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PACIFIC JOURNAL OF MATHEMATICS
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A TOPOLOGICAL CONSTRUCTION FOR ALL TWO-ROW
SPRINGER VARIETIES

HEATHER M. RUSSELL

Springer varieties appear in both geometric representation theory and knot
theory. Motivated by knot theory and categorification, Khovanov provides
a topological construction of (m, m) Springer varieties. Here we extend
his construction to all two-row Springer varieties. Using the combinatorial
and diagrammatic properties of this construction we provide a particularly
useful homology basis and construct the Springer representation using this
basis. We also provide a skein-theoretic formulation of the representation
in this case.

1. Introduction

Springer varieties (or Springer fibers) are certain subvarieties of the variety of full
flags in Cn . Given a partition λ of the number n the Springer variety Sλ is the
collection of full flags in Cn fixed by a nilpotent linear operator with Jordan blocks
given by λ. Springer varieties were first introduced by Springer who constructed ir-
reducible representations of the symmetric group on their top nonzero cohomology
classes [Springer 1976]. This remarkable construction has motivated the study of
these varieties by geometric representation theorists; see, for example, [Fung 2003;
Hotta 1981; Kazhdan and Lusztig 1980].

This representation of the symmetric group, which has come to be known as the
Springer representation, appears in the literature in a variety of forms. This includes
Springer’s original representation [1976] on the cohomology of Springer varieties,
the tensor product of Springer’s representation with the sign representation [Lusztig
1981; Slodowy 1980; Borho and MacPherson 1981], and a representation on ho-
mology which is isomorphic to Springer’s cohomology representation [Kazhdan
and Lusztig 1980]. Many of these equivalences are proven in [Hotta 1981].

A significant part of this paper was written in Spring 2010 while attending the Homology Theories of
Knots and Links program at the Mathematical Sciences Research Institute. Thank you to MSRI for
this opportunity. The author was also partially supported by NSF VIGRE grant DMS 0739382.
MSC2000: 20C30, 55N45, 57M25, 57M60.
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222 HEATHER M. RUSSELL

Springer varieties have also begun to appear with increasing frequency in the
literature on knot homologies and categorification. For n = 2m Khovanov con-
structs a functor-valued invariant of tangles using an arc algebra H m with center
isomorphic to the cohomology of the (m,m) Springer variety [Khovanov 2002].
In proving this isomorphism he provides a topological construction of the (m,m)
Springer variety as a subspace of a product of spheres [Khovanov 2004]. Springer
varieties also appear in Cautis–Kamnitzer knot homology via derived categories
of coherent sheaves and in the Seidel–Smith link invariant from the symplectic
geometry of nilpotent slices [Seidel and Smith 2006].

Stroppel gave a Lie-theoretic generalization [2005] of Khovanov’s functor-valued
invariant of tangles, and described diagrammatically [2009] the categories related
to this construction and the top-degree cohomology of (m,m)-Springer varieties,
using them to build the Springer representation. In this paper we consider homol-
ogy rather than cohomology and all degrees rather than just the top degree.

The structure of Springer varieties is not well understood. In particular for
general classes of Springer varieties the topology of individual components and
the interaction of those components in not known. Finding topological models for
Springer varieties has the potential to aid geometric representation theory as well
as deepen our understanding of the connections between Springer varieties and
knot theory.

In previous work we use Khovanov’s topological construction to prove an iso-
morphism between the homology of the (m,m) Springer variety and the Bar-Natan
skein module of the solid torus with boundary web 2m copies of the longitude
[Russell 2009]. We also use this construction to give a completely explicit and
combinatorial construction of Springer’s representation on this class of Springer
varieties [Russell and Tymoczko 2008].

Now consider n not necessarily even. The first main result of this paper is an
extension of Khovanov’s construction of a topological model for (m,m) Springer
varieties to all Springer varieties Sλ where λ is a two element partition of the num-
ber n. This construction can be found in Section 2. The proof that our construction
is homeomorphic to the Springer variety follows the structure and approach of
[Russell and Tymoczko 2008, Appendix].

We draw the reader’s attention to the fact that the object we construct and the
Springer variety are homeomorphic as topological spaces and not isomorphic as
algebraic varieties. For our purposes, this is sufficient since we are interested in
studying the homology of the Springer variety. Throughout the paper we consider
singular homology with complex coefficients, and we refer to the homeomorphic
image of the irreducible components of the variety as irreducible components.

In Section 3 we analyze the intersection of irreducible components of two-row
Springer varieties and build an exact sequence on homology. In order to construct
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this sequence we generalize certain lemmas stated but not proven in [Khovanov
2004]. We prove these results in the Appendix.

In Section 4 we introduce diagrammatic generators for the homology of each
component of a two-row Springer variety. We give three simple relations between
the generators from different components within the same variety; these relations
generalize those given in [Russell 2009]. We then use the exact sequence con-
structed in Section 3 to prove Theorem 4.3 which shows that these diagrammatic
generators and relations describe the homology of the associated two-row Springer
variety. We use these generators and relations to reduce to a basis.

Section 5 gives a completely diagrammatic construction of a symmetric group
action on the homology of the (n−k, k) Springer variety. As in [Russell and
Tymoczko 2008], we prove it is isomorphic to the Springer representation by
comparing it with the de Concini–Procesi construction of Springer representations
[De Concini and Procesi 1981], making use of Garsia and Procesi’s combinatorial
analysis [1992] of de Concini and Procesi’s work.

In response to a question of Stephan Wehrli we conclude Section 5 with the
following theorem, which provides a skein-theoretic formulation of the Springer
representation in the two-row case.

Theorem. Given a diagrammatic homology generator M ∈H∗(Sn−k,k) and σ ∈ Sn

glue a flattened braid corresponding to σ to the bottom of M forming M ′. Then
the Springer action σ ·M is equal to s(M ′), where s is defined as follows.
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2. Extending Khovanov’s topological construction

For n= 2m Khovanov constructs a topological space with cohomology isomorphic
to that of the (m,m) Springer variety and conjectures that the two are actually
homeomorphic [Khovanov 2004, Conjecture 1]. The main ideas behind a proof of
this fact can be found in [Cautis and Kamnitzer 2008], and detailed proofs are given
in [Russell and Tymoczko 2008, Appendix] and independently in [Wehrli 2009].
In this section we generalize Khovanov’s construction to all two-row Springer va-
rieties. The proof that our construction is homeomorphic to the Springer variety
follows that of [Russell and Tymoczko 2008, Appendix].

Let n ≥ 1 be some positive integer. A complete flag in Cn , denoted by V•, is a
collection of nested subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn
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such that the complex dimension of Vi is i . The collection of all such objects is
the variety we denote by Fn . Partial flags have the same nesting property but are
not required to have subsets in every intermediate dimension.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) be a partition of the number n. Let 0 : Cn
→ Cn

be a nilpotent linear operator with Jordan blocks of sizes specified by the partition
λ. Then we have the following definition.

Definition 2.1. The Springer variety associated to the partition λ is

Sλ = {V• ∈ Fn : 0Vi ⊆ Vi for all i}.

We focus on Springer varieties associated to two-element partitions which we
call two-row Springer varieties. Note that every two-element partition of n can be
written as (n−k, k) for some positive integer 0 ≤ k ≤ b n

2c. We call Sn−k,k the
(n−k, k) Springer variety.

A Young diagram for the partition λ of the number n is a top and left justified
collection of boxes such that the i-th row has λi boxes. A standard filling of this
diagram is a filling of the boxes with the numbers 1 through n such that each occurs
exactly once and the rows and columns are strictly decreasing from left to right and
top to bottom respectively.

The irreducible components of Springer varieties are indexed by standard Young
tableaux [Spaltenstein 1976; Vargas 1979]. In the two-row case, the tableaux of
shape (n−k, k) are in one-to-one correspondence with certain noncrossing match-
ings which we will call noncrossing matchings of type (n−k, k). This was noticed
in [Stroppel and Webster 2010].

Definition 2.2. Consider n vertices evenly spaced along a horizontal line. A non-
crossing matching of type (n−k, k) is a nonintersecting arrangement of k arcs and
n−2k rays incident on the n vertices lying above the horizontal line. We assume
that the rays are “infinitely high”, so that arcs cannot cross rays. Here is an example
of a noncrossing matching of type (6, 5):

You can get a unique noncrossing matching of type (n−k, k) from a standard
Young tableau via the following procedure, illustrated in Figure 1. Start with the
smallest number in the bottom row, draw an arc with right endpoint incident on that

1 2 5 6 7 9
3 4 8 10 11

↔

Figure 1. Going from a Young tableau to a noncrossing matching.
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vertex and left endpoint incident on the nearest unoccupied vertex. Repeat this for
all remaining numbers in the bottom row, moving from left to right in the bottom
row. Fill any remaining unoccupied positions with rays. One can easily define an
inverse operation and see this is indeed a bijection. We generalize this procedure
in the proof Lemma 4.7, so the reader can go there for more details.

Matchings will be denoted by lowercase letters. For clarity we will make these
bold throughout. Let Bn−k,k be the set of noncrossing matchings of type (n−k, k).
Given a ∈ Bn−k,k write (i, j)∈ a if a has an arc connecting vertices i and j . Write
(i) ∈ a if a has a ray incident on the vertex i .

Let N > 2n be a large fixed integer. Let X : C2N
→ C2N be a nilpotent linear

operator with two Jordan blocks of size N . Let {e1, . . . , eN , f1, . . . , fN } be an
orthonormal basis for C2N with the property that Xei = ei−1 and X fi = fi−1. Here
we define e−1 = f−1 = 0.

Consider the following variety Yn of partial flags in C2N .

Yn =
{

V• = V1 ⊂ · · · ⊂ Vn : dimC(Vi )= i and X Vi ⊆ Vi−1
}
.

From now on flags will be written (V1, . . . , Vn) to save space. For 0≤ k ≤ bn
2c, let

Vn−k,k = 〈e1, . . . , en−k, f1, . . . , fk〉

and define Yn−k,k = {V• ∈ Yn : Vn = Vn−k,k}. Since Yn−k,k is the set of all complete
flags on Vn−k,k fixed by X , it is diffeomorphic to Sn−k,k .

For 1≤ i ≤ n define a subvariety of Yn by

Z i
n = {V• ∈ Yn : Vi+1 = X−1Vi−1}.

Define the map

q : Z i
n→ Yn−2, V• = (V1, . . . Vn) 7→ V ′

•
= (V1, . . . , Vi−1, X Vi+2, . . . , X Vn).

This map is a P1 bundle [Cautis and Kamnitzer 2008, page 5]. To see this, suppose
that we have V ′

•
= (V ′1, . . . , V ′n−2) ∈ Yn−2 and are considering possible choices of

V• ∈ Z i
n with q(V•)= V ′

•
. Then we must have X Vi+2= V ′i and Vi−1= V ′i−1. Since

V ′i−1 ⊂ V ′i and V• ∈ Z i
n we have a P1 worth of choices for Vi .

Let p= (0, 0, 1) be the north pole of the standard unit two-sphere S2 embedded
in R3. Let −p= (0, 0,−1) be the south pole in S2 where −p is understood as the
antipodal map.

Definition 2.3. Given a ∈ Bn−k,k , define subspaces of (S2)n by

Sa,n−k,k= {(x1, . . . , xn) ∈ (S2)n : xi = x j if (i, j) ∈ a and xi = (−1)i p if (i) ∈ a},

S′a,n−k,k= {(x1, . . . , xn) ∈ (S2)n : xi =−x j if (i, j) ∈ a and xi = p if (i) ∈ a}.
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Taking unions over all a ∈ Bn−k,k define

Xn−k,k =
⋃

a
Sa,n−k,k ⊂ (S2)n and X ′n−k,k =

⋃
a

S′a,n−k,k ⊂ (S
2)n.

The space Xn−k,k is a generalization of Khovanov’s construction for n = 2m of
the (m,m) Springer variety [Khovanov 2004, page 4]. Indeed in the (m,m) case
matchings have no rays, so each component is built by identifying coordinates
pairwise as prescribed by the arcs of the associated matching.

Using the basis {e1, . . . , eN , f1, . . . , fN } for C2N , write points in P2N−1 in the
form

〈∑
ai ei+

∑
bi fi

〉
, for ai , bi ∈C. For P1 write e1= e and f1= f . Define the

map C : P2N−1
→ P1 by〈∑

ai ei+
∑

bi fi

〉
7→

〈(∑
ai

)
e+

(∑
bi

)
f
〉
.

For each V• ∈ Yn define lines L1, . . . , Ln by Vi = Vi−1⊕ L i and L i ⊥ Vi−1.

Proposition 2.4 [Cautis and Kamnitzer 2008, Theorem 2.1]. The map

` : Yn→ (P1)n

defined by
V• 7→ (C(L1),C(L2), . . . ,C(Ln))

is a diffeomorphism. Furthermore the image of Z i
n under the diffeomorphism ` is

exactly the elements in (P1)n satisfying C(L i )=−C(L i+1).

Let s : S2
−{p}→C be the stereographic projection, and let ϕ :P1

−{〈e〉}→C

be defined by ϕ(〈xe+y f 〉)= x/y. Let8 :P1
→ S2 be the diffeomorphism defined

by

8(〈xe+ y f 〉)=
{

s−1
◦ϕ(〈xe+ y f 〉) if 〈xe+ y f 〉 6= 〈e〉,

(0, 0, 1) if 〈xe+ y f 〉 = 〈e〉.

Define the diffeomorphism 8̃ : (P1)n→ (S2)n by

8̃(x1, . . . , xn)= (8(x1), . . . , 8(xn)).

Given a ∈ Bn−k,k define Ca,n−k,k to be the preimage `−1
◦8̃−1(S′a,n−k,k).

For k > 0 let a ∈ Bn−k,k such that (i, i +1) ∈ a, and let a′ ∈ Bn−k−1,k−1 be
the noncrossing matching obtained from a by erasing the arc (i, i + 1). If f :
{1, 2, . . . , n} → {1, 2, . . . , n−2} is the map

f ( j)=
{

j if j ≤ i−1,
j−2 if j ≥ i+2,

then a′ is comprised of the set of arcs

{( f ( j), f ( j ′)) : ( j, j ′) ∈ a and ( j, j ′) 6= (i, i+1)}
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and the set of rays {( f ( j)) : ( j) ∈ a}. Define the projection map q ′ : S′a,n−k,k →

S′a′,n−k−1,k−1 by q ′(x1, . . . , xn) = (x1, . . . , x̂i , x̂i+1, . . . , xn) where x̂ j omits the
j-th coordinate.

Lemma 2.5. For noncrossing matchings a and a′ as above there is a commutative
diagram

Ca,n−k,k
8̃◦`- S′a,n−k,k

Yn−2

q

?
8̃◦-̀ S′a′,n−k−1,k−1

q ′

?

and the image q(Ca,n−k,k) is Ca′,n−k−1,k−1.

Proof. We provide a short proof here. For more details see [Russell and Tymoczko
2008, Lemma 5.2], which contains an identical argument.

Since the coordinates xi and xi+1 in S′a,n−k,k are antipodes, Proposition 2.4
allows us to conclude Ca,n−k,k ⊆ Z i

n . Let V• ∈ Z i
n . By the definition of Z i

n we
know that X−1Vi−1 = Vi+1 and thus ker X ⊆ Vi+1. It follows that L j is spanned
by

∑
i≥2 ai ei + bi fi and X L j ⊥ X V j−1 for all j ≥ i + 2. This shows that if

V• ∈ Ca,n−k,k then (8̃ ◦ `)(q(V•)) = q ′((8̃ ◦ `)(V•)). By commutativity of the
diagram, we conclude that q(Ca,n−k,k) is Ca′,n−k−1,k−1. �

Lemma 2.6. The union
⋃

a∈Bn−k,k Ca,n−k,k is equal to Yn−k,k . The Ca,n−k,k are the
irreducible components of Yn−k,k .

Proof. Consider the partition (n, 0). The unique noncrossing matching a ∈ Bn,0

has n rays and no arcs. Then X ′n,0 = S′a,n,0 = {(p, . . . , p) ∈ (S2)n} and

8̃−1(S′a,n,0)= {(〈e〉, . . . , 〈e〉) ∈ (P
1)n}.

We want to find V• ∈ Yn such that `(V•)= (〈e〉, . . . , 〈e〉).
Since C(L1)=〈e〉we must have L1=V1=〈e1〉. Inductively assume that Vi−1=

〈e1, . . . , ei−1〉. We must have L i ⊥ Vi−1 and X L i ⊂ Vi−1 so L i = 〈xi ei+y1 f1〉.
Since C(L i )= 〈e〉 this forces y1 = 0. This shows

(`−1
◦8̃−1)(S′a,n,0)= Ca,n,0 = {(〈e1〉, 〈e1, e2〉, . . . , 〈e1, . . . , en〉)}

= {(V1,0, . . . , Vn,0)}

= {V• ∈ Yn : X Vi ⊂ Vi and Vn = Vn,0} = Yn,0.

Thus we have proven Ca,n,0 is diffeomorphic to Yn,0 for all n. There is a unique
noncrossing matching a ∈ B1,1 namely the one with arc (1, 2). From [Russell and
Tymoczko 2008, Lemma 5.3] Ca,1,1 is diffeomorphic to Y1,1.

We proceed by induction assuming the statement is true for (n−k−1, k−1) in
order to prove it for (n−k, k). Assume that the claim holds for (n−k−1, k−1)
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where k ≥ 1. Let a ∈ Bn−k,k be a matching of type (n−k, k). Because a is
noncrossing, it necessarily has an arc of the form (i, i+1). Let a′ ∈ Bn−k−1,k−1

be the matching of type (n−k−1, k−1) obtained by erasing the arc (i, i+1) in a.
Then we have the P1 bundle Ca,n,k

q
→ Ca′,n−k−1,k−1.

If q(V•) = V ′
•

then for each j there exists some m with V j ⊆ X−1V ′m . Since
V ′
•
= (V ′1, . . . , V ′n−2) = (V1, . . . , Vi−1, X Vi+2, . . . , X Vn) we may choose m = j

for j ≤ i , m = i for i < j < i+3, and m = i−2 for j > i+2.
Since V ′

•
∈ Ca′,n−k−1,k−1 each V ′m is contained in Vn−k−1,k−1, so each V j is

contained in X−1Vn−k−1,k−1 = Vn−k,k . Thus for all noncrossing matchings a ∈
Bn−k,k , each Ca,n−k,k is contained in Yn−k,k . Since 8̃−1

◦` is a diffeomorphism, all
the Ca,n−k,k are compact irreducible subvarieties of Yn−k,k with the same dimension
as X ′n−k,k . Thus each Ca,n−k,k is an irreducible component of the Springer variety
Yn−k,k . Since S′a,n−k,k 6= S′b,n−k,k for a 6= b and 8̃◦` is a diffeomorphism, it follows
that Ca,n−k,k 6= Cb,n−k,k for a 6= b.

Recall that the irreducible components of Sn−k,k are in bijection with standard
Young tableaux of shape (n−k, k). [Stroppel and Webster 2010, Proposition 1.3]
shows the set of noncrossing matchings of type (n−k, k) are in bijection with
standard Young tableaux of shape (n−k, k). These results together show that the
irreducible components of Sn−k,k are indexed by noncrossing matchings of type
(n−k, k). Thus

⋃
a∈Bn−k,k Ca,n−k,k⊆Yn−k,k is isomorphic to the (n, n−k) Springer

variety, and we conclude
⋃

a∈Bn−k,k Ca,n−k,k = Yn−k,k . �

Theorem 2.7. The (n, n−k) Springer variety Sn−k,k is homeomorphic to Xn−k,k .

Proof. Lemmas 2.5 and 2.6 imply that Sn−k,k is homeomorphic to X ′n−k,k . Now
we use an antipodal map to show that X ′n−k,k and Xn−k,k are homeomorphic.

Define γ : (S2)n → (S2)n as γ ((x1, . . . , xn)) = (−x1, x2, . . . , (−1)nxn). This
map is its own inverse and thus is a diffeomorphism. Since a ∈ Bn−k,k is noncross-
ing each arc in a has some number of arcs and no rays between its endpoints. This
means that there are an even number of vertices between the endpoints of each arc
and every arc (i, j) ∈ a has one even and one odd endpoint. Therefore γ is the
identity on exactly one of the coordinates xi , x j and the antipodal map on the other.
Furthermore given a ray (i) ∈ a the map γ is the identity on xi if i is even and the
antipodal map if i is odd. Hence γ (Xn−k,k)= X ′n−k,k . �

Again we alert the reader to the fact that this is a homeomorphism of topological
spaces and not an isomorphism of algebraic varieties. One immediate consequence
of our topological construction of the space Xn−k,k is that given any two a, b ∈
Bn−k,k the spaces Sa and Sb are homeomorphic to the product (S2)k . Contrast this
with [Stroppel and Webster 2010, Example 8] where the authors show that the two
irreducible components of the (2,2) Springer variety are both iterated P1-bundles
but are not isomorphic as algebraic varieties.
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We finish this section by using our new construction to get a topological picture
of the (3, 1) Springer variety. The topological model X3,1 for the (3, 1) Springer
variety is built from the homeomorphic images of three irreducible components
indexed by the three elements of B3,1 shown here:

a = b= c=

Each of these is homeomorphic to S2:

Sa =
{
(x, x,−p, p) : x ∈ S2},

Sb =
{
(−p, x, x, p) : x ∈ S2},

Sc =
{
(−p, p, x, x) : x ∈ S2}.

These spaces intersect in two different points:

Sa∩ Sb =
{
(−p,−p,−p, p) ∈ (S2)4

}
,

Sb∩ Sc =
{
(−p, p, p, p) ∈ (S2)4

}
,

Sa∩ Sc =∅.

Putting this information together we see that X3,1 is the wedge of three spheres as
shown in Figure 2. Note that H0(X3,1)= C and that H2(X3,1)= C|B

3,1
|
= C3.

SbSa Sc

Figure 2. X3,1 is a wedge of three copies of S2.

3. Intersections of components

From now on we regard Xn−k,k as the (n−k, k) Springer variety. We reiterate that
these two objects are the same in the topological sense and not the algebrogeometric
sense. For fixed n and k we refer to Sa,n−k,k simply as Sa. We call these Sa which
are the homeomorphic images of the irreducible components of the Springer variety
the irreducible components (or components) of Xn−k,k .

This section follows [Khovanov 2004, Section 3] proving a sequence of lem-
mas about intersection between components and uses this information to set up a
Mayer–Vietoris type exact sequence on homology. Proposition 3.9 and the (m,m)
case of Lemma 3.14 are stated without proof in that reference. Because we need
these results for our arguments, we include proofs in the Appendix. Fung [2003]
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and Stroppel and Webster [2010] have studied intersections of the components of
the Springer variety in the two-row case. Much of what we do in this section
rediscovers their results via our topological model Xn−k,k .

Matchings and their associated components.

Definition 3.1. Given a, b ∈ Bn−k,k let aw(b) be the result of reflecting b hori-
zontally and gluing this reflection to a, as in this example:

a = b=

aw(b)=

The 1-manifold aw(b) will consist of circles, lines with both endpoints pointing
up, lines with both endpoints pointing down, and lines with one endpoint pointing
in each direction. We define |aw(b)| to be the number of connected components
in aw(b).

Definition 3.2 (order on noncrossing matchings). Given a, b∈ Bn−k,k , write a→ b
if one of the following is true:

• There is a quadruple i < j < k < l such that (i, j), (k, l)∈ a, (i, l), ( j, k)∈ b,
and a and b are identical on all vertices not equal to i, j, k, l.

• There is a triple i < j < k where (i), ( j, k) ∈ a, (i, j), (k) ∈ b, and a and b
are identical on all vertices not equal to i, j, k.

Define a partial order a≺ b if there exist a chain of arrows a→· · ·→ b. Extend
this to a total order<. Note that the extension to a total order is not unique. Figure 3
shows an example.

Figure 3. The→ relation on elements of B3,2.
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Definition 3.3. Given a, b ∈ Bn−k,k let the distance from a to b, denoted d(a, b),
be the minimal length m of a sequence (a = a0, a1, . . . , am−1, am = b) such that
ai → ai+1 or ai ← ai+1 for all i . We call a sequence that realizes the distance
between a and b a minimal sequence.

The following observation of Fung shows that the line segments in the one man-
ifold aw(b) tell us when two components have empty intersection. A refinement of
this result given in [Stroppel and Webster 2010, Lemma 19] further characterizes
the intersection of components by looking at orientations of the 1-manifold aw(b).

Proposition 3.4 [Fung 2003, Theorem 7.3]. Given a, b ∈ Bn−k,k if aw(b) has a
line with both endpoints pointing in the same direction then Sa∩ Sb =∅.

We give a special name to the subset of Bn−k,k consisting of matchings associ-
ated to components that have nonempty intersection with a specific component.

Definition 3.5. Given a ∈ Bn−k,k define the subset Bn−k,k
a of Bn−k,k as

Bn−k,k
a =

{
b ∈ Bn−k,k : each line in aw(b) has endpoints

pointing in opposite directions

}
.

Applying Proposition 3.4 we see that given a ∈ Bn−k,k( ⋃
b<a

b∈Bn−k,k

Sb

)
∩ Sa =

( ⋃
b<a

b∈Bn−k,k
a

Sb

)
∩ Sa.

For b ∈ Bn−k,k
a the intersection Sa∩ Sb is homeomorphic to (S2)# of circles in aw(b).

Lemma 3.6. Let a ∈ Bn−k,k and b ∈ Bn−k,k
a . Then aw(b) is a union of circles and

line segments. If we enumerate the rays in the matchings a and b from left to right
as ii , . . . , in−2k and ji , . . . , j2n−k respectively then in aw(b) each line segment will
contain rays it and jt for some 1≤ t ≤ n−2k.

Proof. Each line segment in aw(b) consists of two rays connected by some number
of arcs. By assumption one ray is in a and one ray is in b. Say that rays it1 and jt2
are part of the same segment in aw(b). Then the rays ii , . . . , it1−1, j1, . . . , jt2−1

lie on one side of this line segment. Since aw(b) is noncrossing these rays must
be connected pairwise in a noncrossing manner. Since b ∈ Bn−k,k

a each i-ray must
be connected to a j-ray. Therefore t1 = t2. �

Lemma 3.7. Let a ∈ Bn−k,k and b ∈ Bn−k,k
a , and consider a sequence

(a = a0, a1, . . . , am−1, am = b).

If |aiw(b)| = |ai+1w(b)|−1 for all i , the sequence is minimal.
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Proof. For each 0≤ i ≤m−1 either ai→ ai+1 or ai← ai+1. Thus either an arc and
a ray are changing position, two unnested arcs are replaced by two nested arcs, or
two nested arcs are replaced by unnested arcs. Consider the associated sequence(

aw(b)= a0w(b), a1w(b), . . . , am−1w(b), amw(b)= bw(b)
)
.

Analyzing each possibility, one can check that |aiw(b)|= |ai+1w(b)|±1. More-
over, given aiw(b) and ai+1w(b), if the arc-ray or arc-arc pair that change from ai

to ai+1 are part of the same connected component in aiw(b) then ai+1w(b) will
have one more component because we are splitting one component into two. On
the other hand, if they are part of different connected components in aiw(b) then
ai+1w(b) will have one less component because we are joining two components.

The one manifold bw(b) has the maximum number of components possible, so
|aw(b)| ≤ |bw(b)|. Since each arrow move changes the number of components by
1, no sequence from a to b can be shorter than |bw(b)|−|aw(b)|. The sequence
given in the statement of the lemma has |aw(b)| = |bw(b)|−m. Since no shorter
sequence can exist the given sequence is minimal. �

Given a, b∈ Bn−k,k label the k connected components of aw(b)with c1, . . . , ck .
Associated to each ci let

Ci = {1≤ j ≤ n : ci passes through vertex j in aw(b)}.

Let the collection of all of these sets be denoted by Ca,b = {Ci }. A useful way to
understand the distance between matchings is to study the sequence of collections
(Ca,b, . . . ,Cb,b) associated to a sequence (a= a0, a1, . . . am−1, am = b). Restating
Lemma 3.7 in the language of the sets Cai ,b we have Lemma 3.8.

Lemma 3.8. Let a ∈ Bn−k,k and b ∈ Bn−k,k
a , and consider a sequence (a =

a0, . . . , am = b). If for each 0 ≤ i ≤ m− 1 the vertices of the arc-ray or arc-
arc pair in ai being changed when transitioning from ai to ai+1 are part of a single
set in Cai ,b then the sequence is minimal.

The following formula, which we prove in the Appendix, is given in [Khovanov
2004, page 9].

Proposition 3.9. For n = 2m and a, b ∈ Bm,m the distance d(a, b) is equal to
m−|aw(b)|.

We will extend this formula to the distance between matchings of any type.
In order to prove this we appeal to the notion of completing matchings of type
(n−k, k) to matchings of type (n−k, n−k). This idea is also used in [Khovanov
2004, Section 5.4]. Completions are a natural way to see the set Bn−k,k sitting
inside of Bn−k,n−k .
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Definition 3.10 (completion). Given a ∈ Bn−k,k enumerate the rays in a from left
to right by (i1), (i2), . . . , (in−2k). Define the function

ϕ : Bn−k,k
→ Bn−k,n−k

where ϕ(a) is the matching with arcs

• (i+n−2k, j+n−2k) if (i, j) is an arc in a,

• (n−2k− t+1, it+n−2k) if (it) is a ray in a.

In other words, we complete each ray in a to an arc by adding additional vertices to
the left of the matching and connecting unanchored endpoints of the rays to these
vertices in the only way that keeps the matching noncrossing. We call ϕ(a) the
completion of a. Figure 4 has an example.

Let B̃n−k,n−k be the subset of Bn−k,n−k consisting of matchings with no arcs
of the form (i, j) for 0 ≤ i < j ≤ n−2k. There is a natural inverse operation to
completion on this subset of Bn−k,n−k .

Definition 3.11 (restriction). Consider a ∈ B̃n−k,n−k Define the function

ψ : B̃n−k,n−k
→ Bn−k,k

where ψ(a) is the matching with

• arcs (i−n+2k, j−n+2k) if (i, j) is an arc in a with n−2k < i ,

• rays ( j−n+2k) if (i, j) is an arc in a with 1≤ i ≤ n−2k.

In other words, we remove the first n− 2k vertices of a so that each arc with
left endpoint incident on one of those vertices becomes a ray. We call ψ(a) the
restriction of a. Figure 4 has an example.

ϕ
−→
ψ
←−

Figure 4. A matching a ∈ B4,2 and its completion ϕ(a) ∈ B4,4.

An immediate consequence of the definitions of restriction and completion is
that ϕ gives a one-to-one correspondence between the sets Bn−k,k and B̃n−k,n−k .
Note also that when n = 2m and k = m the sets Bn−k,k , Bn−k,n−k , and B̃n−k,n−k

are the same. Furthermore the maps ϕ and ψ are both the identity in this case.

Proposition 3.12. Given a ∈ Bn−k,k and b ∈ Bn−k,k
a , every minimal sequence

(ϕ(a), . . . , ϕ(b)) gives a minimal sequence (a, . . . , b).
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Proof. Consider a minimal sequence (ϕ(a)= x0, x1, . . . , xm−1, xm = ϕ(b)). Since
this sequence is minimal Lemma 3.8 guarantees that for all 0≤ i <m the collection
Cxi ,ϕ(b) is a refinement of Cxi−1,ϕ(b) in the sense that every set in Cxi−1,ϕ(b) is a
union of sets in Cxi ,ϕ(b). In particular, Cxi ,ϕ(b) contains exactly one more set than
Cxi−1,ϕ(b).

By Lemma 3.6 we know that the i-th ray in a and the i-th ray in b are part of
the same line segment in aw(b). Under ϕ this line segment is completed to a circle
passing through the newly added vertex n−2k− i+1. Thus each set in Cϕ(a),ϕ(b)
contains at most one of the vertices 1, . . . , n−2k. Indeed the sets coming from
circles in ϕ(a)w(ϕ(b)) that were line segments in aw(b) each contain one of these
vertices.

Each set in Cxi ,ϕ(b) is a refinement of the collection Cϕ(a),ϕ(b), so the sets in
Cxi ,ϕ(b) also each contain at most one of the vertices 1, . . . , n−2k. This means
that for all 0≤ i ≤ m the arcs in the matching xi have at most one vertex incident
on the vertices 1, . . . , n−2k. Therefore xi ∈ B̃n−k,n−k . We can further conclude
that whenever xi → xi+1 then ψ(xi )→ ψ(xi+1). Similarly whenever xi ← xi+1

then ψ(xi )← ψ(xi+1).
We conclude that the sequence (ϕ(a)= x0, . . . , xm =ϕ(b)) has a corresponding

sequence (a,ψ(x1), . . . ,ψ(xm−1),b). Finally, using the formula in Proposition 3.9
we see that

d(ϕ(a), ϕ(b))= n−k−|ϕ(a)w(ϕ(b))| = n−k−|aw(b)|.

Thus we conclude that this sequence is minimal. �

Corollary 3.13. Let a ∈ Bn−k,k and b ∈ Bn−k,k
a . Then d(a, b)= n−k−|aw(b)|.

Next we want to show that a very specific minimal sequence between a and b
always exists.

Lemma 3.14. Given a ∈ Bn−k,k and b ∈ Bn−k,k
a there exists c ∈ Bn−k,k

a with
d(a, b)= d(a, c)+d(c, b) and a � c≺ b.

Proof. [Khovanov 2004, Lemma 1] asserts this statement for the (m,m) case. This
proof, which is fairly involved, is given in the Appendix.

Using this fact we can guarantee the existence of a minimal sequence

ϕ(a)← a1← · · · ← c′→ · · · → am−1→ ϕ(b).

The proof of Proposition 3.12 implies that for all 1≤ i ≤m we have ψ(ai )∈ Bn−k,k
a

and ψ(ai ) ∈ Bn−k,k
b . This gives us the minimal sequence

a← ψ(a1)← · · · ← ψ(c′)→ · · · → ψ(am−1)→ b.

Setting ψ(c′)= c the lemma is proven. �
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Lemma 3.15. Let a ∈ Bn−k,k and b ∈ Bn−k,k
a . If d(a, c)= d(a, b)+d(b, c) then

Sa∩ Sc = Sa∩ Sb∩ Sc.

Proof. Clearly Sa∩ Sb∩ Sb ⊆ Sa∩ Sc.
Since d(a, c)= d(a, b)+d(b, c), there is a minimal sequence (a, . . . , b, . . . , c).

Consider the collections Ca,c=Cc,a = {C1, . . . ,Cia,c}, Ca,b= {C ′1, . . . ,C ′ia,b
}, and

Cb,c={C ′′1 , . . . ,C ′′ib,c
}. The minimal sequence ensures that the collections Ca,b and

Cb,c are each refinements of the collection Ca,c.
In terms of sets in Ca,c we have

Sa∩ Sc =
{

x = (x1, . . . , xn) : xi = x j if there is Ck ∈ Ca,c with i, j ∈ Ck
}
⊂ Sa.

Whenever i, j ∈ Ck there are some C ′k1
∈ Ca,b and Ck2 ∈ Cb,c with Ck ⊂ C ′k1

amd Ck ⊂ C ′′k2
. Then x ∈ Sa ∩ Sb and x ∈ Sb ∩ Sc. Finally we conclude that

Sa∩ Sc ⊆ Sa∩ Sb∩ Sc. �

Lemma 3.16. Let S<a∩ Sa = (∪b<a Sb)∩ Sa. Then S<a∩ Sa = ∪b→a(Sb∩ Sa).

Proof. By basic set theory we have S<a∩Sa=∪b<a(Sa∩Sb). Since b< a whenever
b→ a we conclude that ∪b→a(Sb∩ Sa)⊆ S<a∩ Sa.

Take x ∈ S<a∩Sa. Then there exists b< a such that x ∈ Sa∩Sb. By Lemma 3.14
we have a minimal sequence (a← a1 · · · ← c→ · · · am−1→ b). This sequence
must begin with← since otherwise we would have a minimal sequence consisting
entirely of→ moves. The existence of such a sequence would mean that a < b,
but we have assumed b< a.

From the sequence we have d(a, b) = d(a, a1)+d(a1, b). From Lemma 3.15
we know

Sa∩ Sb = Sa∩ Sa1 ∩ Sb ⊆ Sa∩ Sa1 .

We have shown that whenever b< a there exists a1→ a with Sa∩Sb⊆ Sa∩Sa1 . �

A useful cell decomposition. We recall the definition of a CW-decomposition,
which we will also sometimes call a cell decomposition or simply a decomposition.
Then we introduce a CW-decomposition of Xn−k,k that generalizes the one found
in [Khovanov 2004, Lemma 4].

Definition 3.17. A CW-decomposition of a space X is a partition of X into open
cells (possibly of varying dimension) each of which is either homeomorphic to an
open ball (when the cell has dimension larger than zero) or a single point (when
the cell has dimension zero).

Additionally it is required that for each n dimensional open cell C there is a
homeomorphism f from the closed ball of dimension n to X such that

• f restricted to the interior of the closed ball is a homeomorphism onto C , and
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• the image under f of the boundary of the closed ball is a finite union of cells
of lower dimension.

As an example we can choose any point in the two-sphere p ∈ S2. Then p and
S2
−p constitute a CW-decomposition of S2 into one two-dimensional cell and one

zero-dimensional cell. Since each component Sa ∈ Xn−k,k is homeomorphic to a
product of spheres, the components Sa have an obvious CW-decomposition into
even dimensional cells coming from their cartesian product structure. In Section 4
we will explore the combinatorics of this decomposition in depth.

This section gives another CW-decomposition for the components of Xn−k,k .
This decomposition makes use of the order on matchings given in the previous
section and restricts to a CW-decomposition of intersections of certain compo-
nents (see Lemma 3.20), making it easier to construct an iterated Mayer–Vietoris
sequence on homology.

It is an interesting question what the relationship might be between the afore-
mentioned CW-decompositions for components of Xn−k,k and the Schubert cell
decomposition of Grassmannians. A related issue is what connection the order
defined in this paper on components has to do with the Bruhat order on Schubert
cells. We are also interested in exploring the relationship between our cells and
the attracting cells found in the paper [Stroppel and Webster 2010] on two-row
Springer fibers. We hope to explore these connections in upcoming work.

Definition 3.18 (decomposition of Sa). Given a matching a ∈ Bn−k,k we construct
a graph 0 = (V, E) with a vertex v ∈ V for each arc in a. Given v ∈ V let (v1, v2)

with v1<v2 be the arc in a corresponding to v. There is an edge between v,w ∈ V
if and only if there is some b ∈ Bn−k,k with b→ a where b is identical to a off of
vertices v1, v2, w1, w2. In b these vertices are connected in the only other possible
noncrossing manner.

Let M be the set of all root vertices. Figure 5 has an example. Let p= (0, 0, 1)∈
S2 once again be the north pole of the standard embedded unit sphere. We construct
a set c(J )⊂ Sa ⊂ (S2)n where J ⊆ (E ∪M).

Let c(J )⊂ {x = (x1, . . . , xn) ∈ Sa} such that

• xv1 = xw1 if edge (v,w) ∈ J ,

• xv1 6= xw1 if edge (v,w) ∈ E− J ,

• xv1 = (−1)v1 p if vertex v ∈ J ,

• xv1 6= (−1)v1 p if vertex v ∈ M− J .

sc s
��c SS c

Figure 5. A matching and its graph 0.
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Note that we only specify values for xv1 and xw1 because xv1 = xv2 and xw1 = xw2 .

Lemma 3.19. The construction above is indeed a CW-decomposition of Sa.

Proof. These cells are products of the cells found in [Khovanov 2004] with some
points in fixed positions. The CW-decomposition structure is thus inherited from
the CW-decomposition structure on the cells in that reference.

One can also see this structure directly. Using induction on the number of arcs it
is straightforward to prove that cells c(J ) are trivial R2 bundles over R2k−|J |−2 and
are thus homeomorphic to R2k−|J |. The cells are disjoint by construction. Also by
construction, the boundary of a cell is the union of smaller cells. More precisely,
if we let J= {J ′ ⊂ (E tM) : J ( J ′} then ∂(c(J ))=

⊔
J ′∈J c(J ′). �

Lemma 3.20. Given b→ a the cell decomposition for Sa restricts to a cell de-
composition for Sa ∩ Sb. Therefore the decomposition for Sa also restricts to a
decomposition for S<a∩ Sa.

Proof. Consider b→ a. Then either

• there exist i < j < k < l with (i, j), (k, l) ∈ b and (i, l), ( j, k) ∈ a, or

• there exist i < j < k with (i), ( j, k) ∈ b and (i, j), (k) ∈ a.

The matchings a and b are identical otherwise.
In the first case, no rays change position as we move from b to a. Thus we get

that Sa∩ Sb is a subcomplex of Sa by [Khovanov 2004, Lemma 4].
Consider the second case. In order for both a and b to be noncrossing, there

can be no arcs (i ′, k ′) or rays (i ′) where i < i ′ < j < k < k ′. Every arc with left
endpoint i ′ with i < i ′ < j must have right endpoint k ′ with k ′ < j , so all arcs
incident on vertices between i and j are completely contained between i and j .
Therefore there is an even number of vertices between i and j , and so i and j have
opposite parity. Since there is an even number of vertices between j and k the
vertices i and k have the same parity.

Let 0a = (Va, Ea) with distinguished vertex set Ma be the graph for a. The
vertex v ∈ Va corresponding to the arc (i, j) ∈ a is a root, so v ∈ Ma. Given
J ⊂ (Va∪Ma) whenever v ∈ J all points x = (x1, . . . , xn) ∈ c(J ) have xi = x j =

(−1)i p. For all J and for all x ∈ c(J ) we also have xk = (−1)k p = (−1)i p since
(k) is a ray in a. Since Sa∩ Sb = {x ∈ Sa : xi = x j = xk = (−1)i p} the cells c(J )
for which v ∈ J form a cell complex for Sa∩ Sb.

Appealing to Lemma 3.16 we see that S<a∩Sa is a subcomplex of the complex
for Sa. �

Building an exact sequence. The following two statements are consequences of
Lemma 3.16.
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Lemma 3.21. The inclusion (S<a∩Sa) ↪→ Sa induces an injective homomorphism
on homology H∗(S<a∩ Sa) ↪→ H∗(Sa).

Lemma 3.22. The homomorphism
⊕

b→a
H∗(Sb∩ Sa)

f ′
−→ H∗(S<a∩ Sa) induced by

inclusion is surjective.

Now consider the Mayer–Vietoris sequence:

· · · → Hm(S<a∩ Sa)
f
−→ Hm(S<a)⊕Hm(Sa)

g
−→ Hm(S≤a)→ · · ·

Lemma 3.23. The space S≤a has nonzero homology only in even degrees. The
Mayer–Vietoris sequence above reduces to short exact sequences of the form

0→ H2m(S<a∩ Sa)
f
−→ H2m(S<a)⊕H2m(Sa)

g
−→ H2m(S≤a)→ 0.

Proof. We prove this inductively with respect to the order <. The base case is
obvious since for the first a in the order S≤a = Sa. Assume the lemma is true for
all matchings up to and including some matching e, and let a be the next matching
in the order. Then S<a = S≤e, Sa, and S<a∩Sa all have homology in even degrees
only. Therefore the Mayer–Vietoris sequence decomposes into exact sequences

0→H2m+1(S≤a)
∂
−→H2m(S<a∩Sa)

f
−→H2m(S<a)⊕H2m(Sa)

g
−→H2m(S≤a)→0.

By Lemma 3.21 the map H2m(S<a∩Sa)→H2m(Sa) is injective so H2m+1(S≤a)=

0 as desired. �

Theorem 3.24. The sequence⊕
b→c≤a

H∗(Sb∩ Sc)
ψ−

−→

⊕
b≤a

H∗(Sb)
φ
−→ H∗(S≤a)→ 0

is exact. Here ψ− is defined to be6b→c≤a(ψb,c−ψc,b) where ψb,c : H∗(Sb∩Sc)→

H∗(Sb) is induced by the inclusion Sb∩ Sc ⊂ Sb and ψc,b is similarly defined. The
map φ is induced by the inclusions Sb ⊂ S≤a.

Proof. This proof follows the structure of the proof of [Khovanov 2004, Proposition
4]. We prove this result by induction with respect to the total order on the set
Bn−k,k . Let a0 be the first element with respect to this order. Then there do not
exist b, c≤ a0 and S≤a0 = Sa0 . The sequence

0→ H∗(Sa0)
φ
−→ H∗(Sa0)→ 0

is exact since φ is an isomorphism, and the base case is proven.
Assume for some element ai−1 ∈ Bn−k,k that the sequence⊕

b→c≤ai−1

H∗(Sb∩ Sc)
ψ−

−→

⊕
b≤ai−1

H∗(Sb)
φ
−→ H∗(S≤ai−1)→ 0
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is exact. Consider the next element ai . By Lemma 3.23 we know that

0→ H∗(S<ai ∩ Sai )
f
−→ H∗(S<ai )⊕H∗(Sai )

g
−→ H∗(S≤ai )→ 0

is an exact sequence. By Lemma 3.22 the map f ′ :
⊕

b→c≤ai
H∗(Sb ∩ Sc) →

H∗(S<ai∩Sai ) is surjective so I m( f )= I m( f ◦ f ′). Thus we get the exact sequence⊕
b→c≤ai

H∗(Sb∩ Sc)
f ′◦ f
−→ H∗(S<ai )⊕H∗(Sai )

g
−→ H∗(S≤ai )→ 0.

Now consider the sequence⊕
b→c≤ai

H∗(Sb∩ Sc)
ψ−

−→

⊕
b≤ai

H∗(Sb)
φ
−→ H∗(S≤ai )→ 0.

Since the inclusions Sb∩ Sc ⊂ S<ai ⊂ S≤ai and Sb∩ Sc ⊂ Sb ⊂ S≤ai and Sb∩ Sc ⊂

Sc ⊂ S≤ai all induce the same maps on homology we see that I m(ψ−)= K er(φ).
Take some y ∈ H∗(S≤ai ). By exactness there exists (x, x ′) ∈ H∗(S<ai )⊕H∗(Sai )

with g(x, x ′) = y. Again by exactness, there exists some x ′′ ∈
⊕

b≤ai−1
H∗(Sb)

with φ(x ′′)= x . Then we have φ(x ′′, x ′)= g(x, x ′)= y, and the desired sequence
is exact. �

4. Diagrammatic homology generators

In the last section we proved an exact sequence on the collection of complex vector
spaces H∗(Xn−k,k). In this section we will ultimately use this sequence to give
diagrammatic bases for these vector spaces. We begin by giving a diagrammatic
collection of generators and relations for H∗(Xn−k,k).

Let a, b ∈ Bn−k,k with a→ b. Recall that Sa is homeomorphic to (S2)k and
Sa ∩ Sb is homeomorphic to (S2)k−1. We will use the cartesian product CW-
decomposition for Sa to give a convenient diagrammatic way to represent cells.
This is a different decomposition than the one found in Section 3. While that
decomposition was useful for constructing an exact sequence on homology, the
cartesian product decomposition lends itself nicely to the diagrammatic calcula-
tions we would like to do in the remainder of this paper.

Let E be the set of arcs in a, and for each e ∈ E let e` be the left endpoint of
the arc e and er be the right endpoint. Note that for each x = (x1, . . . , xn) ∈ Sa we
have xe` = xer . Therefore to describe a subset of Sa we only need to specify the
value of xe` . Consider the cell decomposition of the two-sphere given by the point
p = (0, 0, 1) ∈ S2 and the two-cell c = S2

− p.

Definition 4.1 (diagrammatic homology basis for Sa). Given I ⊂ E we define the
following cell c(I ) which is homeomorphic to R2|I |.

c(I )= {x = (x1, . . . , xn) ∈ Sa : xe` = p if e /∈ I and xe` 6= p if e ∈ I }.
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Varying over all possible subsets of E we get the cartesian product cell decom-
position for Sa. Note that this decomposition is in general not the same as the
one described in Definition 3.18. We can diagrammatically represent the cartesian
product homology generators by considering certain markings of the matching a.

Given I ⊂ E let M be the matching a decorated as follows:

• Mark each ray with a dot.

• For each e ∈ I mark the corresponding arc in a with a dot.

• Leave all other arcs unmarked.

We call such a diagram a dotted noncrossing matching for a. These will be
denoted throughout by capital letters. Figure 6 has an example.

s ss
Figure 6. A dotted noncrossing matching M for a.

We use a similar diagrammatic convention to represent cartesian product cells
for (S2)n in [Russell and Tymoczko 2008, Definition 3.1]. These diagrams, which
we call line diagrams, are collections of n dotted and undotted vertical lines.
The common theme of dotted noncrossing matchings and line diagrams is that
unmarked lines and arcs correspond to two-cells while dotted lines and arcs corre-
spond to points. We want to consider the behavior of these generators under maps
induced by inclusion.

Definition 4.2. Consider a→ b ∈ Bn−k,k . Then either a and b agree off of two
arcs or an arc and a ray. The first two relations deal with the case when a and b
differ on two arcs. The third relation deals with the case when they differ on an
arc and a ray.

Type I relations: Let M1 be the dotted noncrossing matching with dotted arc (i, j)
and undotted arc (k, l). Let M2 be the dotted noncrossing matching with dotted arc
(k, l) and undotted arc (i, j). Define M ′1 and M ′2 analogously for b, so that they
agree with the Mi off of i, j, k, l. Type I relations have the form

M1+M2−M ′1−M ′2 = 0.s
i j k l

+
s

i j k l
=

s
i j k l

+
s

i j k l

Figure 7. Type I relation.
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Type II relations: Let M3 be the dotted noncrossing matching with dotted arcs
(i, j) and (k, l). Define M ′3 analogously for b. Type II relations have the form

M3−M ′3 = 0.

s s
i j k l

=

ss
i j k l

Figure 8. Type II relation.

Type III relations: Let M4 be the dotted noncrossing matching with dotted ray (i)
and dotted arc ( j, k). Let M ′4 be the dotted noncrossing matching identical to M4

except with dotted arc (i, j) and dotted ray (k). Type III relations have the form

M4−M ′4 = 0

s s
i j k

=
ss

i j k

Figure 9. Type III relation.

Theorem 4.3. Let T be the subpace of
⊕

b H∗(Sb) generated by all complex linear
combinations of Type I, Type II, and Type III relations. Then there is the following
isomorphism of complex vector spaces.

H∗(Xn−k,k)∼=

(⊕
b

H∗(Sb)

)/
T.

Proof. From Theorem 3.24 we see that
⊕

b H∗(Sb) generates H∗(Xn−k,k) with
relations coming from ψ−(H∗(Sa∩Sb)) where a→ b. The following calculations
show that these relations always have the form of Type I, II, or III relations. We
use the notation for cartesian product cells found in Definition 4.1.

Consider a, b∈ B2,2 where a has arcs (1, 2), (3, 4) and b has arcs (1, 4), (2, 3).
Then aw(b) consists of one circle, and Sa∩Sb is homeomorphic to S2. Decompose
Sa∩ Sb into

c1={(p, p, p, p)∈ Sa∩Sb}∼=R0 and c2={(x, x, x, x)∈ Sa∩Sb : x 6= p}∼=R2.

Under the inclusion map ιa : H∗(Sa∩ Sb) ↪→ H∗(Sa) we have ιa(c1) = c(∅) and
ιa(c2)= c({(1, 2)})+c({(3, 4)}). Similarly under the inclusion ιb : H∗(Sa∩Sb) ↪→

H∗(Sb) we have ιb(c1) = c(∅) and ιb(c2) = c({(1, 4)})+c({(2, 3)}). This proves
that ψ−(H∗(Sa∩Sb)) is generated by Type I and Type II relations whenever a and
b differ on two arcs.
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Consider a, b ∈ B3,1 where a has ray (1) and arc (2, 3) while b has ray (3) and
arc (1, 2). In this case aw(b) consists of one line and no circles, so Sa∩ Sb is just
a point. Call this point c1. Under the inclusion map ιa : H∗(Sa∩ Sb) ↪→ H∗(Sa)

we have ιa(c1) = c(∅). Under the inclusion ιb : H∗(Sa ∩ Sb) ↪→ H∗(Sb) we get
ιb(c1) = c(∅). This proves that whenever a and b differ on an arc and a ray, the
image ψ−(H∗(Sa∩ Sb)) is generated by Type III relations. �

Definition 4.4. A standard dotted noncrossing matching is a dotted noncrossing
matching where no dotted arc is nested beneath any other arc and no ray is to the
right of any dotted arc. Figure 10 has an example.

Lemma 4.5. The set of standard noncrossing matchings contains a set of genera-
tors for the collection of complex vector spaces H∗(Xn−k,k).

Proof. Type I and Type II relations allow us to reduce to a set of generators where
no dotted arcs are nested beneath undotted or dotted arcs. Type III relations allow
us to move rays to the left of all dotted arcs. �

Young tableaux theory is often used to study irreducible representations of the
symmetric group. Recall that a Young diagram corresponding to a partition of the
number n is a collection of top and left aligned boxes with row lengths given by
the partition. A standard Young tableau is a filling of a Young diagram with the
numbers 1 through n so that numbers strictly increase from left to right and top to
bottom. For more information on Young tableaux and the Specht module theory
we will use in the next section we refer the reader to [Fulton 1997, Chapter 7].

Results from [De Concini and Procesi 1981, p. 213] and [Garsia and Procesi
1992, Equation 4.2], specialized to the two-row case, yield the following statement,
which gives us the dimension of H∗(Xn−k,k) in each degree.

Proposition 4.6. For each m ≤ k the Springer action on H2m(Xn−k,k) is isomor-
phic to the irreducible representation of the symmetric group Sn corresponding to
the partition (n−m,m).

Classical results about representations of the symmetric group together with
Proposition 4.6 tell us that the dimension of H2m(Xn−k,k) is therefore the number
of standard fillings of a Young diagram of shape (n−m,m). As we show in the
following lemma, it turns out that this dimension is also equal to the number of
standard noncrossing matchings of type (n−k, k) with m undotted arcs.

Lemma 4.7. Standard noncrossing matchings of type (n−k, k) with m undotted
arcs are in bijection with standard Young tableaux of shape (n−m,m).

Proof. We give an explicit bijection between standard dotted noncrossing match-
ings and standard Young tableaux.

Let M be a standard dotted noncrossing matching. Define g(M) to be the tableau
obtained by writing the right hand endpoint of each undotted arc of M on the
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bottom row and all other numbers on the top. The tableau g(M) is standard since
for each number in the bottom row, the left endpoint of that arc is written in the
top row. The tableau has shape (n−m,m) where m is the number of undotted arcs
in M .

Now let T be a standard tableau of shape (n−m,m). We define h(T ) to be
the standard dotted noncrossing matching with n−2k rays and m undotted arcs
constructed as follows. Start with the smallest number in the bottom row, draw an
undotted arc with right endpoint incident on that number and left endpoint incident
on the nearest unoccupied vertex. Repeat this for all remaining numbers in the
bottom row. Then in the leftmost n−2k empty positions place n−2k rays. Fill the
remaining empty positions with unnested dotted arcs. Figure 10 has an example
of this map.

1 2 4 5 7
3 6

h
−→

s s
Figure 10. A standard tableau of shape (5, 2) and its associated
standard dotted noncrossing matching of type (4, 3).

The proof that g◦h and h◦g produce the identity on the sets of standard tableaux
and standard dotted noncrossing matchings respectively is a straightforward gen-
eralization of the one given in [Russell and Tymoczko 2008, Section 2.2]. �

Corollary 4.8. The standard noncrossing matchings on n vertices with n−2k rays
and m undotted arcs form a basis for the complex vector space H2m(Xn−k,k). In
particular, when m = k there are no dotted arcs and we recover the bijection from
[Stroppel and Webster 2010, Proposition 3].

Proof. By Proposition 4.6 the dimension of H2m(Xn−k,k) is the same as the di-
mension of the irreducible representation of Sn corresponding to the partition (n−
m,m). Classical representation theory tells us that this dimension is equal to the
number of standard Young tableaux of shape (n−m,m) [Fulton 1997].

By Lemma 4.5 the set of standard dotted noncrossing matchings with m undotted
arcs is a generating set for H2m(Xn−k,k). Lemma 4.7 tells us that this generating
set has the proper dimension and therefore is a basis. �

5. Springer action on H∗(Xn−k,k)

Consider n and 0≤ k≤bn/2c. In [Russell and Tymoczko 2008] we define a graded
action of the symmetric group S2n−2k on H∗(Xn−k,n−k). We proved that this action
which can be combinatorially and diagrammatically described is isomorphic to the
Springer action. In other words we prove that the action of S2n−2k that we define
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Vertex Labelings M (i i+1) · M

Case 1
i, i+1 both on dotted arcs

Case 2
(i, i+1) is an undotted arc −

Case 3
( j, i) and (i+1, k) have one dot

+

+

+

+

Case 4
( j, i) and (i+1, k) have no dots

+

+

+

Figure 11. The Sn-action on standard dotted noncrossing match-
ings. (Gray vertices indicate positions i and i+1.)

on H2m(Xn−k,n−k) is the irreducible representation of S2n−2k corresponding to the
partition (2n−2k−m,m) for each 0 ≤ m ≤ n−k. This action is summarized by
the chart in Figure 11.

Using the same approach as [Russell and Tymoczko 2008, Section 4] we con-
struct a symmetric group action on the homology of all two-row Springer varieties
that is isomorphic to the Springer action. We once again describe this action dia-
grammatically. Finally we give a convenient skein-theoretic method for calculating
the action.

Defining a symmetric group action. Define the map η : Xn−k,k→ Xn−k,n−k to be

η(x1, . . . , xn)= (±p,∓p, . . . , p,−p, x1, . . . , xn).

Recall that the completion map ϕ from Section 3 builds a matching of type (n−
k, n−k) from one of type (n−k, k) by anchoring rays to the left of the matching.
Given some noncrossing matching a∈ Bn−k,k it is an immediate consequence of the
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definition of η that η(Sa)⊂ Sϕ(a). In other words η maps the component associated
to a into the component associated to its completion.

Recall the antipodal map γ : Xn−k,k→ (S2)n defined in the proof of Theorem 2.7:

γ (x1, . . . , xn)= (−x1, x2, . . . , (−1)nxn).

Finally consider the map ιn : (S2)n→ (S2)2n−2k given by

ιn(x1, . . . , xn)= ((−1)n−1 p, . . . , (−1)n−1 p, (−1)nx1, . . . , (−1)nxn).

Lemma 5.1. The following diagram is commutative.

H∗(Xn−k,k)
η∗- H∗(Xn−k,n−k)

H∗((S2)n)

γ∗

?
ιn∗- H∗((S2)2n−2k)

γ∗

?

Proof. On one hand we have

ιn ◦γ (x1, . . . , xn)= ιn(−x1, x2, . . . , (−1)n−1xn−1, (−1)nxn)

=
(
(−1)n−1 p, . . . , (−1)n−1 p,

(−1)n+1x1, (−1)n+2x2, . . . , (−1)2n−1xn−1, (−1)2nxn
)
.

On the other hand,

γ◦η(x1, . . . , xn)=γ
(
(−1)n−2k p, (−1)n−2k−1 p, . . . , (−1)2 p, (−1)1 p, x1, . . . , xn

)
=
(
(−1)n−2k+1 p, . . . , (−1)n−2k+1 p,

(−1)n−2k+1x1, . . . , (−1)2n−2k−1xn−1, (−1)2n−2k xn
)
.

The parity of n and n−2k must be the same. Therefore (−1)n−2k+i
= (−1)n+i and

the diagram commutes. �

Proposition 5.2. The map γ∗ :H∗(Xn−k,k)→H∗((S2)n) is injective, and the action
of Sn on H∗((S2)n) given by permutation of coordinates stabilizes the image of
H∗(Xn−k,k) under γ∗.

Proof. Viewing the maps η and ιn on diagrammatic homology generators it is
straightforward to see that η∗ and ιn∗ are injective. In [Russell and Tymoczko 2008,
Corollary 3.13] we prove that γ∗ : H∗(Xn−k,n−k) → H∗((S2)2n−2k) is injective.
Therefore by Lemma 5.1 we see that γ∗ : H∗(Xn−k,k)→ H∗((S2)n) is injective and
the first half of the lemma is proven.

Consider the subgroup G ≤ S2n−2k fixing the numbers 1, . . . , n−2k. Then G is
isomorphic to Sn via the map

(i j) 7→ (i+n−2k j+n−2k).
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The action of G on H∗(Xn−k,n−k) is given by pulling back the action of G on
H∗((S2)2n−2k). Since the homology of a cartesian product of copies of S2 is a ten-
sor product of copies of H∗(S2), the symmetric group action that permutes tensor
factors commutes with the inclusion map ιn∗. We can therefore prove the second
part of the lemma by showing that the action of G on H∗(Xn−k,n−k) stabilizes the
image of H∗(Xn−k,k) under η∗.

Again note that given a ∈ Bn−k,k we have η(Sa) ⊂ Sϕ(a). On the level of
homology η sends generators in H∗(Xn−k,k) to their associated completions in
H∗(Xn−k,n−k). The new dotted arcs in the completed generators will have right
endpoint at the vertex where the ray was formerly incident and left endpoint on
one of the first n−2k vertices. While this new dotted noncrossing matching is not
necessarily standard, it is equivalent to a unique standard noncrossing matching
via Type II relations.

Diagrammatically, the image η∗(H∗(Xn−k,k)) consists of exactly those genera-
tors in H∗(Xn−k,n−k) with no undotted arcs incident on the first n−2k vertices.
Indeed the preimage of such a generator under η∗ is the standard dotted noncrossing
matching with the first n−2k vertices removed, identical undotted arcs, and the
unique standard arrangement of rays and dotted arcs in the remaining positions.

In order to prove that the subgroup action of G stabilizes η∗(H∗(Xn−k,k)) we
need to show that each simple transposition (i i + 1), where n− 2k+ 1 ≤ i <
2n−2k, maps elements of η∗(H∗(Xn−k,k)) to a linear combination of elements of
H∗(Xn−k,n−k)with no undotted arcs incident on the first n−2k vertices. Examining
rows 1, 2, 4, and 7 on the chart in Figure 11 we see that it is not possible for such
a simple transposition to map a generator without an undotted arc incident on the
first n−2k vertices to one with an undotted arc incident on the first n−2k vertices.

�

Theorem 5.3. There is a graded Sn-action on H∗(Xn−k,k) described by the chart
in Figure 11 together with the chart in Figure 12.

Proof. Using the commutative diagram in Lemma 5.1 together with the chart in
Figure 11 we are able to calculate γ−1

∗
((i i+1)·γ∗(M)) where M ∈ H∗(Xn−k,k).

By Proposition 5.2 we have a well-defined Sn-action given by

(i i+1) ·M := γ−1
∗

(
(i i+1) ·γ∗(M)

)
. �

Verifying the Springer action. Young tabloids are equivalence classes of Young
tableaux where the equivalence relation is permutation of numbers within rows.
The symmetric group Sn acts on tabloids; indeed given σ ∈ Sn and a tabloid T
we let σ · T be the tabloid with σ(i) replacing i for all i = 1, . . . , n. Consider
the vector space Uλ of complex linear combinations of tabloids of shape λ. For a
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Vertex Labelings M (i i+1) ·M

Case 5
i, i+1 both on rays

Case 6
i, i+1 on ray and dotted arc

Case 7
i, i+1 on ray and undotted arc

+

+

Figure 12. The Sn-action on matchings of type (n−k, k) with
rays. (Gray vertices indicate positions i and i+1.)

tabloid T write its corresponding element in Uλ as vT . Then the action of Sn on
tabloids induces an action on Uλ.

Consider 0 ≤ m ≤ bn/2c and λ = (n−m,m) a partition of the number n. For
each tableau T let Col(T ) be the subgroup of permutations in Sn that stabilize all
columns of T . For each tableau T define the following vector in Un−m,m .

eT =
∑

σ∈Col(T )

sign(σ )vσ ·T

The subspace of Un−m,m generated by these vectors which we denote Vn−m,m is
known as the Specht module. A classical result says that the symmetric group
action on Vn−m,m given by permuting entries in tabloids is the irreducible repre-
sentation of Sn corresponding to the partition (n−m,m). Furthermore Vn−m,m has
a basis given by {eT } where T are standard tableaux.

Given a standard dotted noncrossing matching M of type (n−k, k)with m undot-
ted arcs let Undot(M) be the subgroup of Sn generated by all transpositions (i j)
where (i, j) is an undotted arc in M . Let eM be the vector in Un−m,m defined as

eM =
∑

σ∈Undot(T )

sign(σ )vσ ·h(M).

Definition 5.4. Let the subspace of Un−m,m generated by the vectors eM the match-
ing module. Denote the matching module by Wn−m,m .

Define a map
ζ : H2m(Xn−k,k)→Un−m,m

by ζ(M)= eM . Then the image of ζ is exactly the matching module.
Define the map

f :Un−m,m→U2n−2k−m,m
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T = 1 4 5 6 7
2 3

T ′ = 1 2 5 6 7 8
3 4

Figure 13. The behavior of tabloids under the map f where n= 7
and k = 3.

as f (vT ) = vT ′ , where T ′ is the tabloid with numbers 1 through n− 2k in the
top row and i+n−2k in the row where i appears in T . Note that f is injective.
Figure 13 has an example.

Lemma 5.5. Let M be a standard dotted noncrossing matching. Then f (eM) =

eϕ(M) where ϕ(M) is understood to be the completion of the associated matching
along with dotting information.

Proof. Recall that h is the bijection taking standard Young tableaux to standard
dotted noncrossing matchings. If (i, j) is an undotted arc in M then (i + n−
2k, j+n−2k) is an undotted arc in ϕ(M). This means that h(M)′ = h(ϕ(M)).
Furthermore if Undot(M) is generated by transpositions (i j) then Undot(ϕ(M))
is generated by transpositions (i+n−2k j+n−2k).

The bijection (i j) 7→ (i+n−2k j+n−2k) between Sn and G restricts to a
bijection between Undot(M) and Undot(ϕ(M)). Moreover for σ ∈Undot(M) and
its corresponding σ ′ ∈ Undotϕ(M) we have (σ ·θ(M))′ = σ ′ ·θ(ϕ(M)). Thus we
conclude that f (eM)= eϕ(M). �

Corollary 5.6. The following diagram is commutative:

H∗(Xn−k,k)
η∗- H∗(Xn−k,n−k)

Un−m,m

ζ

? f- U2n−2k−m,m

ζ

?

Lemma 5.7. The action of Sn on Un−m,m commutes with that of G on U2n−2k−m,m .

Proof. Let σ ′ be the element of G corresponding to σ ∈ Sn via the bijection de-
scribed above. For vT ∈Un−m,m we want to show that f (σ ·vT )=σ

′
· f (vT )=vσ ′·T ′ .

The tabloid σ ·T has σ(i) in the row that i occupied in T . The tabloid corre-
sponding to f (σ ·vT ) has 1, . . . , n−2k in the top row and σ(i)+n−2k in the row that
i occupied in T . On the other hand T ′ has 1, . . . , n−2k in the top row and i+n−2k
in the row that i occupied in T . The tabloid σ ′ ·T ′ has 1, . . . , n−2k on the top row
and σ ′(i+n−2k) in the row that i occupied in T . Since σ ′(i+n−2k)=σ(i)+n−2k
we conclude that f (σ ·vT )= σ

′
· f (vT ). �

Corollary 5.8. The map ζ : H2m(Xn−k,k)→Wn−m,m is an Sn-equivariant isomor-
phism of complex vector spaces.
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Proof. As we noted earlier η∗ is injective, so η∗ : H2m(Xn−k,k)→ η∗(H2m(Xn−k,k)

is an isomorphism. In [Russell and Tymoczko 2008, Lemma 4.2] we prove that

ζ : H2m(Xn−k,n−k)→W2n−2k−m,m ⊂U2n−2k−m,m

is an S2n−2k-equivariant isomorphism, so it follows that

ζ : η∗(H2m(Xn−k,k))→ f (Wn−m,m)

is a G-equivariant isomorphism. Finally Lemma 5.5 implies that f is injective, so
f :Wn−m,m→ f (Wn−m,m) is an isomorphism. Thus

ζ = f −1
◦ζ ◦η∗ : H2m(Xn−k,k)→Wn−m,m

is an isomorphism.
By construction the action of Sn on H2m(Xn−k,k) commutes with the action

of G on η∗(H2m(Xn−k,k)). Since ζ : H2m(Xn−k,n−k) → U2n−2k−m,m is S2n−2k-
equivariant it is also G-equivariant. This information together with Lemma 5.7
proves that ζ : H2m(Xn−k,k)→Wn−m,m is Sn-equivariant. �

Theorem 5.9. The Specht module Vn−m,m and the matching module Wn−m,m are
equal as Sn-representations. Thus the Sn action on H∗(Xn−k,k) is isomorphic to
the Springer representation.

Proof. Since Vn−m,m and Wn−m,m are subspaces of Un−m,m of the same dimension
each equipped with an Sn-action, the intersection Vn−m,m ∩Wn−m,m is also an Sn

representation. The Specht module Vn−m,m is irreducible, so Vn−m,m ∩Wn−m,m is
either 0 or Vn−m,m .

Let M be the standard dotted noncrossing matching with m undotted arcs (1, 2),
(3, 4), . . . , (2m−1, 2m). Then M represents a basis element in H2m(Xn−k,k). Fur-
thermore the columns of h(M) are exactly the undotted arcs of M , so Undot(M)=
Col(h(M)). This means that eM = eh(M), so the matching module and Specht
module always have a common vector.

Since Vn−m,m ∩Wn−m,m is nonempty we conclude that the intersection is all
of Vn−m,m . We therefore conclude that Vn−m,m = Wn−m,m . By the equivariance
proved in Corollary 5.8 the Sn action we have defined on H∗(Xn−k,k) is isomor-
phic to the unique irreducible representation of Sn corresponding to the partition
(n−m,m). Therefore we conclude that the action we have defined on the homology
of the Springer variety is isomorphic to the Springer action. �

A skein-theoretic formulation of the Springer action. The Springer action on
H∗(Xn−k,k) is described diagrammatically in the charts in Figures 11 and 12. We
can also describe the action skein-theoretically.
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Theorem 5.10. Given standard dotted noncrossing matching M ∈ H∗(Xn−k,k) and
σ ∈ Sn glue a flattened braid corresponding to σ to the bottom of M forming M ′.
Then the Springer action σ ·M is equal to s(M ′), where s is defined as follows.

s
( )

= s
( )

+s
( )

s
(

��

��

����
����
����
����
����
����

����
����
����
����
����
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)
= 0

s
(

M ′t
)
= s(−2M ′) s

(
M ′t ��

)
= 0

As an example, consider the permutation (1 2 3) acting on the following gen-
erator of H2(X2,1).

(1 2 3) · ��

= s
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= s
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Appendix

In Section 3 we cited [Khovanov 2004] as the source for Proposition 3.9 and the
base case of Lemma 3.14. Proofs of these results were left to the reader in that
paper. For the sake of completeness we include the proofs here. Throughout the
appendix we take n = 2m.

Proof of Proposition 3.9. Let |aw(b)| be denoted by c. This proof proceeds by
induction on c. We begin with the case that c= 1 and then argue by induction. The
following algorithm finds a sequence of m−1 moves on a that yields b. An arc
(i, j) in b is said to be unpaired in aw(b) if a does not have arc (i, j). Let a = a0

and let t = 0.

(1) If b has no unpaired arcs in atw(b), then at = b and we are done. Otherwise
begin with the narrowest leftmost arc (i, j) in b that is unpaired in atw(b).
Then at has arcs (i, k), ( j, l) where i, j, k, l have no particular order.

(2) Perform→ or← in at to produce a new matching at+1 with arcs (i, j) and
(k, l).

(3) Increment t by 1, and repeat the first two steps.

It is always possible to perform→ or← as required. At each step the algorithm
guarantees all arcs nested beneath (i, j) are paired in atw(b) since arcs beneath
(i, j) are narrower than (i, j). Thus each arc in at either has zero or two endpoints
between vertices i and j . This means that the arcs (i, k) and ( j, l) are adjacent in
at , and→ or← can be performed to get a new matching at+1 with arcs (i, j) and
(k, l).
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The number of circles in at+1w(b) is one more than the number of circles in
atw(b). To see this note that the arcs (i, k), ( j, l) in at and the arc (i, j) in b are
all part of the same circle in atw(b). The move that produces at+1 must change
the number of circles. Since this move acts on two arcs that are part of a single
circle, the only possibility is that the move increases the number of circles by one.

Since we increase the number of circles with each iteration of our algorithm,
this process terminates after m−1 iterations at which point we will have m circles
- the maximum number of circles possible. This proves that d(a, b)≤ m−1.

In an arbitrary sequence of moves, each time at → at+1 or at ← at+1 is per-
formed the number of circles in atw(b) is either one greater or one less than
at+1w(b) depending on whether the move taking at to at+1 joins two circles or
splits a single circle. Since we start with one circle, it will require at least m−1
moves to produce m circles. This means our algorithm generates a minimal se-
quence (a = a0, a1, . . . , am−2, am−1 = b) and d(a, b)= m−1.

Now consider a, b∈ Bm,m where aw(b) has c circles, and enumerate the circles
α1, . . . , αc. Each circle αr passes through the horizontal axis 2qr times. By the
argument above, we have

d(a, b)=
∑

1≤r≤c

(qr−1)=
( ∑

1≤r≤c

qr

)
−c = m−c. �

Proof of the base case for Lemma 3.14. This is proven using induction on the
distance between a and b. If there exists a minimal sequence of moves taking a to
b that begins with← the inductive step is clear. The lemmas below are required in
order to handle the case that no minimal sequences of moves taking a to b begin
with←. When this occurs, the following arguments prove that there always exists
a minimal sequence for a and b of the form (→,→, . . . ,→,→). In other words,
we want to show that in this case we take a = c.

Lemma 5.11. Let a be the matching with arcs

(1, 2), (3, 4), . . . , (n−3, n−2), (n−1, n)

and b the matching with arcs

(2, 3), (4, 5), . . . , (n−4, n−3), (n−2, n−1), (1, n).

Then there exists a minimal sequence (a→ a1 . . . am−1→ b).

Proof. Consider the minimal sequence generated by the algorithm in the proof of
Proposition 3.9. Each move takes the matching with arcs (1, i), (i+1, i+2) to the
matching with arcs (1, i+2), (i, i+1). Since arcs (1, i), (i+1, i+2) are unnested
these moves always have the form→. �
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This next lemma addresses circles of this type within more complicated gluings
of two matchings.

Lemma 5.12. Let i1 < · · · < i p. Let a be some matching with arcs (i1, i2), . . . ,
(i p−1, i p). Let b be some matching with arcs (i2, i3), . . . , (i p−2, i p−1), (i1, i p).
There exists a minimal sequence for a and b where all moves on arcs incident
on the vertices i1, . . . , i p have the form→.

Proof. We prove this using induction. Assume i1 < i2 < i3 < i4 and that a is a
matching with arcs (i1, i2), (i3, i4) while b is a matching with arcs (i2, i3), (i1, i4).
The algorithm given in the proof of Proposition 3.9 will eventually find arc (i2, i3)

unpaired in atw(b). It will perform the move→ taking the unnested pair of arcs
(i1, i2), (i3, i4) to the nested pair of arcs (i2, i3), (i1, i4).

Assume that the result is true for some p. Consider i1 < · · · < i p+2. Take a
and b to be matchings as in the statement of the corollary. The algorithm from the
proof of Proposition 3.9 will eventually find the narrowest arc in b incident on these
vertices. Say this arc is (ik, ik+1). The move→ will be performed on matching
at producing new arcs (ik−1, ik+2), (ik, ik+1). The arc (ik, ik+1) is now paired in
at+1w(b). After renumbering the remaining arcs are incident on p vertices as in
the statement of the corollary. We apply the inductive hypothesis to the remaining
arcs, and the result follows by induction. �

Before the next lemma, we provide one technical definition that will make the
statement of the lemma easier.

Definition 5.13. Let i < j < k< l and suppose (i, l), ( j, k) are nested arcs in some
matching a. We say that an arc is between (i, l) and ( j, k) if the arc in a with left
endpoint between i and j and right endpoint between k and l.

Lemma 5.14. Let a, b ∈ Bm,m . Let i < j < k < l and suppose (i, l), ( j, k) are
nested arcs in a that are part of the same circle in aw(b) such that there is no arc
in a lying between (i, l) and ( j, k) that is also part of that circle. Then the number
of arcs between (i, l), ( j, k) is even.

Proof. Given some circle c in aw(b) let W (c, z) be the winding number of c about
z. Consider a line segment between z0, z1 /∈ c which is transverse to c. Say that the
number of intersections of that segment with the circle c is some number r . Then
mod 2 intersection theory tells us that

W (c, z0)≡W (c, z1)+r (mod 2).

Take some arc between (i, l) and ( j, k). Say this arc is part of circle c in aw(b).
Note that the circle c is not the same circle that (i, l) and ( j, k) are part of. Vertices
i and j are both either inside or outside the circle c. Consider the vertices i and j
to be points in the plane. Then W (i, c) ≡ W ( j, c) (mod 2). Putting this together
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with the previous statement, say the segment between i and j intersects c exactly r
times. Then W (i, c)≡W ( j, c)+r (mod 2) and hence r ≡0 (mod 2). We conclude
that c has an even number of intersections with the line segment between i and j .

Each arc in c with both endpoints between i and j contributes an even number
of intersections, so the number of arcs between (i, l) and ( j, k) must also be even.
Since this is true for each circle with some arc between (i, l) and ( j, k), there is an
even number of arcs between (i, l) and ( j, k). �

Lemma 5.15. Within the collection of arcs between (i, l) and ( j, k) there are two
adjacent arcs that are part of the same circle.

Proof. By the argument above, there is an even number of vertices between i and j .
Given two circles c and c′ with arcs that lie between (i, l) and (k, j) the argument
in the previous proof says that there are an even number of arcs from c′ between
any pair of arcs in c.

Because there are finitely many vertices between i and j , there must be some
pair of arcs from a single circle that have no arcs from any other circle between
them. Otherwise we could find infinitely many arcs between (i, l) and ( j, k). �

Lemma 5.16. Given a, b ∈ Bm,m if every minimal sequence (a, a1, . . . , am−1, b)
begins with a→ a1 then there exists a minimal sequence (→,→, · · · ,→,→).

Proof. Assume that all minimal sequences for a and b begin with→. In particular
this means that there does not exist a pair of nested arcs in a that are part of the same
circle in aw(b) and have no other arc from that same circle between them. (The
existence of such a pair would violate our assumption that all minimal sequences
begin with→.)

Say there is some pair of nested arcs (i, l), ( j, k) ∈ a that are part of the same
circle in aw(b). By Lemma 5.15 there must be a pair of nested, adjacent arcs in a
contributed by some other circle of aw(b) lying between (i, l) and ( j, k). In this
case, we could perform← on this pair once again violating our assumption that
all minimal sequences must begin with→. We conclude that the no pair of nested
arcs in a are part of the same circle in aw(b).

Since we have just shown the arcs in each circle in aw(b) are pairwise unnested,
they have the form

(i1, i2), (i3, i4), . . . , (it−1, it) where i1 < i2 < · · ·< it−1 < it .

The arcs in b that comprise the rest of this circle necessarily have the form

(i2, i3), . . . , (it−2, it−1), (i1, it).

Consider the minimal sequence of moves for a and b obtained by the algorithm
in the proof of Proposition 3.9. By Lemma 5.12 each move has the form →.
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Therefore we have a minimal sequence consisting only of→moves, and the lemma
is proven. �

Having established Lemma 5.16 we can now easily finish the proof of the base
case for Lemma 3.14.

We proceed using induction. If the distance between matchings is 1, the result
is clear since there is only one move between matchings in any minimal sequence.

Now assume the lemma is true for all a, b with d(a, b) ≤ m−1. Assume that
d(a, b)=m. Let (a= a0, a1, . . . , am−1, am = b) be a minimal sequence of moves
from a to b such that the move← occurs as early as possible.

If a0 ← a1 we can apply the inductive assumption to get a1 � c ≺ am with
d(a1, am)= d(a1, c)+d(c, am) and (a1←· · ·← c→· · ·→ am). This proves the
lemma in this case since we have a minimal sequence of the form

(a← a1← · · · ← c→ · · · → b).

If a0→ a1 then there does not exist a minimal sequence for a and b with first
move←. By Lemma 5.16 there exists in this case a minimal sequence of the form
(a→ · · · → b). �
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