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Abstract: 
 
 Firms pay workers using a variety of different pay structures.  The structure that governs 
executive pay in many instances is a tournament pay structure.  This paper examines the 
applicability of a tournament pay structure to lower wage workers by examining the effort and 
risk responses of players to tournament incentives and the role these responses play in 
determining the tournament’s outcome.  Players from 19 different tournaments are observed on a 
hand by hand basis.  It is found that players adjust effort and risk taking levels but only in 
response to certain incentives.  This study finds evidence that tournaments are a viable pay 
structure for low wage workers under certain conditions. 
 
 

 

 

 

 



 
 

Introduction 

The recent financial crisis has led to debate regarding executive compensation.  

Executives are paid based on a tournament pay structure.  The top-level executives get far more 

money than those who work for them.  Although this is a common pay structure for executives, it 

is only one of many possible structures.  Many workers get paid a salary reflective of their 

perceived value to the firm.  Other workers are paid a piece-rate wage equal to the marginal 

revenue product of their labor.  The piece-rate wage is a common form of pay structure for lower 

earning workers, while tournament pay structures are used mostly for higher earning workers. 

This study examines the applicability of a tournament pay structure to lower wage 

workers by examining how low stakes poker players respond to effort and risk taking incentives 

and use effort and risk to affect the tournament outcome.  While tournament pay has been shown 

to increase the productivity of skilled workers, no previous studies have examined the effect of 

similar structures on the behavior of semi-skilled workers.  If lower stakes players are sensitive 

to tournament incentives, an extension of tournament pay structures to semi-skilled workers 

could be an efficient alternative.  To best determine players’ sensitivity to incentives, effort and 

risk taking will be considered as endogenous decisions made by each player in an attempt to 

maximize his net payout. 

  

Literature Review 

 Tournament or contest pay structures arguably provide incentives for workers to increase 

their effort and productivity, consistent with efficiency wage theory.  The study of the 

tournament payment structure reveals that a top-heavy, or accelerated payout structure, leads to 

the efficient resource allocation under many conditions.  For example, tournaments are found to 



 
 

be superior to a piece rate payment structure when it is easier to measure relative output than it is 

the marginal product of labor.  Tournament pay structures lead to increased participant effort by 

incentivizing players to try and earn the disproportionately high payout for first place relative to 

all other ranks.  The impetus for this enhanced effort has been theorized as the incentive effect.  

A second effect, the selection effect asserts that the institutional structure of a tournament as well 

as its payout structure governs who will opt to play and who will select out.  The incentive effect 

motivates individuals who have opted into the tournament to strive hard to earn the 

disproportionately large rewards at the top.  It will be the concern of this paper (Lazear and 

Rosen 1981). 

 Lazear and Rosen (1981) find that under ideal circumstances (homogeneous players, risk-

neutral firms, and purely effort driven production) tournament contests will produce the same 

resource allocations as piece rate pay schemes.  Thus, either has the potential to increase 

efficiency.  However, tournaments are preferable if it is difficult to measure a worker’s absolute 

output but trivial to ordinally measure a worker’s output relative to his peers.  Lazear and Rosen 

find that with risk-averse workers tournaments and piece rate pay schemes lead to different 

resource allocations.  If a worker’s production is uncertain, there is inherent risk in accepting 

compensation based on the marginal product of his labor. Yet, accepting payment based on the 

relative production rank eliminates the danger of systematic randomness.  Telemarketing is an 

example of this given the variable quality of inputs, potential customers’ numbers.  In this 

uncertain production scenario, workers prefer the tournament pay structure because it reduces 

risk.  Alternatively, if productivity is certain, risk-averse workers prefer a wage based on 

marginal revenue product of labor over the less certain tournament payout structure.  In the case 

of workers of heterogeneous abilities, there is no feasible efficient allocation of resources 



 
 

because there exists an inefficient pooling of low and high ability workers (Lazear and Rosen 

1981). 

 Predicated upon these findings, several works have examined the extent of the incentive 

effect of tournaments including Rosen (1986) and Ehrenberg and Bognanno (1990).  Rosen 

(1986) finds that elimination tournaments, in which there are sequential rounds of competition 

and the loser is eliminated in each round, necessitate a large grand prize to sustain motivation.  

Effort is costly, and thus players exert the level of effort that maximizes the expected value of 

payoffs net effort costs.  Regardless of risk-neutrality or aversion, homogeneity or heterogeneity, 

and number of rounds, there must be a disproportionately large first prize to sustain effort in later 

rounds.  Rosen demonstrates this is a result of two motivating factors that incentivize a player’s 

effort: the payoff of winning in the given round and the potential payoffs of advancing to the 

next round.  As the tournament progresses, if there is no tournament style first prize, the payoff 

incentive diminishes and effort slackens.   

 Ehrenberg and Bognanno (1990) use the PGA tour, controlling for the accelerated prize 

structure examined by Rosen, and investigate the incentive effect of larger prize pools.  

Controlling for factors such as course difficulty and weather conditions, they find that for players 

whose membership on the tour is guaranteed, performance improves significantly with the size 

of the prize pool.  More recent study of this prize pool effect reported by Simmons and Frick 

(2007) bring into question the reported magnitude of performance improvement and suggest that 

there is no incentive effect to larger prize pools. 

 The incentive effect research also set the framework for the examination of the role of 

risk in tournaments.  Hvide (2002) tests Rosen’s (1986) theory that when both risk and effort can 

be manipulated by the player, the equilibrium would be one of low effort and high risk.   Hvide 



 
 

(2002) studies why the theorized relative performance evaluation hypothesis is not born out in 

real-world payout structures.  He argues that risk taking will predominate and this can have 

negative consequences to the firm as effort is dropped and variance of production increases.  To 

counter these outcomes, he suggests an alternate pay scheme which sets a reasonable benchmark 

and those that fall closest to it are rewarded in tournament fashion.  Furthermore, Hvide (2002) 

contends that this benchmark explains the discrepancy between the theory that those who excel 

ought to get rewarded the most and the empirical reality that mediocrity is often 

disproportionately rewarded beyond excellence.   

  Grund and Gurtler (2005) examine the effect risk taking has on outcomes in professional 

soccer in Germany.  They find that when risk is taken by a team, the team earns fewer points and 

the variance of points earned is higher.  In the case of soccer, when a team assumes more risk by 

adopting an attacking formation, it loses more frequently than otherwise expected and more total 

goals are scored.   

 Poker is used to test the theoretical and empirical findings of tournament theory.  In order 

to use the game of poker as a basis for empirical analysis, it must be shown to be a game of skill 

and not chance.  Dreef et. al (2003) study the relative skill level in poker and find that a 

simplified form of poker does involve more skill relative to other casino games and enough to be 

considered a game of skill.  Dreef et. al used a simple limit two-player game as opposed to the 

more common many player no limit game.  It is reasonable to extend their findings and suggest 

that due to the greater number of competitors and increased cost of mistakes, many player no 

limit tournaments are likely to contain greater skill than Dreef et. al find in the simplified 

version.   



 
 

 Davidson (2007) examines the decision-making of top professionals in prestigious 

tournaments on the World Poker Tour.  Using World Poker Tour data allows Davidson to see the 

cards each player holds, hole cards.  He finds that despite the aforementioned designation of 

poker as a game of skill, top professionals base their decision making on noise and that Monte 

Carlo simulations outperform professionals in maximizing chip stack.  A distinction is made 

between the static question of maximizing chip stack and the dynamic question of maximizing 

payout.  Davidson finds elite players to be more risk averse than the Monte Carlo simulations 

predict. The observed behavior of elite players may be due to the fact that tournament poker is 

not a game of static optimization but dynamic optimization.  Each player must maintain his stack 

throughout the tournament to avoid elimination.  Davidson concludes that top professionals 

include “noise” in their decision-making process and would likely be better served by using the 

Monte Carlo odds. 

In an attempt to isolate the strategic employment of risk taking, Lee (2004) examines 

high stakes poker tournaments on the World Poker Tour.  He contends that after risk selection, 

effort is a trivial issue.  The amount of risk a player assumes is hypothesized to be impacted by 

the spread between payouts, relative positioning, and stability of relative positioning.  The 

change in chip stack over time is used to proxy risk taking. Lee finds that the predictions of 

tournament theory hold in tournament poker.  If there are large potential monetary gains, i.e. a 

player is close to the player ahead, more risk will be taken.  Similarly, if there are small expected 

losses, i.e. a player is well ahead of the player occupying the rank below, more risk will be 

assumed.   

 The poker literature provides several key insights for this paper.  Poker is a game of skill 

is an assumption of this work.  Were it not, then players could not exert control over their 



 
 

outcome and the theory would disintegrate.  However, luck will still play a large role in 

determining who wins.  Davidson’s findings also suggest that even the best players are not going 

to respond perfectly to incentives due to some degree of risk aversion.  Finally, Lee offers a 

theoretical framework from which to begin.  However, this paper differs in considering both risk 

and effort as simultaneous decisions. 

 

Data: 

 Data was collected from 19 online poker tournaments run on PokerStars.com1

 Each player begins the tournament with $1500 in chips.  These chips may not be 

translated into currency and are collected from players at the end of the tournament in exchange 

for their winnings.  At the beginning of each hand, two players are forced to make opening bets 

before they see their cards, and one player is designated as the dealer.  The dealer does not 

actually deal any cards as this is a computerized process.  The dealer designation is used to 

facilitate the betting process.  These positions rotate in a clockwise manner around the table each 

.  The 

tournament buy-in, amount paid by each player to enter, is $22.  Double up tournaments consist 

of ten players and the tournament begins as soon as ten players register.  The ten entrants play 

until only five players remain.  Each of these five players is then awarded forty dollars.  A 

disadvantage of using this data source is that a player’s hand is not observable and therefore the 

quality of a player’s cards can not be used to control for effort, risk, and winning.  This is the 

first study of its kind to collect data for each hand within a tournament and over multiple 

tournaments.  This provides a much richer data set for estimation.  Additionally, these 

tournaments involve much lower-stakes players than previously studied tournaments in the field.   

                                                           
1 For full definitions of poker terms see Appendix A.  Appendix B provides a screenshot of one hand in the double 
up tournament. 



 
 

hand.  For example, in the first hand the player in position one will be designated the dealer, the 

player to his left will be forced to post a small blind, and the next player to his left will be forced 

to post a big blind.  The small and big blinds are wagers that a player is forced to make before 

the cards are dealt, with the big blind amounting to twice the size of the small blind.  In the 

second hand, the player who posted the small blind becomes the dealer, the player who posted 

the big blind becomes the small blind, and the player to the left of the big blind in the first hand 

posts the big blind.  

 The size of both the small and the big blind change over the course of the tournament in 

order to facilitate the progress of the tournament and shorten its duration.  These changes occur 

at predetermined intervals, every 10 minutes, and according to a specific incremental dollar 

structure.  The blinds and the timing structure are known to all players ex ante.  Additionally, 

after the second increase in blind levels an ante is introduced so that each player is forced to bet 

before their hand is dealt and the blinds are assessed in addition to the antes in the amounts 

indicated2

 Each player’s chip stack, the number of players remaining, the player’s rank, and the chip 

spread between players of adjacent ranks are also observable values.  Whether values for each 

variable are collected at the beginning or end of the hand has an impact on the relevant frame of 

reference for the player.  Each player has a predicted behavior based upon their initial position.  

The impact of those behaviors is measured at the end of each hand.  Variable values are recorded 

at the beginning of each hand and used to construct the rank variable binaries and standardized 

chip counts.  The big blind value is used to standardize chip counts because it serves as a 

minimum betting increment.  In each round of betting a player must bet at least the amount of the 

big blind or not bet at all.  Therefore, as the big blind increases over time, the interpretation of 

. 

                                                           
2 See Appendix C for blind structure details 



 
 

the bet size is biased upward and so too is the change in player’s chip stacks.  For complete 

variable definitions, calculations, and descriptive statistics refer to Table 1. 

(Insert Table 1) 

 In addition to the observed variables mentioned above, an additional collection of 

variables are defined in order to control for different situations a player experiences throughout 

the tournament.  These variables include a set of dummy variables identifying each of the 19 

tournaments, a player identification number which is held constant across all hands, and the 

number of players remaining.  Additional variables are constructed to capture the chip spread 

between adjacent ranks.    

Identifying incentives inherent in the tournament structure are important for predicting 

effort and risk.  The first effort instrument (Leading_Group_Binary) measures whether or not a 

person has enough chips that they are highly likely to finish in the winning cohort.  If a person is 

securely in the money, they have an incentive to solidify their position and assume less risk until 

this position is guaranteed.  The leading group binary equals one when a player is ranked in the 

top three, giving a two rank cushion, and no players outside of the top three have more chips than 

they started the tournament with (implying a non-positive trend in the accumulation of chips).   

In order to meet these conditions a player must break away from the pack. Players who are in a 

break-away group are highly likely to finish in the winning cohort.  Therefore, the returns to 

effort are low for players who have broken away from the pack.   

The clustered chip stack binary variable is designed to account for the impact on effort of 

how closely clustered players are.  If the value of a player’s chip stack is very close to that of 

several of his competitors’, then small gains can result in huge positional changes and the returns 

to effort are high.  The clustered chip stack variable takes a value of one when players a given 



 
 

player is within +/- three bets of three or more competitors.  A player who is three bets behind an 

opponent may make up this difference by winning a pot containing only the blinds, while his 

opponent forfeits the blinds.  This is a trivial difference to overcome.  Under these conditions, 

rank returns to effort are high and a player could place himself in a strong position relative to 

many opponents with moderate gains.   

The big chip stack binary variable captures a player who has a chip stack that is large 

enough to make him a contender.  Such a player has the ability to both bet a hand without getting 

so short on chips that they are forced to commit all their chips to the hand and stave off 

elimination in the short term.  The big chip stack binary variable has a value of one when a given 

player has more than sixteen times the big blind in chips.  (This threshold is selected because 

given the average blinds and the average chip stack, this position is average and in one hand a 

given player can go from average to well above average making the player highly likely to finish 

in the winning cohort.)  In cases where the binary has a value of zero, a player must be careful 

because any hand in which they lose chips will cost them a large percentage of their chip stack 

and make becoming a factor in the tournament a much more difficult task.    

 

Model: 

Theoretical Model: 

Winners in a double up tournament are determined by end of the tournament chip stack, 

with each of the top five players receiving an equal payout.  Thus, players strive to be above the 

threshold which places them in the winning cohort.  As such, the degree to which a player 

enhances their likelihood of winning can be measured absolutely or relatively.  The greater the 

positive change in chip stack a player experiences over a given hand the greater his likelihood of 



 
 

winning because he is gaining a greater share of the fixed amount of chips.  Alternatively, one 

might define the progress towards a winning position by measuring a player’s relative proximity 

to the current threshold number of chips to be among the winning cohort.   

 The likelihood of winning is impacted by chip stack, whether a player is in the blinds, 

effort, and risk taken.  The greater the number of chips a player has at the beginning of a hand, 

the less likely he is to be eliminated during the hand and the more likely he is to finish the hand 

in a strong chip position relative to the threshold.  A player who is forced to post either the small 

or big blind will be less likely to win as they will have chips committed to a hand regardless of 

the strength of their hand.  It is likely for a player in the blinds to be faced with a raise in the first 

round of betting while holding poor cards.  This player will likely fold his hand, and lose the 

chips he is forced to invest.  The effort that a player exerts during a hand is likely to have a 

positive impact on winning.  Effort enhances the player’s ability to perceive more information 

leaked by opponents, or tells, realize which pots are easier to win, and better know the optimal 

sized bet.  The more risk a player takes, the more chips he will either win or lose in a given hand.  

However, since increasing risk is defined with an expected value of 0 it will not have a 

significant impact on a player’s chances of winning3

How much effort to exert is an endogenous decision.  A player may choose to exert more 

or less effort at any juncture based upon how close they are to other players or their relative rank.  

.  Whether the risk is realized as a gain or a 

loss will strongly impact a players likelihood of winning not risk.  Thus, an estimate of the 

impact on winning is: 

 Winning = f{Small_Blind, Big_Blind, Std_CS, Risk, Effort} 
         (-)                (-)        (+)        (?)      (+) 

  

                                                           
3 Davidson (2007) shows that risk can affect winning.  A player who bets everything and loses will necessarily lose, 
but should they win (equal risk) they will not necessarily win.  However, this effect is estimated to be insignificant. 



 
 

Likewise, at any betting juncture a player may choose to minimize risk, folding, or increase risk, 

betting large depending upon how much ground they need to make up and the number of chips 

they have.  Therefore, both risk and effort selection must be modeled as endogenous factors.  

 A player will exert greater effort when either the returns to effort are higher; holding the 

cost effort constant.  The closer a player is to the adjacent higher ranked player in terms of chip 

stack, the greater the potential payout to effort since that player has a greater chance of 

improving their relative rank and strengthening their relative positioning.  The returns to effort 

are also larger when gaining a rank changes the position of a player in comparison to the winning 

cohort.  For example, one would expect effort to be greater for players of ranks four, five, and six 

as they try to break into or stay in the winning cohort.   

In addition to the relative rank of a player, effort is also influenced by the absolute 

position as measured by chip stack.  There is a diminishing marginal utility to earning chips.  A 

player needs his first few chips to remain alive in the tournament.  Additional chips then add to 

the size of his stack with large percentage changes in the size of his stack due to the first few 

chips and smaller percentage changes as he accumulates more and more chips.  Therefore, the 

returns to effort will decrease with size of a player’s chip stack.  A player who holds a large chip 

stack relative to the winning threshold is in a strong position and will need to exert less effort to 

remain in the winning cohort.  Thus, a player in the leading group will exert less effort.  

Conversely, a player whose chip stack is very close in size to multiple players will be able to 

greatly improve his relative rank with small increases in his chip stack.  Therefore, if a player’s 

chip stack is very near that of a cluster of players, he will exert more effort.  As time progresses 

the blinds increase, fewer bets are available to the table (as total chips are fixed), larger bets 



 
 

occur and thus a player’s tournament life is more precarious.  Additionally, surviving later hands 

in a tournament increases the probability of receiving a payout.  Thus, effort may be modeled: 

 Effort = f{Time, Rank, Leading_Group, Clustered_CS, Big_CS, Std_CS, Std_Spd,  
         (+)     (?)             (-)    (+)           (-)           (-)           (-) 

     Play_Rem} 
            (-)    

 

As is characteristic of risk/reward tradeoffs, the more risk a player assumes, the greater 

the variance of the player’s outcomes.  It is important to distinguish between the baseline level of 

risk inherent in the tournament and the marginal risk assumed by players.  For simplicity, risk 

refers to the marginal risk assumed by players beyond the risk inherent in the tournament.  

Examples of marginal risk taking include bluffing and calling bets while holding weak hands.  

 Risk taking will decrease when either the returns to risk are lower or the costs of risk are 

higher.  A player who is several ranks behind the winning cohort will be unlikely to finish in the 

winning cohort without assuming marginal risk.  Therefore, for players of lower ranks, the 

returns to risk are high.  The further a player is behind the player of adjacently lower rank, the 

more risk he will need to take to have a chance to catch up.  A player forced to post either blind 

will have higher risk because of not only the forced bet, but because the bet changes the relative 

price of playing.  Players will want to assume more risk as they exert more effort.  Effort 

increases a player’s chances of winning or knowing when he is beat.  Therefore, a player will 

want to increase the variance of his outcomes knowing he will be more likely to win the hand, or 

know when to fold and minimize losses.   

The level of risk taking will also respond to changes in the cost of risk.  If in the first 

round of betting a player raises the bet to twice the size of the big blind, the player in the big 

blind must only commit half as many chips as others, and the small blind only 75% as many.  



 
 

Therefore, a player does not need as strong of cards to justify playing out of the blinds because it 

is relatively cheaper to play while the potential returns are just as large.  As blinds increase, 

given the fixed nature of total chips in the tournament, the number of bets available declines.  

This causes eliminations to occur more rapidly and shrinks the time until the winning cohort is 

named.  The consequences of losing a great number of chips in the latter stages of the 

tournament will likely be severe.  Therefore, risk is expected to decrease with the number of 

hands played; all else equal.  As players are eliminated, one’s chances of finishing in the winning 

cohort increase.  Risk is more costly given a greater chance of winning.  A big win still increases 

one’s probability of winning but a big loss severely reduces ones probability of finishing in the 

winning cohort.  A player who has barely more chips than the adjacent lower ranked player faces 

a high cost of risk.  If he is to lose chips he will fall in rank whereas, all else equal, he is less 

likely to move up a rank with similar gains.  Thus risk levels are expected to be lower when the 

(-) Spread is small.  As the (+) Spread increases, the returns to risk are higher, as a player will 

need to assume risk to catch the adjacently higher ranked player.   

The level of risk taken also depends upon the risk tolerance of individual players in a 

given tournament.  Therefore, the player must be controlled for in evaluating risk selection.  

Each tournament consists of a different group of players with only eight players appearing in 

more than one tournament.  Therefore, the player binary will be used to control for fixed effects 

within each tournament.  Thus, risk may be modeled: 

 Risk = f{Rank, Std_CS, Std_Spd, Small_Blind, Big_Blind, Tourn, Player, Hand,  
       (+)        (-)         (+)              (+)                (+)           (?)        (?)       (-) 

   BB_Level, Play_Rem, Effort} 
           (-)    (-)           (+) 

 

  



 
 

 Empirical Model: 

 A player bases how much risk to take in part upon the endogenous selection of risk as 

previously discussed.  The likelihood of winning is endogenously affected by both risk and 

effort.  Therefore, in order to estimate effort, risk, and winning, a three-stage least squares model 

is needed.  The leading group binary, the clustered chip stack binary, and the big chip stack 

binary instrument for effort.  These variables capture specific incentive structures present for a 

given player in a given hand.  The big blind level variables, number of hands played, and player 

serve as instruments for risk.  These variables describe risk incentives in any given hand. 

 

Results: 

Winning: 

 The White corrected results for the winning regression are presented in Table 2.  The 

results are consistent with expectations.  Whether or not a player is forced to post a blind has no 

significant impact on a player’s chances of winning.  The number of bets a player has in his chip 

stack significantly and positively impacts his ability to win.  Players who try harder place 

themselves in a better position relative to the winning cohort than players who exert less effort.  

The results also indicate that the more risk a player assumes, the better position he places himself 

in relative to the winning cohort.  Davidson (2007) found that top professionals were risk averse 

in tournaments and did not maximize the expected size of their chip stack.  They left expected 

value on the table4

                                                           
4 This clearly holds in the case of static maximization.  However, as Davidson notes, tournaments are a dynamic 
game and it is unclear if this conservative play relative to static maximization is an optimal strategy in the dynamic 
case.  By extension, the same caveat will apply in the low stakes game. 

.  If this result extends to lower stakes players, then it stands to reason that 

players who assume more risk than their more conservative opponents are able to pick up the 

expected value left on the table by their opponents.  If players gain extra expected value for 



 
 

taking more risk, then risk will significantly increase one’s chances of winning.  Consistent with 

theory, the size of a player’s chip stack, the effort exerted, and risk taken were found to be the 

most significant predictors of winning. 

 

(Insert Table 2) 

Effort: 

 The robust results for the effort regression are presented in Table 3.  The results are 

generally consistent with expectations, with a few exceptions.  Players who hold the top position 

in the rankings exert significantly less effort as may be expected given the lower marginal gains 

to effort.  Players with larger chip stacks also exhibit less effort.  This is consistent with 

expectations as there is a diminishing marginal utility to chips.  At the margin it is less critical 

for a player who has more chips to gain chips than a player who has fewer chips and is thus in 

greater danger of being eliminated and not making the winning cohort.    Similarly, players who 

are in a leading group that has broken away from the pack exert significantly less effort than 

those who are not in so comfortable of a position.  This is consistent with the expectation as the 

returns to effort for those who are highly likely to win are small relative to other players’ returns.  

Players with values of their chip stacks very close to many of their competitors’ try significantly 

harder than other players as predicted given the increasing rank returns to effort for players with 

clustered chip stacks.  Results also indicate that the further a player is behind the player ranked 

immediately ahead, the significantly less effort they will exert.  This is consistent with 

expectations as the rank returns to effort are larger when a player is very close to surpassing the 

player ranked adjacently ahead of him.  However, unexpectedly, the further ahead the player is, 



 
 

the significantly harder he tries.  This is inconsistent with the idea that the rank returns to effort 

are lower as a player gets further and further ahead of the player ranked adjacently below him. 

 Additionally, results indicate that the longer a tournament lasts and the more players that 

are eliminated, the significantly less effort a player will exhibit, contrary to expectations.  The 

returns to effort are higher as the time the winning cohort is formed draws nearer.  However, the 

longer a tournament goes, the more fatigue becomes a factor.  With sixteen of nineteen 

tournaments lasting longer than forty minutes, players may fatigue, significantly reducing the 

level of effort exerted with time.  Furthermore, as players are eliminated, one’s probability of 

winning increases.  Thus the potential lower returns to effort may explain the significant 

decrease in effort with the number of players remaining.  

  

(Insert Table 3) 

 

Risk:   

 Table 4 presents the White corrected results for risk.  In order to fully capture the impact 

of tournament progress on risk taking a dummy variable for each hand is included.  The results 

show that risk decreases significantly over hands with a large drop in risk taking after hand 12, 

and a small but significant decrease over the life of the tournament thereafter.  More than 80% of 

the hand binaries are significant at the 5% level.  This is consistent with expectations as the 

longer a tournament goes the fewer the total bets remaining in the tournament, and the faster 

eliminations will occur.  Therefore, the cost of risk is higher the longer the tournament goes.  A 

player with more chips will assume significantly less risk as expected because there are lower 

returns to risk as a player’s chip stack increases.  The returns to chips are lower as chip stack 



 
 

increases because at the margin it is less vital for a player with more chips to gain chips than a 

player with fewer chips because the player with fewer chips is closer to elimination and in a 

relatively weaker position relative to the winning cohort. 

 As expected, a player will take significantly more risk the greater the cushion a player has 

on the adjacently ranked trailing player (negative spread) or the greater gap a player faces 

between himself and the adjacent higher ranked player (positive spread).   As a player falls 

further and further behind the adjacently better ranked player, he must assume more risk in order 

to catch up.  Similarly, the further and further ahead a player gets from the adjacently worse 

ranked player, the lower the rank cost of risk as the less likely he is to be caught by the trailing 

player.  Players in the role of the small and big blind take significantly more risk than other 

players.  A player who assumes the role of the small blind or the big blind is forced to commit 

some chips to pot, and the thus the relative price of calling a bet in the first round of betting is 

lower to them than to any other player in the tournament.  As a result, one would expect them to 

take on significantly more risk.  The degree to which players take on risk should decrease as the 

number of players remaining in the tournament decreases, because the cost of risk is greater 

given the increased likelihood of winning when there are fewer players remaining.  Results 

indicate a significant decrease in the level of risk as players are eliminated.  Consistent with 

theory, the most significant explanatory variables in the risk model were the spread variables, the 

amount of time elapsed, and the number of players remaining. 

 Results indicate that effort also impacts risk taking.  Rosen (1986) and others theorize 

that risk is substituted for effort.  Therefore, effort should have a negative relationship with risk.  

However, results indicate that increases in effort lead to significant increases in risk taking.  One 

plausible explanation for this result is that low stakes poker players’ motivations may differ from 



 
 

those of executives on which previous studies based their analysis.  Additionally, players may 

identify that they are increasing their effort and therefore also try and significantly increase the 

variance of their outcomes because they expect a more favorable outcome.   

 

(Insert Table 4) 

 

Caveats: 

 Caution must be taken in drawing generalized conclusions from this study of double up 

tournaments.  The models explain only a portion of winning as well as effort and risk selection.  

While skill plays a significant role in determining the outcome, luck is also a significant 

component as found by Dreef et al (2003).  Therefore, prediction of winning, no matter how 

measured, will be of limited power.  This level of randomness imposes a ceiling on the degree of 

variation that can be explained by the model.  The R squared for effort (.0164), risk (.1005), and 

winning (.0252) indicates that the full effect has either not been captured or not been explained.  

This could be due to measurement error with regard to the dependent variables or due to an 

incomplete theoretical framework.   

The results presented rely on accurate measurements of effort and risk.  Effort is proxied 

by a comparison of the outcome of a hand versus an average of the player’s hand outcomes.   

Players with an early negative rolling average, potentially just from being in a blind early in the 

tournament, will have much higher measured effort all else equal.  The converse also holds.  

Hole cards dealt and community cards dealt are also random components that will influence 

effort measurement.  These chance occurrences will affect measured effort without 



 
 

corresponding effects on actual effort.  Measurement error is also indicated in effort by the 

results: as time elapsed had a more significant effect on effort than any other variable.  

The same logic applies to the measurement of risk.  Risk is measured as the absolute 

standardized change in chip stack of a player in a given hand.  However, a player who is dealt 

few decent cards will generally show less “risk” than a player with average cards who will 

exhibit less risk, as measured, than a player with great cards.  Furthermore, the way effort and 

risk are proxied leads to a correlation between them.  This is a possible explanation for the 

positive relationship between risk and effort found in the prediction of risk taking. 

 

Conclusions: 

  This study sheds light on the degree to which risk and effort influence winning amongst 

low stakes players operating under a tournament pay scheme.  The study applied the theory of 

tournament pay, to the selection of risk and effort by low stakes players in double up 

tournaments in order to explain winning.  Results are generally as expected.  Effort was 

demonstrated to have a significant and positive impact on winning.  Effort was demonstrated to 

be positively correlated with risk taking in a departure from theory in the field (Rosen 1986).  

This result is mitigated by this study’s inability to explain effort.  Risk taking was found to be 

negatively impacted by proximity to adjacently ranked players and decreased as the number of 

players remaining in the tournament decreased and as a player’s chip stack increased.   

 These results suggest that risk is not a substitute for effort as predicted by Rosen (1986).  

In this vane, tournaments do appear to be a viable alternate to piece rate wages for low stakes 

workers when faced with otherwise similar conditions as high stakes workers.  This conclusion 



 
 

must be qualified by the potential measurement error in proxying for both risk and effort, and the 

degree to which the determinants of winning were unidentified.   

 A natural extension of this work would be an examination of different types of low stakes 

tournaments to determine if the effects found in this study extend beyond this tournament 

structure.  Future studies that obtain hole card information would be better able to proxy for both 

effort and risk.  Additionally, obtaining data for each round of betting rather than each hand 

would allow for better estimation of risk and effort.  A player is able to reselect effort and risk at 

each betting juncture within each given hand.  The combination of observable hole cards and 

intermediate betting rounds would allow for better proxying and prediction of risk and effort.    
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Table 1: 
Variable Name Definition Calculation Min Max Mean Time 

Collected 
Player A number assigned to each player depending 

upon their location at the table.  Player 1 is at 1 
o’clock on the table and players are numbered 
clockwise through 9. 

Observed 
Value 

1 10 5.40 Beginning 
of hand 

Tournament A number assigned to each individual 
tournament starting with the first observed and 
going to the last observed (Tournament 18) 

Observed 
Value 

1 19 9.81 Beginning 
of hand 

Chip Stack (CS) The number of “chips” that a player has.  Chips 
are given in dollar amounts and a player may 
only bet the chips he has.  $1 in chips does not 
equal $1USD.  There is no conversion rate as 
no conversions are allowed. The data is 
collected at the end of each hand. 

Observed 
Value 

0 15000 1848.8 Beginning 
of hand 

Big Blind Level The big blind is a forced bet made by 1 player 
each hand before cards are dealt. The big blind 
rotates clockwise around the table.  It increases 
at 10 minute intervals.   

Observed 
Value 

20 300 94.78 Beginning 
of hand 

Small Blind 
Level 

Exactly half of the size of the big blind.  
Structurally the same as the big blind.  Made by 
the player on the right of the big blind. 

Observed 
Value 

10 150 47.39 Beginning 
of hand 

Big Blind A binary variable with value 1 when a given 
player is forced to post the big blind in a given 
hand 

IF(Big 
Blind)=1 

0 1 .123 Beginning 
of hand 

Small Blind A binary variable with value 1 when a given 
player is forced to post the small blind in a 
given hand.  

IF(Small 
Blind)=1 

0 1 .123 Beginning 
of hand 

Standardization 
Factor (SF) 

The size of the big blind.  If the big blind is 30, 
then the standardization factor is 30.  It is a unit 
free measure 

=Big Blind 20 300 94.78 Beginning 
of hand 

Time Elapsed The amount of time elapsed from the beginning 
of the first hand until the beginning of the 
current hand.  This will not be included as it is 
perfectly multicolinear given the big blind. 

IF (big blind = 
20) = 0 
IF (big blind = 
30) = 10 
IF (big blind = 
50) =20… 

0 70 25.71 Beginning 
of hand 

Players 
Remaining 

The number of players who have not been 
eliminated from the tournament at the 
beginning of a given hand 

Observed 
Value 

6 10 8.36 Beginning 
of hand 

Rank_1 A binary variable that equals one if the player 
has the most chips at the end of a given hand.   

IF(Rank=1) =1 
If not = 0 

0 1 .12 Beginning 
of hand 

Rank An ordinal variable that reflects the relative 
positioning of a player.  If a player has the most 
chips of any player, rank =1, if the second 
most, rank =2.  This continues through rank 9.  
There are no ties in rank, if two players have 
the same number of chips, the one with the 
lowest (best) rank entering the hand will get the 
lower (better) rank.  Once a player has folded 
out they are assigned the rank that they finish 
the hand in.  If two or more players bust, they 
are ranked based upon the number of chips they 
had entering the hand as per tournament rules. 

Observed 
Value 

1 10 4.68 Beginning 
of hand 



 
 

(+) Spread The number of chips a player would need to 
gain to have the same number of chips as the 
player ranked immediately ahead.  A player 
ranked number 1 has a (+) spread of 0. 

|rank(i+1)’s 
CS – rank(i)’s 
CS| 

0 8875 340.58 Beginning 
of hand 

Standardized (+) 
Spread 

The (+) spread divided by the standardization 
factor. 

[(+) Spread] / 
SF 

0 108.75 4.52 Beginning 
of hand 

(-) Spread The number of chips a player would have to 
lose to have the same number of chips as the 
player one rank behind.  The 9th ranked player 
is assigned a (-) Spread equal to 0. 

rank(i)’s CS – 
rank(i+1)’s CS  

0 8875 426.71 Beginning 
of hand 

Standardized (-) 
Spread 

The (-) Spread divided by the standardization 
factor. 

[(-) Spread] / 
SF 

0 108.75 5.74 Beginning 
of hand 

Leading Group A binary variable that equals one when a player 
is ranked in the top three and there are three or 
fewer players with more than 1500 chips. 

IF(Rank<=3) 
and IF(…) = 1 

0 1 0.22 Beginning 
of hand 

Clustered Chip 
Stack 

A binary variable that equals one when a player 
is within +/- 3 big blinds worth of chips of at 
least three other players.  

1 IF: 
Count(CSi-
CSj<=3SF)>=3 

0 1 0.36 Beginning 
of hand 

Big Chip Stack A binary variable that equals one when a player 
has greater than 15 bets remaining 

IF(St.CS>15) 
= 1 
If not = 0 

0 1 0.67 Beginning 
of hand 

Standardized 
Chip Stack 

The chip stack divided by the size of the big 
blind.  The standardization is done at the end of 
the hand with the big blind that was played in 
the hand. 

CS / SF 0.43 189.75 34.41 Beginning 
of hand 

Change in Chip 
Stack 

The difference between a player’s chip stack in 
one hand from the hand before.  This is also 
measured at the end of the hand. 

CSn+1 – CSn -4040 4200 0.00 End of 
hand 

Standardized 
Change in Chip 
Stack 

The difference between a player’s chip stack in 
one hand from the hand before divided by the 
standardization factor 

(CSn+1 – CSn) / 
SF 

-75 104 0.00 End of 
hand 

Absolute Change The absolute value of the change in a player’s 
chip stack from hand n to hand n+1  

|CSn+1 – CSn| 0 4200 91.22 End of 
hand 

Standardized 
Absolute Change 
(Risk) 

The absolute value of the change in a player’s 
chip stack from hand n to hand n+1 divided by 
the standardization factor to get the absolute 
value of the change in bets from one hand to 
the next. 

Absolute 
Change / SF 

0 104 1.25 End of 
hand 

Chips to 
Threshold 
(Winning) 

The difference between a given player’s chip 
stack and the chip stack of the 5th ranked 
player.  The number of chips a player is away 
from joining the winning cohort. 

CSi-CS5 
CS5=5th ranked 
player’s CS 

-1795 8830 364.57 End of 
hand 

Hand The number of hands that have been dealt in the 
given tournament including the current hand 

Observable 1 106 33.93 Beginning 
of hand 

%Change in 
Chip Stack 

The percentage change in the chips a given 
player has from the beginning of the hand to the 
end of the hand. 

(CSk+1 – CSk) / 
(CSk) 

-1 3.14 0.01 End of 
hand 

Effort The difference between the percent change in 
chips a player experiences in a given hand and 
the average percent change in chips that they 
have had up to that point. 

(%CHG_CS) – 
(AVG%_Chg_
CS) 

-1.04 3.11 -0.01 End of 
hand 

 
 
 



 
 

Table 2: 

Variable Coefficients Std. Coefficients 
Intercept 151.2412*** 

 (9.69) 
 
 

Small_Blind 50.6096 
 (1.56) 

0.0161 
 

Big_Blind 47.2649 
 (1.44) 

0.0150 
 

Std_CS 5.3852*** 
(15.73) 

0.1416*** 

Risk 12.2197*** 
 (3.57) 

0.0496*** 
 

Effort 187.9870*** 
(2.88) 

0.0302*** 

R Squared .0252  
 
This table presents coefficient estimates with robust t-values below in parentheses.  All results are two tail test results.  
* indicates significance at the 10% level, ** indicates significance at the 5% level, and *** indicates significance at the 1% level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 3: 

Variable Coefficients Std. Coefficients 
Intercept 0.1112*** 

 (3.62) 
 
 

Time -0.0018*** 
 (-3.50) 

-0.1761*** 
 

Rank_1 -0.0259* 
 (-1.68) 

-0.0456* 
 

Rank_2 -0.0018 
 (-0.10) 

-.0032 
 

Rank_3 -0.0178 
 (-1.09) 

-0.0312 
 

Rank_4 -0.0224 
(-1.38) 

-0.394 

Rank_5 -0.0224 
 (-1.34) 

-0.394 
 

Rank_6 -0.0260 
 (-1.48) 

-0.0457 
 

Rank_7 -0.0264 
 (-1.47) 

-0.0425 
 

Rank_8 -0.0059 
 (-0.31) 

-0.0086 
 

Rank_9 -0.0207 
 (-0.99) 

-0.0245 
 

Leading Group -0.0126* 
 (-1.70) 

-0.0278* 
 

Clustered CS 0.0113** 
 (2.27) 

0.0290** 
 

Big CS -0.0047 
 (-0.67) 

-0.0117 
 

Std CS -0.0015*** 
 (-5.67) 

-.2117*** 
 

Std Spd Pos -0.0010*** 
 (-2.85) 

-0.0507*** 
 

Std Spd Neg 0.0013*** 
 (4.46) 

0.0711*** 
 

Play_Rem_9 -0.0096* 
 (-1.91) 

-0.0213* 
 

Play_Rem_8 -0.0100* 
 (-1.76) 

-0.0226* 
 

Play_Rem_7 -0.0007 
 (-0.07) 

-0.0013 
 

Play_Rem_6 0.0121 
 (1.12) 

0.0222 
 

R Squared .0164  
This table presents coefficient estimates with robust t-values below in parentheses.  All results are two tail test results.  
* indicates significance at the 10% level, ** indicates significance at the 5% level, and *** indicates significance at the 1% level. 



 
 

Table 4: 

Variable Coefficients Std. Coefficients 
Intercept 5.1871*** 

 (4.01) 
 
 

Time -0.0425 
 (-0.78) 

-0.1666 
 

BBLevel 0.0102 
(0.96) 

.15822 

Std CS -0.0303** 
 (-2.02) 

-0.179** 
 

Std Spd Pos 0.0832*** 
 (5.02) 

0.1692*** 
 

Std Spd Neg 0.1098*** 
 (4.30) 

0.2492*** 
 

Small Blind 0.7050*** 
 (6.01) 

0.0507*** 
 

Big Blind 1.2749*** 
 (10.47) 

0.0917*** 
 

Play_Rem_9 -1.1624*** 
 (-3.75) 

-0.1059*** 
 

Play_Rem_8 -1.7124*** 
 (-4.86) 

-0.1585*** 
 

Play_Rem_7 -2.1870*** 
 (-5.35) 

-0.1646*** 
 

Play_Rem_6 -2.4216*** 
 (-5.55) 

-0.1810*** 
 

Effort 2.1090*** 
 (2.80) 

0.0865*** 
 

R Squared .1005  
This table presents coefficient estimates with robust t-values below in parentheses.  All results are two tail test results.  
* indicates significance at the 10% level, ** indicates significance at the 5% level, and *** indicates significance at the 1% level.  
Hand, player, tournament, and rank binaries were also included as controls. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Appendix A: 

Term Definition 
Big 
Blind 

The big blind is a forced bet made by 1 player each hand before cards are dealt. The big blind 
rotates clockwise around the table.  It increases at regular intervals (often 10 minutes).   

Buy-in The amount of money a player must pay to enter into a tournament.  It includes money that 
will go into the prize pool and an entrance fee taken by the casino/site. 

Chip 
Stack 

The total number of chips that a given player holds.  Every player has a starting chip stack of 
1500. 

Chips The unit of account in a poker tournament.  A player is issued chips in exchange for his buy-in 
into the tournament.  At tournaments there is no exchange rate to translate chips into dollars.  
When a player has no chips remaining he is eliminated.  Chips are recollected from winners at 
the end of the tournament in exchange for their payout. 

Dealer A designation given to one player in each hand.  This player bets last in each round of betting 
after the first round.  The player designated the dealer does not actually deal the cards as this 
is conducted automatically.  A player is only the dealer for one hand before the designation 
rotates to the player to his left. 

Hole 
Cards 

Every player is dealt two cards face down at the beginning of every hand.  These two cards are 
referred to as the player’s hole cards. 

Pot The sum of the chips that have been bet by all players in a given hand. 
Small 
Blind 

Exactly half of the size of the big blind.  Structurally the same as the big blind.  Made by the 
player on the right of the big blind. 
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Appendix C: 

Duration Small Blind Amount Big Blind Amount 
0-10 10 20 
10-20 15 30 
20-30 25 50 
30-40 50 100 
40-50 75 150 
50-60 100 200 
60-70 125 250 
70-80 150 300 
 
No tournament lasted longer than 80 minutes. 
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