
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

Spring 2010

Analysis of boolean functions with high second order nonlinearity Analysis of boolean functions with high second order nonlinearity

Corneliu A. Bodea
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Bodea, Corneliu A., "Analysis of boolean functions with high second order nonlinearity" (2010). Honors
Theses. 188.
https://scholarship.richmond.edu/honors-theses/188

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/188?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Analysis of Boolean Functions with High Second Order Nonlinearity

Corneliu A. Bodea

Honors Thesis 1

Department of Mathematics and Computer Science

University of Richmond

Richmond, VA 23173

email : cornel.bodea@richmond.edu

April 26, 2010

1
Under the direction of Dr. James A. Davis

Abstract

Highly nonlinear Boolean functions play a central role in the design and security analysis of high speed

stream cyphers and block cyphers. We focus on analyzing the structure of Boolean functions that exhibit

high second order nonlinearity. We commence with a theoretical overview of Boolean functions and Reed-

Muller codes. We then introduce a new equivalence relation, 2-equivalence, for which we prove a number

of important properties. Finally, we analyze the second order nonlinearity of concatenations of two Boolean

functions.

Contents

1 Introduction . 2

2 Theoretical Overview of Boolean Functions . 2

2.1 Representation of Boolean Functions . 2

2.2 Affine Equivalence . 5

2.3 Reed-Muller Codes . 7

2.4 The Discrete Fourier Transform . 8

3 First Order Nonlinearity and Bent Functions . 10

3.1 Discrete Fourier Transform of Bent Functions . 11

3.2 Primary Constructions . 12

4 Higher Order Nonlinearity of Boolean Functions . 15

4.1 Introduction . 15

5 2-Equivalence and 2-Equivalence Classes . 16

6 Concatenation Analysis of Functions With High Second Order Nonlinearity . 19

6.1 Properties of Concatenations . 19

6.2 Concatenation Constructions . 21

7 Future Work . 24

A Equivalence Classes of B3 28

B Equivalence Classes of B4 29

C Affine Equivalence Classes of B5 30

D Equivalence Classes of RM(3, 6)\RM(1, 6) 32

E Equivalence Classes of RM(3, 7)\RM(1, 7) 34

F Software 39

1

1 Introduction

Symmetric (private key) cryptography involves the use of the same key to both encrypt and decrypt data.

Symmetric systems are well suited to transmit large amounts of data very quickly, since the speed attained by

symmetric systems is significantly higher than that of asymmetric methods. However, a major vulnerability

of symmetric cryptography lies in the fact that the key necessary to decrypt a message must be shared with

the recipient using a secure channel. In practice, both public key cryptography and conventional (private

key) cryptography are combined to exchange large amounts of data securely. We study the Boolean functions

used for making symmetric cryptosystems as nonlinear as possible, which enables them to be more resistant

to known attacks. In particular, we focus on functions that exhibit high second order nonlinearity, and

analyze properties of their concatenations.

2 Theoretical Overview of Boolean Functions

2.1 Representation of Boolean Functions

Boolean functions and their properties play a fundamental role in cryptography. We naturally proceed by

providing an overview of these properties, starting with the definition of a Boolean function itself. In this

paper, we denote vector addition over F2 by ⊕.

Definition 2.1 Any function f : Fn
2 → F2, where F2 = {0, 1} is the finite field of order two, is called a

Boolean function.

Since the order of Fn
2 is 2n, and every vector in F

n
2 can be mapped to either 0 or 1, there are 22

n

Boolean

functions of n variables. Let Bn denote the set of all 22
n

Boolean functions of n variables.

We can specify f((x1 . . . xn)) ∈ Bn by a binary truth table, which contains the value of f for all 2n arguments.

Example 2.2 If n = 3, we can construct a function f with the following truth table:

2

x1 = (0 0 0 0 1 1 1 1)

x2 = (0 0 1 1 0 0 1 1)

x3 = (0 1 0 1 0 1 0 1)

f = (0 0 1 1 1 1 0 0)

Thus, f((0 1 0)) = 1, and f((1 1 0)) = 0.

The above truth table specifies the value taken by f for all of the possible 23 input combinations, which make

up the columns of the truth table. The last row of the truth table defines a binary vector of length 23, which

contains the values taken by the Boolean function f , for all possible arguments in F
3
2. The standard order of

the arguments is the one presented in the above truth table. It is common to also denote the binary vector

representing the last row of the truth table by f . This notation is generally accepted, since using a truth

table (and observing the standard order of the arguments), we can uniquely define any Boolean function f

just by specifying the associated vector f - the last row of the truth table. When working with Boolean

functions, the context will clarify whether we refer to the Boolean function itself, or to its associated vector.

However, it should be noted that these two interpretations are closely linked.

Definition 2.3 A code C of length 2n is any nonempty set of vectors f ∈ F
2n

2 . The set F
2n

2 is the code

space. The cardinality of C, denoted by |C|, is the size of the code.

Example 2.4 Consider the vectors

0 = (0 0 0 0 0 0 0 0)

1 = (1 1 1 1 1 1 1 1)

x1 = (0 0 0 0 1 1 1 1)

x2 = (0 0 1 1 0 0 1 1)

x3 = (0 1 0 1 0 1 0 1)

Let RM(1, 3) be the code given by {0,1, x1, x2, x3, x1 ⊕ x2, x1 ⊕ x3, x2 ⊕ x3, x1 ⊕ x2 ⊕ x3,1⊕ x1,1⊕ x2,1⊕

x3,1 ⊕ x1 ⊕ x2,1 ⊕ x1 ⊕ x3,1 ⊕ x2 ⊕ x3,1 ⊕ x1 ⊕ x2 ⊕ x3}. RM(1, 3) is called the first order Reed-Muller

code of length 8.

3

We will make extensive use of this and other Reed-Muller codes throughout this paper. The vector rep-

resentation allows us to define two important characteristics of Boolean functions: Hamming weight and

Hamming distance.

Definition 2.5 The Hamming weight of a Boolean function f , denoted as wt(f), is defined as the number

of 1’s in the vector representation of f .

Definition 2.6 The Hamming distance between two functions f ∈ Bn and g ∈ Bn, denoted by d(f, g), is

defined as the number of positions in which the vectors differ.

The Hamming distance can also be expressed in terms of the Hamming weight:

d(f, g) = wt(f ⊕ g)

Here, f ⊕ g is defined as the elementwise binary addition of the vectors associated to the Boolean functions

f and g. We can express our example function f = (0 0 1 1 1 1 0 0) as f = x1 ⊕ x2. This is true

since x1 ⊕ x2 = (0 0 0 0 1 1 1 1) ⊕ (0 0 1 1 0 0 1 1) = (0 0 1 1 1 1 0 0) = f . Similarly, 1 ⊕ f =

(1 1 1 1 1 1 1 1)⊕ (0 0 1 1 1 1 0 0) = (1 1 0 0 0 0 1 1).

We denote the multiplication of Boolean functions f and g by f · g, or simply fg. We define fg as the

elementwise binary multiplication of the vectors associated to the Boolean functions f and g. For example,

x1x2 =(0 0 0 0 1 1 1 1) · (0 0 1 1 0 0 1 1) = (0 0 0 0 0 0 1 1).

This notation is also called the disjunctive normal form of f . The disjunctive normal form is unique for

every Boolean function. It can also be shown that the monomials 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 form

a basis for B3. Thus, any Boolean function in B3 can be expressed in disjunctive normal form, and that

representation is unique. Similarly, the monomials 1, x1, x2, · · · , xn, x1x2, x1x3, · · · , x1x2 · · ·xn form a basis

for Bn.

Example 2.7 Let f = (0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1) be the vector representation of a Boolean

function f in B4. Our observation suggests that f can be expressed in disjunctive normal form. This is true,

since we can write f = x1 ⊕ x1x2 ⊕ x1x2x3. In this example, wt(f) = 6.

4

Definition 2.8 The algebraic degree of a Boolean function f , denoted by d◦(f), is defined to be the max-

imum monomial degree among the monomials present in the disjunctive normal form of f . The degree of

a monomial is defined to be the number of variables (distinct from 1) whose product represents the given

monomial.

Example 2.9 The degree of the monomial x1x2x3 ∈ B4 is 3. If f = x1 ⊕ x1x2 ∈ B4, then d◦(f) = 2. If

g = x1 ⊕ x1x2 ⊕ x1x2x3x4 ∈ B4, then d◦(g) = 4.

Notice that, if f ∈ Bn, then d◦(f) ≤ n. Equality is achieved only when f = x1x2 · · ·xn ⊕ g, where g ∈ Bn,

d◦(g) < n.

2.2 Affine Equivalence

Now we define affine equivalence classes so that when we study Boolean functions with high second order

nonlinearity, patterns that would be lost by not grouping Boolean functions into such classes will be revealed.

Definition 2.10 Denote by GL(2, n) the general linear group of n× n invertible binary matrices.

Definition 2.11 An affine transform is a mapping from Bn to Bn that maps any function f ∈ Bn to the

function g(x) = f(Dx⊕ a)⊕ b · x⊕ c1, where D ∈ GL(2, n), a ∈ F
n
2 , b ∈ F

n
2 , and c ∈ F2.

Example 2.12 Consider the affine transform that maps any function f ∈ B4 to the function g(x) = f(Dx⊕

a)⊕ b · x⊕ c, where

D =

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

, a =

0

1

1

0

, b =

1

0

0

1

, c = 1

Then the function f = 1⊕x1⊕x2x3⊕x3x4 gets mapped to the function g = 1⊕x2⊕x3⊕x1x2⊕x2x3. Similarly,

the function m = x1x2x3x4 gets mapped to the function n = 1⊕x1⊕x4⊕x1x4⊕x1x2x4⊕x1x3x4⊕x1x2x3x4.

Under the specified affine transform, g is the image of f and n is the image of m.

Definition 2.13 Two Boolean functions f, g ∈ Bn are said to be affine equivalent if there exist D ∈ GL(2, n),

a ∈ F
n
2 , b ∈ F

n
2 , and c ∈ F2 such that g(x) = f(Dx⊕a)⊕b ·x⊕c. In this case, f and g are in the same affine

equivalence class. In the case when a is the zero vector, the two functions are called linearly equivalent.

5

Example 2.14 Let f = x1x2 ⊕ x3x4 and g = x1x3 ⊕ x2x4 be Boolean functions in B4. Then f and g are

linearly equivalent, since

g(x) = f

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

x1

x2

x3

x4

= f

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

x1

x2

x3

x4

Notice that in Example 2.14 there are multiple possible choices for the matrix D that define the affine

equivalence relation between f and g. Secondly, notice that the locations of x1 and x3 are interchanged in

the two functions f and g. We say that g is a permutation of f . Permutations are a particular type of affine

transformations.

Definition 2.15 An affine function is a Boolean function of the form

f(x) = a1x1 ⊕ · · · ⊕ anxn ⊕ a01, where ai ∈ F2

Affine functions play an important role in cryptography, since nonlinear functions used in cryptosystems

must behave as differently as possible from affine functions.

Theorems 2.16 and 4.2 highlight two important invariants of the affine equivalence relation.

Theorem 2.16 Let f, g ∈ Bn be affine equivalent. Then d◦(f) = d◦(g).

A concise proof of Theorem 2.16 is presented in Subsection 4.1.

Appendix C presents a summary of the equivalence classes of B5. As stated in Theorem 2.16, all functions

in an equivalence class share the same algebraic degree. Notice that not all functions of a given algebraic

degree are contained in the same affine equivalence class. Section 5 presents a more general equivalence

relationship that will organize all third degree functions of B5 into only two distinct 2-equivalence classes,

as opposed to 8 distinct affine equivalence classes.

6

2.3 Reed-Muller Codes

Definition 2.17 The rth order binary Reed-Muller (RM) code R(r, n) of length 2n, for 0 ≤ r ≤ n, is the set

of all vectors f in F
2n

2 , where f((x1 · · ·xn)) is a Boolean function which is a polynomial of degree at most r.

Corollary: RM(r,m) ⊂ RM(r + 1,m), where r + 1 ≤ m.

Refer to Example 2.4. The first order RM code of length 8, denoted R(1, 3), consists of the 16 codewords:

a01⊕ a1x1 ⊕ a2x2 ⊕ a3x3, ai ∈ F2.

These codewords, along with their binary vector representation, are:

0 (0 0 0 0 0 0 0 0)

x1 (0 0 0 0 1 1 1 1)

x2 (0 0 1 1 0 0 1 1)

x3 (0 1 0 1 0 1 0 1)

x1 ⊕ x2 (0 0 1 1 1 1 0 0)

x2 ⊕ x3 (0 1 1 0 0 1 1 0)

x1 ⊕ x3 (0 1 0 1 1 0 1 0)

x1 ⊕ x2 ⊕ x3 (0 1 1 0 1 0 0 1)

1 (1 1 1 1 1 1 1 1)

1⊕ x1 (1 1 1 1 0 0 0 0)

1⊕ x2 (1 1 0 0 1 1 0 0)

1⊕ x3 (1 0 1 0 1 0 1 0)

1⊕ x1 ⊕ x2 (1 1 0 0 0 0 1 1)

1⊕ x2 ⊕ x3 (1 0 0 1 1 0 0 1)

1⊕ x1 ⊕ x3 (1 0 1 0 0 1 0 1)

1⊕ x1 ⊕ x2 ⊕ x3 (1 0 0 1 0 1 1 0)

In general, the rth order RM code consists of all linear combinations of the vectors corresponding to the

products 1, x1, · · · , xn, x1x2, x1x3, · · · , xn−1xn, · · · (up to degree r), which therefore form the basis of the

code.

Notice that all codewords in RM(1, 3), except 0 and 1, have weight 4. We define the minimum weight of

a code as the minimum Hamming weight of all nonzero codewords. The minimum weight of RM(1, n) is

2n−1. It can also be shown that the minimum weight of RM(n− 2, n) is 4. In general, the minimum weight

of RM(r,m) is 2m−r, where 0 ≤ r ≤ m.

7

2.4 The Discrete Fourier Transform

The discrete Fourier transform is an important tool in analyzing Boolean functions, since knowing it is

equivalent to knowing the weights of all functions f ⊕ l, where l is affine.

Example 2.18 Refer to Example 2.4, where we defined the first order Reed-Muller code of length 8. Any

affine function l coincides with one of the 16 codewords that make up the code. Consider a function f ∈ B3.

Knowing the weights of all functions f ⊕ l, where l is affine, is equivalent to knowing the Hamming distance

from f to any Boolean function in the code. This information is definitely helpful, especially when searching

for functions that need to have large distances from all affine functions.

Definition 2.19 The discrete Fourier transform is a linear mapping from Bn to Z
2n , which maps any ϕ ∈

Bn to ϕ̂ ∈ Z
2n , where ϕ̂(u1, u2, · · · , un) =

∑

(x1,x2,··· ,xn)∈Z
n

2

ϕ(x1, x2, · · · , xn)(−1)(x1,x2,··· ,xn)·(u1,u2,··· ,un),

and (x1, x2, · · · , xn) ·(u1, u2, · · · , un) is the usual inner product. The discrete Fourier transform of a Boolean

function is also known as the Walsh-Hadamard transform.

Observation: ϕ̂(0) =
∑

(x1,x2,··· ,xn)∈Z
n

2

ϕ(x1, x2, · · · , xn)(−1)0 =
∑

(x1,x2,··· ,xn)∈Z
n

2

ϕ(x1, x2, · · · , xn) =

wt(ϕ).

Example 2.20 Let 0,1, x1, x2, x3, x4 be the usual Boolean basis vectors of length 24. Consider the function

ϕ(x) = x1 ⊕ x2 ∈ B4. To determine the Fourier transform of ϕ, we need to calculate ϕ̂(u) for every possible

value of u ∈ F
4
2.

8

u1 u2 u3 u4 ϕ(u) ϕ̂(u)

0 0 0 0 0 8

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 0

1 1 0 0 0 -8

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 0 0

While analyzing the values of the Fourier transform, we make two observations:

1. ϕ̂(0) = wt(ϕ).

2. The Fourier transform of ϕ takes only the value 0, except in the case u = 0 or u = (1 1 0 0). Also,

ϕ̂((1 1 0 0)) = −wt(ϕ)

To explain observation 2, we write ϕ̂(u1, u2, u3, u4) =

∑

(x1,x2,x3,x4)∈Z
n

2

ϕ(x1, x2, x3, x4)(−1)(x1,x2,x3,x4)·(u1,u2,u3,u4) =

(−1)(0 1 0 0)·u + (−1)(0 1 0 1)·u + (−1)(0 1 1 0)·u + (−1)(0 1 1 1)·u + (−1)(1 0 0 0)·u + (−1)(1 0 0 1)·u +

(−1)(1 0 1 0)·u+(−1)(1 0 1 1)·u = (−1)u2 +(−1)u2+u4 +(−1)u2+u3 +(−1)u2+u3+u4 +(−1)u1 +(−1)u1+u4 +

(−1)u1+u3 + (−1)u1+u3+u4 . There exists exactly one string u for which all exponents become 1, namely

(u1 u2 u3 u4) = (1 1 0 0). This indicates that the Boolean function ϕ is 1 · x1 ⊕ 1 · x2 ⊕ 0 · x3 ⊕ 0 · x4.

In all other cases (except u = 0), half of the exponents will be even, and half will be odd, which leads to

ϕ̂(u) = 0. This means that the vectors associated with the Boolean functions ϕ and x · u overlap in half of

their positions and differ in the other half.

In general, the Fourier transform of any affine function will behave similarly, taking only values of 0, except

in the case when u = 0 or u1x1 ⊕ u2x2 ⊕ · · · ⊕ unxn = ϕ, where x1, x2, · · · , xn are the usual Boolean basis

9

vectors of length 2n.

One practical application of the Fourier transform is to identify and correct errors that may have affected the

contents of a message. We take the example of NASA’s Mariner 9 mission, which required the transmission

of pictures of the Martian surface. Engineers chose RM(1, 5) codewords to determine a grayscale value for

each 4-5 km2 of Martian surface. Since there are 26 different codewords in RM(1, 5), the probe could return

64 different grayscale values. Since any information sent by the probe was subject to numerous interferences

before being decoded on Earth, transmission errors could cause the codeword received to be different from the

intended codeword. Applying the Fourier transform on the received codeword should produce the expected

Fourier coefficients for affine functions (as in Example 2.20). If an error occurs and the received codeword

is not part of RM(1, 5), then choosing the nonzero u that corresponds to the largest Fourier coefficient (in

absolute terms) will indicate the affine codeword in RM(1, 5) that is closest to the received codeword. Thus,

the error could be corrected in most cases, and the mission returned high-quality pictures of the Martian

surface.

3 First Order Nonlinearity and Bent Functions

We now introduce the first order nonlinearity of Boolean functions. This concept is of great interest to the

security of cryptosystems. Bent functions are a particularly important class of Boolean functions, since they

offer good resistance to differential cryptanalysis, and, by definition, resistance to linear cryptanalysis. For

an in-depth overview of current results, refer to [3].

Definition 3.1 The first order nonlinearity of a Boolean function f : Fn
2 → F2, denoted by nl1(f), is the

minimum Hamming distance from f to all affine functions.

Definition 3.2 A Boolean function f on F
n
2 (for n even) is called bent if its Hamming distance to any

Boolean function in RM(1, n) equals 2n−1 − 2n/2−1, the covering radius of the RM code of order 1.

Example 3.3 Some classic examples of bent functions are x1x2 ⊕ x3x4 ∈ RM(2, 4), x1x2 ⊕ x3x4 ⊕ x5x6 ∈

RM(2, 6), and, in general, x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn ∈ RM(2, n), for n even.

10

3.1 Discrete Fourier Transform of Bent Functions

The discrete Fourier transform is an efficient way to determine if a particular function is bent.

Theorem 3.4 Let f ∈ Bn, n even, be a bent function. Then all coefficients of the Fourier transform of f ,

except ϕ̂(0) = wt(ϕ), take the values ±2n/2−1 .

Example 3.5 Consider the function ϕ(x) = x1x2 ⊕ x3x4 ∈ B4. To determine the Fourier transform of ϕ,

we need to calculate ϕ̂(u) for every possible value of u ∈ F
4
2.

u1 u2 u3 u4 ϕ(u) ϕ̂(u)

0 0 0 0 0 6

0 0 0 1 0 -2

0 0 1 0 0 -2

0 0 1 1 1 2

0 1 0 0 0 -2

0 1 0 1 0 -2

0 1 1 0 0 -2

0 1 1 1 1 2

1 0 0 0 0 -2

1 0 0 1 0 -2

1 0 1 0 0 -2

1 0 1 1 1 2

1 1 0 0 1 2

1 1 0 1 1 2

1 1 1 0 1 2

1 1 1 1 0 -2

While analyzing the values of the Fourier transform, we make two observations, which follow from the

assertions of Theorem 3.4:

1. It is the case that ϕ̂(0) = wt(ϕ).

2. The Fourier transform of ϕ takes only the values ±2, except in the case u = 0.

In Example 2.20 we observed the behavior of the Fourier transform for an affine function. These two examples

illustrate the importance of the Fourier transform in characterizing Boolean functions.

11

3.2 Primary Constructions

An important step towards understanding the structure of bent functions is to analyze known constructions

of particular classes of bent functions. The following are primary constructions of the Maiorana-McFarland

original class M and of the Partial Spreads class PS. Primary constructions, as opposed to secondary

constructions, do not use previously known bent functions as inputs in the construction of new bent functions.

Maiorana-McFarland

Definition 3.6 The Maiorana-McFarland original class M is the set of all Boolean functions on F
n
2 =

{(x, y)|x, y ∈ F
n/2
2 }, of the form:

f(x, y) = x · π(y)⊕ g(y)

where π is any permutation on F
n/2
2 and g is any Boolean function on F

n/2
2 . Any such function is bent.

Example 3.7 Consider F
4
2 = {(x, y)|x, y ∈ F

2
2}, where x = (x1 x2) and y = (x3 x4), and let π(y) be the

identity permutation on y. Let g = x3x4 ⊕ x3 ∈ RM(2, 4). Then f(x, y) = x1x3 ⊕ x2x4 ⊕ x3x4 ⊕ x3.

This function is bent, since the distance from f to any function in RM(1, 4) is either 24−1 − 24/2−1 = 6 or

24−1 + 24/2−1 = 10.

Example 3.8 Consider F
4
2 = {(x, y)|x, y ∈ F

2
2} and let π(y) be the permutation

π

x3

x4

 =

x4

x3

Let g = x3x4 ⊕ x3 ∈ RM(2, 4). Then f(x, y) = x1x4 ⊕ x2x3 ⊕ x3x4 ⊕ x3. This function is bent, since the

distance from f to any function in RM(1, 4) is either 24−1 − 24/2−1 = 6 or 24−1 + 24/2−1 = 10.

Generalized Maiorana-McFarland Construction

Theorem 3.9 Let n = r + s (r ≤ s) be even. Let φ be any mapping from F
s
2 to F

r
2 such that, for every

a ∈ F
r
2, the set φ−1(a) is an (n− 2r)−dimensional affine subspace of Fs

2. Let g be any Boolean function on

F
s
2 whose restriction to φ−1(a) (viewed as a Boolean function on F

n−2r
2 via an affine isomorphism between

12

φ−1(a) and this vector space) is bent for every a ∈ F
r
2, if n > 2r (no condition on g being imposed if n = 2r).

Then the function fφ,g = x · φ(y)⊕ g(y) is bent on F
n
2 .

Example 3.10 Let r = 2 and s = 4, so φ is a mapping from F
2
2 to F

4
2. Consider

φ

x1

x2

x3

x4

= x1x2.

We first test that for every a ∈ F
2
2, the set φ−1(a) is a 2−dimensional affine subspace of F4

2.

φ−1

0

0

 =

0

0

0

0

,

0

0

0

1

,

0

0

1

0

,

0

0

1

1

φ−1

1

0

 =

1

0

0

0

,

1

0

0

1

,

1

0

1

0

,

1

0

1

1

φ−1

0

1

 =

0

1

0

0

,

0

1

0

1

,

0

1

1

0

,

0

1

1

1

φ−1

1

1

 =

1

1

0

0

,

1

1

0

1

,

1

1

1

0

,

1

1

1

1

All of these four affine subspaces of F4
2 are two-dimensional, thus φ fulfills the condition required in Theorem

3.9.

Let

g

x1

x2

x3

x4

= x6 ⊕ x5x6 ⊕ x3x4x5.

g|φ−1((0 0)) = x2 ⊕ x1x2 ∈ RM(2, 2), which is bent.

13

g|φ−1((0 1)) = x2 ⊕ x1x2 ∈ RM(2, 2), which is bent.

g|φ−1((1 0)) = x2 ⊕ x1x2 ∈ RM(2, 2), which is bent.

g|φ−1((1 1)) = x1 ⊕ x2 ⊕ x1x2 ∈ RM(2, 2), which is bent.

Thus, g fulfills the condition stated in Theorem 3.9.

Now that we have two valid functions φ and g, we can construct the function fφ,g = x · φ(y)⊕ g(y) =

x1

x2

·

x3

x4

⊕ x6 ⊕ x5x6 ⊕ x3x4x5 = x6 ⊕ x1x3 ⊕ x2x4 ⊕ x5x6 ⊕ x3x4x5.

As predicted by Theorem 3.9, f is indeed a bent function in RM(3, 6).

Partial Spreads

Definition 3.11 The Partial Spreads class PS is the set of all the sums (modulo 2) of the indicators of

2n/2−1 or 2n/2−1 + 1 disjoint n/2−dimensional subspaces of Fn
2 (disjoint meaning any two of these spaces

intersect in 0 only, and therefore their sum is direct and equals F
n
2). All such functions are bent.

Example 3.12 Consider

F
4

2 =

x1

x2

x3

x4

, xi ∈ F2

.

A =

〈

1

0

0

0

,

0

1

0

0

〉

B =

〈

0

0

0

1

,

0

0

1

0

〉

C =

〈

0

1

1

0

,

1

0

0

1

〉

are three disjoint 2-dimensional subspaces of F4
2.

The indicator function for A, denoted 1A, is (1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0) = 1⊕ x1 ⊕ x2 ⊕ x1x2.

The indicator function for B, denoted 1B, is (1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0) = 1⊕ x3 ⊕ x4 ⊕ x3x4.

The indicator function for C, denoted 1C , is (1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕

x4 ⊕ x1x2 ⊕ x3x4 ⊕ x1x3 ⊕ x2x4.

Then 1A ⊕ 1B ⊕ 1C = 1⊕ x1x3 ⊕ x2x4, which is a bent function in RM(2, 4).

14

4 Higher Order Nonlinearity of Boolean Functions

4.1 Introduction

The higher order nonlinearity of Boolean functions is an important cryptographic criterion, since it measures

the resistance against attacks to stream and block ciphers. Our work, as presented in the following sections,

focuses on the properties of functions that exhibit large second order nonlinearity.

Definition 4.1 The rth order nonlinearity of a Boolean function f : Fn
2 → F2, denoted by nlr(f), is the

minimum Hamming distance from f to all functions in F
n
2 of algebraic degrees at most r, where r is a positive

integer. Symbolically, nlr(f) = ming∈RM(r,n)d(f, g).

Observation: Notice that when r = 1 in Definition 4.1, we refer to the first order nonlinearity of Boolean

functions, as per Section 3.

Theorem 4.2 presents a result that helps determine the rth order nonlinearity of an entire class of Boolean

functions, given the rth order nonlinearity of a single Boolean function.

Theorem 4.2 Let f, g ∈ Bn be affine equivalent. Then nlr(f) = nlr(g), where r ≤ n.

In Section 2.2, Theorem 2.16 stated that the algebraic degree is an affine invariant. Using the result in

Theorem 4.2, we can now present a concise proof of this statement.

Proof: Let f and g be affine equivalent Boolean functions such that d◦(f) = a and d◦(g) = b. Assume a 6= b.

1. If a > b, then nlb(g) = 0, but nlb(f) > 0. This contradicts the assumption that f and g are affine

equivalent.

2. If b > a, then nla(f) = 0, but nla(g) > 0. This contradicts the assumption that f and g are affine

equivalent.

We conclude that a = b, which implies that d◦(f) = d◦(g).

The following theorem provides an important property of nonlinearity that later forms the motivation for

developing the notion of 2-equivalence classes described in Section 5.

15

Theorem 4.3 Let f, g ∈ Bn, and d◦(g) ≤ r. Then nlr(f ⊕ g) = nlr(f).

Proof: Let h ∈ Bn, and d◦(h) ≤ r. We know that d(f ⊕ g, h) = wt((f ⊕ g) ⊕ h) = wt(f ⊕ (g ⊕ h)) =

d(f, g ⊕ h) ≥ nlr(f), since d◦(g ⊕ h) ≤ r. Thus, nlr(f ⊕ g) ≥ nlr(f). (1)

Let a ∈ Bn, with d◦(a) ≤ r, such that d(f, a) = nlr(f). We know that d◦(a⊕ g) ≤ r. Then, d(f ⊕ g, a⊕ g) =

wt(f ⊕ g ⊕ a⊕ g) = wt(f ⊕ a) = nlr(f). Thus, nlr(f ⊕ g) ≤ nlr(f). (2)

Inequalities (1) and (2) show that nlr(f ⊕ g) = nlr(f).

In particular, if we wish to preserve the second order nonlinearity of a function, we can add to it any Boolean

function of degree at most 2. The following theorem presents an upper bound on the first order nonlinearity

of Boolean functions.

Theorem 4.4 nl1(f) ≤ 2n−1 − 2n/2−1 for every function f ∈ RM(m,n). This bound is tight for n even.

Since bent functions in RM(m,n) possess a first order nonlinearity of 2n−1 − 2n/2−1, Theorem 4.4 states

that there do not exist Boolean functions in RM(m,n) of higher first order nonlinearity than bent functions.

Bent functions, by definition, posses maximum first order nonlinearity. The bound in Theorem 4.4 is also

called the covering radius bound (since it represents the covering radius of the Reed-Muller code of order 1

if n is even).

5 2-Equivalence and 2-Equivalence Classes

Our computer searches for functions that exhibit high second order nonlinearity have resulted in large

amounts of data. For example, a search for Boolean functions in RM(3, 6) that possess a second order

nonlinearity of 18 yields thousands of functions. We quickly noticed that all these functions fall in just a few

affine equivalence classes (in our case, 3 classes). Focusing on just one representative from each equivalence

class of highly nonlinear functions allowed us to group functions with similar properties together and focus

on the unique characteristics of the representatives. However, the need to group together functions with

respect to their second order nonlinearity has led us to develop a more general classification than the one

provided by affine equivalence classes.

Definition 5.1 Let f ∈ Bn and g ∈ Bn. We say that f and g are 2-equivalent, denoted by f ≡2 g, if

16

g(x) = f(Dx⊕ a)⊕ (Mx ·x)⊕ b ·x⊕ c, where D ∈ GL(2, n), M is an n×n strictly upper triangular matrix,

a ∈ F
n
2 , b ∈ F

n
2 , and c ∈ F2. Then f and g are said to be in the same 2-equivalence class.

Example 5.2 Let f, g ∈ RM(3, 4), f = x2x3x4 and g = x3 ⊕ x1x4 ⊕ x2x3x4. Notice that nl1(f) = 2,

and nl1(g) = 4. Thus, f and g are not in the same affine equivalence class. However, f ≡2 g, since

g(x) = f(Dx⊕ a)⊕ (Mx · x)⊕ b · x⊕ c, where D = I4, a ∈ F
n
2 is the zero vector,

M =

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

, b =

0

0

1

0

, c = 0.

In general, if two Boolean functions differ only in their first and second degree terms, then the functions are

2-equivalent. This observation follows from Definition 5.1.

Theorem 5.3 Let A denote the set of all pure degree two functions in n variables. Then the set S = {Mx·x|

M is a strictly upper triangular n× n matrix} = A.

Proof: This is a double inclusion proof. First we address S ⊆ A.

Let

f =

0 a12 a13 a14 · · · a1n

0 0 a23 a24 · · · a2n

0 0 0 a34 · · · a3n

· · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0

x1

x2

x3

· · ·

xn

·

x1

x2

x3

· · ·

xn

∈ S.

Equivalently, f = a12x1x2⊕a13x1x3⊕a14x1x4⊕· · ·⊕a1nx1xn⊕a23x2x3⊕a24x2x4⊕a25x2x5⊕· · ·⊕a2nx2xn⊕

a34x3x4 ⊕ a35x3x5 ⊕ a36x3x6 ⊕ · · · ⊕ a3nx3xn ⊕ · · · ⊕ an−1nxn−1xn.

Thus, f ∈ A. This proves that S ⊆ A.

Now we show that A ⊆ S. Let f ∈ A, f = a12x1x2⊕a13x1x3⊕a14x1x4⊕· · ·⊕a1nx1xn⊕a23x2x3⊕a24x2x4⊕

a25x2x5 ⊕ · · · ⊕ a2nx2xn ⊕ a34x3x4 ⊕ a35x3x5 ⊕ a36x3x6 ⊕ · · · ⊕ a3nx3xn ⊕ · · · ⊕ an−1nxn−1xn.

Since f can be expressed in matrix form as above, f ∈ S. So A ⊆ S. This concludes the proof that S = A.

Theorem 5.4 Let f, g ∈ RM(n,m), f ≡2 g. Then nl2(f) = nl2(g).

17

Proof: Since f ≡2 g, there exist D ∈ GL(2,m), M a strictly upper triangular m × m matrix, a and b

∈ F
m
2 , and c ∈ F2, such that g(x) = f(Dx ⊕ a) ⊕ (Mx · x) ⊕ b · x ⊕ c. We can rewrite this equality as

g(x) = [f(Dx⊕ a)⊕ b · x⊕ c]⊕ (Mx · x). We know that f(Dx⊕ a)⊕ b · x⊕ c is affine equivalent to f , and

Mx · x ∈ RM(2,m) (by Theorem 5.3). Since affine equivalence preserves second order nonlinearity, and by

applying the result in Theorem 4.3, we have nl2(f) = nl2(g).

Theorem 5.5 2-equivalence is an equivalence relation.

Proof: The proof of Theorem 5.5 is subdivided into three parts.

(1) Let f ∈ RM(n,m). Then f ≡2 f (reflexivity).

f ≡2 f since f(x) = f(Dx⊕ a)⊕ (Mx · x)⊕ b · x⊕ c, where D = Im, a ∈ F
n
2 is the zero vector,

M =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, b =

0

0

0

0

, c = 0.

(2) Let f, g ∈ RM(n,m). If f ≡2 g then g ≡2 f (symmetry).

Since f ≡2 g, g(x) = f(Dx ⊕ a) ⊕ (Mx · x) ⊕ b · x ⊕ c, where D ∈ GL(2, n), M is an n × n strictly

upper triangular matrix, a ∈ F
n
2 , b ∈ F

n
2 , and c ∈ F2. Then f(x) = g(D−1x ⊕ D−1a) ⊕ M(D−1x ⊕

D−1a) · (D−1x⊕D−1a)⊕ b · (D−1x⊕D−1a)⊕ c = g(D−1x⊕D−1a)⊕MD−1x ·D−1x⊕MD−1x ·D−1a⊕

MD−1a ·D−1x⊕MD−1a ·D−1a⊕ bD−1x⊕ bD−1a⊕ c. Denote D−1a by a
′

. Then f(x) = g(D−1x⊕ a
′

)⊕

MD−1x ·D−1x⊕MD−1x · a
′

⊕Ma
′

·D−1x⊕Ma
′

· a
′

⊕ bD−1x⊕ ba
′

⊕ c. Since D−1 ∈ GL(2, n), a
′

∈ F
n
2 ,

MD−1x · a
′

⊕Ma
′

·D−1x⊕ bD−1x ∈ RM(1,m), Ma
′

· a
′

⊕ ba
′

⊕ c ∈ F2, and MD−1x ·D−1x ∈ RM(2,m),

we can conclude that g ≡2 f .

(3) Let f, g, h ∈ RM(n,m). If f ≡2 g and g ≡2 h, then f ≡2 h (transitivity).

f ≡2 g ⇒ g(x) = f(Dx⊕a)⊕(Mx·x)⊕b·x⊕c, g ≡ h ⇒ h(x) = g(D
′

x⊕a
′

)⊕(M
′

x·x)⊕b
′

·x⊕c
′

. We can write

h(x) = g(D
′

x⊕a
′

)⊕(M
′

x ·x)⊕b
′

·x⊕c
′

= [f(D ·(D
′

x⊕a
′

)⊕a)⊕(M(D
′

x⊕a
′

) ·(D
′

x⊕a
′

))⊕b ·(D
′

x⊕a
′

)⊕

c]⊕(M
′

x·x)⊕b
′

·x⊕c
′

= f(DD
′

x⊕(Da
′

⊕a))⊕[M(D
′

x⊕a
′

)·(D
′

x⊕a
′

)⊕M
′

x·x]⊕(bD
′

⊕b
′

)x⊕(ba
′

⊕c⊕c
′

).

Since M(D
′

x⊕a
′

) · (D
′

x⊕a
′

)⊕M
′

x ·x ∈ RM(2̄,m), ba
′

⊕ c⊕ c
′

∈ F2, DD
′

∈ GL(2,m), and Da
′

⊕a ∈ F
m
2 ,

18

we conclude, by Definition 5.1, that f ≡2 h.

Results (1), (2), and (3) imply that 2-equivalence is an equivalence relation.

Example 5.6 Let f = x1x2x3 and g = x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x2x3x4 be Boolean functions in B4.

It is known that f and g are not affine equivalent, since they have different first order nonlinearity (2 and

4 respectively). However, we can prove that these two functions are 2-equivalent: f = x1x2x3 is affine

equivalent (thus, also 2-equivalent) to (x1 ⊕ x2)(x2 ⊕ x3)(x3 ⊕ x4) = x1x2x3 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x2x3x4 ⊕

(x1x3⊕x2x4) which is 2-equivalent to x1x2x3⊕x1x2x4⊕x1x3x4⊕x2x3x4 = g (the two functions only differ

by second degree terms). By Theorem 5.5 we can conclude that f ≡2 g.

Theorem 5.7 Let f, g ∈ Bn. If f ≡2 g and d◦(f) ≥ 3, then d◦(f) = d◦(g).

Proof: Follows directly from the construction of g.

6 Concatenation Analysis of Functions With High Second Order

Nonlinearity

Concatenating Boolean functions with high nonlinearity can be a useful way to construct new highly nonlinear

functions of greater lengths. One of the main focuses of our work was to develop such concatenation

constructions and explain why some concatenations yield functions of maximum second order nonlinearity.

Before touching on our work, we present the basic properties of concatenations.

6.1 Properties of Concatenations

Definition 6.1 (f |g) denotes the concatenation of the two Boolean functions f and g, in this order.

Example 6.2 Let f, g ∈ RM(1, 4), f = (0 0 0 0 1 1 1 1), g = (0 0 1 1 0 0 1 1).

Then (f |g) = (0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1) ∈ RM(2, 5).

19

The following is a list of formulas that explain the Boolean function notation of concatenations.

Theorem 6.3 Let 0,1, x1, x2, · · · , xn be the usual Boolean basis vectors of length 2n, and 0
′

,1
′

, x
′

1, x
′

2, · · · ,

x
′

n+1 be the usual Boolean basis vectors of length 2n+1. Then the following formulas hold:

1. (xi|xj) · (xk|xl) = (xixk|xjxl)

2. (xi|xj)⊕ (xk|xl) = (xi ⊕ xk|xj ⊕ xl)

3. (0|1) = x
′

1

4. (1|1) = 1
′

5. (xn|xn) = x
′

n+1

6. (0|xn) = x
′

1x
′

n+1

7. (xn|0) = x
′

1x
′

n+1 ⊕ x
′

n+1

Proof: Formulas 1, 2, 3, 4 and 5 follow directly form the definition of Boolean function addition and multi-

plication, and from the definition of the basis vectors x
′

1,1
′

, and x
′

n+1.

Formula 6: (0|xn) = (0|1) · (xn|xn) = x
′

1x
′

n+1.

Formula 7: (xn|0) = (0|1) · (xn|xn)⊕ (xn|xn) = x
′

1x
′

n+1 ⊕ x
′

n+1.

Consider f, g ∈ RM(2, 6), d◦(f) = d◦(g) = 2 (equivalently, we could have said f, g ∈ RM(2, 6)\RM(1, 6)).

An important characteristic of (f |g) that we want to determine is d◦((f |g)). In our case, depending on the

specific form of f and g, d◦((f |g)) can be either 2 or 3. The concatenation formulas presented in Theorem

6.3 allow us to gain a deeper understanding of this issue.

Definition 6.4 Let f, g ∈ RM(n,m), with d◦(f) = d◦(g). We say that f and g have the same nth degree

terms if f − g ∈ RM(n− 1,m).

Theorem 6.5 Let f, g ∈ RM(n,m), d◦(f) = d◦(g) = n. Then d◦((f |g)) = n iff d◦(f − g) < n.

Proof: Let f, g ∈ RM(n,m) with d◦(f) = d◦(g) = n.

20

Assume that d◦((f |g)) = n, and f and g do not have the same nth degree terms. Without loss of generality,

let xi1xi2 · · ·xin be a term in the polynomial g, but not in the polynomial f . Thus, the term (0|xi1xi2 · · ·xin)

will appear in the polynomial (f |g). Consequently, (0|xi1xi2 · · ·xin) = x
′

1x
′

i1+1x
′

i2+1 · · ·x
′

in+1 will be a degree

n + 1 term appearing in the polynomial (f |g), which means that d◦((f |g)) = n + 1. This contradicts our

original assumption that d◦((f |g)) = n. Thus, d◦((f |g)) = n ⇒ f and g have the same nth degree terms.

Now assume that f and g have the same nth degree terms, but d◦((f |g)) 6= n. Let xi1xi2 · · ·xin be an

nth degree term shared by f and g (at least one such term must exist). Then xi1xi2 · · ·xin |xi1xi2 · · ·xin

will appear in the polynomial (f |g). But xi1xi2 · · ·xin |xi1xi2 · · ·xin = x
′

i1+1x
′

i2+1 · · ·x
′

in+1 is an nth degree

term. Thus, d◦((f |g)) ≥ n. Consequently,the shared nth degree terms of f and g will only contribute nth

degree terms to the polynomial (f |g). Since concatenating n− 1th degree terms or below will never result

in a term of degree greater than n, we know that d◦((f |g)) = n, contradicting our original assumption that

d◦((f |g)) 6= n. So f and g have the same nth degree terms ⇒ d◦((f |g)) = n.

Combining the two results, we get that d◦((f |g)) = n iff f and g have the same nth degree terms.

6.2 Concatenation Constructions

One of our initial approaches to constructing new Boolean functions of high second order nonlinearity

was to concatenate two functions that are known to exhibit high second order nonlinearity. The resulting

concatenation can, under special conditions, achieve more than double the second order nonlinearity of the

original pieces. Theorem 6.7 summarizes the theoretical basis of this approach. We commence by proving

the result in Lemma 6.6.

Lemma 6.6 Let f ∈ RM(2, n). Then there exist Boolean functions f1 and f2 in RM(2, n − 1) that have

the same second degree terms, and for which f = (f1|f2).

Proof: Since RM(n−1, n−1) = Bn−1 contains all binary vectors of length 2n−1, the two halves of the binary

vector associated with the function f , call them f1 and f2, will be Boolean functions in RM(n − 1, n − 1).

Assume that d◦(f1) = k > 2. Then the disjunctive normal form of f1 contains the term xi1xi2 · · ·xik .

If the disjunctive normal form of f2 does not contain the element xi1xi2 · · ·xik , then (xi1xi2 · · ·xik |0) =

x
′

1x
′

i1+1x
′

i2+1 · · ·x
′

ik+1 ⊕ x
′

i1+1x
′

i2+1 · · ·x
′

ik+1 will be a k + 1th degree term appearing in the polynomial

21

(f1|f2) = f . If f2 also contains the term xi1xi2 · · ·xik , the polynomial (f1|f2) will contain the term

(xi1xi2 · · ·xik |xi1xi2 · · ·xik) = x
′

i1+1x
′

i2+1 · · ·x
′

ik+1 of degree k. Thus, d◦(f) ≥ k > 2. Similarly, d◦(f) > 2

if d◦(f2) > 2. But since d◦(f) ≤ 2, we conclude that d◦(f1) ≤ 2 and d◦(f2) ≤ 2. So f1, f2 must be

Boolean functions in RM(2, n− 1). However, this condition is necessary but not sufficient for (f1|f2) to be

in RM(2, n). By Theorem 6.5, it must also be the case that f1 and f2 have the same second degree terms.

Thus, there exist Boolean functions f1 and f2 in RM(2, n− 1) that have the same second degree terms, and

for which f = (f1|f2).

Theorem 6.7 Let f1, f2 ∈ Bn satisfy nl2(f1) = nl2(f2) = k. Then nl2((f1|f2)) ≥ 2 · k.

Proof: Let g ∈ RM(2, n + 1). Then, by Lemma 6.6, g = (g1|g2) for some g1, g2 ∈ RM(2, n) that have

the same second degree terms. This implies that d(f1, g1) ≥ k and d(f2, g2) ≥ k. Thus, d((f1|f2), g) =

d((f1|f2), (g1|g2)) = d(f1, g1) + d(f2, g2) ≥ 2 · k. Since this inequality holds for any g ∈ RM(2, n+1) we can

conclude that nl2((f1|f2)) ≥ 2 · k.

Observation: Equality does not always hold. If none of the functions g1 ∈ RM(2, n) that are distance k

away from f1 have the same second degree terms as a function g2 ∈ RM(2, n) that is distance k away from

f2, then nl2((f1|f2)) > 2 · k.

An analysis of the affine equivalence classes of RM(3, 7) suggests that the highest second order nonlinearity

present in RM(3, 7) is 40. Similarly, the highest second order nonlinearity present in RM(3, 6) is 18.

Corollary: If f1, f2 ∈ RM(3, 6) satisfy nl2(f1) = nl2(f2) = 18, then nl2((f1|f2)) ≥ 36.

This result led us to expect that most functions in RM(3, 7) that have a second order nonlinearity of 40

should result from concatenations of two functions in RM(3, 6) that have the same third degree terms

and that have a second order nonlinearity of 18. To test our assumption, we analyze the function f =

x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ∈ RM(3, 7), nl2(f) = 40. Separating f into two

halves results in f = (x1x3x5⊕x2x4x5⊕x3x4x5|x1x2⊕x3x4⊕x5x6⊕x1x3x5⊕x2x4x5⊕x3x4x5) = (f1|f2).

Note that f1 and f2 have the same third degree terms. If this had not been the case, (f1|f2) would have been

a function in RM(4, 7) instead of RM(3, 7). Using a computer program, we find that nl2(f1) = nl2(f2) = 12.

This result is surprising, since Theorem 6.7 only guarantees a second order nonlinearity of at least 24 for

(f1|f2) when nl2(f1) = nl2(f2) = 12. Also, notice that f1 ⊕ f2 = x1x2 ⊕ x3x4 ⊕ x5x6 is a bent function

22

in RM(3, 6) (its minimum Hamming distance to all functions in RM(2,6) is 26−1 − 26/2−1 = 28). The

observation that the two halves of f differ by a bent function is another puzzling aspect. The following

result explains part of f ’s large second order nonlinearity, given that the two halves of f differ by a bent

function.

Theorem 6.8 Let f ∈ RM(3, 6) with nl2(f) = 12, and let b ∈ RM(2, 6) be a bent function. Then (f |f⊕b) ∈

RM(3, 7) and nl2((f |f ⊕ b)) > 2 · 12.

Proof: Since f and f⊕b have the same third degree terms, (f |f⊕b) ∈ RM(3, 7), and nl2(f) = nl2(f⊕b) = 12.

Theorem 6.7 states that nl2((f |f ⊕ b)) ≥ 2 · 12. Assume there exist a ∈ RM(2, 6) and m ∈ RM(1, 6), such

that d((f |f ⊕ b), (a|a ⊕ m)) = 2 · 12. Then d(f, a) = 12 and d(f ⊕ b, a ⊕ m) = 12. Thus, 12 = d(f, a) =

wt(f⊕a) = wt(f⊕a⊕b⊕m) = d(f⊕a, b⊕m). Since b⊕m is a bent function, wt(b⊕m) = 26−1±26/2−1 = 28

or 36. This implies that wt(f ⊕ a) ≥ 16, contradicting the fact that wt(f ⊕ a) = 12. This proves that there

does not exist a function in RM(2, 6) distance 12 away from (f |f ⊕ b). So nl2((f |f ⊕ b)) > 2 · 12.

Theorem 6.8 only explains why the second order nonlinearity of the concatenation is more than twice the

second order nonlinearity of the halves. However, it does not explain why the second order nonlinearity of

the concatenation jumps from 2 · 12 = 24 to 40. Theorem 6.9 presents a generalization of Theorem 6.8.

Theorem 6.9 Let f ∈ RM(m,n), and let b ∈ RM(2, n) be a bent function. If nl2(f) < 2n−2−2n/2−2, then

nl2((f |f ⊕ b)) > 2 · nl2(f).

Proof: Assume there exist a ∈ RM(2, n) and p ∈ RM(1, n) such that d((f |f⊕b), (a|a⊕p)) = 2·nl2(f). Then

d(f, a) = nl2(f) and d(f⊕b, a⊕p) = nl2(f). Thus, nl2(f) = wt(f⊕a) = wt(f⊕a⊕b⊕p) = d(f⊕a, b⊕p). Since

b⊕p is a bent function, wt(b⊕p) = 2n−1±2n/2−1. Thus, wt(f⊕a) ≥ 2n−1−2n/2−1−nl2(f) > 2n−2−2n/2−2.

This contradicts the assumption that nl2(f) < 2n−2 − 2n/2−2. Thus, nl2((f |f ⊕ b)) > 2 · nl2(f).

The result in Theorem 6.9 depends heavily upon the bent function b used in the concatenation construction.

More precisely, Theorem 6.9 makes use of the relatively high weight of bent functions. Other functions that

play the role of b can be applied in the above construction, as long as wt(b⊕ p) is high for all p ∈ RM(1, n).

A more general (but somewhat less practical) result that does not require functions of high weights is

presented in Theorem 6.10 and the next corollary.

23

Theorem 6.10 Let f, g ∈ RM(n,m), nl2(f) = nl2(g) = p. Let F = {a ∈ RM(2,m)|d(a, f) = p} and

G = {b ∈ RM(2,m)|d(b, g) = p}. If there exist f
′

∈ F and g
′

∈ G that have the same second degree terms,

then nl2(f |g) = 2p. Otherwise, nl2(f |g) > 2p.

Proof: If there exist functions f
′

∈ F and g
′

∈ G that have the same second degree terms, then, according

to Theorem 6.5, d◦((f |g)) = 2, and (f |g) ∈ RM(2,m + 1). Since d(f, f1) = d(g, g1) = p, we know that

d((f |g), (f1g1)) = 2p. Thus, there exists a function in RM(2,m+ 1) that is 2p away from (f |g). According

to Theorem 6.7, since nl2(f) = nl2(g) = p, there cannot exist any functions in RM(2,m+1) whose distance

to (f |g) is less than 2p. Thus, nl2(f |g) = 2p.

If there do not exist functions f
′

∈ F and g
′

∈ G that have the same second degree terms, then, according to

Theorem 6.5, (f
′

|g
′

) ∈ RM(3,m)\RM(2,m). Therefore, although the distance from (f |g) to (f
′

|g
′

) is 2p, it

does not influence the second order nonlinearity of (f |g). Since nl2(f |g) 6= 2p, we have that nl2(f |g) > 2p.

Corollary: Let f, g ∈ RM(n,m). nl2((f, g)) is min{d(f, a) + d(f, b)}, where a, b ∈ RM(2,m)\RM(1,m)

and have the same second degree terms, or a, b ∈ RM(1,m) and a 6= b. The proof of this corollary follows

directly from Theorem 6.10 and Theorem 6.5.

7 Future Work

As we have seen in Section 6 on Concatenation Constructions, there exist functions in RM(3, 7) with maximal

second order nonlinearity (40) that result as a concatenation of two functions in RM(3, 6) whose second order

nonlinearity is only 12. Moreover, the two functions in RM(3, 6) differ almost always by a bent function in

RM(2, 6). Future work will seek to answer a series of questions:

1. What role do bent functions play in concatenation constructions of high second order nonlinearity func-

tions? Can bent functions be replaced by other high-weight functions, as suggested in the commentary

to Theorem 6.9?

2. We found one affine equivalence class of functions in RM(3, 5) that exhibit maximum second order

nonlinearity (6), but are formed by concatenating two functions in RM(3, 4) that differ by a non-

bent function. Thus, there exist constructions of high second order nonlinearity functions that do not

24

depend on bent functions. What are these constructions?

3. While analyzing the function f = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ∈ RM(3, 7)

presented in the introduction to Theorem 6.8, a computer search revealed that f is distance 40 from

functions in RM(2, 7) that are formed by concatenating two bent functions in RM(2, 6) (for example

(1 ⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x3x4 ⊕ x5x6|x1x2 ⊕ x3x4 ⊕ x5x6)). What is the role of bent functions in this

case?

4. Why does concatenating two functions in RM(3, 6) whose second order nonlinearity is 12 result in a

function in RM(3, 7) whose second order nonlinearity is 40, much greater than 2 · 12 = 24? How can

we replicate this process to construct other highly nonlinear functions?

We were led to another interesting line of observations while analyzing the set A of Boolean functions in

RM(2, 7) that are distance 40 from the function f = x1x2x3⊕x1x4x5⊕x2x4x6⊕x3x5x6⊕x4x5x6⊕x1x6x7 ∈

RM(3, 7). We know that nl2(f) = 40 and that wt(f) = 40. After an exhaustive computer search, we found

that the set A contains 11264 = 11 · 210 elements. Define a good sum as a binary sum of two elements in A

that is also contained in A. For each function in A, we count the number of times that function is a term

in a good sum. Since the zero codeword is an element in A, each function will appear at least once as a

term in a good sum. Also, the zero codeword will appear in 11264 good sums. The distinct numbers of

our count are: 4, 7, 12, 16, 32, 40, 48, 64, 92, 160, 164, 256, 416, 576, 1024, 1536, 2816, 11264. The most striking

pattern (for which we have not yet found an explanation) is that for each function m ∈ A, there exists a

function n ∈ A that satisfies n 6= m and n 6= 0, such that m⊕n ∈ A. Secondly, each nonzero function a ∈ A

pairs with an even number of distinct nonzero functions in A to create a good sum. An explanation for this

second observation is the following: consider the function b ∈ A that satisfies b 6= a and b 6= 0, such that

a⊕ b ∈ A. Then a⊕ b 6= a and a⊕ b 6= b. Thus, a⊕ (a⊕ b) = b ∈ A and a⊕ (a⊕ b) is a distinct good sum

from a⊕ b.

Similarly, we ran an exhaustive computer search for all Boolean functions in RM(2, 6) that are distance 18

away from the function f = x1x2x3 ⊕ x1x2x6 ⊕ x1x4x6 ⊕ x2x5x6 ⊕ x3x4x5 ∈ RM(3, 6) (call this set A). We

know that nl2(f) = 18 and that wt(f) = 18 (as in the previous paragraph, notice that the zero codeword is

an element of A). The cardinality of A is 3584 = 7 · 29 (in the previous paragraph, the cardinality of A was

11264 = 11 · 210). Why is the cardinality of the sets A a multiple of such high powers of two?

25

Another attractive area of future work is finding an easy way to identify Boolean functions that exhibit high

second order nonlinearity. As presented in Example 2.20 and Example 3.5, the Fourier transform offers a

convenient way to determine whether a particular Boolean function is bent. Can we find similar approaches

that relate to second order nonlinearity?

26

Bibliography

[1] F.J.MacWilliams, N.J.A.Sloane, “The Theory of Error-Correcting Codes”, North-Holland Publishing

Company, Amsterdam, 1986.

[2] Claude Carlet, “Boolean Functions for Cryptography and Error Correcting Codes”,Cambridge Univer-

sity Press, http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html.

[3] Claude Carlet, “On the Higher Order Nonlinearities of Boolean Functions and S-Boxes, and Their

Generalizations”, http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html.

[4] Joanne Elizabeth Fuller, “Analysis of Affine Equivalent Boolean Functions for Cryptography”, Queens-

land University of Technology, 2003.

[5] An Braeken, Yuri Borissov, Svetla Nikova, Bart Preneel, “Classification of Boolean Functions of 6

Variables or Less with Respect to Some Cryptographic Properties”, Springer Berlin / Heidelberg, Lecture

Notes in Computer Science, Volume 3580/2005, pp. 324-334, 2005.

27

Appendix A

Equivalence Classes of B3

The following table contains the affine equivalence classes of B3 [4].

Class Representative Function Degree Nonlinearity
1 1⊕ x3 1 0
2 1⊕ x3 ⊕ x1x2x3 3 1
3 1⊕ x3 ⊕ x1x2 ⊕ x1x3 2 2

Each of these three affine equivalence classes also represents a distinct 2-equivalence class.

28

Appendix B

Equivalence Classes of B4

The following table contains the affine equivalence classes of B4 [4].

Class Representative Function Degree Nonlinearity Second Order Nonlinearity
1 1⊕ x1 ⊕ x4 1 0 0
2 1⊕ x1 ⊕ x4 ⊕ x2x3x4 ⊕ x1x2x3x4 4 1 1
3 1⊕ x1 ⊕ x4 ⊕ x3x4 ⊕ x1x3x4 3 2 2
4 1⊕ x4 ⊕ x1x2 ⊕ x2x3x4 ⊕ x1x2x3x4 4 3 1
5 1⊕ x4 ⊕ x1x4 2 4 0
6 1⊕ x4 ⊕ x1x2 ⊕ x2x3x4 3 4 2
7 1⊕ x1 ⊕ x4 ⊕ x1x4 ⊕ x1x2x3 ⊕ x1x3x4⊕

x2x3x4 ⊕ x1x2x3x4 4 5 1
8 1⊕ x4 ⊕ x1x3 ⊕ x1x2 ⊕ x2x3 ⊕ x2x4 2 6 0

The following table contains the 2-equivalence classes of B4.

Class Representative Function Degree Nonlinearity Second Order Nonlinearity
1 1⊕ x1 ⊕ x4 1 0 0
2 1⊕ x1 ⊕ x4 ⊕ x2x3x4 ⊕ x1x2x3x4 4 1 1
3 1⊕ x1 ⊕ x4 ⊕ x3x4 ⊕ x1x3x4 3 2 2

29

Appendix C

Affine Equivalence Classes of B5

The following table presents the 48 affine equivalence classes of B5 [4].

30

31

Appendix D

Equivalence Classes of

RM(3, 6)\RM(1, 6)

The six representatives of RM(3, 6)\RM(2, 6) are:

f1 = 0
f2 = 123
f3 = 123⊕ 245
f4 = 123⊕ 456
f5 = 123⊕ 245⊕ 346
f6 = 123⊕ 145⊕ 246⊕ 356⊕ 456

The following table contains the 34 affine equivalence classes of RM(3, 6)\RM(1, 6) [5].

32

All affine equivalence classes that have the same fi representative are part of the same 2-equivalence class.

33

Appendix E

Equivalence Classes of

RM(3, 7)\RM(1, 7)

The six representatives of RM(3, 7)\RM(2, 7) are:

f1 = 0
f2 = 123
f3 = 123⊕ 245
f4 = 123⊕ 456
f5 = 123⊕ 245⊕ 346
f6 = 123⊕ 145⊕ 246⊕ 356⊕ 456
f7 = 127⊕ 347⊕ 567
f8 = 123⊕ 456⊕ 147
f9 = 123⊕ 245⊕ 346⊕ 147
f10 = 123⊕ 456⊕ 147⊕ 257
f11 = 123⊕ 145⊕ 246⊕ 356⊕ 456⊕ 167
f12 = 123⊕ 145⊕ 246⊕ 356⊕ 456⊕ 167⊕ 247

The following table contains the affine equivalence classes of RM(3, 7)\RM(1, 7) [5].

34

35

36

37

All affine equivalence classes that share the same fi representative are part of the same 2-equivalence class.

38

Appendix F

Software

We developed numerous software packages to increase the speed and efficiency of our search for highly
nonlinear Boolean functions. The following are some of the features we implemented:

1. Compute the second order nonlinearity of a given Boolean function

2. Generate affine equivalent functions to a given Boolean function

3. Determine if a given Boolean function is bent using the Fourier transform

4. Determine if two given Boolean functions are permutations of one another

The software is written in Java and Prolog.

39

	Analysis of boolean functions with high second order nonlinearity
	Recommended Citation

	U:/private/Research Davis/Honors Paper/Honors Paper/Paper/Paper.dvi

