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States of America, 2 Division of Nephrology, Rhode Island Hospital, Brown University, Providence, Rhode
Island, United States of America, 3 Division of Infectious Diseases, Rhode Island Hospital, Brown University,
Providence, Rhode Island, United States of America

* jwares@richmond.edu

Abstract
Patients receiving chronic hemodialysis (CHD) are among the most vulnerable to infections

caused by multidrug-resistant organisms (MDRO), which are associated with high rates of

morbidity and mortality. Current guidelines to reduce transmission of MDRO in the out-

patient dialysis unit are targeted at patients considered to be high-risk for transmitting these

organisms: those with infected skin wounds not contained by a dressing, or those with fecal

incontinence or uncontrolled diarrhea. Here, we hypothesize that targeting patients receiv-

ing antimicrobial treatment would more effectively reduce transmission and acquisition of

MDRO. We also hypothesize that environmental contamination plays a role in the dissemi-

nation of MDRO in the dialysis unit. To address our hypotheses, we built an agent-based

model to simulate different treatment strategies in a dialysis unit. Our results suggest that

reducing antimicrobial treatment, either by reducing the number of patients receiving treat-

ment or by reducing the duration of the treatment, markedly reduces overall colonization

rates and also the levels of environmental contamination in the dialysis unit. Our results

also suggest that improving the environmental decontamination efficacy between patient

dialysis treatments is an effective method for reducing colonization and contamination

rates. These findings have important implications for the development and implementation

of future infection prevention strategies.

Introduction
Rates of multidrug-resistant organisms (MDRO) are among the highest in the population of
chronic hemodialysis (CHD) [1–3]. Infections caused by MDRO are associated with consider-
able morbidity and mortality, and limited therapeutic options [4–6]. It is therefore imperative
to curtail the ongoing spread and de novo acquisition of MDRO in the CHD population. In
out-patient dialysis units, current guidelines recommend that only those patients at high-risk
of disseminating MDRO be placed on additional infection control precautions. These precau-
tions include the use of a separate gown by the healthcare worker (HCW) with removal of
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gown when finished caring for the patient, as well as dialyzing the patient at a station with the
fewest adjacent stations [7]. These high-risk patients are defined as those with infected skin
wounds not contained by a dressing, or those with fecal incontinence or uncontrolled diarrhea.
These recommendations are extrapolated from hospital-based studies and their efficacy in pre-
venting MDRO spread within the unique out-patient dialysis setting has not been quantified.

Another subgroup of CHD patients that may be at higher risk of MDRO dissemination are
colonized patients who are receiving antimicrobials. It is well-established that antimicrobial
exposure leads to increased MDRO bacterial loads in the gastrointestinal tract and nares [8–
10]. Higher bacterial loads result in greater skin contamination and thus greater likelihood of
transmission to healthcare workers and other patients [11]. Additionally, increased MDRO
loads have also been directly associated with greater environmental contamination.[8] Further-
more since antimicrobial treatment reduces the endogenous flora that naturally out-competes
MDRO, patients receiving antimicrobial treatment are the group most likely to become colo-
nized with MDRO [12]. Thus, CHD patients who are receiving antimicrobials may be another
subgroup of patients at high-risk of MDRO spread.

Specific precautions targeting CHD patients who are receiving antimicrobials may therefore
be warranted. To test this hypothesis, we quantified and compared the transmission dynamics
of MDRO in out-patient dialysis units between those high-risk patients targeted by current rec-
ommendations and those patients colonized with MDRO who are receiving antimicrobials.
Given the numerous interrelated and dynamic factors contributing to MDRO transmission
and the small number of patients in dialysis units, agent-based modeling was used, since classic
epidemiological studies cannot fully address the complexities of transmission. Environmental
and healthcare worker contamination, compliance with hand hygiene, and extent of antimicro-
bial exposure were also included in the model, and their role in MDRO transmission
quantified.

Materials and Methods

Simulation Model
An agent-based simulation model was developed to study the transmission dynamics of
MDRO in an out-patient dialysis unit. The goal is to recognize transmission patterns that
emerge at the dialysis-unit level as a result of the definition of individual-level behaviors.
Agent-based models consist of a collection of autonomous, heterogeneous agents (individuals),
an environment in which the agents reside, and a collection of rules that govern how the agents
interact individually with one another and with the environment. Each agent has a set of char-
acteristics (attributes) whose values vary across time and are unique to that agent, as well as a
set of behaviors (actions) that the agent performs. The environment may also have attributes.
In the model presented here, the environment is the out-patient dialysis unit, specifically a col-
lection of chairs where patients receive dialysis. The model uses two types of agents, represent-
ing the patients receiving dialysis and the healthcare workers (HCWs) caring for those
patients.

Our model dialysis unit provides care to 120 patients. Each patient receives three-hour dial-
ysis sessions three times per week, on either a Monday/Wednesday/Friday schedule or a Tues-
day/Thursday/Saturday schedule, and remains on the same schedule for a two-year period.
Each day consists of four shifts, each lasting four hours. Patients receive treatment during the
same shift on each of their treatment days. There are five HCWs per shift and each HCW
works two consecutive shifts, treating three patients per shift, and is presumed to be without
MDRO contamination at the start of their first of the two shifts. Each patient interacts with
their HCW at the beginning and at the end of a dialysis session, and may be revisited by the
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HCW during the session (on average two additional times per session). Before each interaction
with a patient, a proportion of HCWs successfully comply with hand hygiene guidelines.
Patients start antimicrobial treatments once per year on average, and are admitted to the hospi-
tal twice per year on average, where they may acquire de novoMDRO colonization and/or
receive antimicrobials [3,13,14]. The following MDRO transmission routes within the dialysis
unit are considered:

• contamination of a HCW by a colonized patient;

• contamination of a chair by a colonized patient;

• colonization of a patient on antimicrobials via contact with a contaminated HCW; and

• colonization of a patient on antimicrobials via contact with a contaminated chair.

Additionally, a patient returning to the dialysis unit from a hospital visit may have de novo
MDRO colonization as a result of the hospitalization.

Attributes of the environment and the agents in the model are defined to be consistent with
these transmission routes. Chairs and HCWs each have one defined attribute: MDRO contami-
nation status. For patients, we define four attributes: (a) MDRO colonization status; (b) antimi-
crobial treatment status; (c) super-spreader (SS) status; and (d) hospital admission status. In
this context, SS are defined as the group of colonized patients at higher risk of MDRO trans-
mission, with two corresponding categorizations: 1) an “SS1” patient is defined as a colonized
patient meeting the CDC guidelines for “high-risk” of MDRO transmission and 2) an “SS2”
patient is defined as a colonized patient receiving antimicrobial treatment [7]. Note that SS2
patients that are also categorized as being SS1 (i.e., are colonized with MDRO, receiving anti-
microbial treatment, andmeet the CDC guidelines for “high-risk”) transmit bacteria at a
higher rate consistent with being SS1.

Agent behaviors are also modeled to be consistent with the transmission routes and attri-
butes discussed above. Our agent-based simulation model uses an event-oriented view to model
time. Therefore, we define a collection of event types corresponding to agent behaviors in the
model, where the occurrence of any event (of one of those types) may change the state of our
simulated out-patient dialysis unit. As an example, one event type corresponds to a HCW visit-
ing a patient mid-session, potentially resulting in a change in the number of colonized patients
(if the HCW is contaminated and transmits MDRO to the patient). We define 15 different
types of events in the model, given in Table 1.

During execution, the simulation model maintains a calendar (list) of events to occur chro-
nologically in simulated time. After an initial list of events is generated, the simulation
advances according to the following sequence of steps: (a) the next event to occur in simulated
time is fetched from the event calendar; (b) the simulation clock is advanced to the time of that

Table 1. Event Types for the Dialysis Unit Model.

1) HCW begins shift 8) patient begins antimicrobial treatment

2) HCW ends shift 9) patient ends antimicrobial treatment

3) patient begins dialysis session 10) patient becomes colonized

4) patient ends dialysis session 11) patient becomes no longer colonized

5) HCW visits patient (mid-session) 12) patient becomes SS1

6) HCW cleans the chair (post-session) 13) patient ends being SS1

7) HCW is hand-hygiene compliant (pre-visit) 14) patient enters hospital

15) patient leaves hospital

doi:10.1371/journal.pone.0153820.t001
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event; (c) an algorithm handling that particular type of event is executed; and (d) the calendar
is updated appropriately (e.g., to include a future event corresponding to the type of event just
handled). This sequence of steps is repeated, updating the simulation clock and event calendar
each time, until the clock reaches the maximum time to simulate. In this way, time is modeled
asynchronously as the simulation clock advances non-uniformly to discrete points in time,
rather than synchronously using a fixed time step. Because events of interest in the dialysis unit
occur asynchronously in time in practice, modeling time asynchronously rather than synchro-
nously facilitates a more realistic representation of the times at which events occur, and is more
computationally efficient, which is of particular importance for large-scale state-space explora-
tion of parameter values. Our model was implemented in MATLAB (The MathWorks, Inc.;
Natick, MA, USA), using object-oriented programming to implement the agents (patients and
HCWs), environment (chairs), and the event-oriented simulation engine.

Treatment Schedule and Model Parameters
At the beginning of every shift, patients are randomly assigned to dialysis stations (chairs) in
the unit. HCWs are then assigned to a group of three patients. Each patient is treated, in no
particular order, by a HCW at the beginning and end of the patient’s dialysis session. On aver-
age, each patient is seen two additional times during the session. Before each patient visit,
HCWs successfully follow hand hygiene guidelines 50% of the time.

Patients start antimicrobial treatments once a year on average with treatment duration last-
ing three weeks [13]. Hospital admissions occur twice a year per patient on average with a
mean length of stay of 11 days [14]. Patients have a 20% probability of leaving the hospital with
de novoMDRO acquisition [9]. During the hospitalization, on average 25% of patients begin
an antimicrobial course that continues for two more weeks in the dialysis unit [13].

Values for parameters governing transmission between patients and HCWs in the dialysis
unit were obtained from the literature and from fitting the model to the values for non-trans-
mission parameters given in Table 2. Baseline values for these parameters are assigned such
that during each patient visit, HCWs become contaminated with a probability of 40% when
coming into contact with an SS2, and with a probability of 20% if the patient is colonized with
MDRO but not receiving antimicrobial treatment [11]. Contaminated HCWs (who remain
contaminated as a result of non-compliance with hand hygiene measures) transmit MDRO to
uncolonized patients on antimicrobials with a probability of 6% [15]. On average, patients that
become colonized with MDRO remain colonized for 12 weeks [16].

Table 2. Non-Transmission Model Parameters with Baseline Estimates.

Parameter Value Reference

Number of patients in out-patient dialysis unit 120 N/A

Initial percent of patients colonized with MDRO 15% 16

Initial percentage of colonized patients that are SS1 1% 13

Initial percentage of patients receiving antimicrobial treatment 6% 13

Initial percentage of chairs contaminated with MDRO 10% 2

Compliance with hand hygiene (%) 50% 16

Frequency of antimicrobial courses 1 per year 13

Duration of antimicrobial course 3 weeks 13

Frequency of hospital admission per patient 2 per year 14

Mean length of hospital stay 11 days 14

Probability of acquiring MDRO during hospital admission (%) 20% 9

Percent of patients continuing on antimicrobials in dialysis unit after hospital
discharge / duration of antimicrobials in dialysis unit

25% 2
weeks

13

doi:10.1371/journal.pone.0153820.t002
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Among those patients that become colonized, on average 10% will become SS1 [13] while
colonized and remain “high risk” for 2 weeks [13]. CDC-defined high-risk patients (SS1) were
assumed to be 50% more likely to transmit MDRO than patients that are colonized and receiv-
ing antimicrobial treatment (SS2): 60% probability for SS1 and 40% probability for SS2. Sensi-
tivity analyses were performed on all transmission parameters. Non-transmission parameters
are presented in Table 2.

Patients receiving antimicrobial treatment can also become colonized with MDRO by coming
into contact with MDRO-contaminated chairs. An extensive literature search provided no estab-
lished values for the transmission probability parameters from a contaminated chair to a patient, or
from a colonized patient to a chair. Accordingly, values for the parameters corresponding to those
probabilities were determined empirically using our simulation model via a two-dimensional
search of parameter values so that outcome measures matched data known from literature.

To fit the parameter values, we executed the simulation model using a range of 0% to 100%
(in 5% increments) for each of the patient-to-chair and chair-to-patient transmission probabil-
ities, varying the values of the two transmission probabilities together. We identified those
parameter values that resulted in outcome measures from the simulation that were within 1%
of the expected values given above from the literature, resulting in four possible choices of
parameter value pairs (chair to patient: patient to chair): 40%:60%, 45%:55%, 50%:50%,
55%:45%. The simplest parameter value pairs were chosen: (a) 50% transmission probability
from a contaminated chair to a patient and (b) 50% transmission probability from a colonized
patient to a chair. All results presented below used values of 50% and 50% for these two param-
eters in the corresponding experiments. We also executed the same set of experiments using
parameter values of 40% (chair-to-patient transmission) and 60% (patient-to-chair). All results
were qualitatively similar to those produced using 50% and 50%.

Outcome Measures
All results presented below correspond to a two-year long simulation. Starting from the base-
line values, we systematically varied the value of only one parameter at a time, generating 500
replications (two-year simulation runs) for each set of parameter values. After the occurrence
of any event in a replication, the number of (a) patients colonized with MDRO, (b) SS1, (c)
SS2, (d) patients receiving antimicrobials, and (e) contaminated chairs were recorded, along
with the corresponding time of the event. The outcome measures were computed as the time-
averaged percentage, across all 500 replications, of each of these five groups over only the sec-
ond year of simulated time (removing transient effects of initial conditions).

Results

Baseline Experiment
The first goal of this study was to benchmark the simulation model to match data values docu-
mented in the literature. Simulation experiments produced the outcome measures given in
Table 3. Appropriately, the outcome measures were within 1% of the data values cited in the

Table 3. Baseline OutcomeMeasures.

Average Percent 95% Confidence Interval

Patients Colonized 14.5% [14.2%, 14.7%]

SS1 0.17% [0.16%, 0.18%]

SS2 1.94% [1.91%, 1.98%]

Contaminated Chairs 9.0% [8.9%, 9.2%]

Patients Receiving Antimicrobial Treatment 7.0% [7.0%, 7.1%]

doi:10.1371/journal.pone.0153820.t003
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literature. This benchmarking provides confidence in additional experimentation presented
below involving systematic exploration of model parameters and the corresponding effects.

Simulation 1A: Varying transmission from SS1 to HCW
To determine the effect of increased transmission from SS1 to HCW populations, the transmis-
sion probability resulting from contact between an SS1 patient and an uncontaminated HCW
was varied from 0% to 100%. As shown in Fig 1A, no substantive change in the total percentage
of MDRO-colonized patients (solid blue line) or MDRO-contaminated chairs (dashed red line)
occurred as the transmission probability increased. The percentage of MDRO-colonized
patients varied negligibly with increased transmission probability, being 14.7% on average with
a 95% confidence interval of [14.5%, 14.9%] at both the 0% and 100% probability extremes.

Simulation 1B: Varying the likelihood of colonized patients becoming
SS1
To further investigate the effect of the SS1 patient population on overall colonization and con-
tamination rates in the unit, the probability of MDRO colonization among the subgroup of
patients at risk of becoming SS1 (uncovered wound, fecal incontinence or diarrhea), after de
novo colonization, was varied from 0% to 100%. This range of probabilities resulted in the pop-
ulation of SS1 patients increasing from 0% to 1.7% (of all patients) on average at any time, cor-
responding to 0 to 2 SS1 patients at any time in the dialysis unit.

Fig 1B depicts the percentage of colonized patients and percentage of contaminated chairs
versus the percentage of SS1 patients (of the total patient population). In this figure, the per-
centage of SS1 patients increased from 0% to 1.7% along the horizontal axis, a result of increas-
ing the probability of colonization occurring among the subgroup of patients at risk of
becoming SS1 from 0% to 100%. As shown in the figure, as the population of SS1 increases, a

Fig 1. The average percentages of MDRO-colonized patients (solid blue curve) and MDRO-contaminated chairs (dashed red curve) are
plotted versus: a) increasing transmission probability from SS1 to HCW; b) increasing percentage of SS1.

doi:10.1371/journal.pone.0153820.g001
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small increase in colonized patients, from 14.5% to 15.2% on average, and in contaminated
chairs, from 9% to 9.8% on average, occurs.

Simulation 2A: Varying transmission from SS2 to HCW
Next, the transmission probability resulting from contact between an SS2 patient and an
uncontaminated HCWwas varied from 0% to 100%. As shown in Fig 2A, as the transmission
probability from SS2 to HCW increases, there is a small increase in the percentage of MDRO-
colonized patients (solid blue line) and percentage of MDRO-contaminated chairs (dashed red

Fig 2. The average percentages of MDRO-colonized patients (solid blue curve) and MDRO-contaminated chairs (dashed red curve) are plotted versus:
a) increasing transmission probability from SS2 to HCW; b) increasing percentage of SS2 (a result of increasing the average number of antimicrobial
treatments per year from 0 to 4); c) increasing percentage of SS2 (a result of increasing the duration of antimicrobial treatment from 2 to 40 days).

doi:10.1371/journal.pone.0153820.g002
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line). At the 0% and 100% transmission probability extremes, the average percentage of
MDRO-colonized patients is 14.4% and 14.9% respectively, with corresponding 95% confi-
dence intervals of [14.2%, 14.6%] and [14.6%, 15.1%], respectively.

Simulations 2B and 2C: Varying the likelihood of colonized patient
becoming SS2 by varying the frequency and duration of antimicrobials
The results in Fig 2A indicate that the transmission rate from SS2 to HCW has a minimal effect
when the number of patients in the SS2 population is small. However, when the parameters
governing antimicrobial treatment are varied, the size of the SS2 population changes signifi-
cantly. In addition, as the SS2 population size increases with increased usage and duration of
antimicrobials, colonization and contamination rates increase dramatically. Fig 2B considers
frequency of antimicrobial use. The upper plot of Fig 2B depicts the average percentage of colo-
nized patients and contaminated chairs versus the percentage of SS2 patients (of the total
patient population). In this figure, the percentage of SS2 patients increases from 0.7% to 10.4%
along the horizontal axis, driven by an increase in antimicrobial treatments from once every
year to four times per year on average (depicted in the lower plot). Correspondingly, the per-
centage of MDRO-colonized patients increases from 9.8% to 38.1%, and the percentage of
MDRO-contaminated chairs increases from 5.8% to 21.1%. Although not shown in the figure,
the percentage of SS1 increases only from 0.12% to 0.43% of all patients.

Because longer antimicrobial treatments correspond to more patients receiving treatment at
any one time (therefore affecting the size of the SS2 population), we also investigated the dura-
tion of antimicrobial use. The upper plot of Fig 2C depicts the average percentage of colonized
patients and contaminated chairs versus the percentage of SS2 patients (of the total patient
population). In this figure, the percentage of patients that are SS2 increases from 0.1% to 5.5%
along the horizontal axis, driven by an increase in antimicrobial duration from 2 to 40 days
(depicted on the vertical in the lower plot). For any patient with antimicrobial treatment initi-
ated during a hospital visit, the length of remaining treatment while in the dialysis unit was
modelled as 2/3 of the duration of treatment initiated in the dialysis unit [13]. Correspond-
ingly, the percentage of MDRO-colonized patients increases from 8.6% to 21.6%, and the per-
centage of MDRO-contaminated chairs increases from 4.8% to 13.1% (see upper plot).
Similarly to when varying the frequency of use, the SS1 population increases minimally (from
0.09% to 0.23% of all patients).

Simulation 3A: Varying environmental contamination
To determine the effect of environmental decontamination on transmission in the unit, we var-
ied the parameter corresponding to efficacy of chair decontamination from 0% to 100%. As
shown in Fig 3A, the overall percentage of MDRO-colonized patients (solid blue curve)
decreases from 31.7% to 8.8% as chair-decontamination efficacy increases, with minimal effect
on the SS1 population.

Additionally, sensitivity analysis was performed on the parameters governing transmission
of MDRO between patients and chairs (see Fig 3B and 3C). As the probability that patients
are colonized by sitting in a contaminated chair increases from 0% to 100%, the average per-
centage of MDRO-colonized patients increases from 8.7% to 20.9% (Fig 3B). Similarly, as the
probability that a chair is contaminated by a colonized patient increases from 0% to 100%, the
average percentage of MDRO-colonized patients increases from 8.8% to 20.2% (Fig 3C). As
expected, an increase in the percentage of MDRO-contaminated chairs is also observed in both
cases.

Infection Prevention Strategies in Dialysis Units Using ABMs

PLOSONE | DOI:10.1371/journal.pone.0153820 May 19, 2016 8 / 13



Simulation 4A-C: Varying the rate of MDRO acquisition during a hospital
admission
To investigate the effects of hospital admission where de novoMDRO acquisition can occur, the
probability of becoming MDRO-colonized during a hospitalization was varied. As shown in Fig
4A, a large increase in the percentage of MDRO-colonized patients in the dialysis unit, as well as
a noticeable increase in the SS2 population, results from increasing the likelihood of hospital-
acquired colonization. Again, note that the size of the SS1 population remains low throughout.

Fig 3. The average percentages of MDRO-colonized patients (solid blue curve), MDRO-contaminated chairs (dashed red curve), SS1 patients (gold
curve with open diamonds), and SS2 patients (black curve with filled squares) are plotted versus: a) increasing efficacy of chair-decontamination
efficacy; b) increasing transmission probability from chairs to patients; and c) increasing transmission probability from patients to chairs.

doi:10.1371/journal.pone.0153820.g003
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Simulation 4B: Varying hand-hygiene compliance
Fig 4B shows the effect of increasing compliance with hand-hygiene protocols and the corre-
sponding decrease in the percentages of MDRO-colonized patients, SS2 patients, and MDRO-
contaminated chairs. Without effective hand-hygiene measures (0% efficacy), the percentage of
MDRO-colonized patients increases from 14.5% at baseline to 23.1%.

Fig 4. The average percentages of MDRO-colonized patients (solid blue curve), MDRO-contaminated chairs (dashed red curve), SS1 patients (gold
curve with open diamonds), and SS2 patients (black curve with filled squares) are plotted versus: a) increasing probability of hospital-acquired
colonization; b) increasing compliance with hand-hygiene protocol; c) increasing transmission probability from patients to HCWs; and d) increasing
transmission probability from HCWs to patients.

doi:10.1371/journal.pone.0153820.g004
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Simulation 4C and D: Varying patient-to-HCW and HCW-to-patient
transmission
As shown in Fig 4C, there is a noticeable increase in the percentages of colonized patients and
of contaminated chairs as patient-to-HCW transmission probability increases. A small increase
in the percentage of SS2 patients is also evident, while the SS1 population remains very small.
Similar results are obtained when increasing the transmission probability from HCW to an
uncolonized patient (as shown in Fig 4D).

Discussion
Current national recommendations for limiting the spread of MDRO among CHD patients
target the subgroup of patients at highest-risk of MDRO dissemination: those MDRO colo-
nized patients with open wounds, fecal incontinence or uncontrolled diarrhea, which we term
superspreaders1 (SS1). In this study, we hypothesized that there is an additional subgroup of
high-risk patients: those patients that are MDRO colonized and are receiving antimicrobials,
which we term superspreaders2 (SS2). Numerous studies have shown that exposure to antimi-
crobials results in an increased MDRO bacterial load in the nares and gastrointestinal tract,
and leads to substantially greater skin and environmental contamination [8–10]. These factors
ultimately result in greater transmission to HCWs and to other patients. In addition, exposure
to antimicrobials reduces natural microflora, giving MDRO an advantage for colonization. An
agent-based simulation model of an out-patient dialysis unit was therefore developed to quan-
tify the contribution of SS1 and SS2 to the spread of MDRO, as well as the contribution of
HCW and environmental contamination, and exposure to the hospital setting where MDRO
acquisition frequently occurs [3].

The main findings of this study were that increasing the size of the SS2 population, via increas-
ing antimicrobial exposure, resulted in a substantial rise in the prevalence of MDRO. For exam-
ple, increasing the number of antimicrobial courses from once per year to four times per year
increased the MDRO prevalence from 10% to 38%, and increasing the duration of antimicrobial
exposure during a course of treatment by 7 days increased the overall MDRO prevalence by 5%.

These findings emphasize the need to limit antimicrobial exposure in dialysis units, a major
risk factor for the emergence and spread of MDRO. Studies have shown that over 30% of anti-
microbials administered in CHD units are not indicated [13]. Hospital-based antimicrobial
stewardship programs are very effective in decreasing inappropriate antimicrobial prescribing.
Developing such a program, which specifically targets the dialysis unit, would have beneficial
effects in curtailing the ongoing rise of MDRO in the CHD population [17]. The substantial
contribution of the SS2 subgroup to MDRO dissemination when antimicrobial use increases
also suggests that infection control precautions should be implemented in this subgroup in
order to limit spread and de novo acquisition by other patients.

Although environmental contamination of dialysis chairs and machines has been docu-
mented, its role in MDRO transmission has not been clearly quantified [2,18]. Our model sug-
gests that reducing environmental contamination in the dialysis unit markedly reduces the
average percentages of MDRO-colonized patients. For example, improving decontamination
by 30% reduced the prevalence of MDRO by 10%. This corroborates a result from earlier work
by Hotchkiss et al. who found that environmental decontamination markedly reduces MDRO
transmission in the dialysis unit [19]. Efforts to improve compliance with decontamination
guidelines should therefore be emphasized in dialysis units [7]. We note that antimicrobial
exposure causes selective pressure on endogenous flora that allows for de novo acquisition due
to contact with a contaminated environment. Again, reduction of antimicrobial exposure
would ameliorate this problem.
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Decreasing the influx of MDRO into the dialysis units by reducing in-hospital MDRO
acquisition and by improving compliance with hand hygiene also decreased transmission.
However, even with 100% compliance with the latter, 13.4% of patients remained colonized
with MDRO. Although the hands of HCW are among the main vectors of MDRO spread,
transmission of MDRO occurs through numerous paths, including a contaminated environ-
ment and hospital-acquired colonization.

This model quantifies the impact of various factors contributing to the spread of MDRO in
dialysis units. MDRO transmission is multifactorial and therefore targeting only one factor is
not sufficient. Current recommendations emphasize the importance of the SS1 subgroup, hand
hygiene, and environmental decontamination. The findings of this model suggest that addi-
tional efforts should target the SS2 subgroup of patients, by limiting antimicrobial exposure
and placing this subgroup of CHD patients on additional contact precautions, as are currently
implemented on the SS1 group.
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