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PROOF OF THE BARKER ARRAY CONJECTURE 

JAMES A. DAVIS, JONATHAN JEDWAB, AND KEN W. SMITH 

(Communicated by John R. Stembridge) 

ABSTRACT. Using only elementary methods, we prove Alquaddoomi and 
Scholtz's conjecture of 1989, that no s x t Barker array having s, t > 1 ex 

ists except when s = t = 2. 

1. INTRODUCTION 

Binary sequences and arrays whose out-of-phase aperiodic autocorrelations are 
collectively small are particularly useful in digital communication systems, espe 
cially synchronisation and radar. The search for such sequences and arrays dates 
from the 1950s [2], [16] and continues to the present day [7], [9], [13], [14]. We de 
fine an s x t array to be a two-dimensional array (aij) of complex-valued elements 
satisfying 

ai =O unlessO<i<sandO<j<t. 
The array is binary if all nonzero elements aij take values in { 1, -1}. The aperiodic 
autocorrelation function of an s x t array A = (aij) is given by 

CA(U, V) = aijai+u,+v for integer u, v satisfying Jul < s and lvl < t. 
ii 

We refer to an s x 1 array as a sequence of length s, abbreviating the array (aio) to 

(ai) and its aperiodic autocorrelation function CA(U, 0) to CA(u). 
Alquaddoomi and Scholtz [1] defined an s x t Barker array to be an s x t binary 

array A for which 

ICA(U,V)I < 1 for all (u,v) #8 (0,0). 
This generalises the notion of a Barker sequence from one dimension (the case s = 1 
or t = 1) to two dimensions; see [10] and [11] for recent nonexistence results for 
Barker sequences. The 2 x 2 array [+ + ] is a Barker array, but it is conjectured 
that there are no other sizes for a (truly two-dimensional) Barker array. 

Conjecture 1.1 (Alquaddoomi and Scholtz [1]). If an s x t Barker array exists for 
s, t > 1, then s = t = 2. 
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In this paper we prove Conjecture 1.1 using only elementary methods. We include 
short proofs of key auxiliary results obtained elsewhere, in order to make the paper 
self-contained. Theorem 1.2 summarises the previous state of knowledge regarding 
Conjecture 1.1. 

Theorem 1.2 (Jedwab [6], Jedwab, Lloyd and Mowbray [8]). Let A be an s x t 
Barker array with s, t > 1. Then 

Case 1. s, t even: s = t. If t > 2, then t-0 (mod 4) and t > 12. 
Case 2. s even, t > 1 odd: s > t. s = 4S2 and t = T2 for integers S, T. 
There exists a Barker sequence of length s. 
Case 3. s,t > 1 odd: st > 311. Write t = 7j pj, where the {pW} are 

distinct primes and aj > 1 for all j. Then aj > 2 for all j and ak > 2 for 
some k. If st _ 1 (mod 4), then pj _ 1 (mod 4) for all j. 

Following [1], define the following function for an s x t array A = (aij): 

(1.1) PA(U,V) = CA(U, V) + CA(U, V-t) for -s < u < s and 0 < v < t. 

Any expression involving PA(u, v) or CA(u, v) will implicitly refer only to values of 

(u, v) for which the function is defined. In terms of the array elements aij we have 

t-1 

(1.2) PA(U, V) = > E aijai+u,(j+v) mod t 
i j=0 

Alquaddoomi and Scholtz [1] established Lemma 1.3 for binary arrays, and then 
used it to prove Proposition 1.4 for Barker arrays. This generalised the approach 
taken by Tuyrn and Storer in their classical paper [15] on the one-dimensional 

(sequence) case. 

Lemma 1.3 (Alquaddoomi and Scholtz [1]). Let A be an s x t binary array. Then 

PA(U, V) PA(U, V') (mod 4) for all (u, v, v'). 

Proof. Let u, v, v' satisfy -s < u < s and 0 < v, v' < t. From (1.2), PA(U, V) is the 
sum of (s - lul)t nonzero terms, of which exactly [(s - ul)t - PA(U, v)]/2 are -1 
and [(s - ul)t + PA(U, v)]/2 are +1. But from (1.2), the product of these nonzero 
terms is independent of v. Therefore 

(-1) [(s-1u1)t-PA(u,v)]/2 

is independent of v, which implies PA(U, v) PA(U, v') (mod 4). 0 

Proposition 1.4 (Alquaddoomi and Scholtz [1]). Let A be an s x t Barker array 
with st > 2. Then 

Case 1. s,t even: 

PA(U, V) = 0 for (u, v) =/ (0, 0). 

Case 2. s even and t odd: 

PAT (V, U) = 0 for (u, v) 5? (O, O), 

pA (U, V) = 0 for u even and (u, v) 74 (0,0), 

AwUhere'~ k(u) for u odd, 

where k(u) = 1 or -1. 
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Case 3. s, t odd: 

k for u even and (u, v) $ (0,0), 
PA (u V) 0 for u odd, 

where k = 1 or -1. 

Proof. For all u,v satisfying lul < s and Ivi < t, CA(U,V) is the sum of (s - lul) 

x (t - Ivi) nonzero terms, each of which is ?1. Therefore CA(U, v) _ (s + u)(t + v) 

(mod 2). The Barker array property then implies 

(1.3) CA(u, v) = +(((s + u)(t + v)) mod 2) for (u, v) $& (0, 0). 

Case 1. s, t even: From (1.3) we have 

CA(U, V) = 0 for u or v even and (u, v) 0 (0,0). 

Then by (1.1), 

PA(U, V) = 0 for u or v even and (u, v) (0,0 ). 

Lemma 1.3 then implies that 

PA(U, V) = 0 for (u, v) 5# (0, 0). 

Case 2. s even, t odd: From (1.3) we have 

(1.4) CA(u, v) = +((u(1 + v)) mod 2) for (u, v) =A (0, 0). 

It follows from (1.1) that 

PA (U, V) ={?0 
for u even and (u, v) $ (0, 0), 

+1 for u odd. 

Lemma 1.3 then implies that 

(1.5) PA(U,V) 0 for u even and (u,v) # (0,0), 
AkU,VJ~k(u) for uodd, 

where k(u) = 1 or -1, as required. 

We next consider the function 

(1.6) PAT (V, U) = CA(U, V) + CA(U - S, V). 

From (1.4), 

(1.7) PAT (V, U) = 0 for u even and (u, v) 5 (0, 0). 

Lemma 1.3 applied to AT states that 

PAT(V,U) -PAT(V,U') (mod 4) for all (u, u',v), 

giving 

(1.8) PAT (V, U) = 0 for (u, v) (0, 0), except when s = 2 and (u, v) = (1, 0) 

(since, when s = 2 and v = 0, there is no value of u satisfying the conditions 

of (1.7)). 
To complete the proof of Case 2, we now derive a contradiction for the 

case s = 2, so that (1.8) holds without exception. By assumption st > 2 and 

s = 2, so t > 1 and we can choose an even value of v satisfying 0 < v < t. 

From (1. 5), 

k(1) = PA(1,v) = PA(1,t-v), 
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and so from (1.1) and (1.4), 

(1.9) ?1 = CA(li V) = CA(1, -v). 

But by (1.8), PAT(V, 1) = 0, and so from (1.6) we get 

0 = CA(1,V)+CA(-1,V) 
= CA(1,V) +CA(1-V) 

since CA(u,v) = CA(-u, -v) for all u, v. This contradicts (1.9). 
Case 3. s,t odd: From (1.3) we have 

CA(u, V) = (((1+ u) (1 + v)) mod 2) for (u, v) 7& (0, 0). 

Then by (1.1), 

PA (U, V) = { 
I? for u even and (u, v) $4 (0, 0), 
o for u odd. 

Lemma 1.3 then implies that 

PA_(U, V) 
k k(u) for u even and (u, v) #& (O, 0), 

PA(UV) }~0 for uodd, 
where k(u) = 1 or -1. By symmetry in s and t we also obtain 

PAT(V,U) f k'(v) for v even and (u,v) 74 (0,0), ' 0 for vodd, 

where k'(v) = 1 or -1. But, for u,v even and (u,v) 74 (0,0), by (1.3) 
the single nonzero contribution to PA (U, v) = CA (U, v) + CA (U, v - t) and 

to PAT(V,U) = CA(U,V) + CA(U - s,v) is the same term C(u,v), and so 

k(u) = k'(v) = k. 

Proposition 1.4 is implied by Theorem 2 and (21)-(23) of [1]. Lemma 3.5 of [6] 
shows that an s x t binary array A having PA(U, v) = 0 for all (u, v) 74 (0,0) is 
equivalent to A being simultaneously a perfect binary array and a "quasiperfect" 
binary array. This in turn is equivalent to the -1 elements of A corresponding to 
a (4N2, 2N2 - N, N2 - N)-difference set in Zs x Zt, where st = 4N2 (see [4], for 

example), and the -1 elements of [_A] corresponding to an (st, 2, st, st/2) relative 

difference set in 225 X 7t = (x) x (y), where x2s = yt = 1, relative to (xs) (see [17]). 
See [3] or [12] for a background on difference sets and relative difference sets. 

2. PROOF OF THE CONJECTURE 

We begin with two lemmas. 

Lemma 2.1. Let A = (aij) be an s x t binary array and let C be a (not necessarily 

primitive) tth root of unity. Let X = (xi) be the complex-valued sequence of length s 

given by 

(2.1) xi-Zaij(j. 

Then 
t-l1 

Cx(u) = EPA(u, v)(-v for all u. 
v=0 
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Proof. From (1.2), for all u, 

t- 1 t-1 

PA (U, v)0-v S SE S aijai+u,(j+v) modt 
V=0 V=0 i j 

t-1 

- 55 Eai 5 ai+u,k 3 
i j k=O 

writing k = (j + v) mod t and using (t = 1. Hence, for all u, 

t-1 

5PA(U,V)( 
= E aij E 

:ai i+u,k (k 
v=O i j k 

= E Xixi+u 

= Cx (u), 

as required. O 

Lemma 2.2. Let X = (xi) be a complex-valued sequence of length s for which 

Cx(u) = O for u 7? O. 

Then, for some I satisfying 0 < I < s, 

IX 12_ o fori?7I, 
Cx (O) for i = I. 

Proof. By the definition of aperiodic autocorrelation, we are given that 

(2.2) E xixi+U = 0 for 0 < u < s. 

We prove by induction on s that, for some I satisfying 0 < I < 

Ixi12=0 fori7tI. 

The case s = 1 is immediate (take I = 0). Assume case s - 1 to be true. Put 
u = s - 1 in (2.2) to give xoxs_1 = 0. This implies, without loss of generality, that 
xs_1 = 0. Then from (2.2) we have 

s-u-2 

S xixi+U = O for 0 < u < s-1. 

i=O 

By the inductive hypothesis it follows that, for some I satisfying 0 < I < s -1, 

IX, 
2 = 0 for i $4 I. Combining this with x,_1 = 0 gives the case s, completing the 

induction. 
F'urthermore, by the definition of aperiodic autocorrelation, Cx(0) = Ei IX,12, 

and so Cx(0) = IXI12, as required. O 

The case ( = 1 of Lemma 2.1 was used as a starting point in [5], [6] and [8] to 
derive equations in the row sums Ej aij of an s x t Barker array from Proposi 
tion 1.4, eventually leading to Theorem 1.2. We will now use the case where ( is a 
primitive tth root of unity to prove Conjecture 1.1. 

Theorem 2.3. If an s x t Barker array A = (aij) exists for s, t > 1, then s = t = 2. 
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Proof. Let C be a primitive tth root of unity and define X = (xi) as in (2.1). We 
will show that the case s,t even forces the result s = t = 2, whereas the case s 
even, t odd and the case s, t odd both result in a contradiction. These three cases 
are exhaustive, because the transpose of a Barker array is also a Barker array. 

Case 1. s, t even: Proposition 1.4 and Lemma 2.1 together give 

0 for u 
50 

, 
Xst-15 for u = 0, 

using PA(O, 0) = C(O, 0) = st. Then by Lemma 2.2 there is some I satisfy 
ing 0 < I < s for which 

(2.3) 1XII = st. 

But by (2.1), 

2 
t- 1 

Ixi I = j( 
j=O 

2~~~~~ 

=t. 

It follows from (2.3) that 

(2.4) s < t, with equality X arg(aIj(j) is constant for all j satisfying 0 < j < t. 

Since s is even, by symmetry in s and t (or equivalently by applying the 
same procedure to AT) we have t < s, forcing equality. Therefore s = t 
and, since t > 1, by (2.4) we have t = 2. 
Case 2. s even, t > 1 odd: By Proposition 1.4, the t x s array AT satisfies 

PAT (V, U) 
= 0 for (u, v) 7& (0,0 ). 

The argument of Case 1 that led to (2.4), when applied to AT, gives t < 
s. Furthermore the expression for PA in Proposition 1.4, together with 
Lemma 2.1, gives 

0 for u even and u 7& 0, 

Cx(u) = { ~k(u) Et-' (-V for u odd, 
st for u = O 

0 for u 5$ 0, 
{ st for u = 0, 

since C-1 is a primitive tth root of unity and t > 1. By Lemma 2.2 we then 
obtain s < t, by the same argument as in Case 1. Since we already have 
t < s this implies s = t, which contradicts the assumption that s is even 
and t is odd. 
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Case 3. s, t > 1 odd: Proposition 1.4 and Lemma 2.1 together give 

f k Et-lo C,-t for u even and u =$ 0, 
Cx(u) = { 0 for u odd, 

kZtjIQ(-v foru=0 

0 foru#&0, 
{ st-k foru=0, 

where k = 1 or -1. Then by Lemma 2.2 there is some I satisfying 0 < I < s 
for which 

(2.5) XI 12 = st-k. 
But, as in Case 1, IXI12 < t2 and so 

st - k < t2. 

By symmetry in s and t we then have 

(2.6) st - k < min{s2,it2}. 

Suppose, for a contradiction, that s =A t and without loss of generality that 
s > t + 1. Then st - k > t(t + 1) - k > t2, since k = 1 or -1 and t > 1. 
This contradicts (2.6), and so s = t. 

Then (2.6) forces k = 1, and from (2.1) and (2.5) we have 
2 

(2 .7) EaIj (i t2 _ 1. 
j=0 

Since t is odd, one of the sets {j: ajj = 1} and {j: aIj = -1} contains at 
most (t - 1)/2 elements; without loss of generality, suppose it is the former. 
This implies that 

2 2 

t-1 ~~~t-1 t-1 

ZaIjj = E aji? + (i 
j=0 j=O j=0 

2 

= 2 Z i 
: ajj =1 

( 2 
? 

(t-1 ) 

< t2 1 

since t > 1. This contradicts (2.7). 

D 
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