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STABILITY AND RESOLUTION IN THERMAL IMAGING 1 

Kurt Bryan 
Department of Mathematics 

Rose-Hulman Institute of Technology 

Lester F. Caudill, Jr. 
Department of Mathematics 

University of Kentucky 

Abstract 

This paper examines an inverse problem which arises 
in thermal imaging. We investigate the problem of de­
tecting and imaging corrosion in a material sample by 
applying a heat flux and measuring the induced tem­
perature on the sample's exterior boundary. The goal 
is to identify the profile of some inaccessible portion of 
the boundary. We study the case in which one has data 
at every point on the boundary of the region, as well as 
the case in which only finitely many measurements are 
available. An inversion procedure is developed and used 
to study the stability of the inverse problem for various 
experimental configurations. 

1 Introduction 

Some of the fastest growing areas of non-destructive 
evaluation (NDE) are those related to the assessment 
of the condition of aging aircraft. Thermal imaging is 
a technique that has shown promise for detecting cor­
rosion or delaminations in aircraft. The technique is 
used to recover information about the internal condi­
tion of a sample by applying a heat flux to its boundary 
and observing the resulting temperature response on the 
object's surface. From this information, one attempts 
to determine the internal thermal properties of the ob­
ject, or the shape of some unknown (possibly corroded) 
portion of the boundary. Patel et al. (1992) provide 
account of the technology and typical data processing 

1This research was partially carried out while the first author 
was in residence at the Institute for Computer Applications in Sci­
ence and Engineering (ICASE), NASA Langley Research Center, 
Hampton, VA 23681, which is operated under National Aeronau­
tics and Space Administration contract NASl-19480. 
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techniques that are employed, and a more extensive bib­
liography on the subject. 

One of the most common uses for thermal imaging 
is for the detection of so-called "back surface" corro­
sion and damage. Briefly, one attempts to determine 
whether some inaccessible portion of an object's bound­
ary has corroded, and therefore changed shape. In this 
paper we investigate a model two-dimensional version 
of the problem, to gain some insight into the nature of 
the mathematics involved, especially the structure and 
conditioning of the mathematical inverse problem. We 
consider a certain portion of the surface of a rectangu­
lar sample to be accessible for measurements and the 
remainder of the surface, which may be corroded, inac­
cessible. This problem has been considered by others 
(Banks et al., 1989, 1990) with an emphasis on recov­
ering estimates of the unknown surface from data by 
using an output least-squares method. 

We examine both a continuous and finite data version 
of the inverse problem. The continuous version assumes 
that one has data at every point on the accessible por­
tion of the object's surface. The finite data version as­
sumes that only finitely many measurements have been 
made. Our goals are 

• To determine whether it is in principle possible to 
recover the back surface from data, and examine 
the sensitivity of the inverse problem to noise in 
the data. 

• To examine how various experimental parameters 
affect stability and resolution for the inverse prob­
lem, especially the effect of measurement locations 
on stability. 

• To determine how one might incorporate a priori 
information or assumptions into the inverse prob­
lem. 

Our main focus is not to develop inversion algorithms, 
but in the course of examining the problem, we derive 



an inversion procedure for the finite data inverse prob­
lem. This algorithm allows the easy incorporation of a 
priori assumptions into the inversion process. We apply 
the algorithm to several simulated data sets to illustrate 
our conclusions. Our study of the stability of the inverse 
problem reduces to studying the invertibility of a certain 
matrix, which we do with a singular value decomposi­
tion. We do not make any explicit finite dimensional 
parameterization of the unknown surface. 

We should note that a very similar approach has been 
used by Dobson and Santosa. (1994) to study resolu­
tion and stability for the inverse conductivity problem. 
Isaacson et al. (1990a, 1990b) have also carried out simi­
lar sensitivity studies related to the inverse conductivity 
problem, especially the effect of finitely many measure­
ments on the inversion process. 

The outline of the paper is as follows. In Section 2 
we present the mathematical formulation of the contin­
uous and finite data versions of the inverse problem. 
In Section 3 we derive a linearized version of the in­
verse problem and show how this leads (as thermal in­
verse problems often do) to a first kind integral equation 
which must be inverted. We also state some uniqueness 
and stability results for the linearized version of the in­
verse problem. In Section 4 we consider an algorithm 
for solving the finite data version of the inverse prob­
lem and how this approach can be used quantify the 
stability of the problem. Finally, we present numerical 
studies to examine the effects that various experimen­
tal parameters have on the stability and resolution of 
the inversion process, and the effect of incorporating a 
priori assumptions into the inversion procedure. 

2 The Inverse Problem 

Consider a sample to be imaged as a two-dimensional 
region n lying between the two surfaces X2 = S(xi) and 
x2 = 1 as illustrated below. 

X2= 1 

L x,=S(x1) 

x, 

Figure 1: Sample geometry. 

The surface x 2 = 1 is the "top" or "front" surface and 
x2 = S(x1) is the "back" surface. We assume that the 
ends of the sample are sufficiently far away that they 
can be ignored, so for our purposes the sample is un­
bounded in the x 1 direction. The top surface is ac­
cessible for inspection and measurements, but the back 
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surface X2 = S(x1) is inaccessible. This is the portion 
of the sample to be inspected for corrosion. The ideal 
uncorroded case is a flat back surface S(x1 ) = 0. In 
the corroded case illustrated in Figure 1, S(x1) > 0 for 
some values of x1. We will assume that the function S 
belongs to H 2 (JR), although this assumption will later 
be relaxed. In particular, since H 2 (1R) c C1 (JR) there 
is a continuous unit normal vector field on the back sur­
face. The goal is to determine the back surface or the 
function S by taking measurements only on the front 
surface. 

A time-dependent heat flux g(x1, t) is applied to the 
top of the sample x2 = 1. We assume that the sample 
material is homogeneous with thermal diffusivity "' and 
thermal conductivity a, both known constants. We will 
use T(x, t) to denote the resulting temperature induced 
in n, where x = (x1' X2). The direct thermal diffusion 
problem will be modeled as 

aT 
- - "'D. T 0 in n, (2.1) at 

aT 
Q'. av g(x1, t) On X2 = 1, 

aT 
a av = 0 on X2 = S(x1), 

T(x, 0) To(x), 

fort> 0, where tv denotes the outward normal deriva­
tive on the boundary of 0. The function T0 (x) is the 
initial temperature of the region n at time t = 0. Note 
that the back surface is assumed to block all heat con­
duction. 

We consider the useful special case in which the heat 
flux g(x1, t) is periodic, of the form Re[g(x1)eiwt] with 
w > 0. Since we are interested in the mathematical 
structure of the inverse problem, we will for simplicity 
take the constants "' and a equal to one. Under these 
assumptions the solution to equation (2.1) is given as 
T(x, t) = Re[eiwtu(x)] where u(x) satisfies 

D.u- iwu 0 in n, (2.2) 
au 

g(x1) on X2 = 1, = av 
au 

0 on X2 = S(x1), = av 

at least after transients from the initial temperature 
have sufficiently decayed. The main case of interest is 
that in which g(x1 ) is constant, corresponding to uni­
form heating of the outer surface. This is typically the 
case when heat or flash lamps are used to provide the 
input flux g. For the moment, however, we will not 
restrict g. 



We can consider two versions of the inverse problem, 
the purely mathematical one in which one measures the 
temperature at all points on the top surface, and the 
case in which one has a finite number of measurements. 
The data need not be actual point measurements of the 
temperature u, but this is the most common situation. 
Of particular interest are the questions 

1. Can the function S(xi) be uniquely determined by 
knowing temperature u(xi) for all xi on the top 
surface? 

2. If S(xi) is uniquely determined by u(xi), how sen­
sitive is S(xi) to perturbations in the data? What 
kinds of features in the back surface can or cannot 
be easily determined from the data? 

3. Since any practical application falls under the fi­
nite data formulation, how stable is the estimate of 
S(xi) based on finitely many pieces of data? What 
factors influence stability in this case, and is there 
an inversion procedure to produce a reasonable es­
timate of S(xi) using finitely many measurements? 

The first question is easily answered "yes" by a stan­
dard argument. A proof has been given by the authors 
(1994). Briefly, the uniqueness result is 

Suppose u(xi, x2; S) denotes the solution to (2.2} with 
back surface S and nonzero flux g. If u(xi, 1; Si) = 
u(xi, 1; S2) for each (xi, 1) in an open subset C of the 
top surface of n, then Si = S2. 

The second and third questions will be examined in the 
next section by considering a linearization of the original 
inverse problem. 

3 A Linearization 

We now linearize the original direct problem given by 
equation (2.2) with respect to the function S, and study 
the inverse problem that arises by using the linearized 
direct problem. Let uo(x) denote the solution to (2.2) 
with S = 0. The surface x2 = 0 is a sensible point about 
which to linearize, since this represents the uncorroded 
or ideal profile from which we hope to detect any devi­
ation. Let ut(xi,x2) denote the solution to (2.2) with 
back surface x2 = St(xi) = cS(xi) where S is some 
fixed H 2 (IR) function and Eis some small number. We 
use dt(xi) = ut(xi, 1) for the temperature "data" cor­
responding to St (hence d0 (xi) = u0 (xi, 1) corresponds 
to S = 0). We have shown (Bryan and Caudill, 1994) 
that for the special case of g = 1 (uniform heating of 
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the top surface) 

dt(xi) = do(xi) + cd(xi) + O(c2
) 

where the function d(xi) satisfies 

(3.3) 

and where "*" denotes convolution. The function ¢(x) 
is determined uniquely by its Fourier transform (fi(y), 
which is 

h c 
</J(y) = a(e°' - e-°') (3.4) 

where a= Jy 2 - iw and the constant C is 

C = _ 4iw 
'Y( e'Y - e-'Y) 

with 'Y = (1 - i)/Wfi. The function ¢(x) is analytic 
and rapidly decreasing (faster than any polynomial); its 
Fourier transform shares the same properties. More­
over, the function satisfies (fi(y) -:/:- 0 for any real value 
of y. 

Equation (3.3) is the linearized version of the direct 
problem; it says that the perturbation in the back sur­
face (about S = 0) generates a first order perturbation 
cd(xi) in the front surface temperature data, with d(xi) 
given by (3.3). 

The inverse problem for the linearized direct problem 
is to identify S(x) given data for the linearized direct 
problem. Note that the measured data cd(xi)+do(xi) is 
equivalent to knowing dt, since do is in principle known. 
With d(xi) considered known (3.3) becomes a first kind 
integral equation for the unknown function S. First 
kind integral equations have been extensively studied 
(TI:icomi, 1957), (Wing, 1991) and are well-known to 
be unstable; small perturbations in the right hand side 
d(x) can lead to arbitrarily large changes in the solution 
S. However this formulation of the inverse problem as 
an integral equation will allow us to obtain stability es­
timates for the linearized version of the problem and 
yields a reasonable approach to reconstruction. 

Equation (3.3) shows immediately that the linearized 
inverse problem has a unique solution. Suppose some 
surface S(xi) with SE L2 (IR) gives rise to data d(xi). 
Fourier transforming both sides of (3.3) and dividing by 
(fa (valid because (fi(y) -:/:- 0) yields 

h d 
S=-;;-, 

<P 
(3.5) 

so S can be found in terms of d. If S is L2 then so is S, 
and Sis determined uniquely by knowledge of S. Note 



we assumed a priori that S is in L2 (IR). In general, for 
an arbitrary d E L2 (IR) we cannot find a function S in 
L 2 which gives rise to data d via equation (3.3). 

The convolution equation (3.3) also provides infor­
mation on continuous dependence. The function if> is 
smooth and never equal to zero, and so motivated by 
equation (3.5), we can define the space of functions 
Lz (IR) with the norm 

h 2 

II/II~ = J00 

~(z) dz. 
-oo ¢(z) 

From equation (3.4) it follows that ~ grows like zez. 

The norm 1111* thus puts a heavy penalty on high fre­
quencies; the functions in this space are very smooth. 
Equation (3.5) then shows that 

If a back surface X2 = S(x1) generates front surface 
data d(x) for the linearized direct problem then 

where C is independent of d. 
Estimates of S from data d will thus be extremely sen­

sitive to any noise, because the inversion process weights 
a frequency f in the data by a factor proportional to 
f el. The structure of the convolution operator mapping 
S to the data d makes it clear that it will be difficult to 
estimate the high spatial frequency components in the 
Fourier decomposition of S, for these components are 
heavily damped out by the forward mapping. 

4 The Case of Finitely Many 
Measurements 

Suppose that we have point estimates d(ai) = u(ai, 1) of 
the temperature on the top surface at n distinct points. 
How can we construct a reasonable estimate of the func­
tion S(x1)? How can we quantify the stability of the 
reconstruction with respect to errors in the data, and 
how does the choice of measurement locations ai affect 
the stability? Let us assume that we seek an estimate 
S E L2 (IR). Physical considerations make it desirable 
to obtain an estimate with more regularity, but this will 
be a consequence of the proposed reconstruction proce­
dure. Based on the convolution equation (3.3) we know 
that S must satisfy the n constraints 

< S, Ci >= 1: S(x1)ci(x1) dx1 = d(ai), (4.6) 

for i = 1, ... , n with ci(x1) = ef>(ai - x1) and 
< f, g >= JR fij is the usual L 2 inner product. Note 
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that since ci is an L2 function, S i-+< S, Ci > is a 
bounded linear functional on L2 • The set ( 4.6) is a hor­
ribly underdetermined set of equations. We can expect 
to find an entire translated subspace offunctions of codi­
mension n in L 2 (IR) which satisfy the given conditions, 
and any such function "solves" the inverse problem, in 
the sense that it gives rise to the measured data. 

One practical method for specifying a unique function 
in L2 which solves the inverse problem is to seek that el­
ement in L2 which satisfies the given conditions and has 
minimal norm. That such an element exists follows from 
the fact that the relations ( 4.6) define a closed convex 
subset of L2 and hence this subset has a unique ele­
ment of minimal norm. This idea has been used before 
by Dobson and Santosa (1994) to construct a "pseudo­
inverse" for the finite measurement case and to charac­
terize the stability and information content for the in­
verse conductivity problem, and has also been used for 
reconstruction from partial information in tomographic 
problems by Byrne and FitzGerald (1982). 

It is an easy application of Lagrange multipliers to 
verify that the unique element of L 2 with minimum 
norm which satisfies the constraints ( 4.6) must be of 
the form 

n 

S(x1) = 2: Akck(x1) (4.7) 
k=l 

for some { Ak} k=l ~ (C • The constants Ak can be de­
termined by substituting ( 4. 7) into equations ( 4.6) and 
solving the resulting n x n system. The system is of 
the form M,\ = d where M = [mij] is an n by n ma­
trix,,\ is then vector (.\1, ... , An)T and dis an n vector 
(d(a1), ... , d(an))T. The entries of Mare given by 

mij = J00 

c(x1 - ai)c(x1 - ai) dx1. 
-oo 

(4.8) 

The matrix M is clearly Hermitian and in fact is al­
ways invertible if the measurement locations are distinct 
(Bryan and Caudill, (1994)). Thus this inversion proce­
dure thus always produces a unique estimate of S if the 
measurement locations are distinct. 

We can also "solve" the inverse problem by choosing 
the unique function S which satisfies equations ( 4.6) and 
has minimal norm in a weighted L2 space LHIR) with 
norm defined by the inner product 

where 8(xi) is some real-valued non-negative function 
on IR. In this case, we have 



where we must assume that S = 0 wherever 8 = 0. Thus 
the integral is understood to be taken only over that set 
where 8 is non-zero. Equations ( 4.6) now take the form 

(4.9) 

and the minimal norm solution is of the form 

n 

S(x1) = 8(xi) L ,\ci(x1). (4.10) 
i=l 

The idea is to choose '5(x1) to have the same general 
form as S(x1), and so incorporate a priori information 
into the reconstruction based on (4.10) by forcing it to 
have the same general form. For example, if we know 
that S is supported in the interval [-b, b] we can choose 
8(x) = 1 on [-b, b] and '5(x) = 0 elsewhere. The optimal 
estimate of S becomes 

n 

S(x) = X[-b,b] L AiCi(x) 
i=l 

where X[-b,b] is the characteristic function of the interval 
[-b, b] and where the Ai are found by solving 

for j = 1 ton. 

5 Numerical Experiments 

We will now examine the finite data version of the in­
verse problem by using the previously described inver­
sion procedure. In this section we apply the procedure 
to simulated data sets, both with and without noise. 
Our main focus is to examine the stability and reso­
lution of back surface estimates with respect to various 
experimental parameters, specifically the distribution of 
the measurement locations along the top surface of the 
sample. We also demonstrate how a priori assumptions 
about the nature of the corrosion can be incorporated 
into the inversion, and the effects such assumptions have 
on stability and resolution. 

In the examples that follow we generate simulated 
test data using the full direct problem (2.2) with heat­
ing g(x) = 1. The direct problem is solved by convert­
ing it into a boundary integral equation which is then 
solved numerically. The boundary integral formulation 
leads to a second kind Fredholm equation; the solution 
procedure is detailed by the authors elsewhere (Bryan 
and Caudill, 1994). 
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To illustrate the general procedure and to show that 
the inversion algorithm provides reasonable estimates, 
we begin with a simple example. We apply the inversion 
procedure to data generated using the back surface 

We use a heating frequency of w = 1. As a first step the 
functions ci(x) are computed and the matrix Mis gen­
erated. Since these do not depend on S, but only on the 
geometry and heating frequency, they are precomputed 
and stored, rather than generated every time they are 
needed. The temperature data vector d is computed at 
21 equally spaced points on the top surface, x1 = ai 

where ai = -5 + ~ for i = 0 to 20. We then invert the 
21 x 21 system M .A = d to find .A and return an estimate 
of S via equation ( 4. 7). The estimate of S is computed 
at a suitable number of points on the range of interest, 
in this case from -5 to 5. The reconstruction is shown 
in Figure 2. The dotted line is the actual function S(x) 
and the solid line is the reconstructed version. 

0.25 

0.2 

0.15 

-4 -2 2 4 

Figure 2: Reconstruction of 

S( ) 
_ e-(z+a)2 e-(z+2)2 e_4,,2 

x - 10 + 5 + ---w-· 
Stability 

Of particular interest is the sensitivity of the inversion 
procedure with respect to various experimental param­
eters, e.g., measurement locations. The first task is to 
quantify the stability or conditioning of the finite data 
inverse problem. One sensible way to do this is to per­
form a singular value decomposition on the matrix M 
defined by equation ( 4.8) and examine the magnitude of 
the singular values. When the singular values are small 
the inversion of M .A = d magnifies small perturbations 
in d. Put another way, small singular values mean that 
relatively large changes in S (and so in .A) produce rela­
tively small changes in the data, so that perturbations in 
the back surface are "hard to see." Our goal in choos­
ing experimental parameters is therefore to make the 
singular values of M as large as possible, within certain 
limits. 



Let us examine how the stability of the inversion 
procedure depends on the locations of the temperature 
measurements on the top surface. In the following ex­
amples we fix the heating frequency at w = 1 and take 
measurements of the resulting temperature at 21 equally 
spaced locations on the interval [-a, a] for several values 
of a. The resulting measurement locations are therefore 
of the form ai = -a+ 1i0 a for i = 0, ... , 20. In each 
case the matrix M is computed and a singular value de­
composition is performed. Let the singular values of M 
be denoted by o:i, i = 1 to 21, arranged in descending 
order. In Figure 3 we plot the quantity log10 lo:il versus 
i for the cases a = 1, 2, 3, 5, 10. 

-2 

_, 
_, 

-· 

' 
\ "'' \ '' ... ' ' ...... ' ' ......... 

\ ' ... ... 

15 20 

' .............. '- ... -- ... 
.......... ......_ ................ ... 

--- - ':::":::-.:-_-, -,, 

- - - •=10.0 
--- 8=5.0 
------ 8=3.0 

---- 8=2.0 

----·•=1.0 

Figure 3: log10 lo:d versus i for various values of a. 

It is apparent that as the measurement locations be­
come more spread out (as a gets larger) the singular 
values decay more slowly and hence the inversion pro­
cedure becomes more stable. In light of stability results 
this is not surprising. When the measurement locations 
are close together we are able to resolve higher spatial 
frequencies in the data and so we are able to estimate 
higher frequencies in the Fourier decomposition of S. 
But according to the stability results these are exactly 
the portions of S that are difficult to reconstruct-they 
are heavily damped out in the data. The finite data 
version of the problem reflects this, with a full 6 orders 
of magnitude variation for the smallest singular values 
between the cases a = 1 and a = 10. 

Another way to look at the stability of the various ex­
perimental configurations is to suppose that we have an 
"error magnification tolerance" E, and that in the inver­
sion procedure we disregard all singular vectors whose 
singular values are less than i. The inversion proce­
dure is then stabilized at the expense of rendering those 
components of S lying in the span of the corresponding 
functions invisible. Figure 4 shows the number of sin­
gular values of M which satisfy O:k > i versus log10(E) 
for E from 1 to 10-9 • As in the previous examples, the 
matrix Mis 21 x 21 and we use measurement locations 
on the top surface ai = -a + 1i0 a, i = 0, ... , 20 for 
a= 1, 2, 3, 5, 10. The heating frequency is w = 1. 
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•= 10.0 
•=5.0 

•=3.0 
•=2.0 

----- •=1.0 

Figure 4: Number of singular values with O:i > i 
versus log10(E) for various values of a. 

Figure 4 also makes clear that as the measurement lo­
cations become spread out more singular values satisfy 
O:i > i. The inversion procedure then admits more ba­
sis functions, presumably improving the fidelity of the 
reconstruction. In the two cases below we perform the 
actual reconstruction with E = 100 (so only singular 
values greater than 0.01 are admissible) and add a small 
amount of random noise to the data (equal to 10 percent 
of the maximum signal strength). We then perform a 
reconstruction which omits all basis vectors whose cor­
responding singular values are less than i. Figure 5 il­
lustrates the case in which the measurements locations 
are equally spaced from -5 to 5; there are 9 admissible 
singular values. 

0.25 

0.2 

0.15 

-4 -2 2 4 

Figure 5: Reconstruction of S(x) for 21 measurements 
on [-5, 5], tolerance E = 102 • 

In Figure 6 we take the 21 measurements on the smaller 
interval (-1, 1], which yields only 3 admissible singular 
values. 

0.2 

-4 -2 2 4 

Figure 6: Reconstruction of S(x) for 21 measurements 
on (-1, 1], tolerance E = 102 • 



The reconstruction in Figure 6 is noticeably inferior 
to that of Figure 5, but we have only 3 admissible ba­
sis functions with which to construct S(x). Increasing 
the value of E to admit more basis functions is not suc­
cessful. Figure 7 illustrates what happens if we take 
E = 104 with measurements on [-1, 1]. Now 5 sin­
gular values are admissible, but the reconstruction is 
overwhelmed by noise. 

0 

0 

• 6 

-.... 
"' ' ,. ' 

1 ,. ' 
'-"' ' .... ... 

-4 -2 2 4 

Figure 7: Reconstruction of S(x) for 21 measurements 
on [-1, 1], tolerance E = 104 • 

The moral seems clear: for maximum stability with 
a fixed number of measurement locations, we should 
spread the measurements over as large a region as pos­
sible. There are limits to this approach, however. If we 
spread out the measurements we do gain stability, but 
we will no longer be able to estimate high frequencies 
in the Fourier decomposition of S. This is illustrated 
by Figure 8, where we take 21 noise-free measurements 
on the interval [-10, 10] and estimate S with error tol­
erance E = 102 • In this case all of the singular values 
are admissible. 

-4 -2 2 4 

Figure 8: Reconstruction of S(x) for 21 measurements 
on [-10, 10], tolerance E = 102 • 

Despite the fact that the inversion is quite stable, 
our inability to resolve high frequencies results in a loss 
of resolution of small-scale detail in the reconstruction. 
With regard to the distribution of the measurement lo­
cations, the reconstruction process involves a compro­
mise between stability and resolution of small-scale fea­
tures. If the data points are too closely spaced, the 
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inversion procedure is unstable. If the data points are 
too spread out, the inversion procedure becomes stable, 
but resolution is lost; measurements taken far from the 
support of the defect contain little information, because 
the heat diffuses very rapidly. How shall we find the 
"best" spacing for measurements? One useful possibil­
ity is to incorporate a priori information or assumptions 
into the inversion procedure. We will illustrate the idea 
by examining the problem under the assumption that 
the defect or function S is supported in a known inter­
val. 

In the following examples we assume that the defect 
being imaged is supported in the interval [-2, 2]. The 
only modification to the inversion procedure is that the 
matrix Mis computed in accordance with equation ( 4.9) 
and the function Sis estimated using equation (4.10). 
We will study the stability of the inversion procedure 
with respect to the distribution of the measurement lo­
cations on the top surface. 

As in the previous cases, we choose measurement lo­
cations at x1 = ai on the sample top surface, where 
ai = -a+ 1i0 a for i = 0 to 20. The heating frequency in 
all cases that follow is w = 1. Let us begin by examining 
the singular values of the inversion matrix M for a few 
choices of a. In Figure 9 we plot the quantity log10 lail 
versus i for a = 0.5, 1.0, 2.0, 5.0, 10.0. 

a=0.5 
a=1.0 
8=2.0 
B= 5.0 
a=10.0 

Figure 9: Singular values ai versus i for various values 
of a. 

The figure shows that the best conditioning for the in­
verse problem occurs at a= 2, when the measurement 
locations are distributed approximately in the same in­
terval in which the defect is assumed to be supported. 
As before, closely spaced locations give rise to an ill­
conditioned problem. However unlike the previous cases 
widely spaced nodes also result in poor conditioning. 
When M is computed using equation (4.9) those rows 
of M corresponding to measurement locations far from 
the support of S are very nearly set to zero since the 
function c(x - ai) is rapidly decreasing away from ai. 

If an error magnification tolerance E is specified, we 
can plot the number of allowable singular values ai > ~ 
versus log10 (E) for the different node spacings. 
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Figure 10: Number of singular values with ll'.i > :fE 
versus log10 (E) for various values of a. 

As expected, a = 2.0 allows more singular values 
for a fixed value of E than any other choice for mea­
surement spacing. It is useful to look at a few recon­
structions based on this strategy. In the two cases be­
low we take E = 300 (so only singular values greater 
than 3~0 are admissible) and add a small amount of 
random noise to the data (equal to 10 percent of the 
maximum signal strength). We then perform a re­
construction which omits all singular values less than 
:fE. The function defining the back surface is S ( x) = 
l0e-2<x+l)

2 + !e-3(x-l)
2

• Figure 11 illustrates the first 
case using a = 2, the best choice according to Figure 
10. In this case 7 singular values are admissible. 

-4 2 4 

Figure 11: Reconstruction of S(x) for 21 
measurements on [-2, 2], tolerance E = 300. 

For a = 10 we have 4 admissible singular values and the 
reconstruction shown in Figure 12. 

-4 -2 2 4 

Figure 12: Reconstruction of S(x) for 21 
measurements on [-10, 10], tolerance E = 300. 

The case a = 0.5 also yields 4 admissible singular values 
and the reconstruction shown in Figure 13. 
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-4 -2 2 4 

Figure 13: Reconstruction of S(x) for 21 
measurements on [-0.5, 0.5], tolerance E = 300. 

The actual reconstructions confirm that a = 2 yields 
the most desirable results. Choosing a significantly 
smaller or larger than the support of S results in de­
creased stability and/ or accuracy for the reconstruction. 

Of course, the assumption that S is supported in a 
given interval should be detrimental to the reconstruc­
tion if that assumption turns out to be false. In the fol­
lowing case we let S(x) = l0 e-2<x+i)

2 + !e-3(x-4)
2 

and 
perform the reconstruction under the assumption that 
Sis supported in the interval [-2, 2]. We take measure­
ments at 21 equally spaced location between -2 and 2, 
the best case from above, and use an error tolerance 
E = 300. The result is shown in Figure 14. 
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Figure 14: Reconstruction of S(x) for 21 
measurements on [-2, 2], tolerance E = 300. 

The incorrect assumption obviously introduces errors 
into the reconstruction, although that portion of S 
which is non-zero in the interval [-2, 2] is still recov­
ered with reasonable accuracy. 

6 Concluding Remarks 

In this paper we have investigated the inverse problem 
of recovering an unknown boundary portion of some ob­
ject by applying a heat flux to an accessible portion of 
the boundary and measuring the resulting temperature 
response. We have considered a linearized version of the 
problem and found that the continuous version of the 
inverse problem, in which one has data at every point 



on the accessible portion of the surface, is extremely 
ill-posed. Indeed, the linearized version requires one to 
solve a first kind convolution integral equation for the 
unknown surface. The convolution kernel has a Fourier 
transform which dies rapidly at infinity, and so the in­
version is extremely sensitive to the data at high spatial 
frequencies. We performed a variety of numerical stud­
ies which show that the ill-posedness is directly reflected 
in the finite data version of the problem, by the rapid 
decay of the singular values of the matrix which gov­
erns the inversion process. This ill-posedness depends 
on a number of factors; in particular, the locations of 
the measurements have a large effect on the condition­
ing of the inverse problem, and these effects mirror the 
behavior of the continuous version. We have also con­
sidered the effect of including a priori assumptions in 
the finite data inversion procedure, by weighting appro­
priate Hilbert spaces in which the solution S resides. 
The inclusion of this information can help in determin­
ing the optimal locations for measurements on the top 
surface. 

There are a number of interesting directions we could 
take from here. In our studies we used only the input 
flux whose magnitude is identically one on the top sur­
face. Similar results can be obtained for more general 
fluxes, and this would allow one to study the effect that 
the input heat flux has on sensitivity and resolution. 
The fully time-dependent case would also be of interest. 
The procedure presented in this paper would also work 
for a full three- dimensional problem, although qualita­
tively the results should be the same-the high spatial 
frequencies in the back surface should be difficult to see. 

As mentioned earlier, the inversion process which 
chooses that function with minimal £ 2 norm which is 
consistent with the measured data seems to act like a 
form of regularization for the inverse problem. It would 
be interesting to examine in what sense this is true, and 
how it relates to more traditional forms of regulariza­
tion. It is also possible (and not difficult) to carry out 
the same minimization process in higher Sobolev spaces, 
e.g., H 1 , and thus put a higher "penalty" on functions 
with oscillations. This too would make an interesting 
study. We would also like to examine conditions under 
whieh our inversion procedure is guaranteed to converge 
to the solution of the linearized inverse problem. 
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