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ON WELL-POSEDNESS, STABILITY, AND BIFURCATION FOR
THE AXISYMMETRIC SURFACE DIFFUSION FLOW∗

JEREMY LECRONE† AND GIERI SIMONETT†

Abstract. We study the axisymmetric surface diffusion (ASD) flow, a fourth-order geometric
evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of
(2+α)-little-Hölder regular surfaces of revolution embedded in R3 and satisfying periodic boundary
conditions. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connec-
tion to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD.
Then, focusing on the family of cylinders, we establish results regarding stability, instability, and
bifurcation behavior, with the radius acting as a bifurcation parameter.
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1. Introduction. The central focus of this article is the development of an ana-
lytic setting for the axisymmetric surface diffusion (ASD) flow with periodic boundary
conditions. We establish well-posedness of ASD and investigate geometric properties
of solutions, including characterizing equilibria and studying their stability, instability,
and bifurcation behavior. We establish and take full advantage of maximal regular-
ity for ASD. Most notably, with maximal regularity we gain access to the implicit
function theorem, a very powerful tool in nonlinear analysis and dynamical systems
theory. We begin with a motivation and derivation of the general surface diffusion
flow, of which ASD is a special case, and we introduce the general outline of the paper.

The mathematical equations modeling surface diffusion go back to a paper by
Mullins [55] from the 1950s, who was in turn motivated by earlier work of Herring
[34]. Both of these authors investigate phenomena witnessed in sintering processes, a
method by which objects are created by heating powdered material to a high temper-
ature, while remaining below the melting point of the particular substance. When the
applied temperature reaches a critical value, the atoms on the surfaces of individual
particles will diffuse across to other particles, fusing the powder together into one
solid object. In response to gradients of the chemical potential along the surface of
this newly formed object, the surface atoms may undergo diffusive mass transport
on the surface of the object, attempting to reduce the surface free energy. Given
the right conditions—temperature, pressure, grain size, sample size, etc.—the mass
flux due to this chemical potential will dominate the dynamics, and it is the resulting
morphological evolution of the surface which the surface diffusion flow aims to model.
We also note that the surface diffusion flow has been used to model the motion of
surfaces in other physical processes (e.g., growth of crystals and nanostructures). The
article [11] contains the formulation of the model which we present below, which is
set in a more general framework than the original model developed by Mullins.

∗Received by the editors July 9, 2012; accepted for publication (in revised form) May 30, 2013;
published electronically September 19, 2013.

http://www.siam.org/journals/sima/45-5/88350.html
†Department of Mathematics, Vanderbilt University, Nashville, TN (jeremy.lecrone@vanderbilt.

edu, gieri.simonett@vanderbilt.edu).

2834



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASD WELL-POSEDNESS, STABILITY, AND BIFURCATION 2835

1.1. The surface diffusion flow. From a mathematical perspective, the gov-
erning equation for motion via surface diffusion can be expressed for hypersurfaces in
arbitrary space dimensions. In particular, let Γ ⊂ Rn be a closed, compact, immersed,
oriented Riemannian manifold with codimension 1. Then we denote by H = H(Γ) the
(normalized) mean curvature on Γ, which is simply the sum of the principle curva-
tures on the hypersurface, and ΔΓ denotes the Laplace–Beltrami operator, or surface
Laplacian, on Γ. The motion of the surface Γ by surface diffusion is then governed by
the equation

V = ΔΓH,
where V denotes the normal velocity of the surface Γ. If Γ encloses a region Ω,
we assume the unit normal field to be pointing outward. A solution to the surface
diffusion problem on the interval J ⊂ R+, with 0 ∈ J , is a family {Γ(t) : t ∈ J} of
closed, compact, immersed hypersurfaces in Rn which satisfy the equation

(1.1)

{
V (Γ(t)) = ΔΓ(t)H(Γ(t)), t ∈ J̇ := J \ {0},
Γ(0) = Γ0,

for a given initial hypersurface Γ0. It can be shown that solutions to (1.1) are volume-
preserving, in the sense that the signed volume of the region Ω is preserved along
solutions. Additionally, (1.1) is surface-area-reducing. It is also interesting to note
that the surface diffusion flow can be viewed as the H−1-gradient flow of the area
functional, a fact that was first observed in [31]. This particular structure has been
exploited in [52, 53] for devising numerical simulations.

For well-posedness of (1.1) we mention [26], where it is shown that (1.1) admits a
unique local solution for any initial surface Γ0 ∈ C2+α. Additionally, the authors of
[26] show that any initial surface that is a small C2+α-perturbation of a sphere admits
a global solution which converges to a sphere at an exponential rate. This result was
improved in [27] to admit initial surfaces in the Besov space Bsp,2 with s = 5/2− 4/p
and p > (2n + 10)/3. For dimensions n < 7 note that this allows for initial surfaces
which are less regular than C2. An independent theory for existence of solutions to
higher-order geometric evolution equations, which also applies to the surface diffusion
flow, was developed in [37, 58]; see [54, 63] for a discussion of some limitations of these
results.

More recent results for initial surfaces with low regularity are contained in [8,
42]. The author of [8] obtains existence and uniqueness of local solutions for various
geometric evolution laws (including the surface diffusion flow), in the setting of entire
graphs with initial regularity C1+α. Surface diffusion is also one of several evolution
laws for which the authors of [42] establish solutions under very weak, and possibly
optimal, regularity assumptions on initial data. In particular, their results guarantee
existence and uniqueness of global analytic solutions, in the setting of entire graphs
over Rn, for Lipschitz initial data u0 with small Lipschitz constant ‖∇u0‖L∞(Rn).

For interesting new developments regarding lower bounds on the existence time of
solutions to the surface diffusion flow in R3 and R4, we refer the reader to [54, 69, 70].
In particular, it is shown in [70] that the flow of a surface in R3 which is initially close
to a sphere in L2 (that is, the L2-norm of the trace-free part of the second fundamental
form is sufficiently small) is a family of embeddings that exists globally and converges
at an exponential rate to a sphere. The results of [54, 69] regarding concentration
of curvature along solutions may prove important in the analytic investigation of
solutions approaching finite-time pinch-off.
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2836 JEREMY LECRONE AND GIERI SIMONETT

In the context of geometric evolution equations, such as the mean curvature flow
[35, 36], the surface diffusion flow, or the Willmore flow [43, 44], the underlying
governing equations are often expressed by evolving a smooth family of immersions
X : M × (0, T ) → Rn, where M is a fixed smooth oriented manifold and Γ(t) is the
image of M under X(·, t). In this formulation, the surface diffusion flow is given by

(1.2) ∂tX = (ΔH)ν, X(·, 0)M = Γ0,

where ν is the normal to the surface Γ(t). This formulation is invariant under the
group of sufficiently smooth diffeomorphisms of M , and this implies that (1.2) is only
weakly parabolic. A way to infer that (1.2) is not parabolic is to observe that if X(·, t)
is a solution, then so is X(φ(·), t), for any diffeomorphism φ. Given a smooth solution
X one can therefore construct nonsmooth (i.e., non-C∞) solutions by choosing φ to
be nonsmooth. If (1.2) were parabolic, all solutions would have to be smooth, as was
pointed out in [7] for the mean curvature flow.

Nevertheless, existence of unique smooth solutions for the mean curvature flow,
for compact C∞-initial surfaces X(·, 0)M , can be derived by making use of the Nash–
Moser implicit function theorem; see, for instance, [32, 33].

The Nash–Moser implicit function theorem may also lead to a successful treat-
ment of the surface diffusion flow (1.2). However, there is an alternative approach to
dealing with the motion of surfaces by curvature (for example, the mean and volume-
preserving mean curvature flows, the surface diffusion flow, the Willmore flow) which
removes the issue of randomness of a parameterization: if one fixes the parame-
terization as a graph in normal direction with respect to a reference manifold and
then expresses the governing equations in terms of the graph function, the resulting
equations are quasilinear and strictly parabolic. This approach has been employed in
[26, 29, 30, 65], and also in [37]. In the particular case of the surface diffusion flow, one
obtains a fourth-order quasilinear parabolic evolution equation. One can then apply
well-established results for quasilinear parabolic equations. The theory in [2, 12], for
instance, works for any quasilinear parabolic evolution equation, no matter whether
it is cast as a more traditional PDE in Euclidean space or an evolution equation
living on a manifold. This theory also renders access to well-known principles from
dynamical systems.

The approach of parameterizing the unknown surface as a graph in normal di-
rection has also been applied to a wide array of free boundary problems, including
problems in phase transitions (where the graph parameterization and its extension
into the bulk phases is often referred to as the Hanzawa transformation); see, for
example, [61] and the references therein.

The literature on geometric evolution laws often considers the question of short-
time existence standard and refers to the classical monographs [23, 24, 45]. However,
when the setting is a manifold rather than Euclidean space, existence theory for
parabolic (higher-order) equations does not belong to the standard theory and requires
a proof, a point that is also acknowledged in [37, p. 61].

1.2. Axisymmetric surface diffusion (ASD). For the remainder of the pa-
per, we focus our attention on the case of Γ ⊂ R

3 an embedded surface which is
symmetric about an axis of rotation (which we take to be the x-axis, without loss
of generality) and satisfies prescribed periodic boundary conditions on some fixed
interval L of periodicity (we take L = [−π, π] and enforce 2π periodicity, without
loss of generality). In particular, the axisymmetric surface Γ is characterized by the
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parameterization

Γ =
{
(x, r(x) cos(θ), r(x) sin(θ)) : x ∈ R, θ ∈ [−π, π]

}
,

where the function r : R → (0,∞) is the profile function for the surface Γ. Conversely,
a profile function r : R → (0,∞) generates an axisymmetric surface Γ = Γ(r) via the
parameterization given above.

We thus recast the surface diffusion problem as an evolution equation for the
profile functions r = r(t). In particular, one can see that the surface Γ(r) inherits the
Riemannian metric

g = (1 + r2x) dx ∧ dx+ r2 dθ ∧ dθ

from the embedding Γ ↪→ R3, with respect to the surface coordinates (x, θ), where
the subscript fxi := ∂xif denotes the derivative of f with respect to the indicated
variable xi. It follows that the (normalized) mean curvature H(r) of the surface is
given by H(r) = κ1 + κ2, where

κ1 =
1

r
√
1 + r2x

and κ2 =
−rxx

(1 + r2x)
3/2

are the azimuthal and axial principle curvatures, respectively, on Γ(r). Meanwhile,
the Laplace–Beltrami operator on Γ and the normal velocity of Γ = Γ(t) are

ΔΓ(r) =
1

r
√
1 + r2x

(
∂x

[
r√

1 + r2x
∂x

]
+ ∂θ

[√
1 + r2x
r

∂θ

])
,

V (t) =
rt√
1 + r2x

.

Finally, substituting these terms into (1.1) and simplifying, we arrive at the expression

(1.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
rt =

1

r
∂x

[
r√

1 + r2x
∂x

(
1

r
√

1 + r2x
− rxx

(1 + r2x)
3
2

)]
, t > 0, x ∈ R,

r(t, x + 2π) = r(t, x), t ≥ 0, x ∈ R,

r(0, x) = r0(x), x ∈ R,

for the periodic axisymmetric surface diffusion problem. To simplify notation in what
follows, we define the operator

G(r) :=
1

r
∂x

[
r√

1 + r2x
∂xH(r)

]
,(1.4)

which is formally equivalent to the right-hand side of the first equation in (1.3). The
main results of this paper address

(a) existence, uniqueness, and regularity of solutions for (1.3);
(b) nonlinear stability and instability of equilibria for (1.3);
(c) bifurcation of equilibria from the family of cylinders, with the radius serving

as bifurcation parameter.
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As mentioned in the introduction, we develop and take full advantage of maximal reg-
ularity for ASD. In this setting, the results in (a) follow in a straightforward way from
[12]. Existence results could also be based on the approach developed in [8, 42], but
we prefer to work within the well-established framework of continuous maximal reg-
ularity. It provides a general and flexible setting for investigating further qualitative
properties of solutions. The novelty of the results in (b) is analysis of the nonlinear
structure of solutions. Corresponding results for linear stability and instability of
equilibria are contained in [10], where a precise characterization of the eigenvalues of
the linearized problem is given. Based on a formal center manifold analysis, the au-
thors in [10] predict subcritical bifurcation of equilibria at the critical value of radius
r� = 1, but no analytical proof is provided. Thus, our result in (c) appears to be the
first rigorous proof of bifurcation. In addition, we show that the bifurcating equilibria
(which are shown to coincide with the Delaunay unduloids) are nonlinearly unstable.
We note that previous results show linear instability of unduloids, and we refer the
reader to Remark 10 for a more detailed discussion.

The publication [10] has served as a source of inspiration for our investigations.
It provides an excellent overview of the complex qualitative behavior of ASD, with
results supported by analytic arguments and numerical computations.

The first investigations of evolution of an axisymmetric surface via surface diffu-
sion can be traced back to the work of Mullins and Nichols [56, 57] in 1965, where one
can already see some of the benefits of this special setting. Taking advantage of the
symmetry of the problem, they developed an adequate scheme for numerical methods,
and they already predicted the finite-time pinch-off of tube-like surfaces via surface
diffusion, a feature similar to the mean curvature flow and a natural phenomenon to
study in exactly this axisymmetric setting. Research continued to focus on pinch-
off behavior using numerical methods; cf. [10, 13, 14, 15, 19, 49, 50], wherein many
schemes were developed to handle the continuation of solutions after the change of
topology at the moment of pinch-off. Unlike the related behavior for the mean cur-
vature flow, pinch-off for the surface diffusion flow remains a numerical observation
that has yet to be verified analytically.

Much research has also focused on the numerical investigation of stability and
instability of cylinders under perturbations of various types; see [10, 13, 15], for in-
stance. In an important construction from [15], the authors observe destabilization
of a particular perturbation of a cylinder (i.e., divergence from the cylinder) due
to second-order effects of the flow, whereas the first-order (linear) theory predicts
asymptotic stability. In fact, their formulation produces conditions under which a
perturbation will destabilize due to nth-order effects, where (n − 1)st-order analysis
predicts stability. This result highlights the importance of studying the full nonlinear
behavior of solutions to ASD.

We proceed with an outline of the article and description of our main results. In
section 2, we establish existence of solutions to (1.3) in the framework of continuous
maximal regularity. In particular, we have existence and uniqueness of maximal
solutions for initial surfaces which are (2 + α)-little-Hölder continuous. Solutions are
also analytic in time and space, for positive time, with a prescribed singularity at time
t = 0. Additionally, we state conditions for global existence of the semiflow induced
by (1.3). We rely on the theory developed in [46] and the well-posedness results for
quasilinear equations with maximal regularity provided in [12]. We include comments
on how we prove these well-posedness results in an appendix.

In section 3, we characterize the equilibria of ASD using results of Delaunay [21]
and Kenmotsu [39] regarding constant mean curvature surfaces in the axisymmetric
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setting. We conclude that all equilibria of (1.3) must fall into the family of undulary
curves, which includes all constant functions r(x) ≡ r� > 0 (corresponding to the
cylinder of radius r�) and the two-parameter family of nontrivial undulary curves
R(B, k).

In section 4, we prove that the family of cylinders with radius r� > 1 are asymp-
totically, exponentially stable under a large class of nonlinear perturbations, which
maintain the same axis of symmetry and satisfy the prescribed periodic boundary
conditions. In particular, given r� > 1, we prove that any sufficiently small (2 + α)-
little-Hölder regular perturbation produces a global solution which converges expo-
nentially fast to the cylinder of radius r� + η > 1. The value η is determined by the
volume enclosed by the perturbation, which may differ from the volume of the original
cylinder. In proving this result, we note that the spectrum of the linearized equation
at r� is contained in the left half of the complex plane, though it will always contain
0 as an eigenvalue. By reducing the equation, essentially to the setting of volume-
preserving perturbations of a cylinder, we are able to eliminate the zero eigenvalue.
We then prove nonlinear stability in the reduced setting, utilizing maximal regularity
methods on exponentially weighted function spaces, and we transfer the result back
to the (full) problem via a lifting operator.

In section 5, we prove nonlinear instability of cylinders with radius 0 < r� < 1.
We take nonlinear instability to be the logical negation of stability, which one may
interpret as the existence of at least one unstable perturbation; see Theorem 5.1 for
a precise statement. This result makes use of a contradiction technique reminiscent
of results from the theory of ordinary differential equations; cf. [62]. By isolating
the linearization of the governing equation, one takes advantage of a spectral gap
and associated spectral projections in order to derive necessary conditions for stable
perturbations, which in turn lead to a contradiction.

We note that previous instability results for ASD have focused primarily on clas-
sifying stable and unstable eigenmodes of equilibria, which gives precise results on the
behavior of solutions associated with unstable perturbations. However, these methods
are limited to the behavior of solutions under the linearized flow.

Finally, in section 6 we apply classic methods of Crandall and Rabinowitz [16]
to verify the subcritical bifurcation structure of all points of intersection between the
family of cylinders and the disjoint branches of unduloids. In particular, taking the
inverse of the radius λ = 1/r� as a bifurcation parameter, we verify the existence of
continuous families of nontrivial equilibria which branch off of the family of cylinders
at radii r� = 1/� for all � ∈ N. We conclude that each of these branches corresponds
to the branch R(B, �) of 2π/�-periodic undulary curves. Working in the reduced
setting established in section 4, it turns out that eigenvalues associated with the
linearized problem are not simple, and hence we cannot directly apply the results of
[16]. However, restricting attention to surfaces which are even (symmetric about the
surface [x = 0]), we eliminate redundant eigenvalues, similar to a method used by
Escher and Matioc [25]. In this even function setting, we have simple eigenvalues and
derive bifurcation results, which we apply back to the full problem via a posteriori
symmetries of equilibria.

Using eigenvalue perturbation methods, we are also able to conclude nonlinear
instability of nontrivial unduloids, using the same techniques as in section 5. We once
more refer the reader to Remark 10 for more information.

In future work we plan to investigate well-posedness of ASD under weaker regu-
larity assumptions on the initial data. This will allow for a better understanding of
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global existence, and obstructions thereof. In particular, we conjecture that solutions
developing singularities will have to go through a pinch-off.

We also plan to consider nonaxisymmetric surfaces. In particular, we plan to
investigate the stability of cylinders under nonaxisymmetric perturbations.

Other interesting questions involve the existence and nature of unstable families
of perturbations and reformulations of the problem to allow for different boundary
conditions and immersed surfaces. In particular, reformulating ASD in terms of para-
metrically defined curves in R2 would allow for consideration of immersed surfaces of
revolution, a setting within which the branches of 2π/�-periodic nodary curves would
be added to the collection of equilibria. See section 3 for a definition and graphs of
nodary curves.

Throughout the paper we will use the following notation: If E and F are arbitrary
Banach spaces, BE(a, r) denotes the open ball in E with center a and radius r > 0
and L(E,F ) consists of all bounded linear operators from E into F . For U ⊂ E an
open set, we denote by Cω(U, F ) the space of all real analytic mappings from U into
F .

1.3. Maximal regularity. We briefly introduce (continuous) maximal regular-
ity, also called optimal regularity in the literature. Maximal regularity has received
a lot of attention in connection with parabolic partial differential equations and evo-
lution laws; cf. [3, 4, 5, 12, 41, 48, 60, 64]. Although maximal regularity can be
developed in a more general setting, we will focus on the setting of continuous maxi-
mal regularity and direct the interested reader to the references [3, 48] for a general
development of the theory.

Let μ ∈ (0, 1], J := [0, T ] for some T > 0, and let E be a (real or complex)
Banach space. Following the notation of [12], we define spaces of continuous functions
on J̇ := J \ {0} with prescribed singularity at 0. Namely, define

(1.5)

BUC1−μ(J,E) :=

{
u ∈ C(J̇ , E) : [t �→ t1−μu(t)] ∈ BUC(J̇ , E) and

lim
t→0+

t1−μ‖u(t)‖E = 0

}
, μ ∈ (0, 1),

‖u‖B1−μ := sup
t∈J

t1−μ‖u(t)‖E,

where BUC denotes the space consisting of bounded, uniformly continuous functions.
It is easy to verify that BUC1−μ(J,E) is a Banach space when equipped with the
norm ‖ · ‖B1−μ . Moreover, we define the subspace

BUC1
1−μ(J,E) :=

{
u ∈ C1(J̇ , E) : u, u̇ ∈ BUC1−μ(J,E)

}
, μ ∈ (0, 1),

and we set

BUC0(J,E) := BUC(J,E), BUC1
0 (J,E) := BUC1(J,E).

Now, if E1 and E0 are a pair of Banach spaces such that E1 is continuously
embedded in E0, denoted E1 ↪→ E0, we set

E0(J) := BUC1−μ(J,E0), μ ∈ (0, 1],

E1(J) := BUC1
1−μ(J,E0) ∩BUC1−μ(J,E1),
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where E1(J) is a Banach space with the norm

‖u‖E1(J) := sup
t∈J̇

t1−μ
(
‖u̇(t)‖E0 + ‖u(t)‖E1

)
.

It follows that the trace operator γ : E1(J) → E0, defined by γv := v(0), is well
defined, and we denote by γE1 the image of γ in E0, which is itself a Banach space
when equipped with the norm

‖x‖γE1 := inf
{
‖v‖E1(J) : v ∈ E1(J) and γv = x

}
.

For a bounded linear operator B ∈ L(E1, E0) which is closed as an operator
on E0, we say

(
E0(J),E1(J)

)
is a pair of maximal regularity for B and write B ∈

MRμ(E1, E0) if (
d

dt
+B, γ

)
∈ Lisom(E1(J),E0(J)× γE1),

where Lisom denotes the space of bounded linear isomorphisms. In particular,
(
E0(J),

E1(J)
)
is a pair of maximal regularity for B if and only if for every (f, u0) ∈ E0(J)×

γE1, there exists a unique solution u ∈ E1(J) to the inhomogeneous Cauchy problem{
u̇(t) +Bu(t) = f(t), t ∈ J̇ ,

u(0) = u0.

Moreover, in the current setting, it follows that γE1 =̇ (E0, E1)
0
μ,∞, i.e., the trace

space γE1 is topologically equivalent to the noted continuous interpolation spaces of
Da Prato and Grisvard; cf. [3, 12, 17, 48].

2. Well-posedness of (1.3). When considering the surface diffusion problem,
the underlying Banach spaces E0 and E1 in the formulation of maximal regularity
will be spatial regularity classes which describe the properties of the profile functions
r(t). We proceed by defining these regularity classes. We define the one-dimensional
torus T := [−π, π], where the points −π and π are identified, which is equipped with
the topology generated by the metric

dT(x, y) := min{|x− y|, 2π − |x− y|}, x, y ∈ T.

There is a natural equivalence between functions defined on T and 2π-periodic func-
tions on R which preserves properties of (Hölder) continuity and differentiability. In
particular, we will be working with the so-called periodic little-Hölder spaces hσ(T)
for σ ∈ R+ \ Z. Definitions and basic properties of periodic little-Hölder spaces, as
well as details on the connection between spaces of functions on T and 2π-periodic
functions on R, can be found in [46] and the references therein. For the reader’s
convenience, we provide a brief definition of hσ(T) below.

For k ∈ N0 := N∪{0}, denote by Ck(T) the Banach space of k-times continuously
differentiable functions f : T → R, equipped with the norm

‖f‖Ck(T) :=
k∑
j=0

‖f (j)‖C(T) :=

k∑
j=0

(
sup
x∈T

|f (j)(x)|
)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2842 JEREMY LECRONE AND GIERI SIMONETT

Moreover, for α ∈ (0, 1) and k ∈ N0, we define the space C
k+α(T) to be those functions

f ∈ Ck(T) such that the α-Hölder seminorm

[
f (k)

]
α,T

:= sup
x,y∈T

x �=y

|f (k)(x) − f (k)(y)|
dα
T
(x, y)

is finite. It follows that Ck+α(T) is a Banach space when equipped with the norm

‖f‖Ck+α(T) := ‖f‖Ck(T) + [f (k)]α,T.

Finally, we define the periodic little-Hölder space

hk+α(T) :=

⎧⎪⎨
⎪⎩f ∈ Ck+α(T) : lim

δ→0
sup
x,y∈T

0<dT(x,y)<δ

|f (k)(x)− f (k)(y)|
dα
T
(x, y)

= 0

⎫⎪⎬
⎪⎭

for k ∈ N0 and α ∈ (0, 1), which is a Banach algebra with pointwise multiplication of
functions and equipped with the norm ‖·‖hk+α := ‖·‖Ck+α(T) inherited from Ck+α(T).
For equivalent definitions and more properties of the periodic little-Hölder spaces, see
[46, section 1].

In order to make explicit the quasilinear structure of (1.3), we reformulate the
problem. By expanding the governing equation we arrive at the formally equivalent
problem

(2.1)

{
∂tr(t, x) +

[A(r(t))r(t)
]
(x) = f(r(t, x)), t > 0, x ∈ T,

r(0, x) = r0(x), x ∈ T,

where, for appropriately chosen functions ρ,

(2.2) A(ρ) :=
1

(1 + ρ2x)
2
∂4x +

2ρx
(
1 + ρ2x − 5ρρxx

)
ρ
(
1 + ρ2x

)3 ∂3x

is a fourth-order differential operator with variable coefficients over T and

(2.3) f(ρ) :=
ρ2x − 1

ρ2(1 + ρ2x)
2
ρxx +

6ρ2x − 1

ρ(1 + ρ2x)
3
ρ2xx +

3− 15ρ2x
(1 + ρ2x)

4
ρ3xx +

ρ2x
ρ3(1 + ρ2x)

is an R-valued function over T. Looking at these formal expressions, one can deduce
several properties that the functions ρ must satisfy in order to get good mapping
properties for f and A. In particular, we want to choose ρ such that ρ(x) �= 0 for
all x ∈ T; also we want that the spatial derivatives ρx and ρxx make sense and the
products ρ2, ρ3, ρρ2x, etc., have desired regularity properties. With these conditions
in mind, we proceed with our well-posedness result.

2.1. Existence and uniqueness of solutions. We collect statements of well-
posedness results and refer the reader to the appendix for comments on their proof.
Fix α ∈ (0, 1) and define the spaces of R-valued little-Hölder continuous functions

(2.4) E0 := hα(T), E1 := h4+α(T), and Eμ := (E0, E1)
0
μ,∞,

where (·, ·)0μ,∞, for μ ∈ (0, 1), denotes the continuous interpolation functor of Da
Prato and Grisvard; cf. [17] or [3]. It is well known that the little-Hölder spaces are
stable under this interpolation method; in particular we know that

Eμ = h4μ+α(T) (up to equivalent norms) for 4μ+ α /∈ Z;
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cf. [46, 48]. Further, let V be the set of functions r : T → R such that r(x) > 0 for
all x ∈ T and define Vμ := V ∩ Eμ for μ ∈ [0, 1]. We note that Vμ is an open subset
of Eμ for all μ ∈ [0, 1].

Before we can properly state a result on maximal solutions, we need to introduce
one more space of functions from an interval J ⊂ R+ to a Banach space E, with
prescribed singularity at zero. Namely, if J = [0, a) for a > 0, i.e., J is a right-open
interval containing 0, then we set

C1−μ(J,E) := {u ∈ C(J̇ , E) : u ∈ BUC1−μ([0, T ], E), T < sup J},
C1

1−μ(J,E) := {u ∈ C1(J̇ , E) : u, u̇ ∈ C1−μ(J,E)}, μ ∈ (0, 1],

which we equip with the natural Fréchet topologies induced by BUC1−μ([0, T ], E) and
BUC1

1−μ([0, T ], E), respectively.
We list some important properties of the mappings A and f , introduced in (2.2)

and (2.3).
Lemma 2.1. Let μ ∈ [1/2, 1]. Then

(A, f) ∈ Cω
(
Vμ, MRν(E1, E0)× E0

)
for ν ∈ (0, 1],

where Cω denotes the space of real analytic mappings between Banach spaces.
Proposition 2.2 (existence and uniqueness). Fix α ∈ (0, 1) and take μ ∈ [1/2, 1]

so that 4μ+ α /∈ Z. For each initial value r0 ∈ Vμ := h4μ+α(T) ∩ [r > 0], there exists
a unique maximal solution

r(·, r0) ∈ C1
1−μ(J(r0), h

α(T)) ∩ C1−μ(J(r0), h4+α(T)),

where J(r0) = [0, t+(r0)) ⊆ R+ denotes the maximal interval of existence for initial
data r0. Further, it follows that

D :=
⋃

r0∈Vμ
J(r0)× {r0}

is open in R+ × Vμ and ϕ : [(t, r0) �→ r(t, r0)] is an analytic semiflow on Vμ; i.e.,
using the notation ϕt(r0) := ϕ(t, r0), the mapping ϕ satisfies the conditions

• ϕ ∈ C
(D, Vμ);

• ϕ0 = idVμ ;

• ϕs+t(r0) = ϕt ◦ ϕs(r0) for 0 ≤ s < t+(r0) and 0 ≤ t < t+(ϕs(r0));

• ϕ(t, ·) ∈ Cω(Dt, Vμ) for t ∈ R+ with Dt := {r ∈ Vμ : (t, r) ∈ D} �= ∅.

(2.5)

The results in [12] also give the following conditions for global solutions.
Proposition 2.3 (global solutions). Let r0 ∈ Vμ := h4μ+α(T) ∩ [r > 0] for

μ ∈ (1/2, 1], such that 4μ+ α /∈ Z, and suppose there exists 0 < M < ∞ so that, for
all t ∈ J(r0),

• r(t, r0)(x) ≥ 1/M for all x ∈ T and

• ‖r(t, r0)‖h4μ+α(T) ≤M.

Then it must hold that t+(r0) = ∞, so that r(·, r0) is a global solution. Conversely,
if r0 ∈ Vμ and t+(r0) <∞, i.e., the solution breaks down in finite time, then one, or
both, of the conditions stated must fail to hold.
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We can also state the following result regarding analyticity of the maximal solu-
tions r(·, r0) in both space and time.

Proposition 2.4 (regularity of solutions). Under the same assumptions as in
Proposition 2.2, it follows that

(2.6) r(·, r0) ∈ Cω((0, t+(r0))× T) for all r0 ∈ Vμ, μ ∈ [1/2, 1].

Proof. Here we rely on an idea that goes back to Masuda [51] and Angenent
[5, 6] of introducing parameters and using the implicit function theorem to obtain
regularity results for solutions; see also [28]. The technical details are included in the
appendix.

Remark 1. The preceding results can be slightly weakened to allow for arbitrary
values of μ ∈ (1/2, 1], i.e., without eliminating the possibility that 4μ + α ∈ Z,
by taking initial data from the continuous interpolation spaces (E0, E1)

0
μ,∞, which

coincide with the Zygmund spaces over T.

3. Characterizing the equilibria of ASD. We begin our analysis of the long-
time behavior of solutions by characterizing and describing the equilibria of (1.3). For
this characterization, we make use of a well-known, strict Lyapunov functional for the
surface diffusion flow, namely, the surface area functional, and a characterization of
surfaces of revolution with prescribed mean curvature, as presented by Kenmotsu [39].

Recalling the operator G, as expressed by (1.4), and taking it to be defined on
V1 ⊂ h4+α(T), one will see that the set of equilibria of (1.3) coincides with the null set
of G. Although, from the well-posedness results of the previous section, we know that
we can consider (1.3) with initial conditions in h2+α(T), upon which the operator G
is not defined, one immediately sees that all equilibria must be in h4+α(T) (in fact,
by Proposition 2.4, we can conclude that equilibria are in Cω(T)). More specifically,
if we define equilibria to be those elements r̄ ∈ V1/2 = V ∩ h2+α(T), such that the
maximal solution r(·, r̄) satisfies

r(t, r̄) = r̄, t > 0,

then it follows immediately that r̄ ∈ h4+α(T) and G(r̄) = 0. Now, we proceed by
characterizing the elements of the null set of G.

Consider the functional

S(r) :=

∫
T

r(x)
√

1 + r2x(x)dx,

which corresponds to the surface area of Γ(r). If r = r(·, r0) is a solution to (1.3) on
the interval J(r0), then (suppressing the variable of integration)

∂tS(r(t)) =

∫
T

[√
1 + r2x(t) +

r(t)rx(t)√
1 + r2x(t)

∂x

]
G(r(t)) dx

=

∫
T

∂x

(
r(t)√

1 + r2x(t)
∂xH(r(t))

)
H(r(t)) dx

= −
∫
T

r(t)√
1 + r2x(t)

(∂xH(r(t)))2 dx, t ∈ J(r0) \ {0},

where we use integration by parts twice and eliminate boundary terms because of
periodicity. Notice that the expression is nonpositive for all times t ∈ J(r0) \ {0}.
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If r̄ is an equilibrium of (1.3), it follows that ∂xH(r̄) is identically zero on T.
Meanwhile, by definition of the operator G, G(r̄) = 0 whenever ∂xH(r̄) = 0. Hence,
we conclude that S(r) is a strict Lyapunov functional for (1.3), as claimed, and we
also see that the equilibria of (1.3) are exactly those functions r̄ ∈ h4+α(T) for which
the mean curvature function H(r̄) is constant on T.

The axisymmetric surfaces with constant mean curvature have been characterized
explicitly by Kenmotsu in [39]. All equilibria of (1.3) are so-called undulary curves,
and the unduloid surfaces, which are generated by the undulary curves by revolution
about the axis of symmetry, are stationary solutions of the original surface diffusion
problem (1.1).

Theorem 3.1 (see Delaunay [21] and Kenmotsu [39]). Any complete surface of
revolution with constant mean curvature H is either a sphere, a catenoid, or a surface
whose profile curve is given (up to translation along the axis of symmetry) by the
parametric expression, parameterized by the arclength parameter s ∈ R,

(3.1) R(s;H, B) :=

(∫ s

π/2H

1 +B sin(Ht)√
1 +B2 + 2B sin(Ht) dt ,

√
1 +B2 + 2B sin(Hs)

|H|

)
.

Remark 2. We can immediately draw several conclusions from Theorem 3.1 and
characterize the equilibria of (1.3). We use the notation R(H, B) to denote the curve
in R2 with parametric expression R(· ;H, B).

(a) Although the curves R(H, B) are well defined for arbitrary values B ∈ R

and H �= 0, it is not difficult to see that, up to translations along the x-axis, we may
restrict our attention to values H > 0 and B ≥ 0; cf. [39, section 2]. However, in what
follows we will consider the unduloids in the setting of even functions on T, for which
we will benefit by allowing B < 0.

(b) When |B| = 1, R(H, B) corresponds to a family of spheres controlled by
the parameter H. The spheres are a well-known family of stable equilibria for the
surface diffusion flow (cf. [26, 70]); however, their profile curves are outside of our
current setting because they fail to be continuously differentiable functions on all of
T. Moreover, we note that the spheres represented by R(H,±1) are in fact a connected
family of spheres, or a chain of pearls (see Figure 1),1 for which even general techniques
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Fig. 1. Profile curves for a family of spheres and a catenoid, respectively.

1All figures were generated with GNU Octave, version 3.4.3, c© 2011 John W. Eaton, and GNU-
PLOT, version 4.4 patchlevel 3, c© 2010 Thomas Williams, Colin Kelley.
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Fig. 2. π-periodic nodary curves with B = 1.03 and B = 1.1, respectively.

for (1.1) break down, as the manifold is singular at the points of intersection. These
families of connected spheres may be interesting objects to investigate in a weaker
formulation of ASD, but they fall outside of the current setting.

(c) Catenoids, or more precisely the generating catenary curves (which are es-
sentially just the hyperbolic cosine, up to scaling), fail to satisfy periodic boundary
conditions; cf. Figure 1.

(d) In case |B| > 1, the curve R(H, B) is called a nodary (see Figure 2), which
cannot be realized as the graph of a function over the x-axis and hence falls outside
the current setting. A reformulation of (1.3) to allow for immersed surfaces would
permit nodary curves as equilibria. Such an extension of the current setting may
prove beneficial to the investigation of pinch-off, as it may likely be easier to handle
concerns regarding concentration of curvature for solutions near nodary curves, rather
than embedded undularies.

(e) For values 0 ≤ |B| < 1, R(H, B) is the family of undulary curves, which
generate the unduloid surfaces. The undulary curves are representable as graphs of
functions over the x-axis, which are strictly positive for B in the given range (see
Figure 3). In fact, the case B = 0 corresponds to the cylinder of radius 1/H. Hence,
by Theorem 3.1 above, we conclude that all equilibria of (1.3) fall into the family of
undulary curves.

(f) Notice that the curve R(H, B) is always periodic in both the parameter s
and the spacial variable x. In order to ensure that the curve satisfies the 2π-periodic
boundary conditions enforced in (1.3) (which we emphasize is a condition regarding

0

0.5

1

1.5

2

2.5

3

3.5

4

-Pi -Pi/2 0 Pi/2 Pi

B = -0.20

B = -0.35

B = -0.99

0

0.5

1

1.5

2

2.5

3

3.5

4

-Pi -Pi/2 0 Pi/2 Pi

B = 0.15

B = 0.5

B = 0.85

B = 0.99

Fig. 3. Families of 2π-periodic undulary curves with selected parameter values from B = −.99
to B = 0.99, as indicated.
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periodicity over the variable x and not the arclength parameter s), we must impose
further conditions on the parametersH and B; here we avoid B = 0 because the curve
R(H, 0) trivially satisfies periodic boundary conditions. In particular, for B �= 0, if H
and B satisfy the relationship

(3.2)
πH
k

=

∫ 3π/2

π/2

1 +B sin t√
1 +B2 + 2B sin t

dt ,

then the curve R(H, B) is 2π/k-periodic in the x variable for k ∈ N. In what follows,
we will use the notation R(B, k) to denote the 2π/k-periodic undulary curve with free
parameter −1 < B < 1 and parameter H = H(B) fixed according to (3.2).

(g) The role of the parametersB and k is clearly seen in the context of Delaunay’s
construction. By rolling an ellipse with eccentricityB along the x-axis, the path traced
out by one focus is an undulary curve. Here B < 0 corresponds to a reassignment of
major and minor axes in the associated ellipse. Further, it is clear that the ellipses are
restricted to those with circumference 2π/k, to match periodic boundary conditions.

4. Stability of cylinders with large radius. As seen above, the constant
function r(x) ≡ r�, for r� > 0, is an equilibrium of (2.1). Moreover, the constant
function r(x) ≡ r� is associated to the cylinder Γ(r�) with radius r�, which is a
stationary solution of the original surface diffusion problem (1.1). In this section,
we establish tools for and carry out the investigation of nonlinear stability for these
equilibria.

4.1. Preliminary analysis and definitions. Throughout this analysis, we
consider an arbitrary r� > 0 and σ ∈ R+ \ Z, unless otherwise stated. Focusing
on the properties of solutions near r�, we shift our equations, including the shifted
operator

G�(ρ) := G(ρ+ r�) =
1

ρ+ r�
∂x

[
ρ+ r�√
1 + ρ2x

∂xH(ρ+ r�)

]
,

which maps ρ ∈ E1 ∩ U� to E0, where we consider ρ = r− r�, and is in the regularity
class Cω by Lemma 2.1; here we take U� := V − r� := {ρ − r� : ρ ∈ V }. Now we
consider the surface diffusion problem shifted by r�,

(4.1)

{
ρt(t, x) = G�(ρ(t, x)), x ∈ T, t > 0,

ρ(0, x) = ρ0(x), x ∈ T,

where ρ0 := r0 − r�. We say that

ρ = ρ(·, ρ0) ∈ C1(J̇ , E0) ∩ C(J̇ , E1) ∩ C(J,Eμ ∩ U�)
is a solution to (4.1), with initial data ρ0 ∈ Eμ ∩ U�, on the interval J ⊂ R+ if ρ
satisfies (4.1) pointwise, for t > 0, and ρ(0) = ρ0. We investigate the properties of G�
around 0 in order to gain information about the stability of r� in (1.3).

Define the functional

F�(ρ) = F�(ρ; r�) :=

∫
T

(
ρ(x) + r�

)2
dx,

which corresponds to the volume enclosed by the surface Γ(ρ + r�). It follows from
the analyticity of multiplication and integration on little-Hölder spaces that F� is of
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class Cω from hσ(T) to R, σ ∈ R+ \ Z. The Fréchet derivative of F� is

(4.2) DF�(ρ) :

[
h �−→ 2

∫
T

(
ρ(x) + r�

)
h(x)dx

]
∈ L (hσ(T),R) , ρ ∈ hσ(T,R).

Moreover, it holds that F�(ρ) is conserved along solutions to (4.1). Indeed, if ρ =
ρ(·, ρ0) is a solution to (4.1), then

1

2

d

dt
F�(ρ(t)) =

∫
T

(
ρ(t) + r�

)
ρt(t)dx =

∫
T

∂x

[ (
ρ(t) + r�

)
√
1 + ρ2x(t)

∂xH(ρ(t) + r�)

]
dx = 0

for t ∈ J(ρ0)\ {0}, where the last equality holds by periodicity. Thus, conservation of
F� along the solution ρ follows by continuity of F� and convergence of ρ to the initial
data ρ0 in Eμ. From these properties, it follows that

(4.3) Mσ
η :=

{
ρ ∈ hσ(T) : F�(ρ) = F�(η)

}
, η ∈ R, σ ∈ R+ \ Z,

is a family of invariant level sets for (4.1). The following techniques are motivated
by results of Prokert [59] and Vondenhoff [68], whereby one can take advantage of
invariant manifolds in order to derive stability results.

First, we introduce the mapping

P0ρ := ρ− 1

2π

∫
T

ρ(x)dx,

which defines a projection on hσ(T). We denote by hσ0 (T) the image P0

(
hσ(T)

)
, which

exactly coincides with the zero-mean functions on T in the regularity class hσ(T), and
we have the topological decomposition

hσ(T) = hσ0 (T)⊕ (1− P0)
(
hσ(T)

) ∼= hσ0 (T)⊕ R .

In what follows, we equate the constant function [η(x) ≡ η] ∈ (1 − P0)
(
hσ(T)

)
with

the value η ∈ R, and we denote each simply as η.
Consider the operator

Φ(ρ, ρ̃, η) :=
(
P0ρ− ρ̃, F�(ρ)− F�(η)

)
,

which maps hσ(T) × hσ0 (T) × R to hσ0 (T)× R and is of class Cω, by regularity of the
mappings F� and P0. Notice that Φ(0, 0, 0) = (0, 0) and, using (4.2),

(4.4) D1Φ(0, 0, 0) =
(
P0, 4πr�(1− P0)

)
∈ Lisom(hσ(T), hσ0 (T) × R),

i.e., the Fréchet derivative of Φ with respect to the first variable, at the origin, is a
linear isomorphism. Hence, it follows from the implicit function theorem that there
exist neighborhoods (0, 0) ∈ U = U0 ×U1 ⊂ hσ0 (T)×R and 0 ∈ U2 ⊂ hσ(T) and a Cω

function ψ : U → U2 such that, for all (ρ, ρ̃, η) ∈ U2 × U ,

Φ(ρ, ρ̃, η) = (0, 0) if and only if ρ = ψ(ρ̃, η).

Remark 3. We can immediately state the following properties of ψ, which follow
directly from its definition and elucidate the relationship between P0 and ψ.
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(a) P0ψ(ρ̃, η) = ρ̃ for all (ρ̃, η) ∈ U .
(b) Given ρ ∈ ψ(U) ∩Mσ

η , it follows that ψ(P0ρ, η) = ρ .
(c) ψ(0, η) = η, for η ∈ U1. This and the preceding remark follow from the fact

that F�(η) is injective when restricted to η ∈ (−r�,∞) ⊂ R.
(d) It follows from the identity Φ(ψ(ρ̃, η), ρ̃, η) = (0, 0) and differentiating with

respect to ρ̃ that D1Φ(ψ(0, η), 0, η)D1ψ(0, η)h−(h, 0) = (0, 0). From this observation,
and the fact that D1Φ(η, 0, η) = (P0, 4π(r� + η)(1 − P0)), it follows that

D1ψ(0, η)h = h, h ∈ hσ0 (T), η ∈ U1.

(e) ψ(U0, η) ⊂ Mσ
η for η ∈ U1. Hence, ψ(·, η) can be taken as a (local) parame-

terization of Mσ
η . Moreover, from the preceding remark and the bijectivity of ψ(·, η)

from U0 to Mσ
η ∩ U2, we can see that Mσ

η ∩ U2 is a Banach manifold over hσ0 (T)
anchored at the point η ∈ R .

(f) For (ρ̃, η) ∈ U , we have the representation

ψ(ρ̃, η) =
(
P0 + (1 − P0)

)
ψ(ρ̃, η) = ρ̃+

1

2π

∫
T

ψ(ρ̃, η)(x)dx,

and so we can see that Mσ
η ∩U2 can be realized (locally) as the graph of an R-valued

analytic function over the zero-mean functions ρ̃ ∈ hσ0 (T).
(g) Although ψ(·, η) depends upon the parameter σ, a priori, it follows easily

from the preceding representation that

ψ(·, η) : U0 ∩ hσ̃0 (T) → hσ̃(T), σ̃ ∈ R+ \ Z,
so that ψ preserves the spacial regularity of functions regardless of the regularity
parameter σ with which ψ was constructed. However, notice that the neighborhood
U0 will remain intrinsically linked with the parameter which was used to construct ψ.

With the established invariance and local structure of the sets Mσ
η , it follows that

the dynamics governing solutions to (1.3) reside in the tangent space to the manifold
Mσ

η ∩ U2. Hence, if we reduce (1.3) to a local system on Mσ
η ∩U2, then we will have

captured all of the dynamics of the problem. Remark 3(d) is the first observation
toward this reduced formulation. In fact, one can make use of the properties estab-
lished in Remark 3 to prove the following, even more general, result regarding the
properties of the the tangent vectors to Mσ

η . Although we use other tools to connect
the reduced problem (4.5) below to the full problem (1.3), this remark provides good
intuition into the nature of these manifolds.

Remark 4. Given (ρ̃, η) ∈ U it follows that D1ψ(ρ̃, η) ◦ P0 = idTψ(ρ̃,η)Mσ
η
, where

TρMσ
η denotes the tangent space to the manifold Mσ

η at the point ρ.

4.2. The reduced problem. Fix α ∈ (0, 1) and denote the spaces

F0 := hα0 (T), F1 := h4+α0 (T), and Fμ := (F0, F1)
0
μ,∞, μ ∈ (0, 1),

so that Fμ = P0Eμ for μ ∈ [0, 1]. Define the operator

G�(ρ̃, η) = G�(ρ̃, η; r�) := P0G
(
ψ(ρ̃, η) + r�

)
,

which is defined for all (ρ̃, η) ∈ U ⊂ F0 × R with ρ̃ ∈ U0 ∩ F1.
Now we consider the reduced problem for the zero-mean functions

(4.5)

{
ρ̃t(t, x) = G�(ρ̃(t, x), η), t > 0, x ∈ T,

ρ̃(0, x) = ρ̃0(x), x ∈ T,
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where ρ̃0 := P0r0 = P0(r0 − r�). One will note that we should insist on ψ(ρ̃, η)(x) >
−r� for all x ∈ T in order to guarantee that G(ψ(ρ̃, η) + r�) is well defined. However,
we can assume, without loss of generality, that the neighborhood U is chosen small
enough to ensure this property holds for all (ρ̃, η) ∈ U .

Remark 5. Throughout most of the analysis that follows, we will treat the pa-
rameter η as a free parameter, although it has a very specific interpretation in relation
to (2.1). If one is given initial data r0 close to r�, then the parameter η is chosen so
that

F�(η) = F�(r0 − r�) .

(a) Essentially, this parameter allows for the possibility that the volume enclosed
by the surface Γ(r0) differs from that of the cylinder Γ(r�), thereby allowing us to
handle non-volume-preserving perturbations r0 of the cylinder r�.

(b) From a more general viewpoint, one can see that the family {Mσ
η ∩ ψ(U) :

η ∈ U1} forms a dimension 1 foliation of a neighborhood of the positive real axis
R+ ⊂ hσ(T) and the parameter η separates the leaves of the foliation.

For μ ∈ (0, 1] and closed intervals J ⊆ R+ with 0 ∈ J , define the spaces

E0(J) := BUC1−μ(J,E0),

E1(J) := BUC1
1−μ(J,E0) ∩BUC1−μ(J,E1)

and

F0(J) := BUC1−μ(J, F0),

F1(J) := BUC1
1−μ(J, F0) ∩BUC1−μ(J, F1),

within which we will discuss solutions to the shifted problem (4.1) and the reduced
problem (4.5), respectively.

In order to connect these two problems, we will make use of the lifting map
ψ, defined in the previous section. To ensure that ψ is well defined on F1(J), we
must restrict our attention to functions which map into an appropriate neighborhood
U0 ⊂ F0 of 0. In particular, we assume that U0 is given so that

ψ(·, η) : U0 ⊂ F0 → E0, η ∈ U1,

is in the regularity class Cω and, without loss of generality, we assume that U0 is given
sufficiently small so that ψ and the derivative D1ψ are bounded on U = U0×U1. More
precisely, U0 is chosen sufficiently small so that there exists a constant N > 0 for which
the inequalities

(4.6) ‖ψ(ρ̃, η)‖E0 ≤ N and ‖D1ψ(ρ̃, η)‖L(F0,E0) ≤ N

hold for all (ρ̃, η) ∈ U = U0 × U1.
Lemma 4.1. Fix η ∈ U1 and J := [0, T ] for T > 0. Then

ψ(·, η) : F1(J) ∩C(J, U0) −→ E1(J), with ψ(ρ̃, η)(t) := ψ(ρ̃(t), η).

Moreover, if ρ̃0 ∈ Fμ and ρ̃ = ρ̃(·, ρ̃0) ∈ F1(J) ∩ C(J, U0) is a solution to (4.5), for
some μ ∈ [1/2, 1], then ρ := ψ(ρ̃, η) is the unique solution on the interval J to (4.1),
with initial data ρ0 := ψ(ρ̃0, η) ∈ Eμ.
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Proof. First notice that the embeddings

(4.7) F1(J) ↪→ BUC(J, Fμ) ↪→ BUC(J, F0), μ ∈ [1/2, 1],

follow from [3, Theorem III.2.3.3] and the continuous embedding of little-Hölder
spaces, respectively.

To see that the mapping property for ψ(·, η) holds, let ρ̃ ∈ F1(J) ∩ C(J, U0).
Uniform continuity and differentiability of the function ψ(ρ̃(·), η) follow from the reg-
ularity of ψ and ρ̃ and compactness of the interval J . Hence we focus on demonstrating
that ψ(ρ̃(·), η) satisfies the boundedness conditions for E1(J). In the case μ ∈ [1/2, 1),
it follows from Remark 3(f) and (4.6) that, for t ∈ J̇ ,

t1−μ‖ψ(ρ̃(t), η)‖E1 ≤ t1−μ‖ρ̃(t)‖F1 +
t1−μ

2π

∫
T

|ψ(ρ̃(t), η)(x)|dx
≤ ‖ρ̃‖F1(J) + t1−μ‖ψ(ρ̃(t), η)‖C(T)

≤ ‖ρ̃‖F1(J) + T 1−μN,

lim
t→0

t1−μ‖ψ(ρ̃(t), η)‖E1 = 0.

(4.8)

From (4.8) we conclude that ψ(ρ̃, η) ∈ BUC1−μ(J,E1). Meanwhile, looking at the
time derivative of ψ(ρ̃, η), we note that ∂tψ(ρ̃(t), η) = D1ψ(ρ̃(t), η)∂tρ̃(t), and so we
again make use of (4.6) to see that

t1−μ‖∂tψ(ρ̃(t), η)‖E0 ≤ ‖D1ψ(ρ̃(t), η)‖L(F0,E0)t
1−μ‖∂tρ̃(t)‖F0

≤ N‖ρ̃‖F1(J) <∞,

lim
t→0

t1−μ‖∂tψ(ρ̃(t), η)‖E0 = 0.

Hence, making use of the embedding E1 ↪→ E0, we see that ψ(ρ̃, η) ∈ E1(J), as
desired. Meanwhile, when μ = 1 we again get continuity and differentiability from
the regularity of the mappings ρ̃ and ψ.

To see that the second part of the lemma holds, observe by (4.7) that ρ0 :=
ψ(ρ̃0, η) ∈ Eμ∩U�. Hence, by Proposition 2.2, there exists a unique maximal solution

r(·, ρ0) ∈ C1
1−μ(J(ρ0), E0) ∩ C1−μ(J(ρ0), E1)

to (4.1) on some maximal interval of existence J(ρ0) = [0, t+(ρ0)). Now, define ρ(·) :=
ψ(ρ̃(·), η) as indicated, and it suffices to show that ρt(t) = G�(ρ(t)) for t ∈ J̇ := (0, T ],
since this will imply that ρ(t) = r(t, ρ0) by uniqueness and maximality of the solution
r(·, ρ0). Proceeding, let t ∈ J̇ and consider the auxiliary problem{

γ̇(τ) = G�(γ(τ)) for τ ∈ [0, ε],

γ(0) = ρ(t),

which has a unique solution γ ∈ C1([0, ε], E0) ∩ C([0, ε], E1) by Proposition 2.2, pro-
vided we choose ε > 0 sufficiently small for the particular value ρ(t) ∈ E1. Notice, by
the regularity of γ, we have

γ̇(0) = G�(γ(0)) = G�(ρ(t)).
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Further, note that ρ(t) ∈ M4+α
η , from which we conclude that γ(τ) ∈ M4+α

η , and by
Remark 3 we have the representation γ(τ) = ψ(P0γ(τ), η), τ ∈ [0, ε]. Finally, we see
that

G�(ρ(t)) = γ̇(0) = ∂τ (ψ(P0γ(τ), η))
∣∣∣
τ=0

= D1ψ(P0γ(0), η)P0γ̇(0)

= D1ψ(P0ρ(t), η)P0G�(ρ(t)) = D1ψ(ρ̃(t), η)G�(ρ̃(t), η)(4.9)

= ∂t (ψ(ρ̃(t), η)) = ρt(t),

which concludes the proof.
We also get the following results, which further illuminate the relationship be-

tween the mappings G� and G� and explicitly connect the equilibria of the two prob-
lems (4.1) and (4.5).

Lemma 4.2. For any ρ ∈ M4+α
η ∩ U2, it follows that

(4.10) G�(ρ) = D1ψ(P0ρ, η)P0G�(ρ)

and

(4.11) DG�(ρ)h = D2
1ψ(P0ρ, η)[P0h, P0G�(ρ)] +D1ψ(P0ρ, η)P0DG�(ρ)h

for h ∈ E1.
Proof. The first claim was justified in the proof of Lemma 4.1 above and is

expressed in (4.9). Meanwhile, the second claim follows immediately by differentia-
tion.

Proposition 4.3. If (ρ̃, η) ∈ U , then (ρ̃, η) is an equilibrium of (4.5) if and only
if ψ(ρ̃, η) is an equilibrium of (4.1), i.e.,

G�(ρ̃, η) = 0 ⇐⇒ G�(ψ(ρ̃, η)) = 0.

Moreover, if G�(ρ̃, η) = 0, then it follows that

(4.12) DG�(ψ(ρ̃, η))h = D1ψ(ρ̃, η)P0DG�(ψ(ρ̃, η))h, h ∈ E1,

and

(4.13) DG�(ψ(ρ̃, η))D1ψ(ρ̃, η)h̃ = D1ψ(ρ̃, η)D1G�(ρ̃, η)h̃, h̃ ∈ F1.

Proof. The first claim follows from the definition of G� and (4.10), while (4.12) is
a consequence of (4.11) and (4.13) follows from (4.11) and the chain rule:

DG�(ψ(ρ̃, η))D1ψ(ρ̃, η)h̃ = D1ψ(ρ̃, η)P0DG�(ψ(ρ̃, η))D1ψ(ρ̃, η)h̃

= D1ψ(ρ̃, η)D1G�(ρ̃, η)h̃.
4.3. Mapping properties of D1G�(0, η). Notice that the points (0, η) ∈ U are

equilibria of (4.5), and they correspond to the cylinders Γ(r�+η). We are interested in
the spectral properties of the linearization of G� about these equilibria. In particular,
we compute the Fréchet derivative

D1G�(0, η)h = P0DG�(ψ(0, η))D1ψ(0, η)h = P0DG�(η)D1ψ(0, η)h

for h ∈ F1 . Hence, by Remark 3(d) we derive the formula

(4.14) D1G�(0, η) = P0DG�(η)
∣∣
F1

= DG�(η)
∣∣
F1
,
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where the last equality is verified by application of the divergence theorem to the
linearization

(4.15) DG�(η) = −∂2x
(

1

(r� + η)2
+ ∂2x

)
.

Utilizing the Fourier series representation of functions in hσ(T) (cf. [46, Propositions
1.2 and 1.3]), we find the eigenvalues of this linearized operator. In particular, for
h ∈ E1,

(λ−DG�(η)) h =

(
λ+ ∂2x

(
1

(r� + η)2
+ ∂2x

)) ∑
k∈Z

ĥ(k)ek

=
∑
k∈Z

(
λ− k2

(
1

(r� + η)2
− k2

))
ĥ(k)ek

=⇒ σp(DG�(η)) =

{
k2

(
1

(r� + η)2
− k2

)
: k ∈ Z

}
.(4.16)

Noting that the embedding E1 ↪→ E0 is compact, it follows that the resolvent
R(λ) := (λ −DG�(η))

−1 is a compact operator, λ in the resolvent set ρ(DG�(η)). It
follows from classic theory of linear operators that the spectrum σ(DG�(η)) consists
entirely of isolated eigenvalues of finite multiplicity; see Kato [38, Theorem III.6.29],
for instance. Hence, σp(DG�(η)) = σ(DG�(η)).

Remark 6. If r� + η > 1, then σ(DG�(η)) ⊂ (−∞, 0]; however, the spectrum
will always contain 0. The presence of this 0 eigenvalue can be seen as a consequence
of the fact that the equilibria r� + η are not isolated in the space E1. Hence, by
passing to the operator G�, which acts on an open subset of the zero-mean functions
F1, we eliminate the nontrivial equilibria (since the only constant function in F1 is
the zero function) and thereby eliminate the zero eigenvalue. In particular, one easily
computes that

(4.17) σ(D1G�(0, η)) =
{
k2

(
1

(r� + η)2
− k2

)
: k ∈ Z \ {0}

}
, η ∈ U1.

Before we return to problem (1.3), we state the following maximal regularity
result for the linearization D1G�(0, η). For this result, we define the exponentially
weighted maximal regularity spaces

Fj(R+, ω) :=
{
f : (0,∞) → F0

∣∣∣ [t �→ eωtf(t)] ∈ Fj(R+)
}
, ω ∈ R, j = 0, 1,

which are Banach spaces when equipped with the norms ‖u‖Fj(R+,ω) := ‖eωtu‖Fj(R+).
Theorem 4.4. Suppose r� > 1 and μ ∈ (0, 1]. There exist nonzero positive

constants δ = δ(r�) and ω = ω(r�, δ) such that(
F0(R+, ω), F1(R+, ω)

)
is a pair of maximal regularity for −D1G�(0, η) for any η ∈ (−δ, δ). That is,

(∂t −D1G�(0, η), γ) ∈ Lisom
(
F1(R+, ω),F0(R+, ω)× h4μ+α0 (T)

)
holds uniformly for η ∈ (−δ, δ).
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Proof. Fix δ > 0 so that (−δ, δ) ⊂ U1 ∩ (1 − r�,∞). Following the notation
and definitions of [46], it is clear from the representation (4.15) that −DG�(η) is a
uniformly elliptic operator from which we see, by [46, Theorem 4.4], that DG�(η)
generates an analytic semigroup on hα(T,C) with domain h4+α(T,C). Since hα0 (T,C)
inherits the topology of hα(T,C) and the projection P0 commutes with DG�(η), the
analogous resolvent estimates hold for D1G�(0, η), and so we see that D1G�(0, η)
generates an analytic semigroup on hα0 (T,C) with domain h4+α0 (T,C). Moreover,
from (4.17) it holds that type(D1G�(0, η)) < 0 for all η ∈ (−δ, δ), where type(B)
denotes the spectral type of the semigroup generator B. In particular, we have

type(D1G�(0, η)) < 1− (r� − δ)2

(r� − δ)2
< 0, η ∈ (−δ, δ).

Now, choose ω ∈ (
0, (r�−δ)

2−1
(r�−δ)2

)
, and the remainder of the result follows from [3,

Theorem III.3.4.1 and Remarks 3.4.2(b)] and the restriction of maximal regularity
from the complex-valued spaces hσ0 (T,C) to the subspaces hσ0 (T).

4.4. Exponential stability of cylinders with radius r� > 1. Our main
result of this section establishes exponential asymptotic stability of the family of
cylinders, by which we mean that small perturbations of a cylinder Γ(r�) will have
global solutions which converge exponentially fast to a cylinder Γ(r� + η), where
r� �= r� + η in general. Before formulating our result, we recall that BE(a, ε) denotes
the open ball with center a and radius ε, in the normed vector space E. In particular,
Bh2+α(r, ε) consists of all functions in h2+α(T) which are close to r in the C2+α

topology.
Theorem 4.5 (exponential stability). Fix α ∈ (0, 1), μ ∈ [1/2, 1], so that 4μ+α /∈

Z, and r� > 1. There exist nonzero positive constants ε = ε(r�), δ = δ(r�), and
ω = ω(r�, δ), such that problem (2.1) with initial data r0 ∈ Bh4μ+α(r�, ε) has a unique
global solution

r(·, r0) ∈ C1
1−μ(R+, h

α(T)) ∩ C1−μ(R+, h
4+α(T)),

and there exist η = η(r0) ∈ (−δ, δ) and M =M(α) > 0 for which the bound

t1−μ‖r(t, r0)− (r� + η)‖h4+α + ‖r(t, r0)− (r� + η)‖h4μ+α ≤ e−ωtM‖r0 − r�‖h4μ+α

holds uniformly for t > 0.
Proof. (i) Let δ, ω > 0 be the constants given by Theorem 4.4, and consider the

operator

K(ρ̃, ρ̃0, η) :=
(
∂tρ̃− G�(ρ̃, η), γρ̃− ρ̃0

)
,

acting on U := (F1(R+, ω)∩C(R+, U0))× (U0∩Fμ)×U1, which is open in the Banach
space F1(R+, ω)× Fμ × R.

First, we show that K maps U into F0(R+, ω)× Fμ. Notice that

γ : F1(R+, ω) → (F0, F1)
0
μ,∞

follows from [12, Lemma 2.2(a)], so γρ̃ ∈ Fμ. Meanwhile, ∂t maps F1(R+, ω) into
F0(R+, ω) by definition of the spaces BUC1

1−μ(J,E). Finally, to see that G�(·, η)
maps U into F0(R+, ω), choose ρ̃ ∈ U and notice that ρ̃(t) ∈ U0 ∩ h2+α0 (T), for t > 0,
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from the embeddings (4.7). Utilizing the explicit quasilinear representation of the
operator G, as given by (2.2)–(2.3), whereby

G�(ρ̃(t), η) = P0

(
−A

(
ψ(ρ̃(t), η) + r�

)
(ψ(ρ̃(t), η) + r�) + f

(
ψ(ρ̃(t), η) + r�

))
,

one will easily conclude the desired mapping property for the operator G�. For in-
stance, we have seen that A(ρ)ρ = b1(ρ)∂

4
xρ+b2(ρ)∂

3
xρ, where the functions bi depend

only on ρ, ρx, and ρxx, i = 1, 2. Hence, it follows that

eωtt1−μ
∥∥∥A(

ψ(ρ̃(t), η) + r�

)
(ψ(ρ̃(t), η) + r�)

∥∥∥
E0

≤ eωtt1−μ
∥∥∂4xψ(ρ̃(t), η)∥∥E0

∥∥b1(ψ(ρ̃(t), η) + r�
)∥∥
E0

+ eωtt1−μ
∥∥∂3xψ(ρ̃(t), η)∥∥E0

∥∥b2(ψ(ρ̃(t), η) + r�
)∥∥
E0

for t > 0. From here, we take advantage of the boundedness of ψ(ρ̃(t), η) in the
topology of F1/2, in conjunction with the explicit formulas for bi, in order to bound
the terms ‖bi(ψ(ρ̃(t), η)+ r�)‖E0 , uniformly in t. Meanwhile, the representation given
by Remark 3(d) and the fact that ρ̃ ∈ F1(R+, ω) yield the bounds

eωtt1−μ‖∂kxψ(ρ̃(t), η)‖E0 = eωtt1−μ‖∂kx ρ̃(t)‖F0 ≤ ‖eωtρ̃‖F1(R+), k = 1, . . . , 4.

Analogous methods work for the remaining terms of the function G�
(
ψ(ρ̃(t), η)

)
, since

we can always isolate an element of the form ∂kxψ(ρ̃(t), η), and bound the remaining
elements using boundedness in F1/2. We conclude the result by noting that the linear
projection P0 adds no complexity to acquiring the necessary bounds.

Regarding the regularity of K, it can be shown that G� is Cω via substitution
operators, and the derivative ∂t and the trace operator, γ are linear. Hence, it follows
that

K ∈ Cω
(
U,F0(R+, ω)× Fμ

)
.

Meanwhile, notice that K(0, 0, 0) = (0, 0) and

D1K(0, 0, 0) =
(
∂t −D1G�(0, 0), γ

)
∈ Lisom

(
F1(R+, ω),F0(R+, ω)× Fμ

)
by Theorem 4.4. Hence, we conclude from the implicit function theorem that there
exist an open neighborhood 0 ∈ Ũ ⊂ Fμ × R and a Cω mapping κ : Ũ → F1(R+, ω)
such that

K(κ(ρ̃0, η), ρ̃0, η) = (0, 0) for all (ρ̃0, η) ∈ Ũ .

In particular, κ(ρ̃0, η) is a global solution to (4.5) with parameter η and initial data
ρ̃0 ∈ Fμ, where we assume, without loss of generality, that Ũ ⊆ U .

(ii) Choose ε > 0 so that for every r0 ∈ BEμ(r�, ε), there exists η ∈ (−r�,∞) for
which

(P0r0, η) ∈ Ũ and F�(r0 − r�; r�) = F�(η; r�).

The existence of such a constant ε is guaranteed by the continuity of P0 and F�,
injectivity of F�(η; r�) for η ∈ (−r�,∞), and the fact that P0r� = 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2856 JEREMY LECRONE AND GIERI SIMONETT

Let r0 ∈ BEμ(r�, ε) and fix η = η(r0) as mentioned so that F�(r0 − r�) = F�(η).
Define the function

(4.18) r := ψ(κ(P0r0, η), η) + r�,

where ψ(κ(P0r0, η), η)(t) := ψ(κ(P0r0, η)(t), η), and we will demonstrate that r satis-
fies the desired properties claimed in the theorem.

To see that r is the unique global solution to (2.1) with initial data r0, first fix
T > 0 and consider the interval J := [0, T ]. By the choice of ε > 0 we know that
(P0r0, η) ∈ Ũ , and so it follows from part (i) above that κ(P0r0, η) ∈ F1(R+, ω). From
this we see that κ(P0r0, η) ∈ F1(J) is a solution to (4.5) with initial data P0r0 ∈ Fμ.
Thus it follows, by Lemma 4.1, that r ∈ E1(J) is the solution on J to the problem
(2.1) with initial data

ψ(P0r0, η) + r� = ψ(P0(r0 − r�), η) + r� = r0,

where we use Remark 3(b) and the fact that r0 − r� ∈ M4μ+α
η . The claim now

follows by the fact that T > 0 was arbitrary and by definition of the Fréchet spaces
C1−μ(R+, E).

To see that r satisfies the exponential bounds in the second part of the claim,
first notice that κ(0, η) ≡ 0 for η ∈ U1. Then, by Remark 3, and application of the
mean value theorem, the expression

r(t)−(r� + η) = ψ(κ(P0r0, η)(t), η) − η = ψ(κ(P0r0, η)(t), η) − ψ(κ(0, η)(t), η)

=
(
P0 + (1− P0)

)(
ψ(κ(P0r0, η)(t), η) − ψ(κ(0, η)(t), η)

)
= κ(P0r0, η)(t) +

1

2π

∫
T

(
ψ(κ(P0r0, η)(t, x), η) − ψ(κ(0, η)(t, x), η)

)
dx

= κ(P0r0, η)(t) +
1

2π

∫
T

∫ 1

0

D1ψ
(
τκ(P0r0, η)(t), η

)
κ(P0r0, η)(t, x)dτdx

holds for all t > 0. Notice that

eωtt1−μ‖κ(P0r0, η)(t)‖F1 ≤ ‖κ(P0r0, η)‖F1(R+,ω)

and

sup
t∈R+

‖eωtκ(P0r0, η)(t)‖Fμ

are finite quantities by the fact that κ(P0r0, η) ∈ F1(R+, ω) and the embedding (4.7).
We note that the reference for (4.7) does not explicitly include the unbounded interval
J = R+; however, the methods of the proof extend to this unbounded case with little
trouble. Meanwhile, the remaining term in r(t) − (r� + η) above is scalar-valued,
so we bound D1ψ(τκ(P0r0, η)(t), η)κ(P0r0, η)(t) in the C(T)-topology, which is then
bounded in the hσ(T)-topology for any σ ∈ R+ \ Z. In particular, observe that, by
(4.6),

sup
ρ̃∈U0

‖D1ψ(ρ̃, η)κ(P0r0, η)(t)‖hα ≤ N‖κ(P0r0, η)(t)‖hα0 , t > 0,

and we conclude that the bounds

(4.19) eωtt1−μ‖r(t)− (r� + η)‖E1 ≤
(
1 + c1N

)
‖κ(P0r0, η)‖F1(R+,ω)
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and

(4.20) eωt‖r(t)− (r� + η)‖Eμ ≤
(
c2 + c3N

)
‖κ(P0r0, η)‖F1(R+,ω)

hold uniformly for t > 0. Here the constant c1 comes from the embedding F1 ↪→ F0,
and the constants c2 and c3 come from the embeddings (4.7). Finally, by the regularity
of κ, we may assume that Ũ was chosen sufficiently small to ensure that D1κ is
uniformly bounded from Ũ into F1(R+, ω). Recalling that κ(0, η) = 0, it follows that

‖κ(P0r0, η)‖F1(R+,ω) ≤
∫ 1

0

‖D1κ(τP0r0, η)P0r0‖F1(R+,ω)
dτ

≤ M̃‖P0r0‖Fμ ≤M‖r0 − r�‖Eμ,
(4.21)

where M := ‖P0‖ sup(ρ̃,η)∈Ũ ‖D1κ(ρ̃, η)‖L(Fμ,F1(R+,ω)). The claim now follows from

(4.21) and the inequalities (4.19)–(4.20).
Remark 7. With Theorem 4.5 established, we note that the equivolume manifold

M2+α = M2+α(r�) ⊂ h2+α(T) is a local stable manifold for the cylinder of radius
r� > 1. Moreover, these manifolds foliate the interval (1,∞) ⊂ h2+α(T) with the
radius r� a parameter which separates leaves of the foliation.

5. Instability of cylinders with radius 0 < r� < 1. Taking advantage of the
reduced problem (4.5) and the connection with (1.3), we proceed with the following
result regarding instability of cylinders with radius 0 < r� < 1, in the setting of Fμ.
Differences in volume between the initial data r0 and the cylinder r� are not a factor
in the following argument, so we assume that the parameter η, associated with the
reduced problem (4.5), is simply taken to be zero for this proof.

Theorem 5.1. Let r� ∈ (0, 1) and μ ∈ [1/2, 1] such that 4μ + α /∈ Z. Then
the equilibrium r� of (1.3) is unstable in the topology of h4μ+α(T) for initial values in
h4μ+α(T). More precisely, there exist ε > 0 and a sequence of initial values (rn) ⊂
h4μ+α(T) such that

• limn→∞ ‖rn − r�‖h4μ+α = 0, and
• for each n, there exists tn ∈ J(rn) so that ‖r(tn, rn)− r�‖h4μ+α ≥ ε.

Proof. (i) We begin by showing that 0 is an unstable equilibrium for the reduced
problem (4.5) centered at r�. Let L := D1G�(0, 0) be the linearization of G� at ρ̃ = 0.
We can restate the evolution equation (4.5) in the equivalent form

(5.1)

{
ρ̃t − Lρ̃ = g(ρ̃), t > 0,

ρ̃(0) = ρ̃0,

where g(ρ̃) := G�(ρ̃, 0)−Lρ̃. Using the quasilinear structure of [ρ̃ �→ G�(ρ̃, 0)] it is not
difficult to see that for every β > 0 there exists a number ε0 = ε0(β) > 0 such that

(5.2) ‖g(ρ̃)‖F0 ≤ β‖ρ̃‖F1 , ρ̃ ∈ BFμ(0, ε0) ∩ F1,

where we will be assuming throughout that ρ̃ ∈ U0, to guarantee that G�(ρ̃, 0), and
subsequently g(ρ̃), is defined. It follows from (4.17) that

σ(L) ∩ [Re z > 0] �= ∅,
and we may choose numbers ω, γ > 0 such that

[ω − γ ≤ Re z ≤ ω + γ] ∩ σ(L) = ∅ and σ+ := [Re z > ω + γ] ∩ σ(L) �= ∅ ,
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i.e., the strip [ω − γ ≤ Re z ≤ ω + γ] does not intersect σ(L) and there is at least one
point of σ(L) to the right of the line [Re z = ω + γ].

We define P+ to be the spectral projection, in F0, with respect to the spectral
set σ+, and let P− := 1− P+. Then P+(F0) is finite-dimensional and the topological
decomposition

F0 = P+(F0)⊕ P−(F0)

reduces L, so that L = L+ ⊕ L−, where L± is the part of L in P±(F0), respectively,
with the domains D(L±) = P±(F1). Moreover, P± decomposes F1 by the embedding
F1 ↪→ F0, and, without loss of generality, we can take the norm on F1 so that

‖v‖F1 = ‖P+v‖F1 + ‖P−v‖F1 .

We note that

σ(L−) ⊂ [Re z < ω − γ], σ(L+) = σ+ ⊂ [Re z > ω + γ].

This implies that there is a constant M0 ≥ 1 such that

‖eL−tP−‖L(F0) ≤M0e
(ω−γ)t,

‖e−L+tP+‖L(F0) ≤M0e
−(ω+γ)t, t ≥ 0,

(5.3)

where {eL−t : t ≥ 0} is the analytic semigroup in P−(F0) generated by L− and
{eL+t : t ∈ R} is the group in P+(F0) generated by the bounded operator L+.

From (4.14)–(4.15) and [46, Theorem 5.2] one sees that
(
F0(J),F1(J)

)
is a pair

of maximal regularity for −L, and it is easy to see that −L− inherits the property
of maximal regularity. In particular, the pair

(
P−(F0(J)), P−(F1(J))

)
is a pair of

maximal regularity for −L−. In fact, since type(−ω + L−) < −γ < 0 we see that(
P−(F0(R+)), P−(F1(R+))

)
is a pair of maximal regularity for (ω − L−). This, in

turn, implies the a priori estimate

(5.4) ‖e−ωtw‖F1(JT ) ≤M1

(
‖w0‖Fμ + ‖e−ωtf‖F0(JT )

)
for JT := [0, T ], any T ∈ (0,∞) (or JT = R+ for T = ∞), with a universal constant
M1 > 0, where w is a solution of the linear Cauchy problem{

ẇ − L−w = f,

w(0) = w0,

with (f, w0) ∈
(
C

(
(0, T ), P−F0

)
, P−U0

)
.

(ii) By way of contradiction, suppose that the equilibrium 0 is stable for (4.5).
Then for every ε > 0 there exists a number δ > 0 such that (5.1) admits for each
ρ̃0 ∈ BFμ(0, δ) a global solution

ρ̃ = ρ̃(·, ρ̃0) ∈ C1
1−μ(R+, F0) ∩C1−μ(R+, F1) ∩ C(R+, U0),

which satisfies

(5.5) ‖ρ̃(t)‖Fμ < ε, t ≥ 0.
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We can assume without loss of generality that β and ε are chosen such that

(5.6) 2C0(M0 +M1γ)β ≤ γ and ε ≤ ε0(β),

where C0 := max{‖P−‖L(F0), ‖P+‖L(F0)}. As P+(F0) is finite-dimensional, we may
also assume that

‖P+v‖Fν = ‖P+v‖F0 , v ∈ F0, ν ∈ {μ, 1},
where we also use the fact that P+F0 ⊂ D(Ln) for every n ∈ N; cf. [48, Proposition
A.1.2].

Claim 1. For any initial value ρ̃0 ∈ BFμ(0, δ), P+ρ̃ admits the representation

(5.7) P+ρ̃(t) = −
∫ ∞

t

eL+(t−s)P+g(ρ̃(s)) ds, t ≥ 0.

For this we first establish that, for any ρ̃0 ∈ BFμ(0, δ),

e−ωtρ̃ ∈ BC1−μ(R+, F1) :=

{
u ∈ C((0,∞), F1) : sup

t∈R+

t1−μ‖u(t)‖F1 <∞
}
.

First notice that the mapping property

g : F1(JT ) ∩C(JT , U0) → F0(JT ), 0 < T <∞,

which follows in the same way as the mapping property derived for G� in the proof of
Theorem 4.5 above, together with the inequalities (5.2) and (5.4) yields

‖e−ωtP−ρ̃‖B1−μ(JT ,F1)

≤M1

(
‖P−ρ̃0‖Fμ + C0β‖e−ωtP+ρ̃‖B1−μ(JT ,F1) + C0β‖e−ωtP−ρ̃‖B1−μ(JT ,F1)

)(5.8)

for any 0 < T <∞. Due to (5.6), we have M1C0β ≤ 1/2 and can further conclude

‖e−ωtP−ρ̃‖B1−μ(JT ,F1) ≤ 2M1

(
‖P−ρ̃0‖Fμ + C0β‖e−ωtP+ρ̃‖B1−μ(JT ,F1)

)
.(5.9)

It follows from (5.5) that

t1−μ‖e−ωtP+ρ̃(t)‖F1 ≤ t1−μe−ωtC0‖ρ̃(t)‖Fμ ≤ C0C1ε,

where C1 := sup{t1−μe−ωt : t ≥ 0} <∞. Inserting this result into (5.9) yields

(5.10) ‖e−ωtρ̃‖B1−μ(JT ,F1) ≤ 2M1‖P−ρ̃0‖Fμ + (2M1C0β + 1)C0C1ε ≤ C2

for any 0 < T < ∞. However, since T is arbitrary and (5.10) is independent of T we
conclude that e−ωtρ̃ ∈ BC1−μ(R+, F1) for any initial value ρ̃0 ∈ BFμ(0, δ). Next we
note that, for s ≥ t, by (5.3)

‖eL+(t−s)P+g(ρ̃(s))‖F0 ≤M0C0βe
(ω+γ)(t−s)‖ρ̃(s)‖F1

≤M0C0βe
ωteγ(t−s)sμ−1‖e−ωsρ̃‖B1−μ(R+,F1),

(5.11)

which shows that the integral in (5.7) exists for any t ≥ 0, with convergence in F1.
Moreover, ∥∥∥∥

∫ ∞

t

eL+(t−s)P+g(ρ̃(s)) ds

∥∥∥∥
F0

≤ eωtM0C0C3β‖e−ωtρ̃‖B1−μ(R+,F1),(5.12)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2860 JEREMY LECRONE AND GIERI SIMONETT

where C3 := sup
{ ∫ ∞

t
eγ(t−s)sμ−1 ds : t ≥ 0

}
< ∞. Noting that w = P+ρ̃ solves the

Cauchy problem

{
ẇ − L+w = P+g(ρ̃),

w(0) = P+ρ̃0,

it follows from the variation of parameters formula that, for t ≥ 0 and τ > 0,

P+ρ̃(t) = eL+(t−τ)P+ρ̃(τ) +

∫ t

τ

eL+(t−s)P+g(ρ̃(s)) ds.

Since this representation holds for any τ > 0, the claim follows from (5.3) and (5.5)
by sending τ to ∞.

Claim 2. For any ρ̃0 ∈ BFμ(0, δ) it must hold that

‖P+ρ̃0‖Fμ ≤ 2M0M1C3‖P−ρ̃0‖Fμ .

From (5.7) and (5.11) follows

‖e−ωtP+ρ̃‖B1−μ(R+,F0)

≤ M0C0β

γ

(
‖e−ωtP+ρ̃‖B1−μ(R+,F1) + ‖e−ωtP−ρ̃‖B1−μ(R+,F1)

)
,

(5.13)

where we have used the fact that supt≥0

{
t1−μ

∫ ∞
t eγ(t−s)sμ−1 ds

} ≤ 1/γ. Adding the
estimates in (5.8) and (5.13) and employing (5.6) yields

(5.14) ‖e−ωtρ̃‖B1−μ(R+,F1) ≤ 2M1‖P−ρ̃0‖Fμ .

The representation (5.7) in conjunction with (5.12) and (5.14) then implies

‖P+ρ̃0‖Fμ ≤M0C0C3β‖e−ωtρ̃‖B1−μ(R+,F1) ≤M0C3‖P−ρ̃0‖Fμ ,(5.15)

where the last inequality follows from the fact that 2C0M1β ≤ 1. We have thus
demonstrated the claim.

Notice that the preceding claim contradicts the stability assumption. In partic-
ular, if ρ̃0 ∈ BFμ(0, δ), ρ̃0 �= 0, is chosen such that P−ρ̃0 = 0, then it must hold
that P+ρ̃0 = 0, and hence ρ̃0 = 0, leading to a clear contradiction. In particular, we
conclude that there exists ε̃ > 0 and a sequence (ρ̃n) ⊂ Fμ such that ρ̃n → 0 and the
solution ρ̃(·, ρ̃0) satisfies ‖ρ̃(tn, ρ̃n)‖Fμ ≥ ε̃ for some tn ∈ J(ρ̃n).

(iii) The result now follows by application of the projection P0 to perturbations
of the cylinder r�. In particular, stability of the r� for (1.3) would necessarily imply
stability of 0 for (4.5), which contradicts the conclusion of parts (i) and (ii).

Remark 8. With explicit knowledge of eigenvalues for the linearization, we can
also conclude existence of stable, unstable, and center manifolds for (1.3) about cylin-
ders r� ∈ (0, 1). See [18, 64] for existence of such manifolds for nonlinear parabolic
problems with continuous maximal regularity. The characterization of the unstable
manifolds is a very interesting open question, especially regarding investigation of
pinch-off behavior.
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6. Bifurcation results. In this section we turn our attention to interactions
between the family of cylinders and the family of unduloids. We have already seen
that the radius r� = 1 plays a critical role in the dynamics of the cylinders. The
change of stability for cylinders above and below this critical radius suggests that
there is a bifurcation at r� = 1. Indeed, we will confirm this bifurcation, using results
of Crandall and Rabinowitz [16], and investigate properties of the bifurcation. Herein
we take the parameter λ := 1/r� as our bifurcation parameter, r� > 0.

From the reductions developed in section 4, it suffices to study the bifurcation
equation

(6.1) Ḡ(ρ̃, λ) := G�(ρ̃, 0) = P0G(ψ(ρ̃) + r�) = 0, λ = 1/r�,

in the setting of (ρ̃, λ) ∈ F1 × (0,∞), where we use ψ(ρ̃) := ψ(ρ̃, 0) to economize
notation. Recalling the explicit characterization (4.17), we note that the eigenvalues
of D1G�(0, 0) all have multiplicity two in the setting of F1, regardless of the value
of the parameter r�. The techniques of [16], where the authors derive results for
operators with simple eigenvalues, are not directly applicable in this setting. We may
choose at this point to employ more general bifurcation results for high-dimensional
kernels, such as the results contained in [40, section I.19], or we can simplify our
setting to make accessible the results of [16].

Whether we choose to simplify our setting or use higher-dimensional bifurcation
results, we can make good use of the following observation. Due to the periodicity
enforced in the problem, the set of equilibria of (1.3) is invariant under shifts along the
axis of rotation. More precisely, considering the translation operators Ta, discussed
in the proof of Proposition 2.4 in the appendix, one can easily verify that G(Tar̄) = 0
if and only if G(r̄) = 0, a ∈ R. Obviously, this invariance carries over to the reduced
problem (4.5) and subsequently to the bifurcation equation (6.1).

One can take advantage of this shift invariance of equilibria in the context of bi-
furcation with high-dimensional kernels by constructing a two-dimensional bifurcation
parameter λ̃ = (1/r�, a) and eventually observes two-dimensional bifurcating surfaces
of equilibria in F1; cf. [40, Theorem I.19.2 and Remark I.19.7]. On the other hand,
we will make use of this invariance to simplify the setting in which we are looking
for equilibria and make accessible the methods of Crandall and Rabinowitz for opera-
tors with simple eigenvalues. The specific simplification that we apply to our setting
has also been employed by Escher and Matioc [25] and is supported by the following
proposition, which allows us to consider the class

F1,even := h4+α0,even(T)

of functions which are even, i.e., symmetric about [x = 0], and h4+α0 regular.
Proposition 6.1. For every equilibrium ρ̄ of (4.5), there exists x0 = x0(ρ̄) ∈ T

for which the translation Tx0 ρ̄ is in the space F1,even := h4+α0,even(T) of even functions
on T in the class F1. That is, up to translations on T, all equilibria of (4.5) are even.

Proof. From Remark 2 and Proposition 4.3, we know that ρ̄ must correspond
to the projection of an undulary curve R(H, B), modulo translations along the x-
axis. Choosing x0 ∈ T so that Tx0 ρ̄ = P0R(· ;H, B) readily verifies that R(· ;H, B) is
symmetric about s = π/2H. The claim follows from x(π/2H) = 0.

From this observation, we see that there is no loss of generality if we focus our
bifurcation analysis on the setting of ρ̃ ∈ F1,even. One benefit of working in this setting
is that we have the Fourier series representation

ρ̃(x) =
∑
k≥1

ak cos(kx), {ak} ⊂ R, for all ρ̃ ∈ F1,even .
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We are now prepared to prove our first bifurcation result.
Theorem 6.2 (bifurcation of reduced problem). For every � ∈ N, (0, �) ∈

h4+α0,even(T)× (0,∞) is a bifurcation point for (6.1). In particular, there exist a positive
constant δ� > 0 and a nontrivial analytic curve

(6.2)
{
(ρ̃�(s), λ�(s)) ∈ h4+α0,even × R : s ∈ (−δ�, δ�), (ρ̃�(0), λ�(0)) = (0, �)

}
,

such that

Ḡ(ρ̃�(s), λ�(s)) = 0 for all s ∈ (−δ�, δ�),
and all solutions of (6.1) in a neighborhood of (0, �) are either a trivial solution (0, λ)
or an element of the nontrivial curve (6.2). Moreover, if λ ∈ (0,∞) \ N, then (0, λ)
is not a bifurcation point for (6.1).

Proof. We first note that bifurcation can only occur at points (0, λ) for which
D1Ḡ(0, λ) is not bijective. We can see from (4.14)–(4.15) that

(6.3) D1Ḡ(0, λ) = −∂2x
(
λ2 + ∂2x

) ∣∣∣
F1,even

,

which is realized as a Fourier multiplier with the symbol(
Mk

)
k∈N

=
(
k2(λ2 − k2)

)
k∈N

,

and we see that the operator is bijective whenever λ ∈ (0,∞) \ N. Hence, it follows
that bifurcation can occur only at points of the form (0, �), � ∈ N.

We now fix � ∈ N and proceed to verify that (0, �) is indeed a bifurcation point
for (6.1). By compactness of the resolvent R(λ) := (λ−DG�(0))

−1, λ ∈ ρ(DG�(0)),
it follows that D1Ḡ(0, �) is a Fredholm operator of index zero. Further, we see that

N� := N(D1Ḡ(0, �)) = span{cos(�x)},
R� := R(D1Ḡ(0, �)) = span {cos(kx) : k ≥ 1, k �= �} ,

where N(B) and R(B) denote the kernel and the range, respectively, of the operator
B. Since hσ(T) ↪→ L2(T), we can borrow the L2-inner product to realize N� as
a topological complement to R� as subspaces of F1,even. Meanwhile, following from
(6.3), we compute the mixed derivative

(6.4) D2D1Ḡ(0, �) = −2� ∂2x

∣∣∣
F1,even

.

Now take v̂0 := cos(� ·) ∈ N� and observe that

D2D1Ḡ(0, �)v̂0 = 2�3 cos(� ·) /∈ R� ,

from which the result follows by [16, Theorem 1.7] or [40, Theorem I.5.1].
Remark 9. Following from the previous result, we are able to track the behavior

of the so-called critical eigenvalue μ�(λ) of the linearization D1Ḡ(0, λ) about the triv-
ial equilibria (0, λ). In particular, we choose μ�(λ) to be the eigenvalue of D1Ḡ(0, λ)
which passes through 0 with nonvanishing speed at λ = �; the existence of μ�(λ) is
guaranteed by the bifurcation observed above; cf. [40, sections I.6 and I.7]. More-
over, employing eigenvalue perturbation techniques, we can also track the associated
perturbed eigenvalue μ̂�(s) of the linearization D1Ḡ(ρ̃�(s), λ�(s)) about the nontrivial
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equilibria. These eigenvalues will play a crucial role in the following instability results
for the branches of bifurcating equilibria.

Theorem 6.3. Each of the bifurcations established in Theorem 6.2 is a subcritical
pitchfork-type bifurcation. More precisely, for all � ∈ N, we have

λ̇�(0) = 0 and λ̈�(0) < 0,

where “ ˙” denotes the derivative with respect to the parameter s. Moreover, it holds
that the perturbed eigenvalues μ̂�(s) are strictly positive for |s| > 0 chosen sufficiently
small.

Proof. Utilizing the methods of [40, sections I.6 and I.7], and the techniques
developed in the previous sections of the paper, one can explicitly verify that the
bifurcations observed above are indeed subcritical pitchfork bifurcations. The result
for the perturbed eigenvalues now follows from the eigenvalue perturbation techniques
in [40, section I.7]; see also Amann [1, section 27].

With these bifurcation results established in the setting of the reduced problem,
we will now go about deriving results for the original problem (1.3). Recalling the
definition of the operator G� from section 4.1, we introduce the notation

G(ρ, λ) := G(ρ+ 1/λ) = G�(ρ) for λ = 1/r�.

We are now interested in finding solutions to the bifurcation equation

(6.5) G(ρ, λ) = 0, (ρ, λ) ∈ h4+α(T)× (0,∞),

associated with the full problem (1.3).
We begin analyzing (6.5) by lifting the bifurcation results already established for

the reduced problem. We make use of the connections established in section 4.2,
and we also establish the following connection between the eigenvalues of D1Ḡ and
DG(·, λ) at equilibria.

Proposition 6.4. Suppose Ḡ(ρ̃, λ) = 0 and μ �= 0. Then

μ is an eigenvalue for D1Ḡ(ρ̃, λ) ⇐⇒ μ is an eigenvalue for D1G(ψ(ρ̃), λ).

Proof. (i) First, suppose that D1Ḡ(ρ̃, λ)h̃ = μh̃ for some h̃ ∈ F1 \ {0}, and let
h := Dψ(ρ̃)h̃. Then h ∈ E1 \ {0}, by injectivity of Dψ(ρ̃), and it follows from (4.13)
that

D1G(ψ(ρ̃), λ)h = μh.

We also observe that this assertion is true in case μ = 0.
(ii) Now suppose that D1G(ψ(ρ̃), λ)h = μh for some h ∈ E1 \ {0}. We conclude

from (4.12) that h ∈ Tψ(ρ̃)M0, so that there exists a unique h̃ ∈ F1 \ {0} for which

h = Dψ(ρ̃)h̃. Then (4.13) shows that

μDψ(ρ̃)h̃ = Dψ(ρ̃)D1Ḡ(ρ̃, λ)h̃,

and finally, by injectivity of Dψ(ρ̃), we conclude that μh̃ = Ḡ(ρ̃, λ)h̃, as desired.
We are now prepared to prove the main result regarding bifurcation of the original

problem (1.3) in the setting of h4+α(T), and instability of the bifurcating unduloids.
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Theorem 6.5 (bifurcation of full problem). Fix � ∈ N. Then
(a) the set

(6.6)
{
ψ(ρ̃�(s)) + 1/λ�(s) : s ∈ (−δ�, δ�)

}
⊂ h4+α(T)

is an analytic curve of equilibria for the problem (1.3) which bifurcates subcritically
from the family of cylinders r� ∈ (0,∞) at the cylinder r� = 1/�;

(b) there exists some ε� > 0 so that for every s ∈ (−δ�, δ�)
ψ(ρ̃�(s)) + 1/λ�(s) = R(B, �) for some B ∈ (−ε�, ε�),

i.e., the family (6.6) of equilibria is exactly the even presentations of 2π/�-periodic
undulary curves in some neighborhood of the cylinder r� = 1/�;

(c) the undulary curves R(B, �) are unstable for |B| > 0 chosen sufficiently small.
Proof. (a) It follows from Proposition 4.3 and Theorem 6.2 that the family{

(ψ(ρ̃�(s)), λ�(s)) : s ∈ (−δ�, δ�)
}
⊂ E1 × (0,∞)

consists of solutions to the bifurcation equation (6.5). The regularity of the curve
follows from the regularity of the bifurcating branch in Theorem 6.2 and regularity
of the mapping ψ. By definition of the bifurcation function G(·, λ), it follows that
the family (6.6) is indeed equilibria of the original equation (1.3) which intersect the
family of cylinders at r� = 1/�, when s = 0. Meanwhile, the bifurcation parameter λ
remains unchanged in lifting from the reduced problem to the full problem, and hence
we see that

λ̇�(0) = 0 and λ̈�(0) < 0

from Theorem 6.3, and so we conclude that the given curve bifurcates subcritically.
(b) By Remark 3(f) it follows that ψ preserves the symmetry of even functions

on T, and since ρ̃�(s) ∈ F1,even, it follows that the functions in the family (6.6) are
even on T. Meanwhile, by the characterization of equilibria established in section 3,
and the fact that

ψ(ρ̃�(0)) + 1/λ�(0) = 1/� = R(0, �),

it follows that the family (6.6) must coincide with the family of 2π/�-periodic undulary
curves R(B, �) for some continuum of values B ∈ (−ε�, ε�).

(c) To prove that the unduloids (6.6) are unstable, we mimic the proof of Theo-
rem 5.1 in the current setting. In particular, define

G�(ρ, s) := G(ρ+ ψ(ρ̃�(s)), λ�(s)), and

L�(s) := D1G�(0, s) = D1G(ψ(ρ̃�(s)), λ�(s)),

acting on functions ρ ∈ E1. It follows by Theorem 6.3 and Proposition 6.4 that

σ(L�(s)) ∩ [Re z > 0] �= ∅,
provided |s| > 0 is chosen sufficiently small. Meanwhile, the operator G�(·, s) has
a similar quasilinear structure as G� and so the analogue to inequality (5.2) is also
derived for

g�(ρ, s) := G�(ρ, s)− L�(s)ρ.
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Utilizing [40, Proposition I.7.2] and the explicit characterization (4.16) of the spectra
σ(DG�(η)), we can control the eigenvalues of the perturbed linearization L�(s) , so
that, for sufficiently small values of |s| > 0, we can derive the necessary spectral gap
condition

[ω − γ ≤ Re z ≤ ω + γ] ∩ σ(L�(s)) = ∅ and σ+ := [Re z > ω + γ] ∩ σ(L�(s)) �= ∅

for some γ, ω > 0. The remainder of the proof now follows as in the proof of The-
orem 5.1 with the observation that −L�(s) satisfies maximal regularity properties,
which follows by uniform ellipticity of L�(s) and an argument similar to the proof of
the stated claim in the proof of Lemma 2.1 in the appendix.

Remark 10. Note that we only prove nonlinear instability for unduloids with
sufficiently small parameter values |B| > 0. Relying on previous results in [9, 66, 67]
for the stationary trapped drop capillary problem, the authors of [10] observe that
the linearized problem at nontrivial unduloids always has an unstable eigenvalue.
Applying this observation in our setting, we can in fact conclude nonlinear instability
of the entire family of nontrivial unduloids R(B, k), |B| ∈ (0, 1), k ∈ N.

7. Appendix. In this section we outline the proofs of Lemma 2.1 and Proposi-
tions 2.2 and 2.4; see [47] for more details.

Proof of Lemma 2.1. Fix μ ∈ [1/2, 1] as indicated.
Claim. A(ρ) ∈ MRν(E1, E0) for ρ ∈ Vμ , ν ∈ (0, 1]. This claim will follow from

[46], though the setting of that paper differs slightly from the current setting and
warrants a brief discussion. First, for ρ ∈ Vμ define the coefficients

b4(ρ) :=
1

(1 + ρ2x)
2

and b3(ρ) :=
2ρx

(
1 + ρ2x − 3ρρxx

)
ρ
(
1 + ρ2x

)3 ,

so that A(ρ) = b4(ρ) ∂
4
x+b3(ρ) ∂

3
x. By our choice of μ, it follows that Vμ ⊂ h2+α(T,R),

so that b4, b3 ∈ E0 and A(ρ) is a uniformly elliptic differential operator. By [46,
Theorem 5.2] we conclude that

A(ρ) ∈ MRν

(
h4+α(T,C), hα(T,C)

)
, ν ∈ (0, 1],

where we utilize the notation hk+α(T,C) to be clear that the space consists of C-
valued functions over T and does not coincide with the spaces Eμ being considered
herein. However, hk+α(T,C) does coincide with the complexification of hk+α(T,R)
(up to equivalent norms), and it is a straightforward exercise to see that the property
of maximal regularity continues to hold under restriction to the subspaces hσ(T,R).

The regularity assertion for (A, f) follows from the fact that the mappings

[r �→ 1/r] : V0 → E0, [r �→ rx] : h
σ+1(T) → hσ(T), [(r, s) �→ rs] : E0 × E0 → E0

are real analytic, the additional observation that the mapping A : Vμ → L(E1, E0) in-
herits the regularity of the coefficients b3, b4 : Vμ → E0, and the fact thatMRμ(E1, E0)
is an open subset of L(E0, E1); cf. [12, Lemma 2.5(a)].

Proof of Proposition 2.2. In case μ ∈ [1/2, 1), the result follows from Lemma 2.1
and [12, Theorems 4.1, 5.1, and 6.1]. When μ = 1 we note that the existence and
uniqueness of a maximal solution

r(·, r0) ∈ C1(J(r0), E0) ∩C(J(r0), E1)
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follows from [12, Theorem 4.1(b)]. However, for the semiflow properties, we will
consider (1.3) as a fully nonlinear equation and apply results of Angenent [5]. In
particular, for r ∈ V1 we use the representation G(r) = −A(r)r+f(r) and (2.2)–(2.3)
to see that the Fréchet derivative DG has the structure

DG(r) = − 1

(1 + r2x)
2
∂4x +

3∑
k=0

Bk(r) ∂
k
x ,

where the coefficients Bk(r) ∈ E0 for every r ∈ V1, k = 0, . . . , 3. From this compu-
tation it follows that −DG(r) is a uniformly elliptic operator from E1 to E0, and so,
using the results of [46] as in the highlighted claim in the proof of Lemma 2.1 above,
we see that −DG(r) ∈ MR1(E1, E0) for all r ∈ V1. Now the fact that (1.3) generates
an analytic semiflow on V1 follows from [5, Corollary 2.9].

Proof of Proposition 2.4. For a ∈ R let Ta : T → T be the translation operator,
where Ta(x) denotes the unique element in T that is in the coset [x+ a] ∈ R/2πZ of
(x+a). Ta naturally acts on functions u ∈ C(T,R) by virtue of (Tau)(x) := u(Ta(x)).
As in [28] one shows that, for a ∈ R, the family of translations {Tta : t ∈ R} induces a
strongly continuous group of contractions on any of the spaces Eμ, with infinitesimal
generator Aa given by

D(Aa) = h1+4μ+α(T,R), Aa = a∂x.

Let r0 ∈ Vμ be fixed, and let

r = r(·, r0) ∈ C1
1−μ(J(r0), E0) ∩ C1−μ(J(r0), E1)

be the unique solution to (2.1) on the maximal interval of existence J(r0) = [0, t+(r0)).
Let t1 ∈ (0, t+(r0)) be fixed and set I := [0, t1]. Then there exists δ > 0 such that
(1 + λ)t ∈ J(r0) for all (t, λ) ∈ I × (−δ, δ). Finally, for (λ, a) ∈W := (−δ, δ)2 we set

rλ,a(t) := Ttar((1 + λ)t), t ∈ I;

i.e., rλ,a(t, x) = r((1 + λ)t, Tta(x)) for (t, x) ∈ I × T. One verifies that

rλ,a ∈ E1(I) := BUC1
1−μ(I, E0) ∩BUC1−μ(I, E1).

Moreover, since the nonlinear mapping [r �→ G(r)] is equivariant with respect to
translations, i.e., TbG(r) = G(Tb r) for any b ∈ R, we obtain that rλ,a is a solution of
the parameter-dependent equation

(7.1)

{
∂tv = (1 + λ)G(v) + a∂xv, t > 0,

v(0) = r0,

on the time interval I.
Now, for U(I) := E1(I) ∩ C(I, V ) we define

Φ : U(I)×W → E0(I)× Eμ, Φ(v, (λ, a)) =
(
∂tv − (1 + λ)G(v) − a∂xv, γv − r0

)
,

where E0(I) := BUC1−μ(I, E0), and we note that Φ(rλ,a, (λ, a)) = (0, 0). Moreover,

Φ ∈ Cω
(
U(I)×W,E0(I) × Eμ

)
, D1Φ(r, (0, 0)) =

(
d

dt
−DG(r), γ

)
,
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where we use the same notation for r = r(·, r0) and its restriction to the time interval
I. Exactly as in the proof of [12, Theorem 6.1] one shows that

D1Φ(r, (0, 0)) ∈ Lisom(E1(I),E0(I)× Eμ).

Finally, according to the implicit function theorem (cf. [20, Theorem 15.3] or [22,
(10.2.1)]), there exist a neighborhood of r in E1(I) and a neighborhood of (0, 0)
in R2, which we will again denote by U(I) and W , respectively, and a mapping
g ∈ Cω(W,E1(I)) such that

Φ(v, (λ, a)) = (0, 0) if and only if v = g(λ, a)

whenever (v, (λ, a)) ∈ U(I)×W . We conclude that g(λ, a) = rλ,a and

(7.2) [(λ, a) �→ rλ,a] ∈ Cω(W,U(I)).

For t0 ∈ (0, t1) and x0 ∈ T fixed, we see that

(7.3) [(λ, a) �→ r((1 + λ)t0, Tt0a(x0))] ∈ Cω(W,R),

and the assertion follows since (t0, x0) can be chosen arbitrarily.
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[41] M. Köhne, J. Prüss, and M. Wilke, On quasilinear parabolic evolution equations in weighted
Lp-spaces, J. Evol. Equ., 10 (2010), pp. 443–463.

[42] H. Koch and T. Lamm, Geometric flows with rough initial data, Asian J. Math., 16 (2012),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASD WELL-POSEDNESS, STABILITY, AND BIFURCATION 2869

pp. 209–235.
[43] E. Kuwert and R. Schätzle, The Willmore flow with small initial energy, J. Differential

Geom., 57 (2001), pp. 409–441.
[44] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional, Comm. Anal. Geom.,

10 (2002), pp. 307–339.
[45] O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Uralćeva, Linear and Quasilinear Equa-
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Verlag, Berlin, 2010.

[63] J.J. Sharples, Linear and quasilinear parabolic equations in Sobolev space, J. Differential
Equations, 202 (2004), pp. 111–142.

[64] G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Differential Integral
Equations, 8 (1995), pp. 753–796.

[65] G. Simonett, The Willmore flow near spheres, Differential Integral Equations, 14 (2001), pp.
1005–1014.

[66] T.I. Vogel, Stability of a liquid drop trapped between two parallel planes, SIAM J. Appl. Math.,
47 (1987), pp. 516–525.

[67] T.I. Vogel, Stability of a liquid drop trapped between two parallel planes: II. General contact
angles, SIAM J. Appl. Math., 49 (1989), pp. 1009–1028.

[68] E. Vondenhoff, Long-time asymptotics of Hele–Shaw flow for perturbed balls with injection
and suction, Interfaces Free Bound., 10 (2008), pp. 483–502.

[69] G. Wheeler, Lifespan theorem for simple constrained surface diffusion flows, J. Math. Anal.
Appl., 375 (2011), pp. 685–698.

[70] G. Wheeler, Surface diffusion flow near spheres, Calc. Var. Partial Differential Equations, 44
(2012), pp. 131–151.



Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


	University of Richmond
	UR Scholarship Repository
	2013

	On Well-Posedness, Stability, and Bifurcation for the Axisymmetric Surface Diffusion Flow
	Jeremy LeCrone
	Gieri Simonett
	Recommended Citation


	P:\TEX\SIMA%-5

