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Opinion statement 

Antimicrobial agent effectiveness continues to be threatened by the rise 

and spread of pathogen strains that exhibit drug resistance. This 

challenge is most acute in healthcare facilities where the well-established 

connection between resistance and sub-optimal antimicrobial use has 

prompted the creation of antimicrobial stewardship programs (ASPs). 

Mathematical models offer tremendous potential for serving as an 

alternative to controlled human experimentation for assessing the 

effectiveness of ASPs. Models can simulate controlled randomized 

experiments between groups of virtual patients, some treated with the 

ASP measure under investigation, and some without. By removing the 

limitations inherent in human experimentation, including health risks, 

study cohort size, possible number of replicates, and effective study 

duration, model simulations can provide valuable information to inform 

decisions regarding the design of new ASPs, as well as evaluation and 
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improvement of existing ASPs. To date, the potential of mathematical 

modeling methods in evaluating ASPs is largely untapped, and much 

work remains to be done to leverage this potential.  

Introduction 

	

Antimicrobials	(AMs)	have	been	widely	used	to	treat	bacterial	infections	since	penicillin	was	commercialized	

and	distributed	to	the	public	in	1945	(1).	Historically,	they	have	been	so	effective	that,	by	the	1960s,	experts	

believed	that	bacterial	infections	were	rapidly	becoming	a	thing	of	the	past	(2).		However,	prolonged	

exposure	to	AMs,	coupled	with	natural	selection,	has	permitted	many	bacteria	species	to	sustain	genetic	

mutations	that	possess	increased	resistance	to	the	effects	of	AMs	(3).	Resistance	was	observed	as	early	as	

1942	to	pre‐penicillin	AMs,	and	resistance	to	penicillin	was	observed	as	early	as	1947	(3).	Since	then,	

antibiotic	resistance	(AR)	has	become	a	massive	problem	in	health	care	settings,	causing	high	rates	of	

morbidity	and	mortality.	The	Centers	for	Disease	Control	and	Prevention	(CDC)	reports	that	over	2	million	

people	become	infected	with	AR	bacteria	each	year	in	the	United	States,	and	that	tens	of	thousands	die	

annually	because	of	these	infections	(4).	The	majority	of	these	deaths	occur	in	health	care	settings	(1).	

Moreover,	the	CDC	suggests	that	options	for	treating	gram‐negative	bacterial	infections	are	becoming	limited,	

as	gram‐negative	bacteria	are	becoming	more	resistant	to	AMs	and	few	new	medicines	are	in	the	pipeline	(5).	

Some	scientists	believe	the	situation	is	almost	as	critical	for	gram‐positive	bacteria	(6,	7).	

	

It	is	well	documented	that	increased	AR	is	highly	correlated	with	increased	AM	exposure	(3,	8,	9).	In	2010,	

there	were	833	prescriptions	for	AMs	written	per	1000	people	in	the	US:	a	total	of	258	million	prescriptions	

(8).	Many	professionals	assert	that	this	prescription	rate	can	be	reduced	significantly	by	addressing	what	are	

generally	considered	inappropriate	uses	of	AMs,	including	prescription	of	AMs	for	viral	infections	or	for	other	

reasons	when	they	are	not	needed,	sub‐optimal	dosage	or	treatment	duration,	overuse	of	individual	AM	

classes	(e.g.	broad	spectrum	agents),	treatment	with	an	ineffective	AM,	prescribing	AMs	primarily	based	on	

financial	reasons,	and	ineffective	use	of	strategies	(like	cycling)	designed	to	reduce	overexposure	to	specific	

AM	classes	(2,	8,	9).		

	

Strategies	to	ameliorate	the	rise	and	spread	of	AR	in	healthcare	settings	are	desperately	needed.	In	response,	

hospitals	and	other	healthcare	facilities	have	introduced	guidelines	and	policies	focused	on	responsible	use	of	

AMs	that	fall	under	the	term	antimicrobial	stewardship	programs	(ASPs).	A	policy	paper	released	by	the	

Society	for	Healthcare	Epidemiology	of	America,	the	Infectious	Diseases	Society	of	America,	and	the	Pediatric	

Infectious	Diseases	Society	in	2012	describes	antimicrobial	stewardship	as	“programs	(that)	optimize	

antimicrobial	use	to	achieve	the	best	clinical	outcomes	while	minimizing	adverse	events	and	limiting	selective	

pressures	that	drive	the	emergence	of	resistance	and	may	also	reduce	excessive	costs	attributable	to	



suboptimal	antimicrobial	use”	(10).	In	addition	to	healthcare	facilities,	individual	clinicians	also	acknowledge	

the	need	for	guidelines	to	aid	in	responsible	use	of	AMs.	For	instance,	doctors	have	recently	reported	the	

desire	for	more	guidance	on	optimal	prescription	practices	(2).		

	

An	ASP	can	be	viewed	as	a	collection	of	individual	antimicrobial	stewardship	measures	(ASMs)	intended	to	

guide	clinicians	at	various	decision	points	in	the	infection	treatment	process,	with	a	primary	goal	of	treatment	

success	for	the	individual	patients,	and,	as	a	secondary	goal,	a	reduction	in	the	incidence	of	infections	

involving	AR	pathogens	(10).	For	the	purpose	of	this	discussion,	we	draw	a	distinction	between	ASMs	and	

“infection	prevention	measures,”	the	latter	including	factors	like	hand	hygiene,	environmental	

decontamination,	contact	precautions,	and	patient	isolation.	The	present	work	focuses	specifically	on	ASMs.		

	

Commonly‐used	ASMs	include	(10,	11):		

A. Institutional	“default”	treatment	recommendations:	

i. Recommended	treatment	pathways	for	commonly‐encountered	high‐priority	clinical	

syndromes	(e.g. 	surgical	prophylaxis,	community‐acquired	pneumonia,	urinary	tract	

infections,	and	asymptomatic	bacteriuria)	are	pathways	that	provide	a	foundation	for	the	

design	of	individual	treatment	protocols.		

ii. Protocols	for	de‐escalation	of	antimicrobial	therapy	are	standing	recommendations	advising	

clinicians	on	when	to	re‐evaluate	a	patient’s	ongoing	drug	therapy.	For	instance,	relevant	lab	

tests	may	provide	information	to	guide	an	efficient	transition	from	therapy	with	a	broad‐

spectrum	AM	to	a	targeted	therapeutic	protocol	with	a	narrow‐spectrum	alternative.		

iii. Protocols	for	discontinuation	of	antimicrobial	therapy	are	standing	recommendations	

intended	to	help	clinicians	understand	when	relevant	test	results	and	other	indicators	

suggest	that	antimicrobial	treatment	(AMT)	may	be	safely	discontinued.		

B. Formulary	restriction	and	pre‐authorization	policies	are	designed	to	control	the	use	of	specific	

therapeutic	drugs,	by	requiring	clinicians	to	obtain	approval	from	a	hospital	ASP	or	other	governing	

body	before	prescribing	one	of	the	restricted	AMs.	Restrictions	are	typically	based	on	local	infection	

and	resistance	patterns,	as	well	as	economic	and	other	considerations.		

C. Targeted	susceptibility	reporting	refers	to	hospital	antibiograms	and	other	AM	susceptibility	

information	that	are	readily	available	to	clinicians	to	inform	their	treatment	decisions.		

D. Lab	tests	to	identify	causative	pathogen(s)	and	associated	antimicrobial	resistance	profile(s)	provide	

valuable	information	to	clinicians	as	they	seek	to	de‐escalate	a	patient’s	ongoing	AMT.	De‐escalation	

usually	means	switching	from	a	broad‐spectrum	to	a	narrow‐spectrum	drug	at	a	dosage	and	

frequency	sufficient	to	overcome	the	pathogen’s	demonstrated	level‐of‐resistance	to	that	drug.		

E. Prospective	audits	with	feedback	from	designated	infectious	disease‐trained	physicians	and	

pharmacists	are	used	to	leverage	the	relevant	expertise	of	these	individuals	to	provide	AM	education	



and	advice	on	questions	of	AM	prescription,	including	drug	selection,	use	of	restricted	drugs,	

adjustment	of	initial	therapies,	and	related	matters.		

	

A	typical	ASP	will	consist	of	some	subset	from	this	list	of	ASMs,	coupled	with	a	set	of	infection	prevention	

measures.	Note	that	we	do	not	include	electronic	clinical	decision	support	in	our	list	of	ASMs,	despite	its	

inclusion	in	a	number	of	specific	ASPs.	From	the	perspective	of	“therapy	decision	points,”	this	is	not	an	ASM	in	

its	own	right,	but	is	actually	a	means	to	efficiently	implement	and	facilitate	many	of	the	listed	ASMs,	

principally	by	making	relevant	information	and	recommendations	readily	available	to	practicing	clinicians.		

	

Developing	optimal	ASPs	is	no	small	feat	and	testing	the	effectiveness	of	these	programs	with	controlled	

epidemiological	studies	is	nearly	impossible	in	healthcare	settings	(6).		Ideally,	one	would	evaluate	these	

ASMs	through	a	controlled	experimental	investigation	comparing	outcomes	in	two	groups	of	patients	

randomized	between	the	current	protocol	and	the	ASM	in	question.	However,	cost,	time,	and	ethical	

considerations	make	this	evaluation	strategy	either	impractical	or	impossible	to	implement	with	living	

patients	(12).	Mathematical	modeling	can	augment	standard	epidemiological	studies	by	providing	the	means	

to	conduct	simulations	of	these	controlled	experiments,	simulating	many	replications	in	a	short	period	of	

time,	and	involving	only	virtual	patients.		The	benefits	of	these	methods	are	vast:	Individual	ASMs,	and	

combinations	of	ASMs,	can	be	assessed	without	the	cost	of	endangering	real	lives,	thereby	providing	valuable	

information	to	ASPs	and	other	healthcare	professionals.	Moreover,	mathematical	methods	offer	the	potential	

to	optimize	ASPs	without	having	to	test	each	component	ASM	separately.		

	

Here	we	review	recent	research	publications	(since	2012)	that	use	mathematical	models	to	investigate	and	

assess	specific	ASMs.	Most	of	these	investigations	utilize	one	of	three	principal	model	types:		

● SIR‐type	models:	The	most	commonly	used	mathematical	models	in	infectious	disease	modeling	are	

variants	of	the	classical	SIR	model	introduced	by	Kermack	and	McKendrick	in	1927.	These	models	

simulate	the	spread	of	an	infectious	disease	through	a	population	by	viewing	the	population	as	a	

finite	number	of	homogeneous	sub‐populations.	(Early	SIR	models	used	three	sub‐populations:	

Susceptible	(to	the	infection),	Infectious	(capable	of	spreading	the	infection),	and	Recovered	(from	

the	infection),	hence,	the	acronym	“SIR”	in	the	name.)	The	movement	(reflecting	changes	in	the	

disease	state)	of	individuals	between	these	sub‐populations	over	time	is	typically	modeled	with	a	

system	of	ordinary	differential	equations	or,	occasionally,	stochastic	transition	(e.g.	Markov)	models.	

In	the	present	context,	SIR‐type	models	are	most	often	used	to	simulate	interactions	between	groups	

of	individuals	(e.g.	colonized	and	uncolonized	patients)	in	a	single	hospital	ward,	an	entire	hospital,	

or	a	broader	community.	Some	of	these	models	treat	patients	and	healthcare	workers	(HCWs)	as	

separate	populations,	while	other	models	make	no	such	distinction.		



● In‐host	Population	Models	(IHPMs):	IHPMs	use	ordinary	differential	equations	to	track	the	population	

of	bacteria	inside	a	person	(host)	as	the	bacteria	interact	with	the	in‐host	environment.	The	

environment	can	include	interactions	with	the	immune	system	as	well	as	with	AMTs.	

● 	Agent	Based	Models	(ABM):	ABMs	differ	from	both	SIR‐type	models	and	IHPMs	in	that	they	simulate	

a	collection	of	autonomous	individuals	(agents),	rather	than	a	finite	set	of	homogeneous	sub‐

populations.	These	agents	are	each	given	their	own	set	of	characteristics	(e.g.	infection	state).	The	

simulation	proceeds	through	a	sequence	of	interactions	of	agents	with	each	other	and	with	their	

environment.	ABMs	are	particularly	useful	when	the	number	of	individuals	is	small	(e.g.	in	a	small	

hospital	ward),	or	when	individual	differences	are	expected	to	be	significant	to	the	simulation.	As	the	

number	of	agents	increases,	ABMs	become	computationally	expensive	and	are	much	less	amenable	to	

mathematical	analysis	when	compared	to	either	SIR‐type	models	or	IHPMs.	

	

Although	not	within	the	scope	of	the	present	work,	interested	readers	should	note	that	some	recent	work	on	

ASPs	has	also	been	done	using	statistical	models	(e.g.	ARENA	models)	to	evaluate	ASMs.	(See,	e.g.,	(13‐15).)	

Models to Assess Antimicrobial Stewardship 
	

Our	literature	search	identified	18	papers,	published	since	the	beginning	of	2012,	that	use	mathematical	

models	to	assess	the	potential	of	ASMs	to	contribute	to	reductions	in	AR	rates	within	hospitals.	Table	1	

collects	basic	facts	about	each.	

	

Table	1.	Key	facts	about	each	paper	in	the	search	results:	first	author;	year	of	publication;	pathogen	studied;	

infection	type;	antimicrobial	studied;	and	reference	number.	Abbreviations	used:	MRSA	=	methicillin‐

resistant	Staphylococcus	aureus;	ICU	=	intensive	care	unit;	VRE	=	vancomycin‐resistant	enterococci;	MSSA	=	

methicillin‐susceptible	Staphylococcus	aureus.	

	

First	

Author	
Year	 Pathogen	 Infection	type	 Antimicrobial(s)	 Ref	#	

Chamchod	 2012	 MRSA	 Non‐specific Non‐specific	 (16)

Caudill	
2013,	

2015	
MRSA	 Pneumonia	 Imipenem,	oxacillin	 (17,	18)	

D’Agata	 2012	 Non‐specific Non‐specific Non‐specific	 (19)

Deeny	 2015	
Healthcare‐

acquired	MRSA	
None	(screening)	 Muporicin	 (20)	

Doan	 2015	 A.	baumannii Non‐specific	in	ICU Non‐specific	 (21)

Felton	 2013	 P.	aeruginosa	 Healthcare‐acquired	 Piperacillin‐tazobactam	 (22)	



pneumonia

Geli	 2012	 Non‐specific Non‐specific Non‐specific	 (23)

Grima	 2012	 C.	difficile	and	VRE Non‐specific Non‐specific	 (24)

Hurford	 2012	 P.	aeruginosa Non‐specific	in	ICU Non‐specific	 (25)

Kardaś‐

Słoma	
2013	 MSSA	and	MRSA	 Non‐specific	in	ICU	

Several	non‐specific	

classes,	differing	by	

activity	vs.	MSSA	and	

MRSA	

(26)	

Obolski	 2012	 Non‐specific	 Non‐specific	 Two	non‐specific	 (27)	

Sypsa	 2012	

Carbapenemase‐

producing	K.	

pneumoniae	

Non‐specific	 Non‐specific	 (28)	

Schultsz	 2013	

MRSA,	ESBL‐

Enterobacteriacea

e,	P.	aeruginosa,	

gentamicin‐

resistant	K.	

pneumoniae,	

amikacin‐

resistant	

Acinetobacter	

Non‐specific	in	

tetanus	ICU	

Ceftazidime,	

piperacillin‐tazobactam,	

ciprofloxacin	

(29)	

Tan	 2014	

Carbapenem‐

resistant	A.	

baumannii	

None	

Cefepime,	ertapenem,	

imipenem,	meropenem,	

piperacillin‐tazobactam	

(30)	

Ternent	 2015	 Non‐specific Non‐specific Non‐specific	 (31)

Wiesch	 2014	 Non‐specific	 Non‐specific	
Two	from	unspecified	

classes	
(32)	

Yakob	 2014	 C.	difficile	

Gastrointestinal

system,		C.	difficile	

infection	

Non‐specific	 (33)	

	

 

Antimicrobial Stewardship and Treatment Decision Points 
	



Different	ASMs	target	different	decision	points	in	an	AMT	protocol.	It	is	instructive	to	organize	the	current	

ASM	arsenal	in	terms	of	these	decision	points,	i.e.	the	decisions	made	by	the	clinician	during	the	progression	

of	patient	treatment	from	the	initial	decision	to	treat,	through	the	discontinuation	of	therapy:		

1. Will	the	patient	receive	AMT?	

2. Details	of	the	initial	AMT	plan:		

a. Choice	of	drug	

b. Mode	of	administration	

c. Dosage	and	frequency	

3. Re‐evaluation	of	therapy	plan	(for	possible	de‐escalation):	

a. When	to	re‐evaluate	

b. Re‐evaluate	choice	of	drug	(e.g.	switch	from	broad‐spectrum	to	narrow‐spectrum)	

c. Re‐evaluate	mode	of	administration	(e.g.	switch	from	parenteral	to	oral)	

d. Re‐evaluate	dosage	and	frequency	

4. Discontinuation	of	AMT	

	

In	the	context	of	“antimicrobial	treatment	decision	points,”	ASMs	can	be	viewed	as	aids	to	the	practicing	

clinician	at	the	different	decision	points.	Table	2	lists	each	decision	point,	the	supporting	ASMs	for	each,	and	

the	modeling	references	that	speak	to	each	ASM.		

	

Table	2.	Clinical	decision	points	(Column	1)	during	the	course	of	AMT	for	an	individual	patient,	and	the	

specific	ASMs	(Column	2,	corresponding	to	the	numbering	in	the	ASM	list	given	above)	that	support	each	

decision	point.	Column	3	lists	references	(since	2012)	that	use	mathematical	models	to	investigate	the	

effectiveness	of	each	ASM	in	reducing	the	emergence	and	spread	of	AR.		

Decision	Point	
Supporting	

ASMs	
Modeling	References	

1.	Will	the	patient	receive	antimicrobial	treatment?	 A.i.	
(16,	19‐21,	24‐26,	28,	

30,	31,	33)	

2.	Initial	therapy	plan:	 	

					a.	Choice	of	drug	 A.i.,B,	C	 (25,	27,	29,	32)	

					b.	mode	of	administration	 A.i. (22)	

					c.	dosage	and	frequency A.i.,	C none	

3.	Re‐evaluation	of	therapy	plan	(for	possible	de‐

escalation):	
	 	

					a.	When	to	re‐evaluate	 A.ii.,	D,	E (17,	18)	

					b.	Re‐evaluate	choice	of	drug	 A.ii.,	B,	C (17,	18)	

					c.	Re‐evaluate	mode	of	administration	 A.ii.,	D,	E (22)	



					d.	Re‐evaluate	dosage	and	frequency	 A.ii.,	C none	

4.	Discontinuation	of	antimicrobial	therapy	 A.iii.,	D	
(16,	21,	23,	25,	26,	28,	

30)	

	

	

In	what	follows,	we	revisit	each	treatment	decision	point	from	Table	2,	and	discuss	the	relevant	search	results	

that	address	ASMs	related	to	that	decision	point.	For	each	reference,	the	key	assumptions	built	into	the	

model,	the	model	type,	and	the	outcomes	predicted	from	the	modeling	study	are	summarized.		

	

Will the patient receive antimicrobial treatment? 

Eleven	of	the	search	results	investigated	factors	that	may	inform	this	decision	point.	Of	these,	two	(16,	20)	

simulate	the	impact	of	patient	screening	(upon	admission)	for	MRSA,	two	(24,	31)	investigate	the	impact	of	

specific	non‐AM	treatment	options,	and	five	(19,	21,	25,	26,	33)	consider	consequences	of	a	non‐specific	

reduction	in	the	AM	prescription	rate.	The	remaining	two	(28,	30)	consider	an	overall	reduction	in	the	

hospital‐wide	consumption	of	AMs,	without	specifying	particular	actions	that	would	bring	about	such	a	

reduction.		

	

Ten	of	these	eleven	studies	assess	ASMs	in	terms	of	pathogen	prevalence,	either	discussing	AR	strains	in	

particular	(16,	19,	20,	24‐26,	28,	30),	or	pathogen	prevalence	independent	of	resistance‐level	(21,	33).	The	

remaining	work	(31)	focuses	on	assessing	effectiveness	through	successful	clearance	(within	a	single	host)	of	

an	infection	due	to	a	pathogen	population	that	features	a	mix	of	resistance‐levels.		

	

Key	points	on	each	of	these	11	works:		

● Chamchod	and	Ruan	(16):		

○ Key	assumptions:	AM	treatment	does	not	fully	clear	the	pathogen.	Patients	with	prior	AM	

exposure	progress	from	the	colonized	state	to	the	infected	state	at	a	faster	rate	than	those	

without	prior	treatment.	Patients	with	prior	AM	exposure	are	more	likely	to	become	

contaminated	via	HCW	contact	than	those	without	prior	treatment.	

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	and	HCWs.	

○ Model	predictions:	Methicillin‐resistant	Staphylococcus	aureus (MRSA)	infection	is	more	

prevalent	among	those	patients	with	prior	AM	exposure	than	among	those	without	

treatment.		

● D’Agata	et	al.	(19):	

○ Key	assumptions:	Only	patients	undergoing	AMT	may	acquire	colonization	with	multi‐drug	

resistant	organisms	(MDRO).		

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	without	HCWs	modeled	directly.	



○ Model	predictions:	Increasing	the	percentage	of	patients	receiving	AMs	from	0%	to	100%	will	

increase	MDRO‐prevalence	by	only	~8%,	from	~22%	to	~30%.		

● Deeney	et	al.	(20):	

○ Key	assumptions:	MRSA	spread	by	direct	contact	between	patients	with	no	HCW‐facilitated	

spread.	

○ Model	type:	Ward‐level	ABM	of	patients	without	HCWs.	

○ Model	predictions:		When	compared	to	the	strategy	of	“mupirocin	treatment	for	clinical	

MRSA	infections	only,”	the	“screen	all	patients	and	treat,	with	mupirocin,	those	who	test	

positive	for	MRSA”	strategy	leads	to	a	long‐term	decrease	in	incidence	of	mupirocin‐

resistant	MRSA,	while	the	“treat	all	patients	prophylactically	with	mupirocin”	strategy	leads	

to	a	long‐term	increase	in	incidence	of	mupirocin‐resistant	MRSA.	

● Doan	et	al.	(21):	

○ Key	assumptions:	There	is	no	distinction	between	AR	and	non‐AR	A.	baumannii	strains.	

Infection	can	be	spread	by	the	local	environment.	AM	treatment	within	last	30	days	

increases	the	likelihood	that	a	patient	will	become	colonized.	AMT	within	the	last	30	days	

implies	that	both	colonized	and	infected	patients	are	more	infectious.		

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	without	HCWs	in	an	intensive	care	unit	

(ICU).	

○ Model	predictions:	A	61%	reduction	in	length	of	AMT	duration	for	A.	baumannii	ICU	patients	

will	result	in	~14%	decrease	in	prevalence	of	colonization	and	infection.	A	reduction	in	the	

rate	of	AM	prescriptions	will	produce	no	significant	change	in	prevalence	of	colonization	and	

infection.		

● Grima	et	al.	(24):	

○ Key	assumptions:	Vancomycin‐resistant	enterococci	(VRE)	patients	on	AMs	are	more	likely	to	

contaminate	HCWs	than	VRE	patients	who	are	not	on	AMs.	VRE‐colonized	patients	are	under	

contact	precautions.		

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	and	HCWs.	

○ Model	predictions:	Use	of	non‐AMTs,	such	as	fecal	donor	installation	therapy,	in	50%	of	C.	

difficile	patients	will	result	in	an	18%	reduction	in	prevalence	of	VRE	colonization	compared	

with	AM	use	only.		

● Hurford	et	al.	(25):	

○ Key	assumptions:	No	multidrug‐resistant	strains	of	P.	aeruginosa	(PA).	Under	AMT,	resistance	

emerges	at	a	constant	rate	over	time.		

○ Model	type:	Ward‐level	SIR	model	of	patients	without	HCWs	in	an	ICU.	

○ Model	predictions:	AMs	for	fewer	patients	will	result	in	a	lower	number	of	patients	colonized	

with	PA.		

● Kardaś‐Słoma	et	al.	(26):	



○ Key	assumptions:	There	is	no	distinction	between	colonized	individuals	and	infected	ones.	

The	different	AM	“classes”	differ	only	in	their	activity‐level	against	MRSA.	Within	the	

hospital,	infection	is	spread	only	through	HCW	contact.		

○ Model	type:	Ward‐level	ABM	of	patients,	without	HCWs,	in	an	ICU,	linked	to	an	SIR‐type	

model	of	colonization	within	the	local	community.		

○ Model	predictions:	A	10%	reduction	in	overall	AM	use	may	result	in	outcomes	ranging	from	a	

69%	decrease	to	a	52%	increase	in	MRSA	frequency	in	the	ICU	(and	37%	decrease	to	a	46%	

increase	in	the	community),	depending	on	which	AM	classes	are	reduced.		

● Sypsa	et	al.	(28):	

○ Key	assumptions:	Once	patients	are	colonized,	they	remain	colonized	for	the	duration	of	their	

hospital	stay.	The	duration	of	HCW	contamination	is	one	hour.			

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	and	HCWs.	

○ Model	predictions:	In	situations	where	50%	compliance	with	hand	hygiene	guidelines	is	

required	to	control	HCW‐facilitated	carbapenemase‐producing	Klebsiella	pneumoniae	

(CPKP)	transmission,	a	40%	reduction	in	antibiotic	use	could	result	in	CPKP	control	with	

hand	hygiene	compliance	as	low	as	40%.			

● Tan	et	al.	(30):	

○ Key	assumptions:	The	fraction	of	A.	baumannii	isolates	that	are	carbapenem‐resistant	

depends	only	on	the	total	volume	of	AM	used;	in	particular,	it	is	independent	of	both	ward‐

level	and	in‐host	dynamics.		

○ Model	type:	A	single	ordinary	differential	equation	modeling	the	proportion	(over	time)	of	A.	

baumannii	isolates	hospital‐wide	that	are	non‐susceptible	to	either	imipenem	or	

meropenem.	(Total	AM	consumption	in	the	hospital	enters	as	a	constant	in	the	differential	

equation.)	

○ Model	predictions:	The	number	of	defined	daily	doses	(DDD)	of	ertapenem	(hospital‐wide)	

correlates	with	prevalence	of	carbapenem‐resistant	A.	baumannii.		

● Ternent	et	al.	(31):	

○ Key	assumptions:	The	AM	concentration	inside	the	host	remains	constant	over	time.	The	anti‐

virulence	drug	increases	the	effectiveness	of	the	immune	response	in	clearing	the	pathogen.	

The	transfer	of	AR	genes	via	plasmids	is	modeled	as	“direct	contact”	in	a	well‐mixed	

pathogen	population.		

○ Model	type:	IHPM	of	interactions	between	pathogen,	immune	cells,	AM,	and	anti‐virulence	

drug.		

○ Model	predictions:	A	two‐phase	treatment	consisting	of	an	anti‐virulence	drug,	followed	by	

an	AM	may	result	in	clearance	of	a	pathogen	population,	even	when	that	population	features	

a	mix	of	AR	levels.		

● Yakob	et	al.	(33):	



○ Key	assumptions:	Patients	colonized	with	C.	difficile	are	more	likely	to	progress	to	C.	difficile.	

infection	if	they	were	recently	treated	with	AMs.		

○ Model	type:	Ward‐level	SIR‐type	model	of	patients,	without	HCWs.	

○ Model	predictions:	The	rate	of	AM	prescription	has	little	effect	on	the	rate	of	C.	difficile	

infection,	when	bundled	with	either	gut	microflora	support,	hygiene	and	sanitation	

improvements,	or	shorter	patient	hospital	stays.		

	

Initial therapy plan – choice of drug: 

Four	of	the	search	results	investigate	factors	that	may	inform	this	decision	point.	Three	(27,	29,	32)	of	the	

four	study	the	impact	of	specific	AM‐selection	strategies,	such	as	cycling	and	mixing,	while	the	fourth	(25)	

focuses	on	the	reduction	of	a	specific	category	(anti‐Pseudomonals)	of	AMs.	Two	of	these	(25,	29)	assess	

ASMs	in	terms	of	prevalence	of	resistant	strains	of	the	pathogen	in	question.	The	remaining	two	(27,	32)	

focus	specifically	on	prevalence	of	multidrug‐resistant	pathogens.		

Key	points	on	each	of	these	four	works:		

● Hurford	et	al.	(25):	

○ Key	assumptions:	No	multidrug‐resistant	strains	of	P.	aeruginosa.	Under	AMT,	resistance	

emerges	at	a	constant	rate	over	time.		

○ Model	type:	Ward‐level	SIR	model	of	patients,	without	HCWs	in	an	ICU.	

○ Model	predictions:	Reducing	both	the	total	number	of	AM	prescriptions	and	the	number	of	

anti‐Pseudomonal	prescriptions	will	result	in	a	lower	number	of	patients	colonized	with	AR	

P.	aeruginosa.		

● Obolski	and	Hadany	(27):	

○ Key	assumptions:	Resistance	to	an	AM	is	complete	(i.e.	the	AM	has	no	effect	on	pathogens	

resistant	to	it).	Available	AM‐selection	options	are	cycling,	mixing,	or	combining,	each	with	

two	AMs	from	which	to	choose.	AM‐induced	stress	favors	survival	of	resistant	mutants	only	

in	patients	where	resistant	strains	already	dominate.		

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	without	HCWs.	

○ Model	predictions:	Selection	of	AMs	via	a	“combining”	strategy	performs	slightly	better	than	

either	cycling	or	mixing	with	respect	to	minimizing	singly‐resistant	infections,	but	performs	

worse	than	either	cycling	or	mixing	with	respect	to	minimizing	doubly‐resistant	infections.		

● Schultsz	et	al.	(29):	

○ Key	assumptions:	Colonized	patients	remain	colonized	for	the	duration	of	their	hospital	stay.	

Cultures	are	100%	accurate.	AM	selection	is	made	from	a	menu	of	three:	ceftazidime,	

piperacillin/tazobactam,	and	ciprofloxacin.		

○ Model	type:	Ward‐level	Markov	SIR‐type	model	of	patients,	without	HCWs,	in	an	ICU.	



○ Model	predictions:	An	AM	mixing	strategy	involving	a	53%	decrease	in	ceftazidime	usage	and	

a	7.2‐fold	and	4.5‐fold	increase	in	usage	of	piperacillin/tazobactam	and	ciprofloxacin,	

respectively,	may	result	in	a	large	(nearly	70%)	reduction	in	MRSA	prevalence,	but	little‐to‐

no	reduction	in	prevalence	of	any	of	the	four	gram‐negative	pathogens	included	in	the	study.		

● zur	Wiesch	et	al.	(32):	

○ Key	assumptions:	Two	broad‐spectrum	AMs	(with	no	potential	cross‐resistance)	are	

available	to	prescribe.	Resistance	to	an	AM	is	complete	(i.e.	the	AM	has	no	effect	on	

pathogens	resistant	to	it).	Patients	become	susceptible	to	infection	because	of	previous	AMT.		

○ Model	type:	Ward‐level	SIR‐type	model	of	patients	without	HCWs.	

○ Model	predictions:	Adjustable	cycling	(i.e.	initial	AM	selection	via	cycling	protocol,	but	

changing	it	when	patient	progresses	from	asymptomatic	to	symptomatic	infection)	works	

better	than	non‐adjustable	cycling	in	reducing	prevalence	of	multidrug‐resistance.		

	

Initial therapy plan – mode of administration:  

One	of	the	search	results	(22)	investigates	factors	that	may	inform	this	decision	point.	The	authors	used	a	

model	of	Pseudomonas‐piperacillin/tazobactam		interactions	within	a	single	host	to	compare	the	

effectiveness	of	two	different	administration	methods	‐	bolus	injection	and	intermittent	infusion	‐	with	

effectiveness	measured	both	in	terms	of	total	Pseudomonas	load	and	the	load	of	piperacillin‐resistant	

Pseudomonas.	Key	points	on	this	work:		

● Felton	et	al.	(22):	

○ Key	assumptions:	Resistance	to	an	AM	is	complete	(i.e.	the	AM	has	no	effect	on	pathogens	

resistant	to	it).		

○ Model	type:	IHPM	of	interactions	between	pathogen	and	AM.		

○ Model	predictions:		Bolus	regimens	are	equivalent	to	intermittent	infusion	in	terms	of	both	

the	antibacterial	effect	of	piperacillin/tazobactam	on	Pseudomonas	and	the	emergence	of	

piperacillin/tazobactam‐resistant	strains	of	Pseudomonas.		

	

Initial therapy plan – dosage and frequency:  

None	of	the	search	results	investigate	this	decision	point.		

	

When to re-evaluate:  

One	team	of	researchers	investigates	factors	that	may	inform	this	decision	point	(17,	18).	The	authors	use	a	

model	that	combines	ward‐level	interactions	with	in‐host	pathogen	dynamics	to	compare	timing	differences	

between	both	pathogen	identification	testing	and	resistance	profile	analysis,	both	of	which	inform	the	timing	

of	the	clinician’s	re‐evaluation	of	the	initial	treatment	plan.	They	compare	four	re‐evaluation	strategies,	



differing	in	the	initiation	time	for	pathogen‐identification	testing	and	minimum	inhibitory	concentration	

(MIC)‐profiling,	and	use	maximum	pathogen	load	to	assess	outcomes.		

● Caudill	and	Lawson	(17,	18):	

○ Key	assumptions:	Causative	pathogen	is	a	strain	of	Staphylococcus.	aureus	with	high	

resistance	to	imipenem	and	intermediate	resistance	to	oxacillin.	Results	of	both	the	

pathogen‐identification	testing	and	the	MIC‐profiling	become	available	24	hours	after	test	

initiation.	Initial	treatment	with	imipenem	(broad	spectrum),	until	pathogen	is	identified,	

after	which	switch	to	repeated	1000	mg	doses	of	oxacillin	(narrow	spectrum),	until	oxacillin‐

MIC	is	identified,	after	which	switch	to	repeated	2500	mg	doses	of	oxacillin.		

○ Model	type:	Ward‐level	ABM	of	interactions	between	patients	and	HCWs,	linked	to	an	IHPM	

(one	for	each	patient	and	each	HCW)	of	interactions	between	pathogen,	immune	response,	

and	AM.		

○ Model	predictions:		Initiation	of	pathogen‐identification	at	the	time	of	initial	pneumonia	

diagnosis	has	the	greatest	effect	on	maximum	pathogen	load	in	this	setting.	This	effect	is	

enhanced	by	initiation	of	resistance	analysis	at	the	same	time.		

	

Re- evaluate choice of drug:  

From	our	search	results,	two	papers	(17,	18),	both	by	the	same	authors,	addressed	this	decision	point.	For	

details,	see	the	analysis	under	the	previous	decision	point.		

	

Re- evaluate mode of administration:  

The	analysis	in	Felton	et	al.	(22),	detailed	under	Initial	therapy	plan	–	mode	of	administration,	above,	applies	

equally	to	this	decision	point	and	is	the	only	paper	in	this	review	to	address	it.		

	

Re- evaluate dosage and frequency: 

None	of	the	search	results	investigate	this	decision	point.		

	

Discontinuation of antimicrobial therapy:  

Seven	of	the	search	results	address	aspects	that		apply	to	this	decision	point.	Four	of	these	(16,	21,	23,	25)	

specifically	address	time‐duration	of	AMT,	while	the	other	three	(26,	28,	30)	consider	only	a	non‐specific	

reduction	in	overall	AM	consumption.	Of	these	seven	papers,	all	except	Geli	et	al.	(23)	are	detailed	under	“Will	

the	patient	receive	antimicrobial	treatment?”	above,	and	will	not	be	repeated	here,	with	the	exception	of	

Hurford	et	al.	(25),	because	it	includes	model	predictions	that	apply	to	this	decision	point,	but	not	the	

previous	one.		



● Geli	et	al.	(23):	

○ Key	assumptions:	Sensitive	bacteria	mutate	to	become	resistant	bacteria	at	a	fixed	

deterministic	rate.	The	resistant	bacteria	population	grows	at	the	same	rate	as	the	sensitive	

population,	but	is	assumed	to	die	at	a	faster	rate.	The	AM	concentration	is	constant	

throughout	the	treatment	period.	Both	strains	of	pathogen	are	killed	by	the	AM,	but	at	

different	rates.		

○ Model	type:	IHPM	of	interactions	between	susceptible	pathogen,	resistant	pathogen,	and	

immune	response.		

○ Model	predictions:	Risk	for	development	of	resistant	pathogens,	as	a	function	of	AM	use,	

differs	between	commensal	and	non‐commensal	bacteria.	For	commensals,	risk	is	greatest	

for	long	treatment	durations.	For	non‐commensals,	risk	is	greatest	for	intermediate	

treatment	durations.	

● Hurford	et	al.	(25):	

○ Key	assumptions:	See	previous	analysis.		

○ Model	type:	See	previous	analysis.		

○ Model	predictions:	Shorter	duration	of	AMTs	will	result	in	a	lower	number	of	patients	

colonized	with	the	resistant	strain	of	P.	aeruginosa.	

	

Conclusions 
	

Antimicrobial	resistance	will	likely	remain	as	a	significant	health	crisis	for	the	foreseeable	future.	Given	the	

mounting	evidence	connecting	AM	resistance	to	AM	use,	overuse,	and	misuse,	there	is	little	question	that	we	

must	wisely	utilize	our	AM	arsenal.	Antimicrobial	stewardship	programs	are	central	to	this	effort,	and	yet,	

recent	reports	indicate	that	fewer	than	half	of	the	acute	health	care	facilities	in	the	U.S.	currently	have	ASPs	

(34).	As	more	of	these	facilities	work	to	design	and	implement	ASPs,	they	must	choose	which	available	ASMs	

are	most	likely	to	be	effective	within	their	institution	and	local	community.	Mathematical	models	can	provide	

a	practical	and	economical	tool	for	simulating	controlled	experiments	to	predict	the	impact	of	ASMs,	without	

putting	humans	at	risk	while	providing	valuable	input	to	clinicians	as	they	work	to	optimally	choose	the	best	

drug,	mode	and	timing	of	administration,	and	treatment	duration.			

	

As	the	small	number	of	search	results	here	illustrates,	recent	work	that	leverages	the	advantages	of	

mathematical	modeling	in	ASP	development	and	assessment	is	limited.	Fully	two‐thirds	of	our	search	results	

investigate	the	impact	of	an	overall	reduction	in	AMs,	although	only	four	consider	distinctions	between	

different	AM	classes.	By	contrast,	few	or	none	of	these	studies	address	ASMs	related	to	the	other	therapy	

decision	points	(Table	2).		

	



Many	open	questions	remain	about	how	to	best	optimize	ASPs.	High	priority	points‐of‐focus	for	future	

modeling	investigations	should	include:	

 Minimization	of	the	time	duration	between	the	start	of	the	initial	therapy	protocol,	the	re‐evaluation	

and	de‐escalation	of	therapy	(e.g.	from	broad‐spectrum	to	narrow‐spectrum	antimicrobials),	and	the	

discontinuation	of	therapy.		

 The	effects	of	incomplete	compliance	with	ASP	guidelines.		

 Accounting	for	acute	care	facilities	within	the	larger	community	network.		

Results	from	mathematical	modeling	studies	that	holistically	analyze	the	decision	points	delineated	in	Table	2	

could	have	a	marked	effect	in	helping	to	reduce	the	problem	of	antimicrobial	resistance	in	healthcare	settings.	
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