces of H2 for the backward shift operator

(S∗f)(z) =
f(z)− f(0)

z
.

Moreover, the compression of the shift operator

(Sf)(z) = zf(z)

to a model space is the so-called “model operator” for certain types of Hilbert space contractions.

It turns out that the Paley-Wiener spacePW can be viewed as a certain type of model space. We
follow [48]. Let

Ψ(z) := exp

(
2π

z + 1

z − 1

)

be the atomic inner function with point mass atz = 1 and with weight2π,

(Ff)(x) :=
1√
2π

∫

R

e−ixtf(t)dt,

the Fourier transform onL2(R), and

J : L2(m) → L2(R), (Jg)(x) =
1√
π

1

x+ i
f
(x− i

x+ i

)
.

It is well known thatF is a unitary operator onL2(R) and a change of variables will show that
J is a unitary map fromL2(m) ontoL2(R). It is also known [48, p. 33] that

(FJ)KΨ = L2[0, 2π].

If
T : L2[0, 2π] → L2[−π, π], (Th)(x) = h(x+ π)

is the translation operator then
(TFJ)KΨ = L2[−π, π]

and
(FTFJ)KΨ = PW.

Thus the Paley-Wiener space is an isometric copy of a certainmodel space in a prescribed way.



A SURVEY ON REVERSE CARLESON MEASURES 13

An important set associated with an inner function is itsboundary spectrum

(6.1) σ(Θ) :=

{
ξ ∈ T : lim

z→ξ

|Θ (z)| = 0

}
.

Using the factorization ofΘ into a Blaschke product and a singular inner function, one can show
that whenσ(Θ) 6= T, there is a two-dimensional open neighborhoodΩ containingT\σ(Θ) such
thatΘ has an analytic continuation toΩ.

Functions in model spaces can have more regularity than generic functions inH2. Indeed, a
result of Moeller [38] says every function inKΘ follows the behavior of its corresponding inner
functions and has an analytic continuation to a two dimensional open neighborhood ofT\σ(Θ).
In fact, one can say a little bit more. Indeed, for everyξ ∈ T \ σ(Θ) the evaluation functional
Eξf = f(ξ) is continuous onKΘ with

‖Eξ‖ =
√
|Θ′(ξ)|.

Thus

(6.2) sup
ξ∈W

‖Eξ‖ < ∞

for any compact setW ⊂ D− \ σ(Θ).

In terms of a measureµ ∈ M+(D
−) being a Carleson measure forKΘ, let us make the following

simple observation.

Proposition 6.3. Supposeµ ∈ M+(D
−) with support contained inD− \ σ(Θ). Thenµ is a

Carleson measure forKΘ.

Proof. Let W denote the support ofµ. From our previous discussion, everyf ∈ KΘ has an
analytic continuation to an open neighborhood ofW . Furthermore, using (6.2) we see that

sup
ξ∈W

|f(ξ)| . ‖f‖m ∀f ∈ KΘ.

It follows that‖f‖µ . ‖f‖m and henceµ is a Carleson measure forKΘ. �

Two observations come from Proposition 6.3. The first is thatthere are Carleson measures for
KΘ which are not Carleson forH2 sinceµ(SI) . |I| need not hold for all arcsI ⊂ T. In fact
one could even put point masses onT \ σ(Θ). This is in contrast with theH2 situation where
we have already observed in Theorem 2.2 that ifµ ∈ M+(D

−) is a Carleson measure forH2,
thenµ|T ≪ m. The second observation is that if there is to be a Carleson testing condition like
µ(SI) . |I|, the focus needs to be on the Carleson boxesSI which are, in a sense, close toσ(Θ).

So far we have avoided the issue of making sense of the integrals ‖f‖µ for f ∈ KΘ when the
measureµ could potentially place mass onT. Indeed, we side stepped this in Proposition 6.3 by
stipulating that the measure places no mass onσ(Θ), where the functions inKΘ are not well-
defined. In order to consider a more general situation, and toadhere to the notation used in [55],
we make the following definition.
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Definition 6.4. A measureµ ∈ M+(D
−) will be calledΘ-admissibleif the singular component

of µ|T (relative to Lebesgue measure) is concentrated onT \ σ(Θ).

Since functions fromKΘ are continuous (even analytic) on this set, it follows that forΘ-admissible
measures and functionsf ∈ KΘ, the integral‖f‖µ makes sense.

As was done with the Hardy spaces in Theorem 2.2, one could state the definition of a Carleson
measure forKΘ to be aµ ∈ M+(D

−) for which

(6.5) ‖f‖µ . ‖f‖m ∀f ∈ KΘ ∩ C(D−).

Indeed, an amazing result of Aleksandrov [2] says thatKΘ ∩ C(D−) is dense inKΘ and so
this set makes a good “test set” for the Carleson (reverse Carleson) condition. Furthermore, if
µ ∈ M+(D

−) and (6.5) holds, thenµ is Θ-admissible, every function inKΘ has radial limits
µ|T-almost everywhere onT, and‖f‖µ . ‖f‖m for everyf ∈ KΘ.

Carleson measures forKΘ were discussed in the papers of Cohn [14] and Treil and Volberg [55].
Their theorem is stated in terms of

(6.6) Ω(Θ, ε) := {z ∈ D : |Θ(z)| < ε}, 0 < ε < 1,

the sub-level setsfor Θ. Note that boundary spectrumσ(Θ) is contained in the closure of any
Ω(Θ, ε), 0 < ε < 1.

Theorem 6.7.Supposeµ ∈ M+(D
−) and define the following conditions:

(i) µ(SI) . |I| for all arcs I ⊂ T for whichSI ∩ Ω(Θ, ε) 6= ∅;

(ii) µ is a Carleson measure forKΘ;

(iii) µ isΘ-admissible and‖kΘ
λ ‖µ . ‖kΘ

λ ‖m holds for everyλ ∈ D.

Then(i) =⇒ (ii) =⇒ (iii). Moreover, if for someε ∈ (0, 1), the sub-level setΩ(Θ, ε) is
connected, then(i) ⇐⇒ (ii) ⇐⇒ (iii).

The condition thatΩ(Θ, ε) is connected for someε ∈ (0, 1) is often called theconnected level
set condition(CLS). Cohn [14] proved that ifΩ(Θ, ε) is connected andδ ∈ (ε, 1), thenΩ(Θ, δ)
is also connected. Any finite Blaschke product, the atomic inner function

Θ(z) = exp

(
z + 1

z − 1

)
,

and the infinite Blaschke product whose zeros are{1 − rn}n>1, where0 < r < 1, satisfy this
connected level set condition.

The sufficient condition appearing in assertion(i) of Theorem 6.7 is, in general, not necessary.
More precisely, Treil and Volberg [55] proved that this condition is necessary for the embedding
of KΘ intoL2(µ) if and only ifΘ ∈ (CLS). Nazarov–Volberg [39] proved that the RKT (repro-
ducing kernel thesis) for Carleson embeddings forKΘ is, in general, not true. In [3], Baranov
obtained a significant extension of the Cohn and Volberg–Treil results, introducing a new point
of view based on certain Bernstein-type inequalities. Quite recently, in answering a question
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posed by Sarason [52], Baranov–Besonnov–Kapustin [6] clarified a nice link between Carleson
measures forKΘ and an interesting class of operators – the truncated Toeplitz operators – which
have received much attention in the last few years [52].

We turn to reverse Carleson measures. Since the main reverseembedding result for model spaces,
or backward shift invariant subspaces, is new in the non Hilbert situation we will state this theo-
rem for1 < p < +∞. In this more general situation we need the following definition

Kp
Θ = Hp ∩ΘHp

0 ,

whereHp
0 = zHp is the space of functions inHp vanishing at0. The above intersection is to be

understood on the circle. We will denoteLp(µ) = Lp(D, µ).

The reverse embedding theorem goes along the lines of Treil-Volberg for which we need the
following additional notation: given an arcI ⊂ T and a numbern > 0, we define the amplified
arcnI as the arc with the same center asI but with lengthn×m(I).

Theorem 6.8. LetΘ be inner,µ ∈ M+(D
−), andε ∈ (0, 1). There exists anN = N(Θ, ε) > 1

such that if

(6.9) µ(SI) & m(I)

for all arcs I ⊂ T satisfying
SNI ∩ Ω(Θ, ε) 6= ∅,

then

(6.10) ‖f‖Lp(m) . ‖f‖Lp(µ) ∀f ∈ Kp
Θ ∩ C(D−).

This theorem is a more general version than the one appearingin [8, Theorem 2.1], not only
in that it works forp 6= 2, but also it does not require the (direct) Carleson condition (which
is not really needed in the proof). It was initially proved in[8] for (CLS)-inner function using
a perturbation argument from [4, Corollary 1.3 and the proofof Theorem 1.1], but Baranov
provided a proof (found in [8]) based on Bernstein inequalities and which does not require the
CLS condition. As it turns out, Baranov’s proof does not use specific Hilbert space tools and
generalizes to the situation1 < p < +∞. The proof of this theorem is reproduced in the
appendix. Apart from the natural changes to switch fromp = 2 to generalp, we also include
explicitely an argument from [31] which was not detailed in the original proof in [8] in order to
show here that the direct Carleson measure condition is not required.

Corollary 6.11. Under the hypotheses of Theorem 6.8, and if, moreover, the measureµ is as-
sumed to beΘ-admissible, then(6.10)extends to all ofKp

Θ.

Our second reverse Carleson result involves the notion of a dominating set forKΘ, defined in
(1.5) and discussed earlier for the Bergman and Fock spaces.

Definition 6.12. A (Lebesgue) measurable subsetΣ ⊂ T, withm (Σ) < 1, is called adominating
setfor KΘ if ∫

T

|f |2dm .

∫

Σ

|f |2dm ∀f ∈ KΘ.
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This is equivalent to saying that the measuredµ = χΣdm is a reverse Carleson measure forKΘ.
Here we list some observations concerning dominating sets for model spaces. We will use the
following notation for setsA, B and a pointx:

d(A,B) := inf{|a− b| : a ∈ A, b ∈ B}, d(x,A) := d({x}, A).

Throughout the list below we will assume thatΘ is inner andσ(Θ) is its boundary spectrum from
(6.1). All of these results can be found in [8, Section 5].

(i) If Σ is a dominating set forKΘ then, for everyζ ∈ σ(Θ), we haved(ζ,Σ) = 0.

(ii) If Σ is a dominating set forKΘ thend(Σ, σ(Θ)) = 0.

(iii) Let ζ ∈ σ(Θ) andΣ dominating. Then there exists anα > 0 such that for every sequence
λn → ζ with Θ(λn) → 0, there is an integerN with

m(Σ ∩ Iαλn
) & m(Iαλn

), n > N.

In the above,Iαλ is the subarc ofT centered atλ
|λ|

with lengthα(1− |λ|).

(iv) Every open subsetΣ of T such thatσ(Θ) ⊂ Σ andm(Σ) < 1 is a dominating set forKΘ.

(v) Let Θ be an inner function such thatm(σ(Θ)) = 0. Then for everyε ∈ (0, 1) there is a
dominating setΣ for KΘ such thatm(Σ) < ε. In particular, this is true for (CLS)-inner
functions.

(vi) If σ(Θ) = T and ifΣ is a dominating set forKΘ thenΣ is dense inT.

(vii) There exists a Blaschke productB with σ(B) = T and an open subsetΣ ( T dominating
for KB.

(vi) Every model space admits a dominating set.

Theorem 6.8 shows, in the special case of the Paley-Wiener space, that when (5.2) is satisfied for
sufficiently smallη, thenE is a dominating set forPW .

For reverse Carleson measures there is the following resultfrom [8].

Theorem 6.13.LetΘ be an inner function,Σ be a dominating set forKΘ, andµ ∈ M+(D
−).

Suppose that

inf
I

µ(SI)

m (I)
> 0,

where the above infimum is taken over all arcsI ⊂ T such thatI ∩ Σ 6= ∅. Then

(6.14) ‖f‖m . ‖f‖µ ∀f ∈ KΘ ∩ C(D−).

Corollary 6.15. Under the hypotheses of Theorem 6.13, and if moreover the measureµ is as-
sumed to beΘ-admissible, then the inequality in(6.14)extends to all ofKΘ.
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For the Hardy space, the reverse Carleson measures were characterized by the reverse reproduc-
ing kernel thesis, i.e.,‖kλ‖m . ‖kλ‖µ for all λ ∈ D. For model spaces, however, the reverse
reproducing kernel thesis is a spectacular failure [23].

Theorem 6.16.Let Θ be an inner function that is not a finite Blaschke product. Then there
exists a measureµ ∈ M+(T) such thatµ is a Carleson measure forKΘ, the reverse estimate on
reproducing kernelskΘ

λ ,
‖kΘ

λ ‖µ & ‖kΘ
λ ‖m ∀λ ∈ D,

is satisfied, butµ is not a reverse Carleson measure forKΘ.

Let us see this counterexample worked out in the special caseof the Paley-Wiener spacePW ,
which, recall from our earlier discussion, is isometrically isomorphic to the model spaceKΘ with

Θ(z) = exp
(
2π

z + 1

z − 1

)
.

Consider the sequenceS = {xn}n∈Z\{0}, where

xn =

{
n+ 1/8 if n is even

n− 1/8 if n is odd.

By the Kadets-Ingham theorem [40, Theorem D4.1.2],S is a minimal sampling (or complete
interpolating) sequence if we include the point0. SinceS is not sampling, the discrete measure

µ :=
∑

n 6=0

δxn

does not satisfy the reverse inequality

‖f‖L2(R) . ‖f‖L2(µ) ∀f ∈ PW.

However, theL2(µ)-norm of the normalized reproducing kernels

Kλ(z) = cλ sinc(π(z − λ)) = cλ
sin(π(z − λ))

π(z − λ)
, c2λ ≃ (1 + | Imλ|)e−2π| Imλ|,

is uniformly bounded from below. Indeed, ifλ is such that| Imλ| > 1 then

| sin(π(xn − λ))| ≃ eπ| Imλ|,

and hence
∫

C

|Kλ(x)|2dµ(x) =
∑

n 6=0

c2λ

∣∣∣∣
sin(π(xn − λ))

π(xn − λ)

∣∣∣∣
2

≃
∑

n 6=0

| Imλ|
|xn − λ|2 ≃ 1.

Thus it is enough to consider pointsλ ∈ C with | Im λ| 6 1. Let xn0 be the point ofS closest to
λ. Then there isδ > 0, independent ofλ, such that

∫

C

|Kλ(x)|2dµ(x) =
∑

n 6=0

|Kλ(xn)|2 >
∣∣∣∣
sin(π(xn0 − λ))

π(xn0 − λ)

∣∣∣∣
2

> δ.
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It is interesting to point out thatµ is a Carleson measure forPW sinceS is in a strip and
separated.

As was asked for the Paley-Wiener spacePW , what are theµ ∈ M+(T) for which

‖f‖m ≍ ‖f‖µ ∀f ∈ KΘ?

In [54] Volberg generalized the previous results and gave a complete answer for general model
spaces and absolutely continuous measuresdµ = wdm, wherew ∈ L∞(T), w > 0. Let

ŵ(z) =

∫

T

w(ζ)
1− |z|2
|z − ζ |2 dm(ζ), z ∈ D,

be the Poisson integral ofw and note that̂w is harmonic (and positive) onD and has radial
boundary values equal tow m-almost everywhere [17].

Theorem 6.17.Let dµ = wdm, withw ∈ L∞(T), w > 0, and letΘ be an inner function. Then
the following assertions are equivalent:

(i) ‖f‖m ≍ ‖f‖µ for all f ∈ KΘ;

(ii) if {λn}n>1 ⊂ D, then

lim
n→∞

ŵ(λn) = 0 =⇒ lim
n→∞

|Θ(λn)| = 1;

(iii) inf{ŵ(λ) + |Θ(λ)| : λ ∈ D} > 0.

In particular, this theorem applies to the special case whendµ = χΣdm, with Σ a Borel subset of
T. However the conditions obtained from Volberg’s theorem are not expressed directly in terms
of a density condition as was the case forPW (see Theorem 5.1). It is natural to ask if we can
obtain a characterization of dominating sets forKΘ in terms of a relative density. Dyakonov
answered this question in [19]. In the following result,H 2 is the Hardy space of the upper-half
plane{Im z > 0}, Ψ is an inner function on{Im z > 0}, andKΨ = (ΨH 2)⊥ is a model space
for the upper-half plane.

Theorem 6.18.For an inner functionΨ on{Im z > 0} the following are equivalent:

(i) Ψ′ ∈ L∞(R);

(ii) Every Lebesgue measurable setE ⊂ R for which these exists anδ > 0 and anη > 0
such that

|E ∩ [x− η, x+ η]| > δ ∀x ∈ R

is dominating for the model spaceKΨ.

In the case corresponding to the Paley-Wiener spacePW , Ψ(z) = e2iπz and thus|Ψ′(x)| = 2π
on R. As was shown by Garnett [21], the conditionΨ′ ∈ L∞(R) is equivalent to one of the
following two conditions:

(i) ∃h > 0 such that
inf{|Ψ(z)| : 0 < Im(z) < h} > 0;
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(ii) Ψ is invertible in the Douglas algebra[H∞, e−ix] (the algebra generated byH∞ and the
space of bounded uniformly continuous functions onR).

For instance, the above conditions are satisfied whenΨ(z) = eiazB(z), wherea > 0 andB
is an interpolating Blaschke product satisfyingdist(B−1({0}),R) > 0 (e.g., the zeros ofB are
{n+ i}n∈Z).

What happens if we were to replace the condition

‖f‖m ≍ ‖f‖µ ∀f ∈ KΘ

with the stronger condition

‖f‖m = ‖f‖µ ∀f ∈ KΘ.

Such “isometric measures” were characterized by Aleksandrov [1] (see also [8]).

Theorem 6.19.For µ ∈ M+(T) the following assertions are equivalent:

(i) ‖f‖µ = ‖f‖m for all f ∈ KΘ;

(ii) Θ has non-tangential boundary valuesµ-almost everywhere onT and

∫

T

∣∣∣∣∣
1−Θ(z)Θ(ζ)

1− zζ

∣∣∣∣∣

2

dµ(ζ) =
1− |Θ(z)|2
1− |z|2 , z ∈ D;

(iii) there exists aϕ ∈ H∞ such that‖ϕ‖∞ 6 1 and
∫

T

1− |z|2
|ζ − z|2dµ(ζ) = Re

(
1 + ϕ(z)Θ(z)

1− ϕ(z)Θ(z)

)
, z ∈ D.(6.20)

The condition in (6.20) says thatµ is one of the so-calledAleksandrov-Clark measuresfor b =
ϕΘ. It is known that the operatorVb : L

2(µ) −→ H (b) = KΘ ⊕ ΘH (ϕ) introduced in (7.4)
below is an onto partial isometry, which is isometric onH2(µ), the closure of the polynomials in
L2(µ) (see Section 7 for more onH (b)-spaces and Aleksandrov-Clark measures). By a result
of Poltoratski [45],Vbg = g µS-a.e. whereµS is the singular part ofµ with respect tom. In
particular, whenϕ is inner, thenH (b) = KΘϕ = KΘ ⊕ΘKϕ andµ = µS is singular, and hence
for everyf = Vbg ∈ KΘ, whereg ∈ H2(µ), we have

‖f‖m = ‖Vbg‖m = ‖g‖µ = ‖f‖µ.
Whenϕ is not inner, Aleksandrov proves Theorem 6.19 by using the above fact for inner func-
tions along with the fact that the isometric measures form a closed subset of the Borel measures
M(T) in the topologyσ(M(T), C(T)).

L. de Branges [16] proved a version of Theorem 6.19 for meromorphic inner functions and Krein
[22] obtained a characterization of isometric measures forKΘ using more operator theoretic
langage.
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7. DE BRANGES-ROVNYAK SPACES

These spaces are generalizations of the model spaces. Let

H∞
1 = {f ∈ H∞ : ‖f‖∞ 6 1}

be theclosed unit ball inH∞. Recall that whenΘ is inner, the model spaceKΘ is a closed
subspace ofH2 with reproducing kernel function

kΘ
λ (z) =

1−Θ(λ)Θ(z)

1− λz
, λ, z ∈ D.

Using this as a guide, one can, for a givenb ∈ H∞
1 , define thede Branges-Rovnyak spaceH (b)

to be the unique reproducing kernel Hilbert space of analytic functions onD for which

kb
λ(z) =

1− b(λ)b(z)

1− λz
, λ, z ∈ D,

is the reproducing kernel [44]. Note that the functionK(z, λ) := kb
λ(z) is positive semi-definite

onD, i.e.,
n∑

i,j=1

aiajK(λi, λj) > 0,

for all finite sets{λ1, . . . , λn} of points inD and all complex numbersa1, . . . , an. Hence, we can
associate to it a reproducing kernel Hilbert space and the above definition makes sense. There is
an equivalent definition ofH (b) via defects of certain Toeplitz operators [49].

It is well known that though these spaces play an important role in understanding contraction
operators, the norms on theseH (b) spaces, along with the elements contained in these spaces,
remain mysterious. When‖b‖∞ < 1 (i.e., b belongs to the interior ofH∞

1 ), thenH (b) = H2

with an equivalent norm. Whenb is an inner function, thenH (b) = Kb with theH2 norm.
For generalb ∈ H∞

1 , H (b) is contractively contained inH2 and this space is often called a
“sub-Hardy Hilbert space” [49]. The analysis of theseH (b) spaces naturally splits into two
distinct cases corresponding as to whether or notb is an extreme function forH∞

1 , equivalently,
log(1− |b|) 6∈ L1(m).

Whenb ∈ H∞
1 is non-extreme, there is a unique outer functiona ∈ H∞

1 such thata(0) > 0 and

(7.1) |a(ξ)|2 + |b(ξ)|2 = 1 m-a.e.ξ ∈ T.

Sucha is often called thePythagorean matefor b and the pair(a, b) is called aPythagorean pair.

There is the, now familiar, issue of boundary behavior ofH (b) functions when defining the
integrals‖f‖µ in the Carleson and reverse Carleson testing conditions. With the model spaces
(and withH2) there is a dense set of continuous functions for which one can sample in order
to test the Carleson (‖f‖µ . ‖f‖m) and reverse Carleson conditions (‖f‖m . ‖f‖µ). For a
generalH (b) space however, it is not quite clear whether or notH (b) ∩ C(D−) is even non-
zero. In certain circumstances, for example whenb is non-extreme or whenb is an inner function,
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H (b) ∩ C(D−) is actually dense inH (b). For general extremeb, this remains unknown. Thus
we are forced to make some definitions.

Definition 7.2. For µ ∈ M+(D
−) we say that an analytic functionf on D is µ-admissibleif

the non-tangential limits off existµ-almost everywhere onT. We letH (b)µ denote the set of
µ-admissible functions inH (b).

With this definition in mind, iff ∈ H (b)µ, then definingf on the carrier ofµ|T via its non-
tangential boundary values, we see that‖f‖µ is well defined with a value in[0,+∞].

Of course whenµ is carried onD, i.e.,µ(T) = 0, thenH (b)µ = H (b). Hence Definition 7.2
only comes into play whenµ has part of the unit circleT in its carrier. Note thatH (b) = H (b)m
sinceH (b) ⊂ H2. However, there are often otherµ, even ones with non-trivial singular parts on
T with respect tom, for whichH (b) = H (b)µ. The Clark measures associated with an inner
functionb have this property [8, 13].

Definition 7.3. A measureµ ∈ M+(D
−) is aCarleson measurefor H (b) if H (b)µ = H (b)

and‖f‖µ . ‖f‖b for all f ∈ H (b).

Whenb ≡ 0, i.e., whenH (b) = H2 then, as a consequence of Carleson’s theorem (see Theorem
2.2) for H2, we see that whenµ satisfiesµ(SI) . |I| for all arcsI, thenµ|T ≪ m and so
H (b)µ = H (b). Whenb is an inner function, recall a discussion following (6.5) which says
that if the Carleson testing condition‖f‖µ . ‖f‖m holds for allf ∈ H (b) ∩ C(D−), then
H (b)µ = H (b). So in these two particular cases, the delicate issue of defining the integrals in
‖f‖µ for f ∈ H (b) seems to sort itself out. For generalb, we do not have this luxury.

Lacey et al. [30] solved the longstanding problem of characterizing the two-weight inequalities
for Cauchy transforms. Let us take a moment to indicate how their results can be used to discuss
Carleson measures forH (b). Letσ be the Aleksandrov-Clark measure associated withb, that is
the uniqueσ ∈ M+(T) satisfying

1− |b(z)|2
|1− b(z)|2 =

∫

T

1− |z|2
|z − ζ |2 dσ(ζ), z ∈ D.

Let Vb : L
2(σ) −→ H (b) be the operator defined by

(7.4) (Vbf)(z) = (1− b(z))

∫

T

f(ζ)

1− ζ̄z
dσ(ζ) = (1− b(z))(Cσf)(z),

whereCσ is the Cauchy transform

(Cσf)(z) =

∫

T

f(ζ)

1− ζz
dσ(ζ).

It is known [49] thatVb is a partial isometry fromL2(σ) ontoH (b) and

Ker Vb = KerCσ = (H2(σ))⊥.
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HereH2(σ) denotes the closure of polynomials inL2(σ) and the⊥ is in L2(σ). As a conse-
quence, since every functionf ∈ H (b) can be written asf = Vbg for someg ∈ H2(σ), µ is a
Carleson measure forH (b) if and only if

‖Vbg‖µ = ‖f‖µ . ‖f‖b = ‖Vbg‖b = ‖g‖σ ∀g ∈ H2(σ).

Settingνb,µ := |1− b|2µ, we have

‖Vbg‖2µ =

∫

D−

|1− b|2|Cσg|2 dµ = ‖Cσg‖2νb,µ.

This yields the following:

Theorem 7.5. Letµ ∈ M+(D
−), b a µ-admissible function inH∞

1 , andνb,µ := |1 − b|2µ. Then
the following are equivalent:

(i) µ is a Carleson measure forH (b);

(ii) The Cauchy transformCσ is a bounded operator fromL2(σ) into L2(D−, νb,µ), whereσ
is the Aleksandrov-Clark measure associated withb.

We refer the reader to [30, Theorem 1.7] for a description of the boundedness of the Cauchy trans-
form operatorCσ. However, it should be noted that the characterization of Carleson measures
for H (b), obtained combining Theorem 7.5 and [30, Theorem 1.7], is not purely geometric.

The following result from [7], similar in flavor to Theorem 6.7, discusses the Carleson measures
for H (b).

Theorem 7.6.For b ∈ H∞
1 andε ∈ (0, 1) define

Ω(b, ε) := {z ∈ D : |b(z)| < ε},

Σ(b) :=

{
ζ ∈ T : lim

z→ζ

|b(z)| < 1

}
,

Ω̃(b, ε) := Ω(b, ε) ∪ Σ(b).

Letµ ∈ M+(D
−) and define the following conditions:

(i) µ(SI) . |I| for all arcs I ⊂ T for whichI ∩ Ω̃(b, ε) 6= ∅;

(ii) H (b)µ = H (b) and‖f‖µ . ‖f‖b for all f ∈ H (b);

(iii) H (b)µ = H (b) and‖kb
λ‖µ . ‖kb

λ‖b for all λ ∈ D.

Then(i) =⇒ (ii) =⇒ (iii). Moreover, suppose there exists anε ∈ (0, 1) such thatΩ(b, ε) is
connected and its closure containsΣ(b). Then(i) ⇐⇒ (ii) ⇐⇒ (iii).

It should be noted here that, contrary to the inner case, the containmentΣ(b) ⊂ clos(Ω, ε) is
not, in general, automatic. Indeed, whenb(z) = (1 + z)/2, one can easily check that the above
containment is not satisfied.



A SURVEY ON REVERSE CARLESON MEASURES 23

Here is a complete description of the Carleson measures for avery specificb [9]. Note that ifb
is a non-extreme rational function (e.g., rational but not aBlaschke product), one can show that
the Pythagorean matea from (7.1) is also a rational function.

Theorem 7.7. Let b ∈ H∞
1 be rational and non-extreme and letµ ∈ M+(D

−). Then the follow-
ing assertions are equivalent:

(1) µ is a Carleson measure forH (b);

(2) |a|2 dµ is a Carleson measure forH2.

If b(z) = (1+ z)/2 thena(z) = (1− z)/2 and, ifµ is the measure supported on(0, 1) defined by
dµ(t) = (1 − t)−βdt, for β ∈ (0, 1], we can use Theorem 7.7 to see thatµ is Carleson measure
for H (b). However,µ is not a Carleson measure forH2. One can see this by considering the
arcsIϑ = (e−iϑ, eiϑ), ϑ ∈ (0, π/2), and observing that

sup
ϑ

µ(S(Iϑ))

|Iϑ|
= ∞.

If b is aµ-admissible function, then so are all of the reproducing kernelskb
λ (along with finite

linear combinations of them) and thus, with this admissibility assumption onb, H (b)µ is a dense
linear manifold inH (b). This motivates our definition of a reverse Carleson measurefor H (b).

Definition 7.8. Forµ ∈ M+(D
−) andb ∈ H∞

1 , we say thatµ is areverse Carleson measure for
H (b) if H (b)µ is dense inH (b) and‖f‖b . ‖f‖µ for all f ∈ H (b)µ. In this definition, we
allow the possibility for the integral‖f‖µ to be infinite.

Here is a reverse Carleson measure result from [9] which focuses on the case whenb is non-
extreme.

Theorem 7.9. Let µ ∈ M+(D
−) and letb ∈ H∞

1 be non-extreme andµ-admissible. Ifh =
dµ|T/dm, then the following assertions are equivalent:

(i) µ is a reverse Carleson mesure forH (b);

(ii) ‖kb
λ‖b . ‖kb

λ‖µ for all λ ∈ D;

(iii) dν := (1− |b|)dµ satisfies

inf
I

ν (SI)

m(I)
> 0;

(iv) ess infT(1− |b|)h > 0.

The proof of this results is in the same spirit as Theorem 2.3.Also note that the condition(iv)
implies that(1 − |b|)−1 ∈ L1. As a consequence of this observation, we see that ifb ∈ H∞

1 is
non-extreme and such that(1 − |b|)−1 6∈ L1, then there areno reverse Carleson measures for
H (b).
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As was done with many of the other spaces discussed in this survey, one can say something about
the equivalent measures forH (b) [9].

Theorem 7.10.Let b ∈ H∞
1 be non-extreme andµ ∈ M+(D

−). Then the following are equiva-
lent:

(i) H (b)µ = H (b) and‖f‖µ ≍ ‖f‖b for all f ∈ H (b);

(ii) The following conditions hold:

(a) a is µ-admissible,

(b) (a, b) is a corona pair, i.e.,

inf{|a(z)|+ |b(z)| : z ∈ D} > 0;

(c) |a|2 satisfies the Muckenhoupt(A2) condition, i.e.,

sup
I

(
1

m(I)

∫

I

|a|−2 dm

)(
1

m(I)

∫

I

|a|2 dm
)

< ∞,

whereI runs over all subarcs ofT;

(d) dν := |a|2 dµ satisfies

0 < inf
I

ν (SI)

m(I)
6 sup

I

ν (SI)

m(I)
< ∞,

where the infimum and supremum above are taken over all open arcsI ofT.

One should note that if(a, b) is a corona pair and|a|2 ∈ (A2), thenH (b) = M (a), where
M (a) = aH2 equipped with the range norm, i.e.,‖ag‖M (a) = ‖g‖m, for anyg ∈ H2 [50, IX-5].
Hence the above result says that it is possible to obtain an equivalent norm onH (b) expressed
in terms of an integral only whenH (b) = M (a).

Surely an example is important here: Leta(z) := cα(1 − z)α, whereα ∈ (0, 1/2) andcα is
suitable chosen so thata ∈ H∞

1 . When0 < α < 1/2, one can show that|a|2 satisfies the(A2)
condition. Chooseb to be the outer function inH∞

1 satisfying|a|2 + |b|2 = 1 on T. Standard
theory [25], using the fact thata is Hölder continuous onD−, will show thatb is continuous on
D−. From here it follows that(a, b) is a corona pair. Ifσ ∈ M+(D

−) is any Carleson measure
for H2, then one can show thatdµ := |a|−2dm+ dσ satisfies the conditions of Theorem 7.10.

ForH (b) spaces whenb non-extreme, the isometric measures:‖f‖µ = ‖f‖b for all f ∈ H (b),
are not worth discussing as illustrated by the following result.

Theorem 7.11.Whenb is non-constant and non-extreme, there are no positive isometric mea-
sures forH (b).
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Also not worth discussing for generalH (b) spaces is the notion of dominating sets [9]:E ⊂ T,
0 < m(E) < 1, for which

‖f‖2b .
∫

E

|f |2dm ∀f ∈ H (b).

Indeed, we have the following:

Theorem 7.12.Let b ∈ H∞
1 such thatH (b) has a dominating set. Then eitherb is an inner

function or‖b‖∞ < 1.

As one can see, the case for extremeb seems to be very much open. Whenb is inner, much has
been said about the Carleson and reverse Carleson measures for H (b) = Kb. Whenb is extreme
but not inner, there are a few things one can say [9] but there is much work to be done to complete
the picture.

8. HARMONICALLY WEIGHTED DIRICHLET SPACES

Forµ ∈ M+(T) let

ϕµ(z) =

∫

T

1− |z|2
|ξ − z|2 dµ(ξ), z ∈ D,

denote the Poisson integral ofµ. Theharmonically weighted Dirichlet spaceD(µ) [20, 46] is
the set of all analytic functionsf onD for which

∫

D

|f ′|2ϕµdA < ∞,

wheredA = dxdy/π is normalized planar measure onD. Notice that whenµ = m, we have
ϕµ ≡ 1 andD(µ) becomes the classical Dirichlet space [20]. One can show that D(µ) ⊂ H2

[46, Lemma 3.1] and the norm‖ · ‖D(µ) given by

‖f‖2D(µ) :=

∫

T

|f |2dm+

∫

D

|f ′|2ϕµdA

makesD(µ) into a reproducing kernel Hilbert space of analytic functions onD. It is known that
both the polynomials as well as the linear span of the Cauchy kernels form dense subsets ofD(µ)
[46, Corollary 3.8].

Whenζ ∈ T anddµ = δζ , a result from [51] shows that

D(δζ) = H (b),

wherew0 = (3−
√
5)/2 and

(8.1) b(z) =
(1− w0)ζz

1− w0ζz
.
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Furthermore, the norms on these spaces are the same. In fact,these are the only harmonically
weighted Dirichlet spaces which are equal to anH (b) space with equal norm [12]. In [15] it
was shown that if

(8.2) µ =

n∑

j=1

cjδζj , cj > 0, ζj ∈ T

is a finite linear combination of point masses onT anda is the unique polynomial witha(0) > 0
and with simple zeros atζj (and no other zeros) andb is the Pythagorean mate fora (which
must also be a polynomial), thenH (b) = D(µ) with equivalent norms. In this case we can use
Theorem 7.7 to obtain a characterization of the Carleson measures forD(µ):

Theorem 8.3.For µ as in(8.2)andν ∈ M+(D
−), the following assertions are equivalent:

(i) ν is a Carleson measure forD(µ);

(ii)
∏n

i=1 |z − ζi|2 dν is a Carleson measure forH2.

This result appeared in [10] (see also [11]). In fact, Theorem 6.1 from [10] shows that the above
conditions are equivalent to

‖kD(µ)
λ ‖ν . ‖kD(µ)

λ ‖D(µ) ∀λ ∈ D.

In other words, at least whenµ is a linear combination of point masses, the reproducing kernel
thesis characterizes the Carleson measures forD(µ).

The discussion of reverse Carleson measures forD(µ) is dramatically simpler since they do not
exist! Indeed, suppose thatν ∈ M+(D

−) and‖f‖µ . ‖f‖ν for all f ∈ D(µ). In particular, this
is true for the monomialszn, n > 0. But ‖zn‖ν . 1 and‖zn‖2µ = 1 + nµ(T), which gives a
contradiction whenn tends to∞.

We point out some related results from [11] which discuss a type of reverse Carleson measure for
D(µ) spaces except that the definitions of “reverse Carleson measures” and “sets of domination”
(dominating sets) are quite different, and not equivalent,to ours.

9. APPENDIX

We reproduce here an adaption to1 < p < +∞ of Baranov’s proof as presented in [8, Section
7] and which is based on the Bernstein-type inequalities in model spaces he obtained in [3, 5]. It
uses a Whitney type decomposition ofT \ σ(Θ). Let ε > 0, let δ ∈ (0, 1/2) and let

dε(ζ) = d(ζ,Ω(Θ, ε)),

where we recall thatΩ(Θ, ε) = {z ∈ D : |Θ(z)| < ε}. Since
∫

T\σ(Θ)

d−1
ε (ζ) dm(ζ) = ∞,
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we can choose a sequence of arcsIk with pairwise disjoint interiors such that
⋃

k Ik = T \ σ(Θ)
and ∫

Ik

d−1
ε (ζ) dm(ζ) = δ.

In this case1

(9.1)
1− δ

δ
m(Ik) ≤ d(Ik,Ω(Θ, ε)) ≤ 1

δ
m(Ik).

Indeed, by the definition ofIk, there existsζk ∈ Ik such thatdε(ζk) = 1
δ
m(Ik), whence for any

ζ ∈ Ik, we have

dε(ζ) ≥ dε(ζk)−m(Ik) ≥
1− δ

δ
m(Ik).

It follows from (9.1) that

m(Ik)
1/(p−1)

∫

Ik

d−q
ε (u) dm(u) ≤

(
δ

1− δ

)q

.

Now recall the definition of the weight involved in the Bernstein-type inequality

wr(z) = ‖(kΘ
z )

2‖−
r

r+1
s ,

where1 ≤ r < ∞ ands is the conjugate exponent ofr. (We point out a misprint in the definition
of wr in [8] where the square was omitted inside the norm.) Later onwe will chooser such that
1 ≤ r < p. Then it is shown in [3, Lemmas 4.5 & 4.9] that

wr(ζ) ≥ C0dε(ζ),

whereC0 depends only onr andε (but not onΘ). Thus

(9.2) m(Ik)
1/(p−1)

∫

Ik

w−q
r (ζ) dm(ζ) ≤ Cδq.

Let I(j)k , j = 1, . . . 4 be the quarters ofIk and letS(j)
k be the parts ofSk lying overI(j)k . Thus,

Sk =
⋃4

j=1 S
(j)
k (note thatS(j)

k are not standard Carleson windows). By (9.1), we have

S(NI
(j)
k ) ∩ Ω(Θ, ε) 6= ∅

as soon asN > 8
δ
. This will be the choice ofN in the Theorem. Suppose now that

A := inf
I

µ(S(I))

m(I)
> 0,

where the infimum is taken over all arcsI ⊂ T with S(NI) ∩ Ω(Θ, ε) 6= ∅. Then we have

µ(S
(j)
k ) ≥ µ(S(I

(j)
k )) ≥ Am(I

(j)
k ).

1Note that such a system of arcs was also considered in [5] forδ = 1/2.
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Now let f ∈ KΘ be continuous inD ∪ T. By the mean value property, there existss
(j)
k ∈ S

(j)
k

such that

(9.3)
∫

S
(j)
k

|f |pdµ = |f(s(j)k )|pµ(S(j)
k ) ≥ Am(I

(j)
k ) · |f(s(j)k )|p.

Denote by

J
i,j
k =

∫

I
(i)
k

|f(u)− f(s
(j)
k )|p dm(u).

Then we have

∑

k

∫

Ik

|f |p dm =
∑

k

(∫

I
(1)
k

|f(u)|p +
∫

I
(2)
k

|f(u)|p +
∫

I
(3)
k

|f(u)|p +
∫

I
(4)
k

|f(u)|p
)

dm(u)

≤ cp
∑

k

(J1,3
k + J

2,4
k + J

3,1
k + J

4,2
k )

+cp
∑

k

(
|f(s(3)k )|pm(I

(1)
k ) + |f(s(4)k )|pm(I

(2)
k ) + |f(s(1)k )|pm(I

(3)
k ) + |f(s(2)k )|pm(I

(4)
k )
)
.

Sincem(I
(1)
k ) = m(I

(2)
k ) = m(I

(3)
k ) = m(I

(4)
k ), we get with (9.3)

∑

k

∫

Ik

|f |p dm ≤ cp
∑

k

(J1,3
k + J

2,4
k + J

3,1
k + J

4,2
k ) + cpA

−1‖f‖pLp(µ).

Let us now estimate
∑

k J
1,3
k . We have

J
1,3
k =

∫

I
(1)
k

|f(u)− f(s
(3)
k )|p dm(u) =

∫

I
(1)
k

∣∣∣∣∣

∫

[s
(3)
k

,u]

f ′(v) |dv|
∣∣∣∣∣

p

dm(u),

where[s(3)k , u] denotes the interval with endpointss(3)k andu and |dv| stands for the Lebesgue
measure on this interval. Using Hölder’s inequality, we obtain

J
1,3
k ≤

∫

I
(1)
k

(∫

[s
(3)
k

,u]

|f ′(v)|pwp
r(v) |dv|

)(∫

[s
(3)
k

,u]

w−q
r (v) |dv|

)p/q

dm(u).

Now recall that the norms of reproducing kernels in model spaces have a certain monotonicity
along the radii. More precisely, letq > 1. Then it is shown in [3, Corollary 4.7.] that there exists
C = C(q) such that for anyz = ρeit andz̃ = ρ̃eit with 0 ≤ ρ̃ ≤ ρ, we have

(9.4) ‖kΘ
z̃ ‖α ≤ C(q)‖kΘ

z ‖α
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(which we use here forα = 2q). Using (9.4), (9.2) and the fact that the angle2 between[s(3)k , u]
andT is separated fromπ

2
, we conclude that

(∫

[s
(3)
k

,u]

w−q
r (v) |dv|

)p/q

≤ Cδp(m(Ik)
−1/(p−1))p/q = C

δp

m(Ik)
,

Hence
∑

k

J
1,3
k ≤ Cδp

∑

k

1

m(Ik)

∫

I
(1)
k

∫

[s
(3)
k

,u]

|f ′(v)|pwp
r(v) |dv| dm(u).

Again just by the mean value property, there existsuk ∈ I
(1)
k such that

∑

k

1

m(Ik)

∫

I
(1)
k

∫

[s
(3)
k

,u]

|f ′(v)|pwp
r(v) |dv| dm(u) =

1

4

∑

k

∫

[s
(3)
k

,uk]

|f ′(v)|pwp
r(v) |dv|.

Now note that the measure
∑

k m[s
(3)
k

,uk]
(sum of Lebesgue measures on the intervals) is a Car-

leson measure with a uniform bound on the Carleson constant independent of the location of
uk ∈ I

(1)
k ands(3)k ∈ S

(3)
k (and ofδ). Then by the Bernstein inequality [3, Theorem 1.1], we have

∑

k

∫

[s
(3)
k

,uk]

|f ′(v)|pwp
r(v) |dv| ≤ C‖f‖pp,

which gives ∑

k

J
1,3
k ≤ Cδp‖f‖pp.

Using similar estimates for the other terms
∑

k J
2,4
k ,
∑

k J
3,1
k and

∑
k J

4,2
k , we obtain

∑

k

∫

Ik

|f |p dm ≤ Cδp‖f‖pp + cpA
−1‖f‖pµ.

Finally we consider the integral overσ(Θ) = T \ ⋃k Ik. For this, as indicated in [8], we use
an argument from [31] which we would like to make more explicit here, thereby showing that
the direct Carleson measure condition is indeed not required in the argument. Recall thatf ∈
Kp

Θ∩C(T). Also, it is clear that we can assume‖f‖Lp(µ) 6= 0. By uniform continuity there exists
ρ > 0 such that for everyz, z′ ∈ D with |z − z′| <

√
2ρ we have

|f(z)− f(z′)| ≤ ‖f‖Lp(µ)

A1/p
.

Now there exists a sequence of arcs(Jk) (not necessarily open) with pairwise disjoint interiors
such thatm(Jk) < ρ, and withσ(Θ) ⊂ ⋃

k Jk andS(Jk) ∩ Ω(Θ, ε) 6= ∅. Let zk ∈ S(Jk) such

2That explains why we choose a decomposition withJ
i,j
k , i 6= j, since in this case the interval[s

(j)
k , u], u ∈ I

(i)
k ,

will never be orthogonal to the boundary.
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that|f(zk)| is the smallest value of|f | in S(Jk) and letζk ∈ Jk be such that|f(ζk)| is the biggest
value of|f | onJk. Observe also that the diameter ofS(Jk) is less than

√
2ρ. Then

‖f‖Lp(µ) ≥
[
∑

k

∫

S(Jk)

|f |pdµ
]1/p

≥
[
∑

k

|f(zk)|pµ(S(Jk))

]1/p

≥
[
A
∑

k

|f(zk)|pm(Jk)

]1/p

≥ A1/p

[
∑

k

|f(ζk)|pm(Jk)

]1/p
−
[
A
∑

k

|f(zk)− f(ζk)|pm(Jk)

]1/p

≥ A1/p

[∫
⋃

k Jk

|f |pdm
]1/p

−
[
A
‖f‖pLp(µ)

A
m(
⋃

k

Jk)

]1/p

≥ A1/p

[∫

σ(Θ)

|f |pdm
]1/p

− ‖f‖Lp(µ).

As a result, setting̃A = 2p/A,

(9.5)
∫

σ(Θ)

|f |p dm ≤ Ã‖f‖Lp(µ),

Thus we finally obtain

‖f‖pp ≤
2p + cp

A
‖f‖pLp(µ) + Cδ2‖f‖pp,

that is

(1− Cδp)‖f‖pp ≤
2p + cp

A
‖f‖pLp(µ).

It remains to chooseδ small enough.
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33405 TALENCE CÉDEX, FRANCE
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