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Abstract 

A Hadamard difference set (HDS) has the parameters (4N 2, 2N 2 - N ,  N 2 N). In the abelian 
case it is equivalent to a perfect binary array, which is a multidimensional matrix with elements 
±1 such that all out-of-phase periodic autocorrelation coefficients are zero. We show that if a 

2 group of the form H x Zp, contains a (hp 2r, x/hp~(2x/hp r - 1 ), x /hpr(x /hp ~ - 1 )) HDS (HDS), 
p aprime not dividing ]H I = h  and p J ~ - I  (rood exp(H)) for some j,  then H xZ~, has a 

(hp2 ' ,x /hp ' (2x /hp ' -  l) ,x/hpt(x/hp t -  1)) HDS for every O<~t<~r. Thus, if these families do 
not exist, we simply need to show that H × Z~ does not support a HDS. We give two examples 
of families that are ruled out by this procedure. 

A M S  classification: primary 05 B 10; secondary 62 K 05 

Keywords. Difference set; Perfect binary array 

I. Introduction 

Let G be a multiplicative group of order v and D be a k-element subset of G; then 

D is called a (v ,k ,  2)-di f ference set  in G provided that the differences dd  I-1 for d, 

d '  E D, d ¢ d '  contain every nonidentity element of G exactly L times. We shall 

consider (4N2,2N 2 -  N , N  2 -  N)-difference sets (known as H a d a m a r d  or alternatively 

M e n o n  difference sets) in an abelian group G. We will use the notation HDS for 

Hadamard difference sets as HDS. 

Recently, HDSs have been constructed in all groups H x K x L for which H is of 

the form Z 2 - ,  × ' ' '  × Z 2 .... where ff_~iai ~-2a+2~>2 and m a x i a i < ~ a + 2 ,  K is of the 

form Z32~ x - . .  x Z~,, and L is of the form Z 4p, × . . .  x Zp,,4 where each p/ is a prime 

satisfying Pi ~ 3 (mod 4) (Arasu et al., 1993; Davis and Jedwab; Jedwab, 1992; Xia, 

1992). There are also many nonexistence results, in particular Chan et al. (to appear), 

Chan (1991), Lander (1983), McFarland (1989, 1990a,b), Turyn (1965). 

* Corresponding author. Tel.: +1 804 2898094; fax: +1 804 2876444; e-mail: jad@mathcs.urich.edu. 
I This work is partially supported by NSA grant # MDA 904-92-H-3067. 
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Let m and w be positive integers; then m is called semiprimitive mod w if there exists 

an integer j such that mJ =- - 1  (mod w). Consider an abelian group G -- H ×P ,  where 

[p[ = p2~ and p is an odd prime semiprimitive mod exp(H). A necessary condition 
for G to contain a HDS is the exponent bound exp(P)~< p~, which follows easily from 
Theorem 4.33 of  Lander (1983) based on results of  Turyn (1965). In this paper we 

restrict attention to the case exp(P)----p~, and show that P must then have the form 
× Zp . 

We shall make use of  the viewpoint o f  perfect binary arrays; for a general discussion 
of  this topic and its applications in signal processing, see Chan and Siu (1991) or Jed- 

wab (1992). An integer-valued r-dimensional matrix A -- (a[jl  . . . . .  j r ] )  with O<~ji < si 

(1 <~i<~r) is called an sl x . . .  × sr array. The array is called perfect if  the periodic 
autocorrelation coefficients 

sl--1 s,.--1 

RA(Ul . . . . .  ur) ---- Z "'" Z a[jl  . . . . .  jr]a[(jl  -~- Ul) mod s~ . . . . .  (Jr + ur) mod st] 
j l  --0 j r - -0  

are zero for all (u~ . . . . .  u~) # (0 . . . .  ,0), O<~ui < si. The array is binary if  each 
matrix element is +1.  The invertible mapping from the binary array A to v(A) -- 

{(jl  . . . . .  j ~ ) : a [ j l  . . . .  ,jr] = - 1 }  gives rise to an equivalence between an sl × . . .  × sr 

perfect binary array and a HDS in Z~ x . . .  × Zs ,  where 4N 2 = Hi  si (Kopilovich, 
1988). 

We can contract a binary array A = (aft: g E G) corresponding to a difference set 
r(A) in G by summing the array elements a s over values o f  e lying in the same coset 
o f  U. This yields the contracted array A' = (a'¢: e ' ~  G') ,  where a~, = ~-[,'~g:uf=g, aft. It 

is straightforward to show that any contraction o f  a perfect binary array will also be 

perfect (though not necessarily binary). Defining the energy of  an array to be the sum 

of  the squares of  the array elements we also obtain the following result. 

/. 
Lemma 1. The energy o f  an Sl × . . .  × sr perfect  binary array is I-[i=1 si, and remains 
constant under all contractions. 

By using Ma's  lemma (Arasu et al., to appear, Lemma 3.4) and some character 
theory, we can place restrictions on the contracted array values. In particular, we can 
show that when we contract a group of  the form H × Zp2~ by a cyclic subgroup of  

order p~ ( p  a prime that is semiprimitive rood exp(H)) ,  the contracted array values 
are congruent mod p ~ in p-tuples. This was shown in Arasu et al. (to appear). 

Proposition 1. Let  D be a (v,k,2)-difference set in an abelian group G and let U 

be a subgroup o f  G. Le t  p be a prime and suppose that G t = G/U = H × Zp~, 

where Zp~ = (z) and p is semiprimitive mod exp(H). Let  D'  be the contraction o f  D 

with respect to U, and let A~= (rig,) be the contracted array corresponding to D ~. I f  
pZ~lk - 2 fo r  some positive integer fl then for  all g~ C G ~, 

t a "  ~ a t 
af, -- - " -  (mod 2p~). ftzpX I = ftz(p_l)p~--I 
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Suppose that we are working with the group H x Z2,, s o / / =  ~. Since the contraction 
/ 

is by a group of  order p~, the array values will all satisfy - p~ ~< a,q, ~< p~. The only way 

that the p-tuple o f  array values associated to a~, can he unequal is if they are of  the 
form t , ... a '  . . . ,  (aq,,aq,z,,~ ~, , ~,~<p_,>~_, ) = ( - p ~ , : i : p  ~, p~). For any of  these contractions, 

we can get a count of  how many p-tuples are of  this form (see Arasu et al., to appear, 
for details). 

Theorem 1. Suppose that there is a P B A  in the group H × Z2~. When we contract 

by a cyclic subgroup o f  order p~, there will be at least w = h / (p  + 1) p-tuples 

( - p ~ ,  ±p~  . . . . .  p~) f o r  any o f  these contractions. 

This explicit counting o f  the number of  unequal p-tuples tbr any contraction of  this 

form led to the calculation o f  what happens when we pull a p-tuple up to the original 

group and then push it down by a different contraction. This is possible because the 
pull up is completely determined by the array values: all o f  the elements of  the original 

array that contract to p~ must have been +1 to start, and the same for - p ~  pulling 

up to - 1 .  This led to the following Lemma (see [1] for details). 

Lemma 2 (Pull-push). Each p-tuple o f  unequal elements i p  ~ arising J'rom contrac- 
tion with respect to the subgroup (kl zc'p~-~, . . . .  kr z'''p> ') ~ K produces a p-tuple q f  

equal elements bp  ~-1 under contraction with respect to K, where b is odd. 

It is this technical lemma that we will generalize in this paper to get a nested family 

of  PBAs once we get one example of  a PBA. The main implication of  the pull-push 

lemma in Arasu et al. is the following theorem. 

Theorem 2. I f  the abelian group H × K × Zp, contains a Hadamard  difference set, 

where p is an odd prime, IKI = p~, and p is" semiprimitive mod exp(H),  then K is 

cyclic. 

2 for the rest of  the Thus, we can restrict our attention to groups of  the form H x Zp~ 

paper. 

2. Nesting of HDS 

In the previous section, we established several facts about the contractions of  the 
PBA to smaller perfect arrays. We quoted the result about HDS with exponent p~, so 
from this point on in the paper, we will only consider groups o f  the form H x Z2p~. 

We assume that p is a prime and that p is semiprimitive mod the exponent of  
H.  We will first make more precise the form of  the array based on considering 

more than one contraction. The following lemma is a generalization o f  the push-pull 

lemma. 
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Lemma 3 (Generalized pull-push). Suppose that there is a PBA in H × Z2~ where 
p is a prime that is semiprimitive mod the exponent of  H. Let g be an element 
that is mapped to a p-tuple of  the form ( -p~ , :kp~ , . . . ,p~)  when it is contracted by 
a cyclic subgroup 141 of order p~. I f  we contract the original array by a different 
cyclic subgroup 112 of order p~, then g cannot be mapped to a p-tuple of  the form 
( -p~,+p~,  . . . .  p~). 

Proof. Suppose that there is an element of the group g that is mapped to a contracted 

value of ±p~ under contraction by/ /1 ,  a cyclic subgroup of order p~ . Since g con- 
tracts to a p-tuple which is a mixture of ~p~, there is another element gz kp~-' that will 

contract to the negative of g. Let//2 be another cyclic subgroup of order p~, and con- 

sider what happens to the subgroup H2 when it is contracted by HI. Since contraction 

is a homomorphism, H2 maps to a subgroup of size at least p. Since G/H1 is a cyclic 

group, there is a unique subgroup of order p inside G/H1. Thus, H2 maps onto this 
subgroup of order p, as does (z p~-' ). This implies that there is an element hk of H2 so 

that hkHl ~-zkP~-'H1 for O<~k<~p- 1. Since hk E hkH1, hk is also in zkP~-'HI, so we 

get that ghkH2 n gz kp~-' HI = 9H2 n gz kp~-' H 1 is not empty. Thus, when we contract 9 

by H2, there will be at least one element - 1  and one element +1 contracting together. 

The only way for g to be mapped to a p-tuple of the form ( - p ~ , ~ p ~ , . . . , p ~ )  is for 

gH2 to have all the same number contracting to it. This proves the lemma. [] 

In terms of the group theory, this implies that the cosets of cyclic subgroups of size 
p~ that are used to build the difference set do not overlap. The next result shows that 

the difference set is completely built by cosets like this. 

Theorem 3. Suppose that there is a difference set in H x Z2p~ where p & a prime that 
is semiprimitive mod the exponent of  H. Every element of  the group will contract 
down to exactly one p-tuple of  the form ( -p~ ,+p~  . . . . .  p~) under the contractions 
by cyclic subgroups of  order p~. The number of  such p-tuples for every contraction 
is exactly h/(p + 1). 

Proof. We have p ~ +  p~-i subgroups Hi that will have contractions onto a group 

isomorphic to H × Zp~. Each of these contractions will have at least h/(p + 1) p-tuples 
of the form listed above. Since the p-tuples do not use any of the same elements by 
the above lemma, each p-tuple uses up p. p~ elements of the original. If we count how 
many elements are being used, we get at least (p~ + p~-l) (h/(p  + 1))(p. p~) = hp2~; 
since that is all of the elements in the group, we must have that every element is used 
exactly once. This also implies that the inequality mentioned above must be equality, 

and that implies that w = h/(p + 1). E] 

This theorem implies that every - 1  in the array belongs to a coset of a cyclic 

subgroup of order p~. Since these cosets cannot overlap because of the lemmas, this 
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implies that the difference set is a union of  cosets of  these cyclic subgroups. By 

considering a different type o f  contraction, we get the following result. 

Theorem 4 (Nested difference sets). Suppose that there is a difference set in H × Z~,~ 

where p is a prime that is semiprimitive mod  the exponent o f  H. Then there is a 
d!(Jerence set in H × Z 2 .. . .  

Proof. Consider what happens to an array value of  ±1 when it is contracted by the 

unique subgroup Hi that takes it to a p-tuple of  the form ( - p ~ , i p L  . . . .  p~). The 

subgroup Hi has a unique subgroup Q isomorphic to Zp, and Q is a subgroup of  the 

2 When G is contracted by Q, the array unique subgroup of  G that is isomorphic to Zp. 

value that we have picked out will map to a p-tuple of  the form ( - p , ± p  . . . . .  p).  

If we contract this p-tuple by the subgroup generated by any element q of  Z~, that 

is not in Q, we take this p-tuple and add its elements together. This is because the 

p-tuple is separated by the element q, so contraction by {q) amounts to collapsing the 
p-tuple on itself. Thus, the element that we started with contracts to an odd multiple 

2 This is true of  every element of  the array, so we have a of  p under contraction by Zp. 

perfect array in H × Z2. where all of  the elements are divisible by p (and they are 

not 0). Since the energy of  this array must be hp 2~, this forces all of  the odd multiples 

to be ±1.  Therefore, if we divide the array by p, we get an array of  ±1 that is perfect, 
so this is a PBA with the correct parameters. 

This theorem can be applied repeatedly to show that a HDS in the group H x Z~,, 

2 If  we can show that there is no HDS in H × Z~,, implies a HDS in the group H x Zp. 

then there will not be an HDS in any group of  the form H × Z2~. We will use this 

version of  the theorem in the next section to show nonexistence o f  some new families 
of  HDS. 

2 It is worth noting that this reduction to the Zp case does not work for lower exponent 
Sylow-p subgroups. For example, Z 2 × Z72 does not have a HDS, but Z 2 × Z~ does 

have a HDS (Xia, 1992). In this lower exponent case, the HDS is not forced to be a 

union of  cosets of  subgroups, and the argument breaks down because of  this. 

3. The H × Zp x Z r case 

In this section, we will show the nonexistence of  PBAs under certain conditions on 

the size and exponent of  H. When we combine this with the results of  the previous 

section, this will give the nonexistence of  the family of  groups H x Z2~. We will 

use the PBA viewpoint in this section, and we will assume that p is a prime that is 
semiprimitive mod the exponent of  H. 

Suppose we have a H x p × p PBA. I f  we contract this by any subgroup of  order p, 

we get a perfect H x p array, call it A. From work in the Introduction, we see that A has 
w = h / ( p  + 1) p-tuples of  the form ( - p ,  ± p  . . . . .  p )  and w p  = h p / ( p  + 1) p-tuples 
o f  the form ( ± 1 , ± 1 , . . . , ± 1 ) .  When we contract A by the subgroup of  order p, we get 
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p times a PBA which we call A'. We want to isolate the impact on the autocorrelation 

of the p-tuples ( - p , + p  . . . . .  p )  when they are mapped onto themselves. In order to 

do this, define a ternary array B by replacing all of the + 1 in A with 0 and dividing 
the remaining ± p  values by p (the values in B will be 0, + l ,  and -1 ) .  Define B' to 

be the contraction of B by the subgroup of order p. B' will also be a ternary array 

with values 0, + 1, and - 1  because the p-tuples of i 1 contract exactly the same way 

as the p-tuples ( - p , ± p  . . . . .  p )  from A going to A'. With these new arrays, we get 

the following lemma. 

Lemma 1. A n y  nonzero autocorrelation o f  B' will be divisible by p. 

Proof. In order to show this, we need to calculate any nonzero autocorrelation of 

A by using the other arrays. Let (Ul . . . . .  ur) ¢ (0 . . . . .  0) be an element in H. When 

we only consider p-tuples ( - p ,  + p  . . . . .  p)  in A being mapped onto other p-tuple of 

the same form, the contribution will be p2R~(u, ul . . . . .  u , )  (the u in the front is from 

the subgroup of order p associated to A and B). When we consider what happens in 

either of the other cases ( ± p s  to ± l s  or + l s  to ± ls ) ,  these calculations are going 
to be multiples of p, and they are best done in A'. However, A' will still contain the 
information of + p  to + p  which we have already counted, so we want to use B' to 

subtract that out. The contribution of either of the other 2 cases is p(RA,(Ul . . . .  ,u~) 

-RB,(ul,...,u~)). This describes the autocorrelation of A, so we get the following 

equation: 

RA(U, Ul . . . . .  Ur ) = p2R~(u, ul . . . . .  u~ ) + p[RA'(Ul,. .. ,Ur ) -- RB,(U~ . . . . .  Ur)]. 

Both A and A' are perfect, so their autocorrelations are both 0. Thus, the equation 

reduces to Rw(ul  . . . . .  u~) = pRB(u, ul . . . . .  Ur). Since autocorrelations are integral, this 

proves the lemma. [] 

If  B' were perfect (every nonzero autocorrelation is 0), then this lemma would not 

help us. To see why B' is not perfect, notice that the sum of the autocorrelations would 
simply be the sum of the all 0 autocorrelation, which is the number of nonzero entries 

in B'. There are w = h / ( p  + 1) nonzero entries. This must be the square of the sum of 

the array by Jedwab (1991), so h / ( p  + 1) is a square. Since h is a square, this implies 

that p ÷  1 is also a square, and the only prime where this works is p - 3. Since we are 
not including p = 3, B' cannot be perfect. By the above lemma, IRB,(ul . . . . .  u,)[ ~>p 

for some nonzero (Ul . . . . .  Ur). This implies the following, which was first shown 
in Chan (1991 ). 

Lemma 2. I f  we meet  all o f  the conditions above, then h ~> (p  + 1)2. 

Proof. If  [RB'(Ul  . . . . .  u,)l>~ p,  there must be at least p nonzero elements in B'. Since 
w is the number of nonzero elements of B', this implies that h / ( p  + 1) >t p. The fact 
that h is a square implies that equality cannot hold here, so h / ( p  + 1)>~ p + 1. [] 
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W e  now consider  the case h = - ( p +  1) 2. This  means  that there wil l  be p +  l e lements  

i l  in the array B ~, and they must  be arranged in such a way  that one o f  the nonzero  

autocorrelat ions Rs,(ul ..... Ur) = R , , (u )  : ± p .  Thus, i f  V = {vl,v2 . . . . .  vp+l } is the set 

o f  e lements  where  B '  has a d : l ,  then vi+u C V for all vi ~ V except  one. I f  c = o r d ( u ) ,  

the set V breaks up into r cycles  with c e lements  and l cycle  with 0 < d < c e lements  

(d  cannot  be 0 because  i f  it were  then Rs,(u)  = ± w  = ± ( p +  1 ) which  is not  divis ible  

by p )  and r c + d = w = p + l .  

Theorem 5. I f  we meet all o f  the conditions above, then h > ( p  + 1 )2. 

Proof ,  We break up the p r o o f  into 3 cases. 

Case 1: c = 2, d = 1. Note  here that r c + d  = 2 r +  1 is odd and w = p +  I is 

even.  Since they are supposed to be equal,  this cannot  happen. 

Case 2: c > 2 ,  d < c -  1. I f  we calculate  RB,(2u), the r cycles  o f  length c will  

have  an autocorrela t ion o f  rc (even  i f  there are ±1  in the cycles,  when  we go by 

2u they must  match  signs).  The  cycle  that has only d e lements  o f  V in it wil l  have 

an autocorrelat ion o f  d -  2. These  are the only places where  we can get nonzero 

autocorrelat ion,  so Rs,(2u) = rc + d - 2 = p - 1. This is not divis ible  by p, so this 

cannot  happen.  

Case 3: c > 2, d = c -  1. In this case, r c + d  = ( r +  1 ) c -  1 = p +  1, so 

( r +  l ) c  = p + 2 .  This implies  that c divides p + 2 ,  but  we know that c divides  

( p +  1) 2. Since p + 2  and ( p +  1) 2 are coprime,  this cannot  happen. 

This  theorem shows that we get the nonexis tence  o f  two 2-dimensional  PBAs  with 

both s and t less than 1 0 0 : 5 6  x 56 and 44 x 99. In fact, we have  shown that any 

group H o f  order  64 with  exponent  less than or equal  to 8 will  not  have  a PBA. When  

we  combine  this wi th  Theo rem 4, this shows that the group H × 7 ~ x 7 ~ will  not have  

a P B A  for any value  o f  e. There  is an analogous family  with p = l l coming  from 

the 44 x 99 example.  
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