UNIVERSITY OF

RICHMOND

University of Richmond

UR Scholarship Repository

Bookshelf

2002

[Introduction to] Data Structures with Java: A Laboratory
Approach

Joe Kent

Lewis Barnett Il
University of Richmond, Ibarnett@richmond.edu

Follow this and additional works at: https://scholarship.richmond.edu/bookshelf

b Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation
Kent, Joe, and Lewis Barnett. Data Structures with Java: A Laboratory Approach. Wilsonville, OR: Franklin,
Beedle and Associates, 2002.

NOTE: This PDF preview of [Introduction tof] Data Structures with Java: A
Laborator)(/ Apfproach includes only the preface and/or introduction. To
purchase the full text, please click here.

This Book is brought to you for free and open access by UR Scholarship Repository. It has been accepted for
inclusion in Bookshelf by an authorized administrator of UR Scholarship Repository. For more information, please
contact scholarshiprepository@richmond.edu.


http://www.richmond.edu/
http://www.richmond.edu/
https://scholarship.richmond.edu/
https://scholarship.richmond.edu/bookshelf
https://scholarship.richmond.edu/bookshelf?utm_source=scholarship.richmond.edu%2Fbookshelf%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fbookshelf%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fbookshelf%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.fbeedle.com/content/data-structures-java-laboratory-approach
mailto:scholarshiprepository@richmond.edu

Preface

Next Steps

vii

After developing basic Java programming skills in an introductory
course, students must, in the second course, be introduced to the
fundamental ways to organize and manage data. Programs in the
first course are often small by the standards of practicing pro-
grammers, usually just a few hundred lines. Real applications are
much larger, and we need to manage complexity and organize
data for efficient access. “Data structures” is a common name
given to the second course. While this name emphasizes data
organization, abstraction is essential for the management of com-
plexity. That abstraction is provided by classes that support the
organization of the data, yet restrict access to the details of that
organization. For example, a stack is a linear organization of infor-
mation that behaves in a last-in, first-out manner. Its information
is accessed by a restricted set of methods. Several common imple-
mentations of the class are possible, yet the programmer who uses
the class need not know the implementation details. On the other
hand, the course needs to explore implementation techniques so
that the student can create new data structures with efficient
implementations. In summary, the next stage in the development
of a computer science student’s knowledge is a mixture of design,
abstraction, and implementation of classic data organizations.

We believe that learning is enhanced by guided hands-on
work in a laboratory setting, where new ideas can be explored
and implemented. This book emphasizes this philosophy by call-
ing each chapter a “laboratory.” Each laboratory has pre-labora-
tory reading, exercises, and review questions that present the new
concepts. The hands-on portion of the laboratory asks the student
to write simple programs that illustrate the new ideas, plus com-
plete a component of a larger application program. With the
explanatory material, this book can be used as both a textbook



viii

PREFACE

and a laboratory manual for courses following the guidelines for CS2. It can
also be used as a self-directed learning tool.

Coverage

This book is designed to present the key topics in the second course for com-
puter science students, commonly called CS2, using the Java programming lan-
guage. The central topics in such a course include multidimensional arrays,
structures created using dynamic memory allocation such as linked lists and
trees, stacks, queues, heaps, files, sets, and their applications. Algorithms for
hashing and file compression are also included. For the abstract data types
(ADTs), stack and queue, we present both array and linked list implementa-
tions, and show how they can be used as ADTs. We feel that examining the
implementation choices of an ADT provides the foundational understanding
and programming skills required for more advanced work.

For convenience, we cover exceptions and file operations in Java, although
this may have been covered in a first course. We also include material on the
binary representation of data and Java’s bitwise operations, with applications.
These are topics needed for computer organization and operating systems
courses.

Objects are central in Java, but Java can be used without much attention to
object-oriented programming concepts. We think that students need a good

* look at class hierarchies, inheritance, and other fundamental ideas in object-ori-

ented programming. A natural way to do this is by exploring Java’s use of
graphical components. In a sequence of three labs, we explore the basic ideas of
computer graphics and develop a large object-oriented application, the Free-
Cell solitaire game. The third laboratory reuses many of the classes to develop
another card game, illustrating the reusability of a well-designed set of classes.

The capstone laboratory is “File Compression.” It uses trees, heaps as prior-
ity queues, file operations, and bitwise operations to implement Huffman
encoding of data. It requires two laboratory sessions to complete.

Assumptions

We assume that the reader has completed a one-semester first course in com-
puter science that focuses on programming using Java. We assume knowledge
of fundamental Java language features, plus basic classes such as String and
Math, methods and their use, arrays, recursion, plus algorithms for searching
and sorting. Sorting algorithms should include at least one nlog(n) sort such as
merge sort or quick sort. Searching should include linear and binary search
algorithms. Students should be able to write and test programs using these top-
ics. If our textbook Basic Java Programming: A Laboratory Approach was used in
the first course, then the material up through Laboratory 12 that does not
involve graphics should have been covered. Ideally, the laboratory “I/O and
Exceptions” would have been covered, but we reproduce it here in case that
was not in the reader’s first course.

Students whose first course used the C++ language should be able to make
a quick transition to Java. The best way to make that transition is to redo in Java
some C++ assignments from the first course. This may take the first week or
two of the second course. We do not provide introductory material on basic
Java. It is available in many books.



PREFACE

We would like these labs to be independent of any computer environment,
but that is not totally possible. We assume the environment to be Microsoft
Windows 95/98/NT/2000. The program files were developed in that environ-
ment. It should be possible to use these laboratories in general Unix or Linux
environments, provided one uses the common dos2unix command to strip the
extra character inserted by Windows in the program files on the diskette. Of
course, in non-Windows environments the diskette would have to be appropri-
ately mounted.

IDEs

It is possible to create Java programs using a simple editor like Notepad and the
tools of the free Java Development Kit (now called the SDK) from Sun Micro-
systems, but that approach is relatively primitive. A number of integrated
development environments, or IDEs, are available. These are applications that
use a graphical user interface to provide windows, menus, buttons, and so on
to aid in program development and testing. We prefer Kawa by Allaire (http://
www.allaire.com/products/kawa/index.cfm) because it allows for easy creation
of very simple programs and can be used with any version of Java. However,
we have made every attempt to make this manual IDE-independent. An
appendix covers the basics of several common IDEs that support Java™ 2. Only
the appendix on debugging explicitly uses the Kawa IDE for compiling and
running a program with the debugger.

LabPkg

We want these labs to be as independent as possible of any particular textbook.
For that reason we have developed a Java package, LabPkg, that we use for the
user interface of our applications. The package allows programs to interact with
the user via graphical components. The critical class is ViewFrame, which is
instantiated as a window with three components:

B atoolbar with a provided Exit button that kills the current application

= ascrolled text area for displaying program output

® a“canvas” for displaying images or drawing figures

The canvas component is optional and is not used in most simple applica-
tions. The user may add additional buttons to the toolbar for initiating actions.
Interactive input is obtained by pop-up dialog windows generated by calls to
simple methods.

If you looked at another textbook, it would have a different package, as
every author has a favorite way to do input in Java. Why? Java supports input
from the keyboard on a line-by-line basis but forces the user to process the
string of characters to extract the desired numeric values and handle errors. For
beginners, the details of this task distract from the primary goal of understand-
ing principles of programming that apply generally. Special packages hide the
mess. Unfortunately, there is no standard package at this time.

Our package is based on the paradigm of a program as having three compo-
nents: the model, the view, and the controller. (This is the MVC paradigm
developed by Smalltalk programmers more than 20 years ago.) The model is
simply the data that represents the current state of the program. The view is
what the user sees of the data. The controller is the part that provides interac-
tion of the user with the program. Often the view and controller components



PREFACE

are joined in programs that use a graphical user interface. For most of our pro-
grams, a ViewFrame object provides the view and controller components.

Many of the provided test programs use this package to create a simple
graphical interface. Appendix A provides information about the package and
its use, with simple examples. You should install the package so that the Java
compiler and interpreter can find it. See the information on personal system
setup that comes on the diskette.

Getting Files

A diskette accompanies the text and contains all of the files required for the lab-
oratories, plus example programs discussed in the pre-lab readings. The file
index.html provides a guide to the files and documentation and should be
opened in a browser.

Using a browser, the files can be “downloaded” by the student from the dis-
kette to a local hard drive or a network drive. It is also possible to use Windows
Explorer to copy the files from the diskette. The files are in subfolders of the
folder labfiles.

The diskette contains information concerning setting up a personal com-
puter to do the hands-on part of the text.

Dependencies
among Labs

We assume basic Java programming skills prior to the first laboratory. The chart
below gives the content dependencies among the laboratories.

T
11— 1 12 13

.

2/10 1
5\6 7
8§ ——> 9

14—>15 —>16

The minimum content for a semester course would include all of the labora-
tories except possibly 3, 13, 14, 15, and 16. Labs 1 and 2 may be omitted if the
material was covered in a previous course. Lab 4 on recursion may be review
for some students, but it is worth spending more time on it, if only to cover
quick sort and merge sort.

Lab 13 is a capstone laboratory and may be developed as a major project. It
takes two sessions to complete and still has a large post-laboratory exercise.
Labs 14, 15, and 16 present graphics and a large object-oriented example. These
labs are not central to the data structures aspect of the course, but they can pro-
vide an enriching experience if the first course had minimal object-oriented
programming. If all of the laboratories are to be completed, they require 18 ses-
sions.



PREFACE

The Authors

We are computer science faculty at the University of Richmond, with more
than 38 combined years of teaching experience. We developed early Java ver-
sions of these laboratories as special experiences for our students more than
five years ago. In the fall of 1999, they were expanded and used in a formal lab-
oratory setting. Experience and feedback from other faculty allowed us to
refine those initial materials.

Thanks

We would like to thank our faculty colleagues who provided feedback. Special
thanks go to Jim Leisy, our editor, who had faith in us. Thanks also to Sue Page,
Stephanie Welch, Tom Sumner, Ian Shadburne, Christine Collier, Krista Brown,
and Misty Harland at Franklin, Beedle & Associates. Of course, we cannot for-
get the hundreds of students at UR who provided candid responses to their
experiences with the materials.

For supporting us while we worked on the manuscript, we give special
thanks to our wives, Mary Kent and Rebekah Barnett.



	[Introduction to] Data Structures with Java: A Laboratory Approach
	Recommended Citation
	NOTE: This PDF preview of [Introduction to] Data Structures with Java: A Laboratory Approach includes only the preface and/or introduction. To purchase the full text, please click here.


	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

