
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

2016

Classifying Coloring Graphs
Julie Beier

Janet Fierson

Ruth Haas

Heather M. Russell
University of Richmond, hrussell@richmond.edu

Kara Shavo

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Discrete Mathematics and Combinatorics Commons
This is a pre-publication author manuscript of the final, published article.

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Beier, Julie; Fierson, Janet; Haas, Ruth; Russell, Heather M.; and Shavo, Kara, "Classifying Coloring Graphs" (2016). Math and
Computer Science Faculty Publications. 169.
http://scholarship.richmond.edu/mathcs-faculty-publications/169

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications/169?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


CLASSIFYING COLORING GRAPHS

JULIE BEIER, JANET FIERSON, RUTH HAAS, HEATHER M. RUSSELL,
AND KARA SHAVO

Abstract. Given a graph G, its k-coloring graph is the graph whose vertex

set is the proper k-colorings of the vertices of G with two k−colorings adjacent
if they differ at exactly one vertex. In this paper, we consider the question:

Which graphs can be coloring graphs? In other words, given a graph H, do

there exist G and k such that H is the k-coloring graph of G? We will answer
this question for several classes of graphs and discuss important obstructions

to being a coloring graph involving order, girth, and induced subgraphs.

1. Introduction

Let G = (V,E) be a simple graph with finite vertex set. For k ∈ N, a map
α : V → {1, . . . , k} is called a k-coloring of G, and α(v) is called the color of v.
If α(u) 6= α(v) for all uv ∈ E, α is a proper k-coloring of G. For the purposes of
this paper, all colorings are proper k-colorings. The k-coloring graph of G, denoted
Ck(G), is the graph with the set of k-colorings of G as its vertex set and edges
between colorings if and only if they differ at exactly one vertex.

The coloring graph naturally arises in theoretical physics when studying the
Glauber dynamics of an anti-ferromagnetic Potts model at zero temperature [9, 15,
17, 20]. In this situation, the set of all proper k-colorings of a graph forms the state
space for a Markov chain with iterations given by randomly recoloring a randomly
selected vertex of G. When this process on Ck(G) exhibits rapid mixing, good
estimates of the total number of proper k-colorings of G are obtained [15, 17, 20].

Motivated by the Markov chain connection, a graph G is said to be k-mixing
if Ck(G) is connected. The question of when G is k-mixing as well as the com-
putational complexity of answering that question have been extensively studied
[1, 3, 4, 5, 10]. For instance, it has been shown that if the chromatic number
χ(G) = k ∈ {2, 3}, then G is not k-mixing. There are also examples of k1 < k2
such that G is k1-mixing but not k2-mixing. Mixing properties related to modifi-
cations of the coloring graph have also been studied (cf. [2, 13, 16]). Recent work
considers when the coloring graph and its modifications contain a Hamiltonian cycle
[6, 13].

The k-coloring graph is an example of a reconfiguration graph. A reconfigu-
ration graph has as its vertices all feasible solutions to a given problem, and two
solutions are adjacent if and only if one can be obtained from the other by one ap-
plication of a specific reconfiguration rule (cf. [19]). For example, several different
reconfiguration graphs have been proposed for studying domination in graphs (see
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[11, 14, 18]). In both knot theory and chemistry, the collection of perfect match-
ings of a graph is of interest where one transitions between perfect matchings by
choosing the complementary set of edges around a face [7, 12]. The connectedness
of this reconfiguration system known as the Z-transformation graph in chemistry
or clock lattice in knot theory has been of particular interest.

In this article, we consider an inverse problem for coloring graphs: Which graphs
are coloring graphs? In other words, given a graph H, does a pair k and G exist
such that Ck(G) = H? Following this introduction, there are four sections that
each focus on tackling this question in a different way.

Section 2 focuses on preliminary results relied upon in later proofs as well as
some of their immediate implications. We see in this section that all complete
graphs are coloring graphs while almost no trees are coloring graphs. In Section 3
we address the question of forbidden subgraphs for coloring graphs. We show the
class of coloring graphs does not have a forbidden subgraph characterization, and
there are infinite families of minimal forbidden subgraphs. Section 4 explores girth
of coloring graphs. We give a finite list of possible girths for Ck(G) when k > χ(G)
but show that coloring graphs can have arbitrarily large girth when k = χ(G) even
when restricting to graphs of chromatic number three. Section 5 shows how one
can use the formula for order of coloring graphs together with our other results to
completely determine which graphs of a particular order are coloring graphs.

We conclude this section with some basic notation to be used in the remainder of
the paper. Notation is chosen to be consistent with Diestel’s graph theory text and
the work of Cereceda et al. on k-mixing [3, 8]. Let V [G] denote the set of vertices
in G, E[G] denote the set of edges in G, and |G| denote the order of G, which is
the size of V [G]. The chromatic number, χ(G), is the minimum number of colors
needed for a coloring of G; we may simply use χ when G is clear from context. We
use the following notation for standard families of graphs with n vertices: paths
Pn, cycles Cn, complete graphs Kn, and empty graphs In. Note that P1 = K1 = I1
and P2 = K2. Additionally, we let t denote the disjoint union of graphs and � be
the Cartesian product of graphs, which we will define in the next section. Also note
that we conflate the notion of equal and isomorphic graphs in our discussion and
refer to vertices of Ck(G) and k-colorings of G interchangeably. The letters α, β, γ
will typically denote colorings of G and hence vertices in Ck(G); we denote vertices
in the base graph G by x, u, v, w.

2. Preliminaries

It is often sufficient to work with coloring graphs Ck(G) for which G is connected.
Because coloring graphs for disconnected G have a product structure, they can
be completely understood by looking at each of the connected components. This
concept is implicitly used elsewhere in the literature [3, 4]. Since certain proofs in
our work make extensive use of the Cartesian Product, we carefully define it here.

The Cartesian product of graphs G1 and G2, denoted by G1 �G2, is defined as
follows. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with disjoint vertex and
edge sets. Then G1 � G2 is the graph with vertex set {(u, v)|u ∈ V1 and v ∈ V2}
and edges between (u, v) and (u′, v′) whenever either (i) u = u′ and v is adjacent
to v′ in G2 or (ii) v = v′ and u is adjacent to u′ in G1. See Figure 1 for an example.
This definition extends naturally to products of more than two graphs. When we
consider the n-fold product of G with itself, we denote this by G�n.
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G

�

H

=

G�H

Figure 1. Cartesian product of graphs.

Colorings of G = G1 tG2 restrict to colorings of the components Gi for i = 1, 2.
Moreover, a collection of colorings for the components of G naturally gives rise to
a coloring of G. It follows that whenever G is disconnected, the Cartesian product
of coloring graphs of the components precisely describes the structure of Ck(G), as
described in Lemma 1. When G = tGi, we use the product structure to denote
vertices in Ck(G) by (α1, . . . , αn) where αi ∈ V [Ck(Gi)].

Lemma 1. Let G = tni=1Gi. Then Ck(G) = �n
i=1Ck(Gi).

Colorings with one or two colors are simple to understand. If G admits a 1-
coloring then it must be edgeless, hence G = I|G|. Additionally, since there is a
unique way to 1-color a graph, it follows that C1(G) = I1. Any graph G with at
least one edge cannot be 1-colored so C1(G) will not exist. Now, if a graph admits
a 2-coloring then it is, by definition, bipartite. Any isolated vertex in this graph
will contribute a K2 in the 2-coloring graph, and any other connected component
yields an I2. Hence, as in [3], the 2-coloring graph of a bipartite graph G with m

components and n isolated vertices is simply: C2(G) = K�n
2 � I

�(m−n)
2 . Moreover,

all 2-coloring graphs have this structure.
Isomorphisms enhance our understanding of the degrees and orders of coloring

graphs. Given a graph G = (V,E), notice that a proper coloring partitions V into
independent sets or sets that do not contain adjacent vertices. Two colorings are
said to be isomorphic if they correspond to the same partition. For k ≥ i, there
are k!

(k−i)! = k · (k − 1) · · · (k − i + 1) isomorphic k-colorings corresponding to a

given partition into i non-empty, independent sets. If we then let mi denote the
number of ways to partition the vertex set of G into exactly i independent sets, the
following formula expresses |Ck(G)| as a sum indexed by the isomorphism classes
of colorings of G.

Lemma 2. |Ck(G)| =
∑k
i=1mi

(
k!

(k−i)!

)
=
∑k
i=1mi · k(k − 1) · · · (k − i+ 1)

There are many ramifications of this lemma; for instance, we see immediately
that k divides the order of any k-coloring graph. Corollary 3 below gives two
properties of order needed in later arguments. Section 5 uses this formula more
extensively to determine which graphs of a particular order are coloring graphs.

Corollary 3.

(i) Let J be an isomorphism class of k-colorings. Then k
∣∣|J |.

(ii) The order of Ck(G) is either a power of k or divisible by k(k − 1).

We get other structural results by considering colorings that are isomorphic. Let
α be a k-coloring of some graph G, and let σ be a permutation of the names of the
k colors. Then σ(α) and α are isomorphic k-colorings of G. Hence, σ induces a
graph automorphism on Ck(G). This automorphism imbues Ck(G) with some nice
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properties. In particular, two isomorphic colorings of G must have the same degree
in Ck(G).

Let di denote the number of vertices of Ck(G) with degree i. Since all colorings in
the same isomorphism class have the same degree, di counts a subset of isomorphism
classes of k-colorings of G. It follows by Corollary 3 that k then divides di for all i.
Hence

∑
i idi, which is twice the number of edges in Ck(G), must also be divisible

by k. This fact, summarized below, is useful later.

Corollary 4. Given any graph G, the quantity 2|E [Ck(G)] | is divisible by k.

Notice that if k > χ(G), isomorphic colorings may be adjacent in the coloring
graph. For instance, let α be a χ(G)-coloring of a graph G. Then (α, χ(G)+1) and
(α, χ(G) + 2) are adjacent colorings in the (χ(G) + 2)-coloring graph of G t I1. If
k = χ(G), however, adjacent vertices in the coloring graph cannot be isomorphic.
In fact, isomorphic colorings must be separated by a minimal distance of five as we
see in the following lemma.

Lemma 5. For k = χ(G) ≥ 2, the distance between any two distinct isomorphic
colorings in Ck(G) is at least five.

Proof. Let k = χ(G) = 2. In this case G must have at least one edge uv and
any isomorphism class of colorings has size 2. Consider some pair of isomorphic
colorings {α, β} where α(u) = β(v) = 1 and α(v) = β(u) = 2. Since u and v are
adjacent, they cannot be recolored one at a time. Hence no path exists between α
and β.

Now let k = χ(G) ≥ 3, and consider a path P = α1α2 . . . αm between isomorphic
colorings α1 and αm in Ck(G). Say that α1 and αm correspond to the partition of V
into independent sets V1t· · ·tVk. Since α1 and αm are isomorphic but distinct, all
vertices in at least two of these independent sets, say V1 and V2, must be recolored
as P is traversed. If |V1| + |V2| > 4 then P has length at least five, and we are
done. Assume, then, that |V1|+ |V2| ≤ 4. In other words either V1 or V2 consists of
a single vertex or both V1 and V2 contain two vertices. In each of these cases, we
show P must still have length at least five.

For the first case, suppose, without loss of generality, V1 = {u} and α1(u) = 1.
We claim two other vertices must be recolored before u is recolorable. Some other
vertex w not adjacent to u must be recolored 1 or else there would be a proper
coloring using only k − 1 colors. At the same time, since χ(G) = k, u is adjacent
to at least one vertex in each of V2, . . . , Vk, and at least one of these neighbors of
u must be recolored with a color other than 1 before u can be recolored. That
is, if αi−1αi is the first edge of P where vertex u is recolored, then i ≥ 4. Since
α1 and αm are isomorphic, the coloring of αm corresponds to the same underlying
partition of V . Hence, the argument above for α1 can be applied to αm to show
m− 3 ≥ i− 1. Combining these, m ≥ 6.

In the latter case, suppose V1 = {u, u′} and V2 = {v, v′} with α1(Vi) = i, for
i = 1, 2. If a vertex not in V1 or V2 is recolored along P or any vertex in V1 or
V2 is recolored twice, then P will have length greater than 4. Hence, we only need
to consider the case where P has length 4. In this case, P ends with α5 where
α5(V1) = 2 and α5(V2) = 1; i.e. the colors for Vi have been swapped. Such a path
can only exist if there are no edges between vertices in V1 and V2. In that case
V1 ∪V2 is an independent set, and G can be colored with k− 1 colors contradicting
the fact that k = χ(G). �
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As seen in the previous proof, a path, or more generally a walk, in Ck(G) is a
sequence of colorings of G where each subsequent coloring differs in the color of only
one vertex of G. More formally, a walk α1α2 . . . αm is such that αi(v) = αi+1(v) for
all but one v ∈ V [G]. It will be useful to label elements of E[Ck(G)] by the vertex
of G that is recolored. Using this edge labeling, a partition type may be assigned
to any walk of Ck(G) in the following way. Let n be the number of edges in the
walk. Then n ` n1, n2, . . . , nm where ni is the number of times that vertex vi is
recolored. Since vertex labeling is arbitrary, we choose our labeling such that our
partitions are descending.

For example, let Cn be a cycle in a coloring graph with partition type n `
n1, n2, . . . , nm. Then each ni must be at least two since any vertex that changes
color must eventually change back. Notice that this means the partition describing
any three-cycle must have only one part, and so only one vertex changes color.
Now, assume that the cycle Cn is induced in the coloring graph. If n > 3 is odd,
then m > 2. To see this notice that if m = 2, the edge labeling on an induced cycle
must alternate between v1 and v2 in order to avoid creating a chord. For n odd,
this necessitates the change of at least one other vertex. Moreover, observe that
this same alternating requirement gives that if n is even and m = 2, then n ` n

2 ,
n
2 .

It is natural to consider whether there are families of graphs that can or cannot
be realized as coloring graphs. To begin, observe that Ck(I1) = Kk, so all complete
graphs can be realized as coloring graphs. But for what otherG is the coloring graph
a complete graph? We know C1(G) = I1 = K1 for any empty graph G = I|G|. The
only complete 2-coloring graph is C2(I1) = P2 = K2. Now consider k > 2. Then
a complete coloring graph has the property that any three colorings span a copy
of K3. Using the partition argument from above, these colorings must differ at the
same vertex. But we also know from isomorphisms that every vertex in G must
be colored each of the k colors at some point. Combining these two facts gives us
that G must simply contain one vertex and hence G = I1. In turn, Ck(G) = Kk so
n = k. This gives us the following theorem.

Theorem 6. If Ck(G) is a complete graph, it must be Kk. Further, for k > 1,
Ck(G) = Kk if and only if G = I1.

We just mentioned that C1(I1) = I1 = P1 and C2(I1) = P2. It turns out that
these are the only paths that can be realized as coloring graphs. In fact, these are
the only trees that can be realized as coloring graphs.

Theorem 7. The only trees that are coloring graphs are I1 and P2.

Proof. The result is clear for 1- and 2-colorings since these are completely classified.
Let k ≥ 3, and assume that Ck(G) is a tree with n vertices. Corollary 3 shows that
k must divide n. Additionally, Corollary 4 shows k also divides 2(n−1). Combining
these we see that k must divide 2, which is a contradiction. �

We note that unlike trees, forests can be coloring graphs. For instance, let G be
the 5-cycle with exactly one chord. Then C3(G) = t61P3.

3. Forbidden and Permissible Graphs

In this section we further explore induced subgraphs of coloring graphs. A graph,
H, will be called permissible if there exists a coloring graph that has H as an induced
subgraph. If it is not possible for H to be realized as the induced subgraph of some
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coloring graph, it is called forbidden. A forbidden subgraph is called minimal if
all of its proper induced subgraphs are permissible. Building on the discussion of
complete graphs in the previous section, any collection of m colorings of G that
differ at the same vertex create a clique of size m in Ck(G). Now instead start with
a clique on m vertices in Ck(G). Then any triple of these vertices is isomorphic to
K3. By the partition type argument, the associated colorings must change at the
same vertex of G. Hence, all of the colorings associated with the clique change the
color of precisely the same vertex, giving the lemma below.

Lemma 8. A set of m vertices in the coloring graph Ck(G) forms a clique if and
only if the associated colorings of G differ at the same vertex of G.

Notice that this same argument illustrates that m colorings form an induced star
in Ck(G) if and only if each pendant coloring differs from the center coloring by a
different vertex of G. Before further exploring families of permissible graphs, it is
useful to see how to generate permissible graphs from other permissible graphs. An
obvious beginning point is the disjoint union of two such graphs.

Theorem 9. If H1 and H2 are permissible, then H1 t H2 is permissible. Alter-
nately, if H1 tH2 is forbidden then either H1 or H2 is forbidden.

Proof. Assume Hi is an induced subgraph of Cki(Gi) for i = 1, 2, and let k =
max{ki}. Recall that a coloring in Ck+1(G1tG2) = Ck+1(G1)�Ck+1(G2) is denoted
by an ordered pair (α, β) where α is a coloring of G1 and β a coloring of G2. Let
α0 be a (k + 1)-coloring of G1 that uses color k + 1. Similarly, select a (k + 1)-
coloring β0 of G2 that uses color k+ 1. Then {(α, β0)|α ∈ V [H1]} and {(α0, β)|β ∈
V [H2]} respectively span induced copies of H1 and H2 in Ck+1(G1 t G2). By
construction, the two copies are disjoint, so Ck+1(G1 t G2) contains an induced
copy of H1 tH2. �

The color shifting technique of this proof can be applied in a somewhat different
direction as well. If G1 is an induced subgraph of G then any coloring of G1 can be
extended to a coloring of G using a sufficient number of extra colors. Hence, the
coloring graph of any induced subgraph is itself induced inside of a coloring graph
of the base graph with more colors.

We can also create new permissible graphs by taking the Cartesian product of
permissible graphs as proven below. A nice consequence of this result is that if a
forbidden graph is a product then it is not minimal.

Theorem 10. If H1 and H2 are permissible, then H1 �H2 is permissible. Alter-
nately, if H1 �H2 is forbidden then either H1 or H2 is forbidden.

Proof. Assume Hi is an induced subgraph of Cki(Gi) for i = 1, 2, and let k = k1+k2.
Given any k2-coloring β of G2, define the shifted coloring β′ by β′(v) = β(v) + k1.
Thus β′ is a k-coloring that only uses colors in the set {k1 + 1, . . . , k1 + k2}. Now
each pair (α, β′) is a proper k-coloring of the graph G1 t G2. Therefore V [H1 �
H2] = {(α, β′) : α ∈ V [H1], β ∈ V [H2]} ⊂ V [Ck(G1 t G2)]. Moreover, since
adjacent colorings differ at exactly one vertex, it follows that (α1, β

′
1)(α2, β

′
2) ∈

E[Ck(G1 tG2)] if and only if either α1 = α2 and β1β2 ∈ E[Ck2(G2)] or β1 = β2 and
α1α2 ∈ E[Ck1(G1)]. Hence, the product H1 �H2 is induced in Ck(G1) � Ck(G2) =
Ck(G1 tG2). �



CLASSIFYING COLORING GRAPHS 7

These two results alone yield a number of useful observations. Since we have
shown P2 is permissible, the product of any other permissible graph with P2 is
permissible. In particular, the rectangular n× 2 grid Pn�P2 is permissible. More-
over, Pn � P2 contains an induced Pn+1. This inductive argument shows that all
paths are permissible. Similarly, you can take any permissible graph and use this
construction to add branches to a chosen vertex. Hence, all trees are permissible,
and any tree added to any vertex in a permissible graph yields another permissible
graph. This is of particular interest because, while no tree contains a forbidden
subgraph, most trees are not coloring graphs.

Corollary 11. All trees are permissible. Moreover, this implies that the class of
coloring graphs does not have a forbidden subgraph characterization.

Now we ask, are cycles permissible? We have seen that K3 = C3 is permissible.
Notice that P2�P2 is C4, and thus C4 is permissible. Now, C4�P2 is permissible and
this contains an induced C6. In fact, Cn�P2 is permissible when Cn is permissible
and, for n > 3, Cn � P2 contains an induced Cn+2. Examination shows that C7 is
induced in C3(I3). Putting this all together, we see that Cn is permissible for all
n 6= 5.

The cycle C5 is not generated by the described method, so it is reasonable to
ask if C5 is also permissible. Consider possible edge labeling partition types for an
induced C5. We know that each partition part must be at least 2, but we already
argued that induced odd n-cycles for n > 3 must have at least three elements in
their edge labeling partition. These two requirements cannot be simultaneously
met, so we conclude C5 is forbidden.

Corollary 12. The graph Cn for n 6= 5 is permissible. The graph C5 is forbidden.

Whether a particular cycle can be a coloring graph is a more complex question
we address in the last section.

Another interesting implication of Theorem 10 is that families of permissible
graphs may also be created by subdividing edges. If uv ∈ E[G] then the graph G′

that arises from subdividing the edge uv consists of vertex set V [G′] = V [G] ∪ {x}
and edge set E[G′] = E[G]\{uv} ∪ {ux, xv}.

Corollary 13. Let H be a permissible graph containing a vertex of degree 2, whose
neighbors are not adjacent. The graph H ′ obtained by subdividing both edges inci-
dent to the vertex of degree two is also permissible.

Proof. Suppose the vertex of degree 2 is γ2 with neighbors γ1 and γ3. Then H ′ is
induced in H � P2 where P2 consists of colorings α and β. A spanning set for H ′

is S = {(σ, α) : σ ∈ V [H]} ∪ {(γ1, β), (γ2, β), (γ3, β)}\{(γ2, α)}. �

Note that if γ1 and γ3 were adjacent, the construction would yield an extra
undesired edge, thus the non-adjacency condition is necessary. By repeating this
subdivision, a vertex of degree 2 may be replaced with a path of length 2m+ 1 each
of whose interior vertices are of degree 2. This gives another method for obtaining
new permissible graphs.

Theorem 14. Suppose that H is induced in Ck(G). Let α1, . . . , αm be an induced
Pm in H. Let {p1, . . . , pm+4} be the vertices of Pm+4. Define H ′ to be the graph
with vertex set V [H ′] = V [H] t V [Pm+4] and edge set E[H ′] = E[H] t E[Pm+4] t
{p1α1, pm+4αm}. Then H ′ is an induced subgraph of Ck(G t I2).
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Proof. A coloring of G extends to a coloring of G t I2 by assigning a color to each
of the two vertices of I2. Now, H ′ is the induced graph spanned by {(γ, 1, 1) : γ ∈
V [H]} ∪ {(αi, 2, 2) : 1 ≤ i ≤ m} ∪ {(α1, 2, 1), (αm, 2, 1)}. �

Notice that this construction generalizes, as does that of Corollary 13, by adding
new disjoint vertices to G and coloring them appropriately. In this way a path of
length m+ 2n can always be added.

Because the above results show that there are many ways to construct new
graphs that will be permissible, one might speculate that there are only a limited
number of forbidden subgraphs. We consider two families of graphs that supply
us with infinitely many forbidden subgraphs. The first are (generalized) theta
graphs, which are graphs consisting of paths whose only intersection are a common
initial and terminal point. More precisely, let x = (x1, x2, . . . , xn) be an n-tuple
of nondecreasing positive integers. Define T (x) = ∪ni=1Pxi+1 where the Pxi+1 are
internally disjoint paths of length xi starting and ending at fixed vertices u and
v respectively. We call T (x) the theta graph of type x. Theta graphs generalize
cycles since Cn = (m,n−m) for 0 < m < n. Hence, we know that there is at least
one forbidden generalized theta graph: C5. Moreover, any theta graph containing
an induced C5 will be forbidden. It turns out that there are infinitely many other
forbidden theta graphs, but each must contain one of five minimal forbidden theta
graphs.

Theorem 15. The only minimal forbidden theta graphs are C5, T (1, 2, 2), T (2, 2, 2),
T (3, 3, 3), T (2, 2, 4).

Proof. First we argue that these five theta graphs are forbidden. We previously
showed that C5 is forbidden. In T (1, 2, 2), the path of length 1 combines with each
path of length 2 to create a K3, and by Lemma 8, this means only one vertex can
change color in each K3. Since the path of length 1 is shared in both copies of K3

all 4 colorings must in fact differ at the same vertex and this would produce an
edge between the center vertex of each P3. This forces T (1, 2, 2) to be forbidden.

Notice that T (2, 2, 2) has three induced copies of C4, and each of these must have
edge label partition type 4 ` 2, 2. We have shown the edge labels must alternate, say
u, v, u, v. This is impossible to accomplish on all three copies of C4 simultaneously.
Thus T (2, 2, 2) is also forbidden. Next consider T (3, 3, 3), which has three induced
copies of C6. The only edge label partition types for an induced C6 are 6 ` 3, 3 and
6 ` 2, 2, 2, and again the labels must alternate. Any edge labeling that works for
two of the three copies of C6 will force a chord in the third. We conclude T (3, 3, 3)
is also forbidden. Finally, notice that T (2, 2, 4) has an induced C4, which must
have partition type 4 ` 2, 2, and two induced copies of C6, which can have partition
types 6 ` 3, 3 or 6 ` 2, 2, 2. Labels that achieve either of these on one C6 will force
two adjacent edges to get the same label on the other C6, which implies a chord.
Thus T (2, 2, 4) is a forbidden induced subgraph as well.

Next we argue by construction that all theta graphs not containing induced
copies of these five are permissible. Begin by examining T (x) with x = (x1, x2, . . . , xn)
where xi ≥ 4 for all i. In the coloring graph C2(I3), a path of length 4 is induced
by the colorings: (1, 1, 1), (1, 1, 2), (2, 1, 2), (2, 2, 2), (2, 2, 1). So T (4) is permissible.
The graph T (4, 4) is induced in C2(I4) as follows. Extend each previous coloring γ
of I3 to a coloring on I4 by (γ, 1). Now a second length 4 path is induced by making
the same color changes to the 4th vertex that were previously made on the 3rd. In
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other words, the new path is spanned by (1, 1, 1, 1), (1, 1, 1, 2), (2, 1, 1, 2), (2, 2, 1, 2),
(2, 2, 1, 1). Notice that these paths share the first vertex α = (1, 1, 1, 1) and the ter-
minal vertex β = (2, 2, 1, 1). This construction can be extended naturally to add
any desired number of paths of length 4. A path of length 5 can be induced in C3(I3)
with the colorings: (1, 1, 1), (1, 1, 2), (2, 1, 2), (2, 1, 3), (2, 2, 3), (2, 2, 1). The colorings
can be similarly extended to C3(Ir) to get more paths of length 5. Since the con-
structed paths of lengths 4 and 5 share an initial coloring (1, 1, . . . , 1) and terminal
coloring (2, 2, 1, 1, . . . , 1) they can be combined into a permissible graph. Specifi-
cally, C3(In+2) will contain an induced T (x1, x2, . . . , xn), where each xi ∈ {4, 5}.
Using Corollary 13 we see that any of these path lengths can be increased by 2.
Hence all T (x) are permissible when xi ≥ 4 for all i.

The remaining cases are when x1 = 1, 2, or 3. For each of these values of x1, and
various values of x2, x3 ≤ 5, T (x1, x2, x3) is induced in an appropriate Ck(Ir) by a
construction similar to the case above and are left to the reader to verify. Theorem
14 and Corollary 13 are used to complete the proof. �

While there are only a few theta graphs that are minimal forbidden subgraphs,
another family of graphs provides us with an infinite class of minimal forbidden
subgraphs. To construct these, begin with the graph Pn�P2. Denote by αi and βi
for 1 ≤ i ≤ n the top and bottom copies of Pn in Pn�P2 where i increases from left
to right. We define Mn,p to be Pn � P2 union the path α1βn+pβn+p−1 · · ·βn+1βn.
See Figure 2 for an illustration of Mn,p. Note that Mn,p can be obtained as an
induced subgraph of a Möbius ladder on n+p rungs by removing the top rightmost
p vertices from the ladder. We will show that there are infinitely many minimal
forbidden Mn,p. Removing the last r vertices from the set {αi} in Mn,p leaves a copy
of Mn−r,p+r. Thus if Mn,p is forbidden so is Mn+1,p−1 (because Mn,p is induced
in Mn+1,p−1). Hence the set of minimal forbidden Mn,p graphs comes from the
cases where p is small. To begin, we classify exactly which Mn,p are forbidden and
permissible.

β1 β2 βn−1 βn

βn+1βn+p
· · ·

· · ·

· · ·

α1 α2 αn−1 αn

Figure 2. Vertex labels for Mn,p.

Lemma 16. Mn,p is forbidden if and only if n ≥ 1 and p ≤ 3.

Proof. The graph Mn,p contains induced 4-cycles αiαi+1βi+1βiαi where 1 ≤ i ≤
n − 1. The only edge label partition type for such a cycle is 4 ` 2, 2 meaning
two vertices change colors in an alternating fashion as the cycle is traversed. The
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β1 β2 β3 β4 β5

β6β7

α1 α2 α3 α4 α5

v v v v v

v

Figure 3. Forced faulty edge labelings for M5,2

adjacency of these induced 4-cycles means that every vertical edge αiβi corresponds
to a recoloring of the same vertex of G, say v. Because the 4-cycles are induced,
no horizontal edge αiαi+1 or βiβi+1 for 1 ≤ i ≤ n − 1 corresponds to a recoloring
of v since that would force a K3 in Mn,p.

The graph Mn,p also contains the induced cycle α1α2 . . . αnβnβn+1 . . . βn+pα1.
Since the edge αnβn represents a recoloring of v, some other edge in this cycle must
also correspond to a recoloring of v. We cannot recolor v along two consecutive edges
without forcing a chord, so neither βnβn+1 nor βn+pα1 corresponds to recoloring v.
Thus Mn,0 and Mn,1 are forbidden since they do not possess valid edge labelings.

In Mn,2 the only edge that could represent a recoloring of v is βn+1βn+2. This
means v is recolored only twice along the induced cycle. Hence αn(v) = βn+2(v),
and it follows that αn and βn+2 differ at only one vertex - whichever one was
recolored along edge βnβn+1. This would force the chord βn+2αn which is not in
Mn,2, so we conclude that Mn,2 is forbidden. Figure 3 illustrates the faulty edge
labelings.

This type of argument also holds for Mn,3. Either βn+1βn+2 or βn+2βn+3 must
recolor v. The former case again forces βn+2αn to be a chord. By a symmetric
argument, if βn+2βn+3 represented a recoloring of v, a chord βn+2β1 would be
forced. Thus Mn,3 is also forbidden. Next we show that Mn,p is permissible in all

other cases, that is, whenever p ≥ 4. We proceed by identifying colorings in Ck(I3)
with the vertices of Mn,4 and Mn,5 leaving it to the reader to verify that these
span induced copies in Ck(I3). This is sufficient since it then follows by Lemma
13, which allows the addition of 2 vertices to induced paths in permissible graphs,
that Mn,4+2r and Mn,5+2r are also permissible for all r ∈ N. In both Mn,4 and
Mn,5, let αi be the coloring

(
1, d i+1

2 e, b
i+1
2 c
)

for 1 ≤ i ≤ n and βi the coloring(
2, d i+1

2 e, b
i+1
2 c
)

for 1 ≤ i ≤ n+ 2.

For Mn,5 vertex βn+3 is the coloring
(
2, dn+4

2 e, b
n+4
2 c
)
, vertex βn+4 is the color-

ing
(
1, dn+4

2 e, b
n+4
2 c
)
, and vertex βn+5 is the coloring

(
1, 1, bn+4

2 c
)
. For Mn,4 vertex

βn+3 is the coloring
(
1, dn+3

2 e, b
n+3
2 c
)
, and vertex βn+4 is the coloring

(
1, 1, bn+3

2 c
)
.

One can check that these colorings span induced copies of Mn,4 and Mn,5 in Ck(I3)
for sufficiently large k. The examples of M5,4 and M5,5 are shown in Figure 4. �

Unlike in the theta graph case, there are an infinite number of minimal forbidden
graphs in this family. Hence, an infinite number of minimal forbidden subgraphs
exist.
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(2,1,1)

(1,1,1)

(2,2,1)

(1,2,1)

(2,2,2)

(1,2,2)

(2,3,2)

(1,3,2)

(2,3,3)

(1,3,3)

(2,4,3)(2,4,4)(1,4,4)(1,1,4)

(2,1,1)

(1,1,1)

(2,2,1)

(1,2,1)

(2,2,2)

(1,2,2)

(2,3,2)

(1,3,2)

(2,3,3)

(1,3,3)
(2,4,3)

(2,4,4)(2,5,4)(1,5,4)(1,1,4)

Figure 4. Colorings that give induced copies of M5,4 and M5,5.

Theorem 17. For all n ≥ 2, the graph Mn,3 is a minimal forbidden induced
subgraph.

Proof. We have shown that Mn,3 is forbidden, so it remains to show that the
induced subgraphs of Mn,3 spanned by all but one vertex are permissible. This
falls into five cases. Case 1: Removing α1, βn, βn+1, βn+2, or βn+3 from V [Mn,3]
yields an induced grid graph Pr �P2 with one or two paths attached. By Theorem
10 and the discussion after it, this is permissible.

Case 2: Removing β1 or αn from V [Mn,3] yields an induced copy of Mn−1,4
which is permissible.

Case 3: Removing β2 or αn−1 from V [Mn,3] yields an induced copy of Mn−2,5
with an attached leaf which is permissible.

Case 4: Removing α2 or βn−1 from V [Mn,3] yields an induced subgraph of
Cn+4 � P2. Since Cn+4 is permissible when n ≥ 2, this is permissible.

In the final case, consider removal of one of the vertices β3, . . . , βn−2. The
argument for removal of one of α3, . . . , αn−2 is analogous. Let 3 ≤ i ≤ n − 2.
Then Mn−i,3+i is permissible. Take a copy of P2 with vertices γ and σ. Then
Mn−i,3+i � P2 is permissible, and every induced subgraph of it is also permissible.
One can check that the induced subgraph of Mn−i,3+i spanned by V [Mn−i,3+i] ×
{γ} ∪ {(βn−i+4, σ), . . . , (βn+3, σ)} is the same as the induced subgraph of Mn,3

obtained by removing βi from V [Mn,3]. This is illustrated in Figure 5. �

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 5. Case 5 of the proof of Theorem 17. Only the copies of
P2 lying in the pertinent induced subgraph are shown.
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4. Girth of coloring graphs

Recall, the girth of a graph G, denoted g(G), is the smallest number n such that
Cn is an induced subgraph of G. If G is acyclic, then we say the girth of G is
infinite. When k > χ(G), we can put tight bounds on the girth of Ck(G) as the
following sequence of lemmas shows.

Lemma 18. If k > 1 + χ(G) then g (Ck(G)) = 3.

Proof. Select a vertex u ∈ G and any χ(G)-coloring of G, say α. Since k > 1+χ(G),
there are at least two colors, say 1 and 2, not assigned to neighbors of u. Define β
and γ such that β(v) = γ(v) = α(v) for v 6= u, β(u) = 1 and γ(u) = 2. Then α, β,
and γ differ in color only at u and are hence all adjacent in Ck(G), spanning a C3

and illustrating that the girth of Ck(G) is 3. �

This lemma completely classifies the possible coloring graph girths when more
than χ(G) + 1 colors are used. It also gives that any graph with chromatic number
larger than 3 that has a vertex of degree 2 has a coloring graph with girth 3.

Lemma 19. If k = χ(G) + 1 and Ck−1(G) has an edge, then g(Ck(G)) = 3.

Proof. Let k = χ(G) + 1 and suppose Ck−1(G) has an edge between two colorings,
say α and β. Then α and β are also colorings in Ck(G) and they differ at only one
vertex of G, say u. Since these are k − 1 colorings, u is not colored k. Construct a
new coloring γ of G such that γ(v) := α(v) for all v 6= u and γ(u) := k. Then γ is
adjacent to both α and γ, which are also adjacent. So {α, β, γ} spans C3 and the
girth of Ck(G) is 3. �

To complete the analysis of coloring graphs that use more than χ(G) colors, we
only need to address the case of k = χ(G) + 1 and where Cχ(G) is edgeless. It can
be shown that Cχ(G)+1(G) has girth at most 4 unless G = Kk−1. We address the
complete graph first.

Lemma 20. For k > 2, g(Ck(Kk−1)) = 6.

Proof. Suppose V [Kk−1] = {v1, . . . vk−1}. Define the following proper colorings γi,
i = 1, . . . , 6.

Coloring γi(v1) γi(v2) γi(vj), j > 2
γ1 1 2 j
γ2 1 k j
γ3 2 k j
γ4 2 1 j
γ5 k 1 j
γ6 k 2 j

Then {γ1, γ2, γ3, γ4, γ5, γ6} span an induced C6 in Ck(G), hence g(Ck(G)) ≤ 6.
It remains to show that Ck(Kk−1) does not contain any smaller cycles. A C3 can

only occur if one vertex can change to two other colors but the base graph Kk−1
is complete so there is only one possible color change for any vertex in Kk−1. By
Corollary 12 there is no induced C5. Hence the only possible cycle is C4 and it
must have edge label partition type 2,2. Call the two vertices that change color u
and v. Then both u and v must each take a new color in this C4. Hence two new
colors are required but again, there is only one spare color available. Thus the girth
must be six. �
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Lemma 21. Assume k = χ(G) + 1 and G 6= Kk−1. Then g(Ck(G)) ≤ 4.

Proof. Assume G is not Kk−1. Then there exist vertices u and v of V [G] which
are not adjacent. Let α be a k − 1 coloring of G. Define three new colorings γi by
γi(w) = α(w) for all w 6= u, v and:

Coloring γi(u) γi(v)
γ1 α(u) k
γ2 k k
γ3 k α(v)

Then the set {α, γi : 1 ≤ i ≤ 3} spans an induced C4 so the g(Ck(G)) ≤ 4. �

Combining these lemmas gives the girth classification for k > χ(G), summarized
in the theorem below. Note that the lemmas actually give more detailed information
about each of the girth cases.

Theorem 22. If k > χ(G) then g (Ck(G)) ∈ {3, 4, 6}.
We can finally answer the question: Are cycles coloring graphs?

Theorem 23. C3, C4 and C6 are the only cycles that occur as coloring graphs.

Proof. We have shown C3(I1) = C3 and C2(I2) = C4. We leave it to the reader to
verify C3(P2) = C6. The only 1-coloring graph is I1, and the bipartite classification
shows the only 2-coloring graph that is a cycle is C4. When k ≥ 3 and k ≥ χ(G)+1,
we have shown g(Ck(G)) is 3, 4, or 6; so in this case, if Ck(G) = Cn, it follows that
n = 3, 4, or 6. For the remainder of the argument, assume k = χ(G) ≥ 3 and
Ck(G) = Cn.

Let P = α1 . . . αq be a longest induced path in Ck(G) such that no two vertices
are isomorphic colorings. Because Ck(G) is a cycle of length at least k!q, the coloring
αq must be adjacent to another coloring β where β 6= αi for all 1 ≤ i ≤ q. Since P
is maximal, β must be isomorphic to some αi. However, isomorphic colorings are
distance at least 5, so 1 ≤ i ≤ q − 4.

Let σ be the permutation for which σ(αi) = β. If i > 1, the coloring β = σ(αi)
must be adjacent to σ(αi−1) and σ(αi+1). Because P consists of non isomorphic
colorings and q 6= i± 1, it follows that αq 6= σ(αi±1). Since β is adjacent to αq and
has degree 2 in the coloring graph, this cannot happen. We conclude β = σ(α1).
Let the order of permutation σ be m. Then the following is a closed walk in Ck(G).

α1 . . . αqσ(α1) . . . σ(αq)σ
2(α1) . . . . . . σm−2(αq)σ

m−1(α1) . . . σm−1(αq)α1

Since k = χ(G), no two permutations of αi yield the same coloring. The symmetric
group on n elements is not cyclic for n ≥ 3, and so the walk above does not contain
all colorings of G. Thus, we have shown that when k = χ(G) ≥ 3, the coloring
graph cannot be a cycle. �

The question of girth when k = χ(G) is more complex. We show that in this
case, there are infinitely many possible girths. The following definition will be
useful. If α is a k-coloring define Vα to be the set of vertices that can be recolored
in α, that is, x ∈ Vα if and only if there exists another χ-coloring αx such that
α(v) = αx(v) for all vertices of V [G] except α(x) 6= αx(x). We show that each
vertex that can be recolored can only change to one other color, that every vertex
that can be recolored can only change to the same other color, and other properties
about elements of this set.
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Lemma 24. Let G be a graph with coloring graph Cχ(G) of girth greater than 4.
Let α be any χ-coloring of G.

(1) For every v ∈ V [G], there is at most one other coloring of G adjacent to α
in Cχ(G) which recolors v.

(2) The induced subgraph of G spanned by Vα is a clique. Additionally, |Vα| ≤
χ(G)− 1.

(3) Let αβ, αγ ∈ E[Cχ(G)] correspond to recoloring vertices u and v respec-
tively. Then β(u) = γ(v).

(4) Suppose α1, . . . , αt are colorings of G that form a cycle in Cχ(G), where
αiαi+1 recolors vi. Then v1, v2, . . . , vt is a closed walk in G.

Proof. 1. The first observation is trivial since if there were two such colorings they
would form an induced C3 but the girth is greater than 4.

2. Let u, v ∈ Vα such that uv 6∈ E[G]. Since u, v ∈ Vα there exist colorings β
and γ which recolor u and v respectively. Because uv 6∈ E[G], u ∈ Vγ and v ∈ Vβ .
Moreover, there exists a proper coloring µ such that µ(w) = α(w) = β(w) for all
w 6= u, v, µ(u) = β(u) and µ(v) = γ(v). Then {α, β, γ, µ} span an induced C4 in
Ck(G), which contradicts the girth requirement. Hence uv ∈ E[G] and Vα spans a
clique in G. Because Vα is a χ-colorable clique, each of whose vertices is recolorable,
|Vα| ≤ χ(G)− 1.

3. Let αβ, αγ ∈ E[Ck(G)] correspond to recolorings of u and v respectively. If
β(u) 6= γ(v), then again we can define the coloring µ as above so that {α, β, γ, µ}
span an induced C4 in Ck(G), again contradicting the girth requirement.

4. It follows from part 2 of this lemma that vi, vi+1 are adjacent for all i. Thus
the vi form a walk. In fact vt, v1 ∈ Vα1

, so these vertices are adjacent as well and
v1, . . . , vt forms a closed walk in G. �

The following theorem gives all the possibilities for g(Cχ(G)) in the case where
χ(G) = 3 and G is connected.

Theorem 25. Let G be a connected graph with χ(G) = 3. Then g(C3(G)) ∈
{∞, 4}∪{15, 24, . . . , 9m+6, . . .} and each of these girths can be achieved. Moreover,
if 4 < g(C3(G)) < ∞, then |G| = 3m + 2 for some m > 0 and C3(G) = C9m+6 t
C9m+6.

Proof. First notice that g (C3(K3)) =∞, and if G has two vertices of degree 1 then
g(C3(G)) = 4 since those two vertices can be independently recolored to create a
C4. Hence we know these girths can be obtained. Since χ(G) = 3, and is connected
it is clear C3(G) is triangle free.

For the rest of the proof assume the girth of the 3-coloring graph is at least 5. We
will show that the girth must be of the form 9m+ 6. Let α1, α2 . . . αn, αn+1 = α1

be a shortest cycle in C3(G) and αiαi+1 recolor vi ∈ V [G]. By Lemma 24, part 4,
v1, v2, . . . , vn+1 forms a closed walk in G.

We now argue what the coloring α1 is on all vertices of the closed walk. Without
loss of generality, α1(v1) = 1, α1(v2) = 2, then all neighbors of v1 must also be color
2 in α1 so that v1 can be recolored, so in particular α1(vn) = 2. Now α2 differs from
α1 only at the vertex v1, and in α2 all neighbors of v2 must be the same color so
that v2 can be recolored, so in particular α2(v3) = α1(v3) = 3. Continuing this line
of reasoning, we see that α1 must color the vertices v1, . . . , vn as 123123 . . . 12. A
priori, the walk v1, v2, . . . , vn may not be a simple cycle. We next establish that it is
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a walk that goes 3 times around a cycle of length 3m+2. Observe that the first few
colorings along the cycle in C3(G) must be as follows on the vertices v1, . . . , v3m+2.

v1 v2 v3 v4 v5 v6 . . . v3m v3m+1 v3m+2 . . .
α1 1 2 3 1 2 3 . . . 3 1 2 . . .
α2 3 2 3 1 2 3 . . . 3 1 2 . . .
α3 3 1 3 1 2 3 . . . 3 1 2 . . .
α4 3 1 2 1 2 3 . . . 3 1 2 . . .
α5 3 1 2 3 2 3 . . . 3 1 2 . . .
. . . . . .

α3m+1 3 1 2 3 1 2 . . . 2 1 2 . . .
α3m+2 3 1 2 3 1 2 . . . 2 3 2 . . .
α3m+3 3 1 2 3 1 2 . . . 2 3 1 . . .

If two vi represented the same vertex they must get the same color under
each αj . Examining these colorings we can observe that each vertex in the set
{v1, . . . , v3m+2} must be distinct. For example, α1 shows that v1 6= v3r+1 and
v1 6= v3r for r = 0, . . . ,m, while α2 shows that v1 6= v3r+2 for r = 1, . . . ,m.

Note that α1 and α3m+3 are isomorphic colorings on these 3m+ 2 vertices (the
color classes are the same independent sets). Thus if v3m+2 and vn are the same
vertex then continuing this pattern of colorings forces 3(3m+ 2) different colorings
before returning to α1. Thus the αi form a cycle of length 9m+ 6. By Lemma 24
part 2, for each αi, |Vαi

| ≤ 2 and each vertex v ∈ Vαi
can only be recolored with

one other color (part 1 of lemma). Thus in fact each αi has degree exactly 2 in
C3(G) and the αi form a connected component in C3(G).

Next we show there are no other vertices in the base graph. Suppose V [G] 6=
{v1, . . . , v3m+2}. BecauseG is connected there must be an x ∈ V [G]\{v1, . . . , v3m+2}
such that xvr is an edge for some r = {1, . . . , 3m+ 2}. Each αi is a proper coloring
of V [G]. Since x ∈ V [G]\{v1, . . . , v3m+2}, αi(x) = αj(x) for all αi, αj . But now,
there exist i, j, k such that αi(vr) = 1, αj(vr) = 2, αk(vr) = 3 so that there is no
color for x that can be used in all colorings. Thus G has no other vertices.

Thus far we have proven that if 4 < g (C3(G)) < ∞ then the base graph must
have |V [G]| = 3m+2 and g (C3(G)) = 9m+6. It remains to show that such a graph
actually exists. This is accomplished with the family of circulant graphs Gm, with
V [Gm] = {v1, . . . , v3m+2}, and E[Gm] = {vivj : |i− j| = 3k + 1, 1 ≤ k ≤ m}. It is
clear that |V [Gm]| = 3m+ 2 and χ(Gm) = 3. An inductive argument can be used
to show that the only proper 3-colorings of Gm up to isomorphism are those given
by the αi. Thus C3(Gm) = C9m+6 t C9m+6. �

Note that in the above proof we have given only one possible graph that achieves
each girth g = 9m + 6 for m ≥ 1. It is possible that a different set of chords on a
3m + 2 cycle would give a base graph with the same coloring graph. We observe
that things get considerably more complicated when χ(G) > 3. We show only some
possible girths using circulants similar to those in the proof of Theorem 25.

Theorem 26. Given k ≥ 3, there exists a graph Sk with χ(Sk) = k and g(Ck(Sk)) =
k(2k − 1).

Proof. Given k ≥ 3, denote by Sk the graph on cyclically ordered vertex set V =
{v1, . . . , v2k−1} with edges connecting each vertex to the next k−2 (modulo 2k−1)
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Figure 6. Part of a cycle in C4(S4).

vertices. The size of a maximum independent set in this graph is two. It follows
that χ(Sk) ≥ k. Define α : V [Sk]→ {1, . . . , k} as follows.

α(vi) =


i if 1 ≤ i ≤ k − 1

i− k + 1 if k ≤ i ≤ 2k − 2

k if i = 2k − 1.

This is a proper k-coloring of Sk, so χ(Sk) = k. The leftmost coloring in Figure 6
shows S4 colored according to α.

There are 2k−1 non-isomorphic k-colorings of Sk – one for each choice of vertex
to be uniquely colored. We call this uniquely colored vertex the exceptional vertex
and its color the exceptional color. Note that there are (2k−1)k! vertices in Ck(Sk).
Given any k-coloring of Sk, the only two vertices that can be recolored are those
that are distance two from the exceptional vertex. They can only be recolored by
the exceptional color. Hence every vertex in Ck(Sk) has degree 2. One can check
that, after k(2k − 1) recolorings, one arrives back at the original coloring. Hence
Ck(Sk) is the disjoint union of (k − 1)! cycles of size k(2k − 1). �

The existence of a coloring graph with a given girth for some χ ensures the
existence of other coloring graphs of the same girth for any χ′ > χ, as described
below.

Theorem 27. Let G be a graph with χ(G) = k and g(Ck(G)) = r. Then for any
k′ > k there exists a connected graph G′ with χ(G′) = k′ such that r is the girth of
Ck′(G′).

Proof. Suppose V [G] = {v1, . . . , vn}. Let G′ be the union of G and a complete
graph on k′ vertices with additional edges defined as follows. Let the vertex set
of G′ be given by V [G′] = V [G] ∪ {u1, . . . , uk′} and E[G′] = E[G] ∪ {uiuj : i 6=
j} ∪ {viuj : 1 ≤ i ≤ n, k + 1 ≤ j ≤ k′}. Let α be a k′-coloring of G′. Then α|G is
a k-coloring of G using exactly the k colors used on {u1, . . . , uk} and Vα ⊂ V [G].
Thus Ck′(G′) contains a copy of Ck(G). Hence Ck′(G′) consists of k′! disjoint copies
of Ck(G), and the girths of Ck′(G′) and Ck(G) are equal. Notice the equality follows
since the addition of the complete graph on k′ vertices to the base graph G can not
reduce the girth when k′ colors are used. �

5. Implications of order

In Section 2, we presented a formula for the order of Ck(G) in terms of isomor-
phism classes of k-colorings of G. In this section, we give examples of how this
formula can be utilized to analyze which graphs of a particular order, say n, are
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coloring graphs. We include general results about order, example computations
characterizing all coloring graphs of particular orders, and a census of all coloring
graphs of order up to 12.

Let mi be the number of isomorphism classes of k-colorings that partition V [G]
into exactly i independent sets where 1 ≤ i ≤ k. Then Lemma 2 gives the following
formula for the order of a coloring graph.

(1) |Ck(G)| =
k∑
i=1

mi · k(k − 1) . . . (k − i+ 1)

For a given n, there is at least one coloring graph of that order since Cn(I1) = Kn.
More generally, for each pair r, s ∈ N such that n = rs we get a coloring graph
of order n via the construction Cr(Is) = �s

i=1Kr. This characterizes all coloring
graphs that come from empty graphs.

We have previously seen one divisibility consequence of Equation 1: k must
divide |Ck(G)|. Recall that we also proved Ck(G1tG2) = Ck(G1)�Ck(G2). Putting
these two facts together, yields the following lemma.

Lemma 28. If G has m components, then the order of Ck(G) is divisible by km.
Said another way, if n is squarefree and |Ck(G)| = n, then G is connected.

If a graph G has at least one edge, we can say more. It follows that χ(G) > 1,
m1 = 0, and hence |Ck(G)| is divisible by k(k − 1). This means that, unless k = 2
or G is edgeless, the order of a coloring graph must have two consecutive nonunital
factors. These observations lead to the following two lemmas.

Lemma 29. If n is a power of 2, then a coloring graph of order n has one of the
following two structures.

• Cr(Is) = �s
i=1Kr where n = rs (Here r is a power of 2.)

• C2(G) = K�a
2 � I�s=b

2 where n = 2a2b and G is bipartite with a+ b compo-
nents a of which are isolated vertices

Lemma 30. If n is not a power of 2 and there does not exist k > 2 with k(k − 1)
divides n, then the only coloring graphs of order n are Cr(Is) = �s

i=1Kr where
n = rs.

If a given n cannot be placed into one of the above categories, it is still possible to
use Equation 1 together with other results from this article to help determine which
graphs of order n are coloring graphs. In particular, we can use the factorization
of n to rule out k values for which |Ck(G)| 6= n regardless of the structure of G. Of
course, as n becomes larger, this becomes more difficult. As an example of such an
argument, we classify all coloring graphs of order n = 6.

Lemma 31. The coloring graphs of order 6 are I6,K6, and C6.

Proof. Assume that |Ck(G)| = 6. Since k divides 6, we see that k = 2, 3, or 6.
(Note that k 6= 1 since C1(G) = I1 or ∅.) If k = 6, then it follows from the order
formula that m1 = 1 and mi = 0 for all i > 1. This means that G is a single vertex,
and C6(G) = K6. Since 6 is not a power of 2 it follows from the characterization of
2-coloring graphs that k 6= 2.

Hence any other coloring graphs of order 6 must occur when k = 3. From
Equation 1, if k = 3 we have 6 = |C3(G)| = 3m1 + 6m2 + 6m3. If m1 6= 0, that
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would imply G is edgeless and the order of C3(G) is a power of 3. Since 6 is not a
power of 3, it follows that m1 = 0.

If m2 = 1 and m3 = 0, then G must have only two vertices joined by an edge.
We can check that, indeed, C3(P2) = C6. If m2 = 0 and m3 = 1, this means that
χ(G) = 3. Since isomorphic colorings are not adjacent in the coloring graph and
m3 = 1, it follows that C3(G) must be edgeless. Furthermore, C3(K3) = I6, so this
is a coloring graph. �

We provide another more involved example classifying coloring graphs of order
12.

Lemma 32. The coloring graphs of order 12 are I12,K12,t6i=1P2, C3(P3), and
C4(P2).

Proof. Because 12 is not a power of 2, we know k 6= 2, so we may assume k ≥ 3.
Since k2 does not divide 12 for any k ≥ 3, we conclude that G is connected. If
m1 6= 0, then G is edgeless. Since G is connected, in this case we conclude that
Ck(G) = C12(I1) = K12.

Now assume m1 = 0, and G therefore has at least one edge. Substitution into
Equation 1 yields

12 = m2 · k(k − 1) +m3 · k(k − 1)(k − 2) + · · ·+mk · k!.

If k ≥ 5, then the right-hand side of the above equation is too large. Thus k = 3
or k = 4.

Suppose k = 4. Then we have 12 = 12m2+24m3+24m4, and the only possibility
is m2 = 1 and m3 = m4 = 0. Therefore G must be connected and bipartite, and
cannot have more than 2 vertices because otherwise we would not have m3 6= 0.
The only possibility is G = P2. In this case, the coloring graph is C4(P2).

Suppose k = 3. Then we see that 12 = 6(m2 + m3). If m2 = 2 and m3 = 0, it
follows that G can only have two vertices. The only possible G would therefore be
P2, but then m2 6= 2. Hence we cannot have a 3-coloring graph with m2 = 2 and
m3 = 0.

Suppose m2 = m3 = 1. Since m3 = 1, we know G contains at least three vertices.
Also, m2 6= 0 implies G is 2-colorable. If G, which must be connected, contains
four or more vertices, one can show that m3 > 1. Therefore, we know G = P3, and
the coloring graph in this case is C3(P3).

Suppose m2 = 0 and m3 = 2. This means χ(G) = 3. In this case, by Lemma
5, there are not enough isomorphism classes for isomorphic colorings to be path
connected. Hence Ck(G) is either edgeless or consists of six copies of P2. We can
realize both of these. Indeed, the 3-coloring graph of two copies of K3 glued at one
vertex is I12, and the 3-coloring graph of K3 with one additional edge is t6i=1P2. �

We conclude with a chart applying our results to classify all coloring graphs up
to order 12.
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Possible values Number of
Vertices

of k graphs
Members

1 1 1 K1

2 2 2 I2, K2

3 3 1 K3

4 2,4 4 I4, M4, C4, K4

5 5 1 K5

6 3,6 3 I6, C6, K6

7 7 1 K7

8 2, 8 5 I8, M8, (K2)�3, (K2)�2 � I2, K8

9 3, 9 2 K3 �K3, K9

10 10 1 K10

11 11 1 K11

12 3,4 5 I12,K12,t6i=1P2, C3(P3), C4(P2)
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