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A SURVEY ON REVERSE CARLESON MEASURES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

ABSTRACT. Thisis a survey on reverse Carleson measures for various Hilbert spaces of analytic
functions. These spaces include the Hardy, Bergman, certain harmonically weighted Dirichlet,
Paley-Wiener, Fock, model (backward shift invariant), and de Branges-Rovnyak spaces. The
reverse Carleson measure for backward shift invariant subspaces in the non-Hilbert situation is
new.

1. INTRODUCTION

Suppose that?’ is a Hilbert space of analytic functions on the open unit disk- {z € C :
|z| < 1} endowed with a nornj - || »». If © € M, (D7), the positive finite Borel measures on the
closed unit diskD~ = {z € C : |z| < 1}, we say thaj: is aCarleson measur®r .7 when

(1.1) 1l S flle YfeA,
and areverse Carleson measuiar .7Z when
(1.2) [flle SISl Vf et

Here we use the notation

1= ( [ 1)’

for the L?(x) norm of f and the notatiot /||, < || f||.» to mean there is a constant > 0 such

that|| f||,. < c.| ]|« foreveryf € s (similarly for the inequality| f||.» < || f],.). We will use

the notation| ||, < || f||.» when is both a Carleson and a reverse Carleson measure. There is
of course the issue of how we defiig:-a.e. orll' = 0D so that|| f||, makes sense; but this will

be discussed later.

Carleson measures for many Hilbert (and Banach) spaces of analytic functions have been well
studied for many years now. Due to the large literature on this subject, it is probably impossible
to give a complete account of these results. Carleson measures make, and continue to make,
important connections to many areas of analysis such as operator theory, interpolation, boundary
behavior problems, and Bernstein inequalities and they have certainly proved their worth. We
will mention a few of these results as they relate to the lesser known topic, and the focus of this
survey, of reverse Carleson measures.

2010Mathematics Subject ClassificatioB0J05, 30H10, 46E22.
Key words and phrased-ardy spaces, model spaces, Carleson measures, de Branges-Rovnyak spaces.
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2 FRICAIN, HARTMANN, AND ROSS

Generally speaking, Carleson measyreme often characterized by the amount of mass that
places on £arleson window

SI::{zelD‘:1—|I\<\z|<1,é€]}
relative to the length!/| of the sidel of that window, i.e., whether or not there exists positive
constants” anda such that
(1.3) u(Sr) < C|II°.
for all arcsI C T = 0D. We will write this asu(S;) < |1]°.

When.# is a reproducing kernel Hilbert space, it is often the caaettie Carleson condition in
(@) can be equivalently rephrased in terms of the, sedymmgpker, testing condition

(1.4) B e S 1B Nloe YA €D,

whereky? is the reproducing kernel function fo#”. This testing condition (wheré(1.4) implies
(1.2)) is often called theeproducing kernel thesi&RKT).

It is natural to ask as to whether or not reverse Carlesonunesens# can be characterized by
replacing the conditions i (1.3) arld (IL.4) with the analogtreverse” conditions

p(S1) Z [11* or kNl 2 11K
We will explore when this happens.

-

Reverse Carleson measures probably first appeared undanothe: heading of “sampling mea-
sures” forsZ, in other words, measuresfor which

1 lle = [ fll ¥f € 2,

i.e., 1 is both a Carlesoanda reverse Carleson measure $#6f. Wheny is a discrete measure
associated to a sequence of atomB®jrihis sequence is often called a “sampling sequence” for
2 and there is a large literature on this subjéct [53]. Eqentineasures have also appeared in
the context of “dominating sets”. For example, it is oftem tase that?Z is naturally normed

by anZ?(p) norm, i.e.,

Iflle =1 fll. Vf e,

as is the case with the Hardy, Bergman, Paley-Wiener, Foucknaodel spaces. For a Borel set
E contained in the support @f, one can ask whether or not the measure= 1|z satisfies

(1.5) [ lle = N fllus Vf e

Such setd” are called “dominating sets” fa#”’. Historically, for the Bergman, Fock, and Paley-
Wiener spaces, the first examples of reverse Carleson nesasere obtained via dominating
sets which, in these spaces, are naturally related wittiveldensity, meaning that is never
too far from the set on which the norm of the space is evaluated

Though we will give a survey of reverse Carleson measuresidered on a variety of Hilbert
spaces, our main effort, and efforts of much recent work,lveilon the sub-Hardy Hilbert spaces
such as the model spaces and their de Branges-Rovnyak spaegmligations. We will also
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comment on certain Banach space generalizations wheng@pgiey and in particular in connec-
tion with backward shift invariant subspaces. As it turnsthe corresponding result from|[8]
generalizes td < p < +oo. Indeed, this novel result follows from Baranov’s proof asgented
in [8] and which we will reproduce in a separate appendix withnecessary modifications.

2. THE HARDY SPACE

We assume the reader is familiar with the classitaldy space/72. For those needing a review,
three excellent and well-known sources [17]21, 29].cions in H? have radial boundary
values almost everywhere dh and H? can be regarded as a closed subspacé&?ofia the
“vanishing negative Fourier coefficients” criterion. 7if is standard Lebesgue measureTn
normalized so that:(T) = 1, thenH? is normed by the.?(m) norm|| - ||,.. As expected, the
subject of Carleson measures begins with this well-knoveotbm of Carlesori [21, Chap. |,
Thm. 5.6].

Theorem 2.1(Carleson) For 1 € M, (D) the following are equivalent:
@O [1£llu < M f [l forall f € H?

(i) [[kxll < Nkl for all X € D, whereky(z) = (1 — Xz)~! is the reproducing kernel for
H?,

(iii) w(Sr) S |I|forallarcsI C T.

This theorem can be generalized in a number of ways. Firstthborem works for thé/?
classes fop € (0, 00) (with nearly the same proof). In particular, the set of Csolemeasures
for H? does not depend om Furthermore, notice that the original hypothesis of theotbm
says tha: € M, (D) and thus places no mass @n SinceH? N C(D™) is dense inH? (finite
linear combinations of reproducing kernels belong to tleig,one can replace the condition
11l S |If]lm forall f € H? with the same inequality but with? replaced with//* N C'(D™).
This enables an extension of Carleson’s theorem to meaguwvbgh could possibly place mass
on T where the functions id/? are not initially defined. In the end however, this all sotsglf
out since the Carleson window conditip\S;) < |/| implies thatu|r < m and so the integral
in || f||, makes sense when one defit€sfunctions onT by theirm-almost everywhere defined
radial limits. Stating this all precisely, we obtain a redsCarleson theorem.

Theorem 2.2. Suppose: € M, (D~). Then the following are equivalent:
O [1fllu S [If I forall f € £2 0 C(D7);
(i) \kxllp S kAl for all A € D
(i) p(Sy) <|I|forallarcsi C T.

Furthermore, when any of the above equivalent conditiorld,itben |y < m; the Radon-
Nikodym derivativelu|r/dm is bounded; and f ||, < || f]|.. for all f € H2.
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We took some time to chase down this technical detail sirarepther Hilbert spaces, we need
to include the possibility that might place mass on the unit circleand perhaps even have
a non-trivial singular component (with respectitg. In fact, as we will see below when one
discusses the works of Aleksandrov and Clark, there aree€aml measures, in fact isometric
measures, for model spaces which are singular with respect t

The reverse Carleson measure theorentfois the following [23]. We include the proof since
some of the ideas can be used to obtain a reverse Carlesonméasother sub-Hardy Hilbert
spaces such as the model or de Branges-Rovnyak spaces ¢tea[3p

Theorem 2.3.Letp € M, (D). Then the following assertions are equivalent:
@) £l 2 [ fllm forall f € H? 0 C(D7);
(ii) kx| 2 k]l forall A € D
(iii) w(Sr) z |1| forevery arcl C T;
(iv) ess-infdu|r/dm > 0.

Proof. (i) = (ii) is clear.
(i) = (iv): Define
. M(SI)
C = 1r11f o
Let I be an arc orl and take any (relatively) open sétin D~ for which I € O. Then there

exists an integeN such that: = |I|/N satisfiesS;, C O whereS; is the modified Carleson
window defined by

Sip={reD :1-h<| gl,ﬁe]}.
z
Divide I into N sub-arcgl;, (suitable half-open except for the last one) such that= h (and
henceS;, , = S;,.). Then

N N
p(Srn) = n(l Sion) =D ul(Srn) = CY || = C|1).
k=1

k=1 k=1

For every (relatively) open sé? in D~ for which I C O there exists: > 0 such thatS;;, C O.
Sincep € M, (D7) is outer regular (seé [47, Theorem 2.18]) we have

wu(I) =inf{u(0O): I C OopeninD™} > }ig%u(sm) > CI|.
We deduce thatn is absolutely continuous with respect ¢ and the corresponding Radon-

Nikodym derivative ofi; is (essentially) bounded below ldy.

(iv) = (i): Let
A = ess-infdu|r/dm.



A SURVEY ON REVERSE CARLESON MEASURES 5

[ it [ 1rpan= a [ irpan.

Forallf € H*NnC(D™),

(i) = (iii): Let
(2.4) Ky(z) = 2L
1Al
be the normalized reproducing kernel fé# and observe that since
[Fall = ———
Allm 1_ ‘)\|27
the quantity
1—|A]?
K 2 =
K& = T

is the Poisson kernel for the disk. Let
. 2
and note thaBB > 0 by hypothesis.

Integrating overS; , with respect to area measutd onD we get

- 2
(2.5) B|I| x h < / / | K\ |2dp dA(X / / 1= dAN)dp(z).
S]’h D— SI h ‘1 - )\2‘2

Set AP
1 1— X
= — 7_d_{4 )\ .
gph(Z) h/SIJL |1 _)\2‘2 ( )

We claim that

1 ifzel°
-
}lll_%aph() 5 !sz@I
0 ifzeD \I,

where/~ denotes the closuréd; the interior, and/ the boundary of the ar€. Indeed, when
z ¢ I~, there are constantsh, > 0 such that for every. € (0, ko) and for every\ € S;;, we
have|l — Az| > § > 0. The result now follows from the estimate

1 1|\ 1|1] % h
S =+ =N <5 2h) < h.
V<a) =g [ TR < G en S

When:z = ¢ € [°, then setting\ = re for A € Sy, we have

1 1— |\ 1/1/ 1—r?
== —dA(\) = — ———dfrdr.
on(z) h/s 11— )] =3 o S et
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Since distz, T \ I°) > 0 we see that when — 1 we have, via Poisson integrals,

1 — 2 1— 2
[r e [ R
1|1 —refz| my |1 —re?z|

Similarly, if can be shown that at the endpointsiofy, converges to}. Hencey;, converges
pointwise to a function comparable tg, andy;, is uniformly bounded irh. From [2.5) and the
dominated convergence theorem we finally deduce that

u) = [ xdi= [ tmen@du) =l [ e 210 O

D-

This theorem was proved if [23] and extendd ter p < oo with the same proof. There is a
somewhat weaker version of this result(inl[31], appearirtécontext of composition operators
on H?* with closed range, where the authors needed to assume fremniget thay: was a
Carleson measure fdif?. Observe that in this theorem we do not require absoluteragityt

of the restrictionu:|r. However, if we want to extendf|, = | f||.. originally assumed for
f € H*NC(D"), to all of H?, then, in order for the integral ifif||,, to make sense for every
function in H? (via radial boundary values), we need to impose the condjtip < m. Note
that we are allowing the possibility that the integtl|,, be infinite for certainf € H* when the
Radon-Nikodym derivative gf|r is unbounded.

Wheny € M, (D™) one can combine Theordm 2.2 and Theokerh 2.3 to see that
1Flle = (1l ¥ € H* <= |lkall < Il YA €D <= pu(Sy) < 1] VI C T.

One might ask what are the “isometric measures”figt, i.e., ||f||, = || f|. forall f € H>.
Notice how this is a significantly stronger condition thgfj|,, =< || f||.. As it turns out, there is
only one such isometric measure.

Proposition 2.6. Supposg. € M. (D~) and || f||, = ||f|lm forall f € H*n C(D~). Then
n=m.

Proof. Indeed for eaclh € NU {0} we have

L= 2 = / [=*"dp + p(T).
D

Clearly, lettingn — oo, we getu(T) = 1. Whenn = 0 this yields
p(D)=0 and u=pulT.

By Carleson’s criterion we see that < m and sodu = hdm, for someh € L'(m). To
conclude that is equal to one almost everywhere, apply the fact thigtan isometric measure
to the normalized reproducing kernéls, (see[(2.4)) to see that

L— AP

- mh(()dm(() VA € D.
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If we express the above as a Fourier series, we get
L=h(0)+ > h(=n)X"+ ) h(n)A",  AeD,
n=1 n=1

and it follows thath = 1 m-a.e. onT. Thusy = m. O

3. BERGMAN SPACES

TheBergman spacel? is the space of analytic functiorfson D with finite norm

1
1fllae = ( / |f|2dA)2 |

wheredA = dxdy /7 is normalized area Lebesgue measuréddid8,(26]. As with the Hardy
space, we begin our discussion with the Carleson measure¥ far his was done by Hastings

[24]:
Theorem 3.1.For € M, (D) the following are equivalent:
(i) n(Sr) < |I)? for every arcl € T;

(i) [Ifllu < [[f]la2 for everyf € A2,

We also refer td [26] for further information about Carlesoeasures in Bergman spaces, includ-
ing an equivalent restatement of this theorem involvingudsehyperbolic disks. In particular
(see([26, Theorem 2.15]) condition (i) is replaced by thedition: there exists am € (0,1)
such that

p(D(a,r)) S A(D(a,r)), aeb,

<r}

denotes a pseudo-hyperbolic disk of radicentered at. Observe that sinceis fixed, we have
A(D(z,7)) < (1 — |2]*)%. Again, the geometric condition measures the amount of niasg
places on a pseudohyperbolic disk with respect to an intrarea measure of that disk. Hastings
result was generalized by Oleinik and Pavlov, and Stegesem[B6] for the references).

where

— zZa

D(a,r) = {zeC:

Reverse Carleson embeddings for the Bergman spaces, adctiibely related spaces, were
discussed by Luecking [34, 36,/37]. One of his first resulthis direction concerns dominating
sets, i.e., measures of the typedA (see[(1.6)). Here we have the following “reverse” of the
inequality in Hasting’s result (see [34]).

Theorem 3.2. Supposé- is a (Lebesgue) measurable subsebofThenu = ysdA is a reverse
Carleson measure fod? if and only if.(S7) > |I|? for allarcs I C T.
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A similar result holds for the harmonic Bergman space [35k WMl discuss dominating sets
again later when we cover model spaces (see Defirition 6.12).

As it turns out, the general reverse Carleson measure festdergman spaces is more delicate
[36, Thm. 4.2].

Theorem 3.3.Letd,e > 0. Then there exists & > 0 with the following property: Whenever
w € M, (D) for which
- #(D(a, 1/2))

c = sup

acp A(D(a,1/2))

< 00,

and for which the set

(3.5) G ={z: u(D(z,B)) > ecA(D(z,8))}
satisfies
(3.6) m(G N Sp) = o0|I,

then||f]|a2 < || f]l, for all f e A2

Notice how this theorem requirespriori that . is a Carleson measure fa® (via (3.4)). The
next two conditions tell us that the reverse Carleson camdi{3.3) must be satisfied on a set
which is, in a sense, relatively dense. Moreover, the radadiensity condition in[(316) should
hold close to the unit circle.

For simplicity we stated the results for th® Bergman space. Analogous theorems (with the
same proofs) are true for th#® Bergman spaces fare (0, o).

4. FOCK SPACES

We briefly discuss Carleson and reverse Carleson measuraspace of entire functions - the
Fock space. Here the conditions are a bit different sincéuthetions are entire and there are no
“boundary conditions” or “Carleson boxes”.

Let ¢ be a subharmonic function db (often called the weight) such that

1
-<Ap<ec
C

for some positive constant Theweighted Fock spac@j Is the space of entire functiorfswith

finite norm )
1l = ( / |f<z>|ze-2¢<z>dA<z>)2
C

Recall that/A is Lebesgue area measure@nWheny(z) = |z|?, this space is often called the
Bargmann-Fock space. A good primer for the Fock spaces |s [Btere is also a suitable?
version of this space denoted 52 and the results below apply to these spaces as well.
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The Carleson measures té?rj were characterized by several authors (for varipusut the final,
most general, result is found in Ortega-Celda [41]. BelewH(a,7) = {z € C: |z —a] < r}
be the open ball i€ centered at with radiusr.

Theorem 4.1. For a locally finite positive Borel measupe on C, a weighty as above, and
dv = e~*2dy, the following are equivalent:

O [Ifll. < £l forall f € F2;

(”) SUpP.ec M(B(Z7 1)) < 0.
The discussion of reverse Carleson measures for Fock spaedegun by Janson-Peetre-
Rochberg([2]7], agaimia dominating sets.

Theorem 4.2.For a weightyp, a measurable séf C C, anddr = e ??ypdA, the following are
equivalent:

) 111l < /1 forall f e Z,;
(i) there exists am? > 0 such thatnf..c A(E N B(z, R)) > 0.

Condition (i) is a relative density condition which, in ayyappeared in Theoreim 3.2. We will
meet such a condition again in Theorem 5.1 below when we stsitie Paley-Wiener space.

In [41] Ortega-Cerda examined the measuyr@s C for which

112 = / FOPRdp(z) VS € Foa

in other words, the “equivalent measures” i@ﬁ. He called such measureampling measures
A special instance is when
H = Z 5>\n7

n=>1
where A = {\,}.>1 IS a sequence in the complex plane. In this cgse,},>: is called a
sampling sequeng¢eneaning that

IF1Z =) [fOn)Pe™20) v e Z,,.

n=>1

Contrary to the approach in Bergman spaces, where Lueckergcterized Carleson and reverse
Carleson measures which, in turn, yielded information en@ang sequences, Ortega-Cerda dis-
cretizedu to reduce the general case of sampling measures to that pfisgreequencesThese
were characterized in a series of papers by Seip, Seipdaf@/IBerndtsson-Ortega-Cerda and
Ortega-Cerda-Seip (s€e [53] for these references). Thesaoenmary theorem is the following:

Theorem 4.3. A sequencd C C is a sampling sequence f@r’j if and only if the following two
conditions are satisfied:

(i) A is a finite union of uniformly separated sequences.
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(i) There is a uniformly separated subsequen¢e- A such that

/
lim inf #(B(zr) 0 A) i
r—oo 2€C fB(z,r) AgOdA 2

To state the result in terms of sampling measures, we needrtauce some notation. For a
large integerV and positive numbersandr, decomposé€ into big squares of side-lengthVr
and each squar8 is itself decomposed int&/ little squares of side-length Letn(S) denote
the number of little squarescontained inS such thaj(s) > ¢. In terms of sampling measures,
we have the following:

Theorem 4.4. The measurg is a sampling measure if and only if the following conditians
satisfied:

(i) sup.ec p(B(z,1)) < 00;

(i) There is anr > 0 and a grid consisting of squares of side-lengthan integerN > 0
and a positive numbe¥ such that

. n(S) 1
4.5 o\ S
(43) ¥ T ApdA 2
where the infimum is taken over all squargsonsisting ofN? little squares from the
original grid.

Notice how (i) is a Carleson measure condition while (ii) ie@erse Carleson measure condition.

To deduce Theorem 4.3 from Theorém]4.4, Ortega-Cerda fimted that it is sufficient to
consider the measuye which is the part ofx supported only on the little squaregor which
p(s) = 6 and then he discretized by i = > 1t1(s,)da,, , Wherea,, is the center of,,. In order

to show thatu, is sampling exactly whep; is sampling, he used a Bernstein-type inequality.
This naturally links the problem of sampling measures tadébecription of sampling sequences.
Note that Bernstein inequalities also appear in the cordéxarleson and reverse Carleson
measures for model spaces (see Secfion 6).

5. PALEY-WIENER SPACE

Though the Paley-Wiener space enters into the generalstiseuof model spaces presented in
Section 6, we would like to present some older results whidihhelp motivate the more recent
ones. ThdPaley-Wiener spacf1V is the space of entire functio$of exponential type at most
m,i.e.,

1
lim sup 2812

<,
|z]—o0 |Z‘



A SURVEY ON REVERSE CARLESON MEASURES 11

and which are square integrable BnThe norm onPW is

Pl = ( [ |F<t>|2dt)%

A well-known theorem of Paley and Wiener [16] says that’ is the set of Fourier transforms of
functions inZ? which vanish orR \ [—7, 7r]. Authors such as Kacnelsdn [28], Panejah [42, 43],
and Logvinenko[[33] examined Lebesgue measurable/setsR for which

/ |F|?dt =< / |F|*dt VF € PW.
R E
Following (1.3), such sets will be callebminating setéor P1W. Clearly we always have
/ P2t < / \Fl2dt VF e PW.
E R

The issue comes with the reverse lower bound. The summaoyetimehere is the following:
Theorem 5.1. For a Lebesgue measurable getC R, the following are equivalent:

(i) the setF is a dominating set foPI/;

(ii) there exists & > 0 and ann > 0 such that
(5.2) |[ENjz—n,z+n] =6 VreR.
Notice how condition (ii) is a relative density condition Wwave met before when studying the
Bergman and Fock spaces.

Lin [32] generalized the above result for measyresn R. We say that a positive locally finite
measurg: onR is h-equivalent to Lebesgue measifrthere exists & > 0 such that

plx —h,z+h)=<h VreR |z|> K.
Theorem 5.3. Suppose: is a locally finite Borel measure dR.

(i) There exists a constant> 0 such that if; is h-equivalent to Lebesgue measure for some
h < ~ then

/|F\2dtx/|F\2du VF € PW.
R R

(ii) If
/|F\2dtx/|F\2du VE € PW,
R R

theny is h-equivalent to Lebesgue measure for sdme 0.
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6. MODEL SPACES

A bounded analytic functio® on D is called annner functionif the radial limits of® (which
exist almost everywhere dh[17]) are unimodular almost everywhere. Examples of innact
tions include the Blaschke produdig with (Blaschke) zerod C D and singular inner functions
with associated (positive) singular measuren T. In fact, every inner function is a product of
these two basic types [17].

Associated to each inner functiéhis amodel space
Ko := (OH*)* = {feHQ:/f@_gdm:0Vg€H2}.
T

Model spaces are the generic (closed) invariant subsp&dés for the backward shift operator

(5°1)5) = 120
Moreover, the compression of the shift operator

(Sf)(2) = 2f(2)
to a model space is the so-called “model operator” for cetigies of Hilbert space contractions.
It turns out that the Paley-Wiener spaé&’ can be viewed as a certain type of model space. We

follow [48]. Let
U(z) :=exp (27TZ i 1)

z—1

be the atomic inner function with point mass:zat 1 and with weighr,

1 —ixt
(Fw) = o= / e f (1),

the Fourier transform oh?(R), and
1 1 r—1
- NCEES (x + z)
It is well known that% is a unitary operator of?(R) and a change of variables will show that
J is a unitary map fronL?(m) onto L*(R). It is also known[[48, p. 33] that

(ZJ)Ky = L*[0,27].

J: L*(m) — L*(R), (Jg)(x)

T : L*0,2n] — L*[-m, @], (Th)(z) = h(x+ )
is the translation operator then
(TFJ)Ky = L*|—7, ]
and
(FTZFJ)Ky = PW.
Thus the Paley-Wiener space is an isometric copy of a certaitel space in a prescribed way.
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An important set associated with an inner function idisindary spectrum

(6.1) 7(0) == {ge'lr: lim |© ()| :o}.

z—¢&

Using the factorization oP into a Blaschke product and a singular inner function, omesteow
that whens (©) # T, there is a two-dimensional open neighborhébcbntainingT \ ¢(©) such
that©® has an analytic continuation f@.

Functions in model spaces can have more regularity thanrigefio@ctions in 72, Indeed, a
result of Moeller [38] says every function iGe follows the behavior of its corresponding inner
functions and has an analytic continuation to a two dimeraiopen neighborhood &@f\ o (©).

In fact, one can say a little bit more. Indeed, for evérg T \ ¢(©) the evaluation functional
Ecf = f(&) is continuous orke with

[ Eell = /[©/(E)].
Thus
(6.2) sup || B < oo
Eew

for any compact séf” ¢ D~ \ ¢(O).

In terms of a measure € M, (ID™) being a Carleson measure #6g, let us make the following
simple observation.

Proposition 6.3. Suppose: € M, (DD™) with support contained i)~ \ ¢(©). Thenyu is a
Carleson measure fo€e.

Proof. Let W denote the support gi. From our previous discussion, evefye Ko has an
analytic continuation to an open neighborhoodiof Furthermore, usind (G.2) we see that

sup | f()] S Ifllm ¥/ € Ke.
cew
It follows that|| f||,, < || f|l.» and hence: is a Carleson measure fiig . O

Two observations come from Proposition]6.3. The first is thate are Carleson measures for
Ke which are not Carleson faf? sinceu(S;) < || need not hold for all arcé C T. In fact
one could even put point masses®n ¢(O). This is in contrast with thé7? situation where
we have already observed in Theoreml 2.2 that € A, (D~) is a Carleson measure féf?,
thenu|r < m. The second observation is that if there is to be a Carlessimgecondition like
w(Sr) < |11, the focus needs to be on the Carleson bakeshich are, in a sense, closed(O).

So far we have avoided the issue of making sense of the imsggfa, for f € Ko when the
measure: could potentially place mass dh Indeed, we side stepped this in Proposifion 6.3 by
stipulating that the measure places no mass (@), where the functions ifCq are not well-
defined. In order to consider a more general situation, aadhere to the notation used In [55],
we make the following definition.
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Definition 6.4. A measureu € M (D™) will be called©-admissiblef the singular component
of u|r (relative to Lebesgue measure) is concentrated 9 (O).

Since functions fronfCg are continuous (even analytic) on this set, it follows tbat-admissible
measures and functiorfse o, the integral| f||,, makes sense.

As was done with the Hardy spaces in Theokem 2.2, one coulel thia definition of a Carleson
measure folkCe to be au € M (D™) for which

(6.5) 1l S Wfllm V€ KenC(D).

Indeed, an amazing result of AleksandroV [2] says figtn C'(ID™) is dense ing and so
this set makes a good “test set” for the Carleson (reverske€ar) condition. Furthermore, if
u € M, (D7) and [6.5) holds, thep is ©-admissible, every function ifg has radial limits
p|r-almost everywhere off, and|| f|,, < || f |l for every f € Keo.

Carleson measures ffifog were discussed in the papers of Cohn [14] and Treil and Vol[&].
Their theorem is stated in terms of

(6.6) (0,6) ={zeD:|0(z) <2}, O0<e<l,

the sub-level setfor ©. Note that boundary spectrus©) is contained in the closure of any
Q2(0,¢),0 <e < 1.

Theorem 6.7. Suppose: € M, (D~) and define the following conditions:
(i) w(Sy) < |I|forallarcs C T for whichS; N Q(©,¢) # &;
(ii) uis a Carleson measure f@e;
(iii) uis ©-admissible and %S|, < [|kY]|, holds for every\ € D.
Then(i) = (it1) = (¢i7). Moreover, if for some € (0,1), the sub-level se(0,¢) is
connected, thef¥) <= (ii) <= (iii).

The condition thaf2(©, ) is connected for some € (0, 1) is often called theonnected level
set condition(CLS). Cohn|[[14] proved that f2(©, ¢) is connected and € (¢, 1), thenQ(O, §)
is also connected. Any finite Blaschke product, the atormeiirfunction

6(2) = exp (”1) |

z—1

and the infinite Blaschke product whose zeros{dre- r"},~, where0 < r < 1, satisfy this
connected level set condition.

The sufficient condition appearing in assertiohof Theoreni 6.7 is, in general, not necessary.
More precisely, Treil and Volber@ [55] proved that this ciiwh is necessary for the embedding
of Kg into L?(p) if and only if © € (CLS). Nazarov—Volberg[39] proved that the RKT (repro-
ducing kernel thesis) for Carleson embeddingsiferis, in general, not true. In_[3], Baranov
obtained a significant extension of the Cohn and Volberghiigsults, introducing a new point
of view based on certain Bernstein-type inequalities. ugicently, in answering a question
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posed by Sarasoh [62], Baranov—Besonnov—Kapustin [6ifielda nice link between Carleson
measures fokCg and an interesting class of operators — the truncated Teeplerators — which
have received much attention in the last few years [52].

We turn to reverse Carleson measures. Since the main reamatsdding result for model spaces,
or backward shift invariant subspaces, is new in the nondilsituation we will state this theo-
rem forl < p < +o0. In this more general situation we need the following dabnit

K2 = HP NOHE,
whereH} = zH? is the space of functions if? vanishing a0. The above intersection is to be
understood on the circle. We will denak& () = LP(D, 11).

The reverse embedding theorem goes along the lines of othkerg for which we need the
following additional notation: given an alcC T and a numben > 0, we define the amplified
arcnl as the arc with the same center/dsut with lengthn x m(7).

Theorem 6.8.Let© be inner,u € M, (D), ande € (0,1). There exists av = N(0,¢) > 1
such that if

(6.9) u(S1) = m(1)

for all arcs I C T satisfying
Snr N Q(@,E) #+ O,
then

(6.10) 1A zrmy S N flleey V€ Ke N CDT).

This theorem is a more general version than the one appearii8y Theorem 2.1], not only
in that it works forp # 2, but also it does not require the (direct) Carleson condlifiwhich

is not really needed in the proof). It was initially proved[8]j for (CLS)-inner function using
a perturbation argument froml[4, Corollary 1.3 and the praoTheorem 1.1], but Baranov
provided a proof (found in |8]) based on Bernstein inegiediind which does not require the
CLS condition. As it turns out, Baranov’s proof does not ugecsic Hilbert space tools and
generalizes to the situation < p < +4oo. The proof of this theorem is reproduced in the
appendix. Apart from the natural changes to switch fpers 2 to generalp, we also include
explicitely an argument froni [31] which was not detailedhe priginal proof in([8] in order to
show here that the direct Carleson measure condition isegoiined.

Corollary 6.11. Under the hypotheses of Theoreml 6.8, and if, moreover, tlhsurey is as-
sumed to b&-admissible, the.10)extends to all ofCf,.

Our second reverse Carleson result involves the notion ahairtating set forlCo, defined in
(@.B) and discussed earlier for the Bergman and Fock spaces.

Definition 6.12. A (Lebesgue) measurable subSet. T, withm (X) < 1, is called adlominating
setfor g if

[1sfam < [[15am v e K
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This is equivalent to saying that the measdiie= ys.dm is a reverse Carleson measure £Qy.
Here we list some observations concerning dominating setsddel spaces. We will use the
following notation for setsi, B and a point::

d(A,B) :=inf{la —b| : a € A,;b € B}, d(x,A) :=d({z}, A).
Throughout the list below we will assume titais inner ands(©) is its boundary spectrum from
(6.73). All of these results can be found in [8, Section 5].
(i) If ¥ is a dominating set foe then, for every € o(©), we haveld((, X)) = 0.
(i) If X is a dominating set folCe thend(X, 0(©)) = 0.

(iii) Let ¢ € 0(©) andX dominating. Then there exists ar> 0 such that for every sequence
A, — Cwith ©(),,) — 0, there is an integeN with

m(ENIy )2 m(ly ), n=N.
In the above/y is the subarc of centered a% with lengtha (1 — |A|).
(iv) Every open subseét of T such that(©) C ¥ andm(X) < 1is a dominating set foe.

(v) Let © be an inner function such that(¢(©)) = 0. Then for every € (0,1) there is a
dominating seb for g such thatn(X) < . In particular, this is true for (CLS)-inner
functions.

(vi) If 0(©) = T and ifX is a dominating set fokg thenX: is dense irfT.

(vii) There exists a Blaschke produBtwith o(B) = T and an open subsgtC T dominating
for Kp.

(vi) Every model space admits a dominating set.

Theoreni 6.8 shows, in the special case of the Paley-Wiemaeesthat wheri (5].2) is satisfied for
sufficiently smally, thenE' is a dominating set foP 1V .

For reverse Carleson measures there is the following rireutt [8].

Theorem 6.13.Let © be an inner functiony be a dominating set fokg, andu € M, (D).
Suppose that

. 1(S1)

1r11f m (D) > 0,
where the above infimum is taken over all afcs T such that/ N> # @. Then
(6.14) [l S I flle ¥ €KenCD).

Corollary 6.15. Under the hypotheses of Theorem 6.13, and if moreover theuresa is as-
sumed to b&-admissible, then the inequality {6.14)extends to all ok e.
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For the Hardy space, the reverse Carleson measures weeetgtered by the reverse reproduc-
ing kernel thesis, i.e||ky|/,, < ||kall, for all A € D. For model spaces, however, the reverse
reproducing kernel thesis is a spectacular failurée [23].

Theorem 6.16.Let © be an inner function that is not a finite Blaschke product. mTteere
exists a measurg € M (T) such thatu is a Carleson measure fd€e, the reverse estimate on
reproducing kernelg?,

kN 2 11k YA €D,
is satisfied, but: is not a reverse Carleson measure G .

Let us see this counterexample worked out in the special afabe Paley-Wiener spadelV,
which, recall from our earlier discussion, is isometrigaglomorphic to the model spaé&, with
z 4+ 1)

O(z) = exp (27r —

Consider the sequencée= {z, },cz\ (0}, Where
_Jn+1/8 ifniseven
" In—-1/8 ifnisodd.

By the Kadets-Ingham theorem |40, Theorem D4.12]s a minimal sampling (or complete
interpolating) sequence if we include the pdinSSincesS is not sampling, the discrete measure

ILL = Z 5$n
n#0
does not satisfy the reverse inequality

I flleew) S 1 flle2q YV € PW.

However, thel?(;)-norm of the normalized reproducing kernels

sin(m(z — A))
w(z—A)

is uniformly bounded from below. Indeed,}fis such thatIm A| > 1 then

|sin(m(x, — A))| = e A

Ky (z) = cysine(m(z — A)) = ¢y 2 o (1 + |Tm A|)e 2rm A,

and hence

sin(m(x, — \))

/|KA Wdu(x) =D A

g ‘xn_)\|2 — 1.

Thus it is enough to consider pointse C with |Im | < 1. Letz,,, be the point ofS closest to
A. Then there i$ > 0, independent ok, such that

L@ Pauta) = 3 1K >

n#0

m(x, — )

sin(m(x,, — A))
ﬂ-('rno - )‘>

> 0.
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It is interesting to point out that is a Carleson measure f@tll sincesS is in a strip and
separated.

As was asked for the Paley-Wiener sp&té’, what are the, € M (T) for which

[fllm = flla Vf € Ke?

In [54] Volberg generalized the previous results and gaveraptete answer for general model
spaces and absolutely continuous meastes wdm, wherew € L>(T), w > 0. Let

. 1—|z?

w(z) = [ w(() ;dm(¢),  z€D,
T |z = (]

be the Poisson integral af and note thatv is harmonic (and positive) o and has radial

boundary values equal i0 m-almost everywhere [17].

Theorem 6.17.Letdu = wdm, withw € L>(T), w > 0, and let© be an inner function. Then
the following assertions are equivalent:

@) N fllm =l f]. forall f € Ke;
(ii) if {An}ns1 C D, then
lim @(A\,) =0 = lim [O(\,)] = 1;

n—oo n—oo

(iii) inf{@(\) + [O(\)| : A € D} > 0.

In particular, this theorem applies to the special case wihegs ys.dm, with 32 a Borel subset of
T. However the conditions obtained from Volberg’s theoremrast expressed directly in terms
of a density condition as was the case " (see Theoreri 5.1). It is natural to ask if we can
obtain a characterization of dominating sets ka5 in terms of a relative density. Dyakonov
answered this question in[19]. In the following result;? is the Hardy space of the upper-half
plane{Im z > 0}, ¥ is an inner function odIm z > 0}, and.#g = (V#%)* is a model space
for the upper-half plane.

Theorem 6.18.For an inner function¥ on {Im z > 0} the following are equivalent:
(i) v e L*(R);

(i) Every Lebesgue measurable getC R for which these exists ah > 0 and anny > 0
such that
|[ENjz—nz+n]| =26 VrelR

is dominating for the model spack.

In the case corresponding to the Paley-Wiener sgaidg ¥ (z) = ¢*™ and thug¥'(z)| = 27
onR. As was shown by Garnetlt [21], the conditidi € L>(R) is equivalent to one of the
following two conditions:

(i) 3~ > 0 such that
inf{|¥(2)|: 0 < Im(z) < h} > 0;
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(i) W is invertible in the Douglas algebfa’>, ¢~**] (the algebra generated B> and the
space of bounded uniformly continuous functionsfjn

For instance, the above conditions are satisfied whén = ¢“*B(z), wherea > 0 and B
is an interpolating Blaschke product satisfyitigt (B~ ({0}),R) > 0 (e.g., the zeros oB are

What happens if we were to replace the condition
[fllm =< [[flle VS € Ke

with the stronger condition

[fllm = f . VF € Ke.
Such “isometric measures” were characterized by Aleksandf] (see alsd[8]).

Theorem 6.19.For 1. € M (T) the following assertions are equivalent:

@) [1Fllu = [1fllm forall f € Keo;

(i) © has non-tangential boundary valugsalmost everywhere ofi and

2
1 - 06(2)0(() _1-10(2)? _
/1r T’ dp(¢) = TP z € Dy
(iii) there exists @ € H* such that|¢||., < 1 and
— 2\2 14 @(z)@(z))
(6.20) / (O = Re <—1 ey ) EP

The condition in[(6.20) says thatis one of the so-calledleksandrov-Clark measurésr b =

©0. It is known that the operatdr; : L*(n) — (b)) = Ko & O (p) introduced in[(7}4)
below is an onto partial isometry, which is isometricA(.), the closure of the polynomials in
L?(u) (see Sectiof]7 for more o’ (b)-spaces and Aleksandrov-Clark measures). By a result
of Poltoratski [45],V,g = ¢ us-a.e. whereug is the singular part of. with respect tan. In
particular, wherp is inner, thenZ’(b) = Ko, = Ko ® OK, andu = 1 is singular, and hence
for everyf = Vg € Ko, Whereg € H?(u), we have

[fllm = Vogllm = llglln = [1/14-

Wheny is not inner, Aleksandrov proves Theorém 6.19 by using tlevalfact for inner func-
tions along with the fact that the isometric measures fortosed subset of the Borel measures
M(T) in the topologys (M (T), C(T)).

L. de Branges [16] proved a version of Theoflem 5.19 for merpimo inner functions and Krein
[22] obtained a characterization of isometric measureskigrusing more operator theoretic
langage.
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7. DE BRANGES-ROVNYAK SPACES

These spaces are generalizations of the model spaces. Let
HY ={f € H* : || flloo <1}

be theclosed unit ball in7>°. Recall that wher® is inner, the model spad€e is a closed
subspace off? with reproducing kernel function

kg (z) = L=20C)

Using this as a guide, one can, for a givea H{°, define thele Branges-Rovnyak spag€ (b)
to be the unique reproducing kernel Hilbert space of amafytictions oD for which

, Az €D.

1 =b(N)b(2)
1-Xz

is the reproducing kernel [44]. Note that the functiiiiz, \) := £5(z) is positive semi-definite
onD, i.e.,

kS (2) . A\zeD,

Z a_iajK()\Z—, )\]) 2 0,

ij=1
for all finite sets{ A4, . . ., A\, } of points inD and all complex numbesrs;, . . ., a,. Hence, we can
associate to it a reproducing kernel Hilbert space and tbheeabefinition makes sense. There is
an equivalent definition of#’ () via defects of certain Toeplitz operators[49].

It is well known that though these spaces play an importaetirounderstanding contraction
operators, the norms on theg€(b) spaces, along with the elements contained in these spaces,
remain mysterious. Whelb||.. < 1 (i.e., b belongs to the interior of/;°), then#(b) = H>

with an equivalent norm. Whehis an inner function, theo#'(b) = K, with the H2 norm.

For generab € H™, 27 (b) is contractively contained it/? and this space is often called a
“sub-Hardy Hilbert space’’[49]. The analysis of the#€(b) spaces naturally splits into two
distinct cases corresponding as to whether omnsian extreme function fof {°, equivalently,

log(L — |b]) & L' (m).

Whenb € H{* is non-extreme, there is a unique outer functiop H° such that:(0) > 0 and
(7.1) la(©)F+ b)) =1 m-aeceT.

Sucha is often called th&ythagorean matéor b and the paifa, b) is called aPythagorean pair

There is the, now familiar, issue of boundary behavioz6fb) functions when defining the
integrals|| f||,, in the Carleson and reverse Carleson testing conditiongh ¥ model spaces
(and with H?) there is a dense set of continuous functions for which omesaanple in order
to test the Carleson|f||, < |/f]|») and reverse Carleson conditionsf{,,, < | f/,.). For a
generals#’(b) space however, it is not quite clear whether or #6tb) N C(D~) is even non-
zero. In certain circumstances, for example whe&non-extreme or whelis an inner function,
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2 (b) N C (D7) is actually dense ioZ’(b). For general extremig this remains unknown. Thus
we are forced to make some definitions.

Definition 7.2. For n € M, (D~) we say that an analytic functiofion D is py-admissibleif
the non-tangential limits of existu-almost everywhere ofi. We let.sZ (), denote the set of
u-admissible functions ig?’(b).

With this definition in mind, iff € J#(b),, then definingf on the carrier ofu| via its non-
tangential boundary values, we see thaf,, is well defined with a value if0, +oo].

Of course when is carried orD, i.e., u(T) = 0, thens#(b),, = 7 (b). Hence Definitio_7]2
only comes into play when has part of the unit circl& in its carrier. Note that# (b) = 2 (b),,
sinces#(b) C H*. However, there are often otheyeven ones with non-trivial singular parts on
T with respect tan, for which 2#(b) = J#(b),. The Clark measures associated with an inner
functionb have this property [8, 13].

Definition 7.3. A measure: € M, (D™) is aCarleson measuréor 7 (b) if 7 (b),, = H(b)
and|| f[l,. < [If]l» forall f € 52(b).

Whenb = 0, i.e., whens#(b) = H? then, as a consequence of Carleson’s theorem (see Theorem
[2.2) for H?, we see that whep satisfiesu(S;) < |I| for all arcs/, thenu|r < m and so
J€(b),, = J(b). Whenb is an inner function, recall a discussion followirig_{6.5)iethsays

that if the Carleson testing conditidfy|, < | f|/.. holds for all f € J2(b) N C(D™), then
J(b),, = 7(b). So in these two particular cases, the delicate issue ofidgfthe integrals in

| f]l,. for f € (b) seems to sort itself out. For genebalve do not have this luxury.

Lacey et al.[[30] solved the longstanding problem of chaméing the two-weight inequalities
for Cauchy transforms. Let us take a moment to indicate heiv thsults can be used to discuss
Carleson measures fo#’(b). Leto be the Aleksandrov-Clark measure associated yithat is
the uniquer € M, (T) satisfying
1—[b(z)]* _ [ 1—]|2
[1=b(2)]>  Jrlz—(¢P?

LetV, : L?(0) — 2#(b) be the operator defined by

do(¢), =ze€D.

(7.9 0iH) =1 -4 [ L o) = 1 - s,
where(C,, is the Cauchy transform
Conie) = [ Lo

It is known [49] thatV/, is a partial isometry froni?(s) onto.s#(b) and
Ker V, = Ker C, = (H?*(0))*.
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Here (o) denotes the closure of polynomials irfi(c) and thel is in L?(c). As a conse-
quence, since every functighe #(b) can be written ag = V,g for someg € H?*(o), pis a
Carleson measure fo¥’(b) if and only if

Vaglle = 11w S 1Flls = Vaglls = llglle Vg € H?(0).
Settingw,, , := |1 — b|?u, we have

Wiglls = [ 11~ 871Cogl? i = [Cagll,,.
This yields the following:

Theorem 7.5.Letu € M, (D™), b a u-admissible function iff°, andw, , := |1 — b|*u. Then
the following are equivalent:

(i) pis a Carleson measure fo#’(b);
(i) The Cauchy transfornd’, is a bounded operator from?(o) into L*(D~, v, ,,), Whereo
Is the Aleksandrov-Clark measure associated with

We refer the reader tb [30, Theorem 1.7] for a descriptiohefttoundedness of the Cauchy trans-
form operatorC,,. However, it should be noted that the characterization aféSan measures
for 7 (b), obtained combining Theoreém 7.5 and][30, Theorem 1.7], ipuocely geometric.

The following result from[[7], similar in flavor to Theordm# discusses the Carleson measures
for 72 (b).

Theorem 7.6.For b € H° ande € (0, 1) define
Q(b,e) :={2€D:|b(2)] <e},
¥(b) == {g € T : lim |b(2)| < 1},

z—(

Q(b,e) == Q(b,e) U X(D).
Letu € M, (D™) and define the following conditions:
(i) 1(S;) < |I|forallarcs I c T for whichl N Q(b, &) # @;
(i) (), =2 (b) and||f[|, < [l /]|, forall f € 22(b);
(i) A (b), = (b) and k.|, < ||K2]|, for all A € D.
Then(i) = (ii) = (iii). Moreover, suppose there exists are (0, 1) such that2(b,¢) is
connected and its closure contaifigh). Then(i) <= (ii) <= (it).

It should be noted here that, contrary to the inner case, dheamment:(b) C clos(2,¢) is
not, in general, automatic. Indeed, wh€n) = (1 + z)/2, one can easily check that the above
containment is not satisfied.
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Here is a complete description of the Carleson measuresvieryaspecifich [9]. Note that ifb
is a non-extreme rational function (e.g., rational but nBlaschke product), one can show that
the Pythagorean matefrom (Z.1) is also a rational function.

Theorem 7.7.Letb € Hy* be rational and non-extreme and letc M, (D~). Then the follow-
ing assertions are equivalent:

(1) pis a Carleson measure for”(b);

(2) |a|? du is a Carleson measure fdi 2.

If b(z) = (1+2)/2thena(z) = (1 —z)/2 and, ifu is the measure supported @h 1) defined by
du(t) = (1 —t)=Pdt, for 3 € (0, 1], we can use Theorem 7.7 to see thas Carleson measure
for 2#(b). However,u is not a Carleson measure féf?. One can see this by considering the
arcsly = (e=% "), ¥ € (0,7/2), and observing that

n(S(1y))
T

If b is ap-admissible function, then so are all of the reproducing&ksk (along with finite
linear combinations of them) and thus, with this admisgibéssumption o, 7 (b),, is a dense
linear manifold in7#(b). This motivates our definition of a reverse Carleson medsure?’ (b).

Definition 7.8. Foru € M, (D) andb € H{°, we say thaj. is areverse Carleson measure for
J€(b) it (D), is dense inzZ(b) and||f|l, < ||f|l, forall f € (b),. In this definition, we
allow the possibility for the integralf||,, to be infinite.

Here is a reverse Carleson measure result fiam [9] whichsiegwn the case whénis non-
extreme.

Theorem 7.9.Lety € M, (D) and letb € H{° be non-extreme and-admissible. Ifh =
du|r/dm, then the following assertions are equivalent:

(i) v is areverse Carleson mesure fé#°(b);
(i) [I&31ls < IS, for all A € D
(iii) dv := (1 — |b|)du satisfies

(iv) essinfr(1 — |b])h > 0.

The proof of this results is in the same spirit as Thedrerh &18o note that the conditioiv)
implies that(1 — |b])~' € L'. As a consequence of this observation, we see thatifH:° is
non-extreme and such that — [b|)~* ¢ L', then there ar@o reverse Carleson measures for
(D).
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As was done with many of the other spaces discussed in this\guume can say something about
the equivalent measures fat’(b) [9].

Theorem 7.10.Letb € H;* be non-extreme and € M, (D). Then the following are equiva-
lent:

() 7 (b), = 2 (b) and || ], < | £} for all f € (b);
(i) The following conditions hold:

(@) ais u-admissible,

(b) (a,b) is a corona pair, i.e.,

inf{|a(2)| + |b(2)] : z € D} > 0;

(c) |a|* satisfies the Muckenhouf#t,) condition, i.e.,

e (g 7 om) (o [ ) <=

wherel runs over all subarcs df;
(d) dv := |a|? du satisfies

v (ST) v (ST)
m() S5

where the infimum and supremum above are taken over all opsii af T.

O<ir11f < 00,

One should note that ifa, b) is a corona pair anth|* € (A,), thens#(b) = .# (a), where
M (a) = aH? equipped with the range norm, i.€a4g|| () = ||g||m, for anyg € H? [50, IX-5].
Hence the above result says that it is possible to obtain aivagnt norm ons#(b) expressed
in terms of an integral only whey?’(b) = .# (a).

Surely an example is important here: lét) := ¢,(1 — z)*, wherea € (0,1/2) andc, is
suitable chosen so thate H{°. When0 < « < 1/2, one can show that|? satisfies the A,)
condition. Choos#é to be the outer function i#/* satisfying|a|*> + |[b|*> = 1 onT. Standard
theory [25], using the fact thatis Holder continuous o, will show thatb is continuous on
D~. From here it follows thata, b) is a corona pair. I € M, (D~) is any Carleson measure
for H?, then one can show thdf := |a|~2dm + do satisfies the conditions of Theorém 7.10.

For 27 (b) spaces wheh non-extreme, the isometric measurgsi|, = || ||, for all f € JZ(b),
are not worth discussing as illustrated by the followingutes

Theorem 7.11.Whenb is non-constant and non-extreme, there are no positiveesicrmea-
sures forsZ (b).
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Also not worth discussing for generad’(b) spaces is the notion of dominating sets [B]:C T,
0 <m(F) < 1, for which

113 5 [ I5Pdm s < o),
E
Indeed, we have the following:
Theorem 7.12.Letb € H{° such thats#(b) has a dominating set. Then eithieis an inner

function or||b||» < 1.

As one can see, the case for extrelgeems to be very much open. Wheis inner, much has
been said about the Carleson and reverse Carleson measug€g) = ,. Whenb is extreme
but notinner, there are a few things one can say [9] but tisereich work to be done to complete
the picture.

8. HARMONICALLY WEIGHTED DIRICHLET SPACES

Foru € M, (T) let

denote the Poisson integral pf The harmonically weighted Dirichlet spac@(y) [20,(46] is
the set of all analytic functiong onD for which

/ 1 2pudA < o,
D

wheredA = dxdy/m is normalized planar measure @n Notice that when. = m, we have
v, = 1 and Z(u) becomes the classical Dirichlet spacel[20]. One can showiia) C H>
[46, Lemma 3.1] and the norip- || 4, given by

1120 = / fPdm + / 1 PpdA

makesZ () into a reproducing kernel Hilbert space of analytic funeti@nD. It is known that
both the polynomials as well as the linear span of the Cauehyats form dense subsets®f )
[46, Corollary 3.8].

When¢ € T anddu = ¢, a result from[[511] shows that
D(b¢) = A (b),
wherew, = (3 —+/5)/2 and

(1= wo)¢z
1 —wylz

(8.1) b(z) =
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Furthermore, the norms on these spaces are the same. Ithizs#, are the only harmonically
weighted Dirichlet spaces which are equal to.#f(b) space with equal norni [12]. 10 [15] it
was shown that if

(8.2) p=>Y cid,, ¢>0,GeT
j=1

is a finite linear combination of point masses®anda is the unique polynomial with(0) > 0
and with simple zeros a}; (and no other zeros) andis the Pythagorean mate far(which
must also be a polynomial), thet’(b) = 2(u) with equivalent norms. In this case we can use
Theoreni 7.7 to obtain a characterization of the Carlesorsurea forZ(p.):

Theorem 8.3.For i as in(@.2)andv € M, (D), the following assertions are equivalent:
(i) vis a Carleson measure far(u);
(i) I\, |z — GI° dvis a Carleson measure fdi>.
This result appeared in [10] (see alsol[11]). In fact, Theoéel from [10] shows that the above
conditions are equivalent to
16X S 11BNl VA € D.

In other words, at least whenis a linear combination of point masses, the reproducingeter
thesis characterizes the Carleson measureg{py).

The discussion of reverse Carleson measure&/far) is dramatically simpler since they do not
exist! Indeed, suppose thate M (D~) and| f]|, < || f]|, forall f € 2(u). In particular, this
is true for the monomials™, n > 0. But|]2"[|, < 1 and|z"|? = 1+ nu(T), which gives a
contradiction whem tends toco.

We point out some related results fram[[11] which discuspae tyf reverse Carleson measure for
2(n) spaces except that the definitions of “reverse Carlesonunesisand “sets of domination”
(dominating sets) are quite different, and not equival@nburs.

9. APPENDIX

We reproduce here an adaptionite< p < +oc of Baranov’s proof as presented in [8, Section
7] and which is based on the Bernstein-type inequalitiesadehspaces he obtained In [3, 5]. It
uses a Whitney type decompositiondf, ¢(0). Lete > 0, leté € (0,1/2) and let

d=(¢) = d(¢, (O, ¢)),
where we recall tha(0,¢) = {z € D : |©(2)| < €}. Since

/ 47(¢) dm(¢) = oo,
T\c(©)
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we can choose a sequence of aficwith pairwise disjoint interiors such theg, I, = T \ o(O)
and

/I 4-1(¢) dm(C) = &

In this cas@
1—-96

(9.1) Tm(lk) < d(I,,Q6,¢)) <

Indeed, by the definition ofy, there exists; € I; such thatd.({x) = %m([k), whence for any
¢ € I, we have

Sl

4(Q) 2 do(G) — m(L) = T (L),
It follows from (9.1) that
m(L)" @D / A= (u) dm(u) < (%) |

I,
Now recall the definition of the weight involved in the Bemisttype inequality
wi(2) = [[(k2)*]s 7,

wherel < r < oo ands is the conjugate exponentof (We point out a misprint in the definition
of w, in [8] where the square was omitted inside the norm.) Latewenvill chooser such that
1 <r < p. Thenitis shown in[3, Lemmas 4.5 & 4.9] that

w,(¢) = Cod(¢),
whereC\, depends only on ande (but not on®). Thus

(9.2) m(I,)Y @ / w;4(¢) dm(¢) < Co7.

Iy,

Let 1), j = 1,...4 be the quarters aof, and letS"” be the parts of), lying over I\, Thus,
Sk = szl S,ff) (note thatS,ff) are not standard Carleson windows). By [9.1), we have

S(NIVYNQ(O,¢) # 0
as soon agv > % This will be the choice ofV in the Theorem. Suppose now that

L S(D)
A= If (D)

where the infimum is taken over all arésC T with S(NI1) N Q(©,¢) # (. Then we have

w(SY) = u(SIP)) > Am(1).

> 0,

INote that such a system of arcs was also consideréd in [3] foi /2.
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Now let f € K¢ be continuous i U T. By the mean value property, there exis@@ € S,gj)
such that

.3) / FPdp = | fD)Pu(sY) > Am(ID) - | F(s9)P.

Denote by

Then we have

S [ 1pam=3 ( o [ iswrs [ s [ |f(U)|”> dm(u)

<o) @+ IHR R
k

tep 3 (IFEOImU) + 1) PmD) + L (OPm () + [ Pm™) )

k

sincem (1) = m(I?) = m(I¥) = m(11"), we get with [I.B)

> I [fPdm < e, Y @3+ 3+ 3+ R + AT
k k k

Let us now estimat®", J,”°. We have

p

3= [ 150 - sranto = [ m(u).

!
/[5 o J O]
(3)

where[s,”, u| denotes the interval with endpomst%g andwu and|dv| stands for the Lebesgue
measure on this interval. Using Holder’s inequality, wéaitp

p/q
~L3 N .

Now recall that the norms of reproducing kernels in modetepdave a certain monotonicity
along the radii. More precisely, let> 1. Then it is shown in[3, Corollary 4.7.] that there exists
C = C(q) such that for any = pe'* andz = pe' with 0 < p < p, we have

(9.4) 152]la < C (@)K la
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(which we use here for = 2¢). Using [9.4),[92) and the fact that the afidetweenis;”, u]
andT is separated frong, we conclude that

p/q 57
—q d < O8P(m/(1.) Y w=Dyp/a —
( I v|> < Co(m(B) Il = O

Sar vy

Again just by the mean value property, there exigts I such that

0 foo L PP el = 357 [ 7Pt el

Now note that the measu@jk MG, (sum of Lebesgue measures on the intervals) is a Car-
k

leson measure with a uniform bound on the Carleson constdependent of the location of

ug € I,gl) ands,(f’) € S,f’) (and ofd). Then by the Bernstein inequality [3, Theorem 1.1], we have

> Lo, PPl < I,

Hence
V) [Pwl(v) |do| dm(u).

(1) (3)

[s)

which gives

Z~13 < CO"|I £
Using similar estimates for the other tering, 3:*, 32, 35" andY", 3, we obtain
D 1 Pdm < C&|fIE+ e, A7MIFIE.
koI

Finally we consider the integral over(©) = T \ |J, {,. For this, as indicated in [8], we use
an argument from [31] which we would like to make more expli@re, thereby showing that
the direct Carleson measure condition is indeed not redjuréhe argument. Recall thgt €

K&NC(T). Also, itis clear that we can assug| .»(,) 7 0. By uniform continuity there exists

p > 0such that for every, 2 € D with |z — 2/| < v/2p we have

£ - ()] < e,

Now there exists a sequence of afdg) (not necessarily open) with pairwise disjoint interiors
such thatn(.J;,) < p, and witha(©) C |, Jr andS(J,) N Q(O,¢e) # 0. Letz, € S(Ji) such

2That explains why we choose a decomposition \lﬂ@l’i, 1 # 7, since in this case the interv[aﬁj), ul,u € I,gi),
will never be orthogonal to the boundary.
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that|f(z;)| is the smallest value @f | in S(J) and let(, € J, be such thatf((x)| is the biggest

value of|f| on J,. Observe also that the diameter%if/,) is less than/2p. Then

r 1/p 1/p
flley > E;@”uw4 > ZM%M%@%%

r 1/p
AE]ﬂwWMhi

r 1/p
> mm}]ﬂ@WMh4

v

1/p
AZU Zk) Ck)|pm(Jk)]
1/p
> AI/P /UJ |f\pdm] _

nmmN U&]

1/p
> | [ ggeam] =l
LS o(O)
As a result, settingl = 27/A,

(9.5) (ﬂ)mwmsﬂﬂmw
o(©

Thus we finally obtain

1/p

A1 < w +CISIE,

that is
2P + ¢

(1 =G|l <

It remains to choosé small enough.

P
1Az
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